1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // <unordered_map> |
10 | |
11 | // template <class Key, class T, class Hash = hash<Key>, class Pred = equal_to<Key>, |
12 | // class Alloc = allocator<pair<const Key, T>>> |
13 | // class unordered_multimap |
14 | |
15 | // unordered_multimap(const unordered_multimap& u); |
16 | |
17 | #include <unordered_map> |
18 | #include <string> |
19 | #include <set> |
20 | #include <cassert> |
21 | #include <cfloat> |
22 | #include <cmath> |
23 | #include <cstddef> |
24 | |
25 | #include "test_macros.h" |
26 | #include "../../../check_consecutive.h" |
27 | #include "../../../test_compare.h" |
28 | #include "../../../test_hash.h" |
29 | #include "test_allocator.h" |
30 | #include "min_allocator.h" |
31 | |
32 | int main(int, char**) |
33 | { |
34 | { |
35 | typedef std::unordered_multimap<int, std::string, |
36 | test_hash<int>, |
37 | test_equal_to<int>, |
38 | test_allocator<std::pair<const int, std::string> > |
39 | > C; |
40 | typedef std::pair<int, std::string> P; |
41 | P a[] = |
42 | { |
43 | P(1, "one" ), |
44 | P(2, "two" ), |
45 | P(3, "three" ), |
46 | P(4, "four" ), |
47 | P(1, "four" ), |
48 | P(2, "four" ), |
49 | }; |
50 | C c0(a, a + sizeof(a)/sizeof(a[0]), |
51 | 7, |
52 | test_hash<int>(8), |
53 | test_equal_to<int>(9), |
54 | test_allocator<std::pair<const int, std::string> >(10) |
55 | ); |
56 | C c = c0; |
57 | LIBCPP_ASSERT(c.bucket_count() == 7); |
58 | assert(c.size() == 6); |
59 | std::multiset<std::string> s; |
60 | s.insert(x: "one" ); |
61 | s.insert(x: "four" ); |
62 | CheckConsecutiveKeys<C::const_iterator>(c.find(1), c.end(), 1, s); |
63 | s.insert(x: "two" ); |
64 | s.insert(x: "four" ); |
65 | CheckConsecutiveKeys<C::const_iterator>(c.find(2), c.end(), 2, s); |
66 | s.insert(x: "three" ); |
67 | CheckConsecutiveKeys<C::const_iterator>(c.find(3), c.end(), 3, s); |
68 | s.insert(x: "four" ); |
69 | CheckConsecutiveKeys<C::const_iterator>(c.find(4), c.end(), 4, s); |
70 | assert(c.hash_function() == test_hash<int>(8)); |
71 | assert(c.key_eq() == test_equal_to<int>(9)); |
72 | assert(c.get_allocator() == |
73 | (test_allocator<std::pair<const int, std::string> >(10))); |
74 | assert(!c.empty()); |
75 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
76 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
77 | assert(std::fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
78 | assert(c.max_load_factor() == 1); |
79 | } |
80 | #if TEST_STD_VER >= 11 |
81 | { |
82 | typedef std::unordered_multimap<int, std::string, |
83 | test_hash<int>, |
84 | test_equal_to<int>, |
85 | other_allocator<std::pair<const int, std::string> > |
86 | > C; |
87 | typedef std::pair<int, std::string> P; |
88 | P a[] = |
89 | { |
90 | P(1, "one" ), |
91 | P(2, "two" ), |
92 | P(3, "three" ), |
93 | P(4, "four" ), |
94 | P(1, "four" ), |
95 | P(2, "four" ), |
96 | }; |
97 | C c0(a, a + sizeof(a)/sizeof(a[0]), |
98 | 7, |
99 | test_hash<int>(8), |
100 | test_equal_to<int>(9), |
101 | other_allocator<std::pair<const int, std::string> >(10) |
102 | ); |
103 | C c = c0; |
104 | LIBCPP_ASSERT(c.bucket_count() == 7); |
105 | assert(c.size() == 6); |
106 | std::multiset<std::string> s; |
107 | s.insert("one" ); |
108 | s.insert("four" ); |
109 | CheckConsecutiveKeys<C::const_iterator>(c.find(1), c.end(), 1, s); |
110 | s.insert("two" ); |
111 | s.insert("four" ); |
112 | CheckConsecutiveKeys<C::const_iterator>(c.find(2), c.end(), 2, s); |
113 | s.insert("three" ); |
114 | CheckConsecutiveKeys<C::const_iterator>(c.find(3), c.end(), 3, s); |
115 | s.insert("four" ); |
116 | CheckConsecutiveKeys<C::const_iterator>(c.find(4), c.end(), 4, s); |
117 | assert(c.hash_function() == test_hash<int>(8)); |
118 | assert(c.key_eq() == test_equal_to<int>(9)); |
119 | assert(c.get_allocator() == |
120 | (other_allocator<std::pair<const int, std::string> >(-2))); |
121 | assert(!c.empty()); |
122 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
123 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
124 | assert(std::fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
125 | assert(c.max_load_factor() == 1); |
126 | } |
127 | { |
128 | typedef std::unordered_multimap<int, std::string, |
129 | test_hash<int>, |
130 | test_equal_to<int>, |
131 | min_allocator<std::pair<const int, std::string> > |
132 | > C; |
133 | typedef std::pair<int, std::string> P; |
134 | P a[] = |
135 | { |
136 | P(1, "one" ), |
137 | P(2, "two" ), |
138 | P(3, "three" ), |
139 | P(4, "four" ), |
140 | P(1, "four" ), |
141 | P(2, "four" ), |
142 | }; |
143 | C c0(a, a + sizeof(a)/sizeof(a[0]), |
144 | 7, |
145 | test_hash<int>(8), |
146 | test_equal_to<int>(9), |
147 | min_allocator<std::pair<const int, std::string> >() |
148 | ); |
149 | C c = c0; |
150 | LIBCPP_ASSERT(c.bucket_count() == 7); |
151 | assert(c.size() == 6); |
152 | std::multiset<std::string> s; |
153 | s.insert("one" ); |
154 | s.insert("four" ); |
155 | CheckConsecutiveKeys<C::const_iterator>(c.find(1), c.end(), 1, s); |
156 | s.insert("two" ); |
157 | s.insert("four" ); |
158 | CheckConsecutiveKeys<C::const_iterator>(c.find(2), c.end(), 2, s); |
159 | s.insert("three" ); |
160 | CheckConsecutiveKeys<C::const_iterator>(c.find(3), c.end(), 3, s); |
161 | s.insert("four" ); |
162 | CheckConsecutiveKeys<C::const_iterator>(c.find(4), c.end(), 4, s); |
163 | assert(c.hash_function() == test_hash<int>(8)); |
164 | assert(c.key_eq() == test_equal_to<int>(9)); |
165 | assert(c.get_allocator() == |
166 | (min_allocator<std::pair<const int, std::string> >())); |
167 | assert(!c.empty()); |
168 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
169 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
170 | assert(std::fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
171 | assert(c.max_load_factor() == 1); |
172 | } |
173 | #endif |
174 | |
175 | return 0; |
176 | } |
177 | |