1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // UNSUPPORTED: c++03 |
10 | |
11 | // <unordered_map> |
12 | |
13 | // template <class Key, class T, class Hash = hash<Key>, class Pred = equal_to<Key>, |
14 | // class Alloc = allocator<pair<const Key, T>>> |
15 | // class unordered_multimap |
16 | |
17 | // unordered_multimap(unordered_multimap&& u, const allocator_type& a); |
18 | |
19 | #include <unordered_map> |
20 | #include <string> |
21 | #include <set> |
22 | #include <cassert> |
23 | #include <cfloat> |
24 | #include <cmath> |
25 | #include <cstddef> |
26 | |
27 | #include "test_macros.h" |
28 | #include "../../../check_consecutive.h" |
29 | #include "../../../test_compare.h" |
30 | #include "../../../test_hash.h" |
31 | #include "test_allocator.h" |
32 | #include "min_allocator.h" |
33 | |
34 | int main(int, char**) |
35 | { |
36 | { |
37 | typedef std::pair<int, std::string> P; |
38 | typedef test_allocator<std::pair<const int, std::string>> A; |
39 | typedef std::unordered_multimap<int, std::string, |
40 | test_hash<int>, |
41 | test_equal_to<int>, |
42 | A |
43 | > C; |
44 | P a[] = |
45 | { |
46 | P(1, "one" ), |
47 | P(2, "two" ), |
48 | P(3, "three" ), |
49 | P(4, "four" ), |
50 | P(1, "four" ), |
51 | P(2, "four" ), |
52 | }; |
53 | C c0(a, a + sizeof(a)/sizeof(a[0]), |
54 | 7, |
55 | test_hash<int>(8), |
56 | test_equal_to<int>(9), |
57 | A(10) |
58 | ); |
59 | C c(std::move(c0), A(12)); |
60 | assert(c.bucket_count() >= 7); |
61 | assert(c.size() == 6); |
62 | typedef std::pair<C::const_iterator, C::const_iterator> Eq; |
63 | Eq eq = c.equal_range(x: 1); |
64 | assert(std::distance(eq.first, eq.second) == 2); |
65 | std::multiset<std::string> s; |
66 | s.insert(x: "one" ); |
67 | s.insert(x: "four" ); |
68 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
69 | eq = c.equal_range(x: 2); |
70 | assert(std::distance(eq.first, eq.second) == 2); |
71 | s.insert(x: "two" ); |
72 | s.insert(x: "four" ); |
73 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 2), end: c.end(), key: 2, values&: s); |
74 | |
75 | eq = c.equal_range(x: 3); |
76 | assert(std::distance(eq.first, eq.second) == 1); |
77 | C::const_iterator i = eq.first; |
78 | assert(i->first == 3); |
79 | assert(i->second == "three" ); |
80 | eq = c.equal_range(x: 4); |
81 | assert(std::distance(eq.first, eq.second) == 1); |
82 | i = eq.first; |
83 | assert(i->first == 4); |
84 | assert(i->second == "four" ); |
85 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
86 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
87 | assert(std::fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
88 | assert(c.max_load_factor() == 1); |
89 | assert(c.hash_function() == test_hash<int>(8)); |
90 | assert(c.key_eq() == test_equal_to<int>(9)); |
91 | assert((c.get_allocator() == test_allocator<std::pair<const int, std::string> >(12))); |
92 | |
93 | assert(c0.empty()); |
94 | } |
95 | { |
96 | typedef std::pair<int, std::string> P; |
97 | typedef test_allocator<std::pair<const int, std::string>> A; |
98 | typedef std::unordered_multimap<int, std::string, |
99 | test_hash<int>, |
100 | test_equal_to<int>, |
101 | A |
102 | > C; |
103 | P a[] = |
104 | { |
105 | P(1, "one" ), |
106 | P(2, "two" ), |
107 | P(3, "three" ), |
108 | P(4, "four" ), |
109 | P(1, "four" ), |
110 | P(2, "four" ), |
111 | }; |
112 | C c0(a, a + sizeof(a)/sizeof(a[0]), |
113 | 7, |
114 | test_hash<int>(8), |
115 | test_equal_to<int>(9), |
116 | A(10) |
117 | ); |
118 | C c(std::move(c0), A(10)); |
119 | LIBCPP_ASSERT(c.bucket_count() == 7); |
120 | assert(c.size() == 6); |
121 | typedef std::pair<C::const_iterator, C::const_iterator> Eq; |
122 | Eq eq = c.equal_range(x: 1); |
123 | assert(std::distance(eq.first, eq.second) == 2); |
124 | std::multiset<std::string> s; |
125 | s.insert(x: "one" ); |
126 | s.insert(x: "four" ); |
127 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
128 | eq = c.equal_range(x: 2); |
129 | assert(std::distance(eq.first, eq.second) == 2); |
130 | s.insert(x: "two" ); |
131 | s.insert(x: "four" ); |
132 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 2), end: c.end(), key: 2, values&: s); |
133 | |
134 | eq = c.equal_range(x: 3); |
135 | assert(std::distance(eq.first, eq.second) == 1); |
136 | C::const_iterator i = eq.first; |
137 | assert(i->first == 3); |
138 | assert(i->second == "three" ); |
139 | eq = c.equal_range(x: 4); |
140 | assert(std::distance(eq.first, eq.second) == 1); |
141 | i = eq.first; |
142 | assert(i->first == 4); |
143 | assert(i->second == "four" ); |
144 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
