1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // <unordered_map> |
10 | |
11 | // template <class Key, class T, class Hash = hash<Key>, class Pred = equal_to<Key>, |
12 | // class Alloc = allocator<pair<const Key, T>>> |
13 | // class unordered_multimap |
14 | |
15 | // size_type erase(const key_type& k); |
16 | |
17 | #include <unordered_map> |
18 | #include <string> |
19 | #include <set> |
20 | #include <cassert> |
21 | #include <cstddef> |
22 | |
23 | #include "test_macros.h" |
24 | #include "../../../check_consecutive.h" |
25 | #include "min_allocator.h" |
26 | |
27 | #if TEST_STD_VER >= 11 |
28 | template <typename Unordered> |
29 | bool only_deletions ( const Unordered &whole, const Unordered &part ) { |
30 | typename Unordered::const_iterator w = whole.begin(); |
31 | typename Unordered::const_iterator p = part.begin(); |
32 | |
33 | while ( w != whole.end () && p != part.end()) { |
34 | if ( *w == *p ) |
35 | p++; |
36 | w++; |
37 | } |
38 | |
39 | return p == part.end(); |
40 | } |
41 | #endif |
42 | |
43 | int main(int, char**) |
44 | { |
45 | { |
46 | typedef std::unordered_multimap<int, std::string> C; |
47 | typedef std::pair<int, std::string> P; |
48 | P a[] = |
49 | { |
50 | P(1, "one" ), |
51 | P(2, "two" ), |
52 | P(3, "three" ), |
53 | P(4, "four" ), |
54 | P(1, "four" ), |
55 | P(2, "four" ), |
56 | }; |
57 | C c(a, a + sizeof(a)/sizeof(a[0])); |
58 | assert(c.erase(5) == 0); |
59 | assert(c.size() == 6); |
60 | typedef std::pair<C::const_iterator, C::const_iterator> Eq; |
61 | Eq eq = c.equal_range(x: 1); |
62 | assert(std::distance(eq.first, eq.second) == 2); |
63 | std::multiset<std::string> s; |
64 | s.insert(x: "one" ); |