145 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
146 | assert(std::fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
147 | assert(c.max_load_factor() == 1); |
148 | assert(c.hash_function() == test_hash<int>(8)); |
149 | assert(c.key_eq() == test_equal_to<int>(9)); |
150 | assert((c.get_allocator() == test_allocator<std::pair<const int, std::string> >(10))); |
151 | |
152 | assert(c0.empty()); |
153 | } |
154 | { |
155 | typedef std::pair<int, std::string> P; |
156 | typedef min_allocator<std::pair<const int, std::string>> A; |
157 | typedef std::unordered_multimap<int, std::string, |
158 | test_hash<int>, |
159 | test_equal_to<int>, |
160 | A |
161 | > C; |
162 | P a[] = |
163 | { |
164 | P(1, "one" ), |
165 | P(2, "two" ), |
166 | P(3, "three" ), |
167 | P(4, "four" ), |
168 | P(1, "four" ), |
169 | P(2, "four" ), |
170 | }; |
171 | C c0(a, a + sizeof(a)/sizeof(a[0]), |
172 | 7, |
173 | test_hash<int>(8), |
174 | test_equal_to<int>(9), |
175 | A() |
176 | ); |
177 | C c(std::move(c0), A()); |
178 | LIBCPP_ASSERT(c.bucket_count() == 7); |
179 | assert(c.size() == 6); |
180 | typedef std::pair<C::const_iterator, C::const_iterator> Eq; |
181 | Eq eq = c.equal_range(x: 1); |
182 | assert(std::distance(eq.first, eq.second) == 2); |
183 | std::multiset<std::string> s; |
184 | s.insert(x: "one" ); |
185 | s.insert(x: "four" ); |
186 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
187 | eq = c.equal_range(x: 2); |
188 | assert(std::distance(eq.first, eq.second) == 2); |
189 | s.insert(x: "two" ); |
190 | s.insert(x: "four" ); |
191 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 2), end: c.end(), key: 2, values&: s); |
192 | |
193 | eq = c.equal_range(x: 3); |
194 | assert(std::distance(eq.first, eq.second) == 1); |
195 | C::const_iterator i = eq.first; |
196 | assert(i->first == 3); |
197 | assert(i->second == "three" ); |
198 | eq = c.equal_range(x: 4); |
199 | assert(std::distance(eq.first, eq.second) == 1); |
200 | i = eq.first; |
201 | assert(i->first == 4); |
202 | assert(i->second == "four" ); |
203 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
204 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
205 | assert(std::fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
206 | assert(c.max_load_factor() == 1); |
207 | assert(c.hash_function() == test_hash<int>(8)); |
208 | assert(c.key_eq() == test_equal_to<int>(9)); |
209 | assert((c.get_allocator() == min_allocator<std::pair<const int, std::string> >())); |
210 | |
211 | assert(c0.empty()); |
212 | } |
213 | { |
214 | typedef std::pair<int, std::string> P; |
215 | typedef explicit_allocator<std::pair<const int, std::string>> A; |
216 | typedef std::unordered_multimap<int, std::string, |
217 | test_hash<int>, |
218 | test_equal_to<int>, |
219 | A |
220 | > C; |
221 | P a[] = |
222 | { |
223 | P(1, "one" ), |
224 | P(2, "two" ), |
225 | P(3, "three" ), |
226 | P(4, "four" ), |
227 | P(1, "four" ), |
228 | P(2, "four" ), |
229 | }; |
230 | C c0(a, a + sizeof(a)/sizeof(a[0]), |
231 | 7, |
232 | test_hash<int>(8), |
233 | test_equal_to<int>(9), |
234 | A{} |
235 | ); |
236 | C c(std::move(c0), A()); |
237 | LIBCPP_ASSERT(c.bucket_count() == 7); |
238 | assert(c.size() == 6); |
239 | typedef std::pair<C::const_iterator, C::const_iterator> Eq; |
240 | Eq eq = c.equal_range(x: 1); |
241 | assert(std::distance(eq.first, eq.second) == 2); |
242 | std::multiset<std::string> s; |
243 | s.insert(x: "one" ); |
244 | s.insert(x: "four" ); |
245 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
246 | eq = c.equal_range(x: 2); |
247 | assert(std::distance(eq.first, eq.second) == 2); |
248 | s.insert(x: "two" ); |
249 | s.insert(x: "four" ); |
250 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 2), end: c.end(), key: 2, values&: s); |
251 | |
252 | eq = c.equal_range(x: 3); |
253 | assert(std::distance(eq.first, eq.second) == 1); |
254 | C::const_iterator i = eq.first; |
255 | assert(i->first == 3); |
256 | assert(i->second == "three" ); |
257 | eq = c.equal_range(x: 4); |
258 | assert(std::distance(eq.first, eq.second) == 1); |
259 | i = eq.first; |
260 | assert(i->first == 4); |
261 | assert(i->second == "four" ); |
262 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
263 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
264 | assert(std::fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
265 | assert(c.max_load_factor() == 1); |
266 | assert(c.hash_function() == test_hash<int>(8)); |
267 | assert(c.key_eq() == test_equal_to<int>(9)); |
268 | assert(c.get_allocator() == A{}); |
269 | |
270 | assert(c0.empty()); |
271 | } |
272 | |
273 | return 0; |
274 | } |
275 | |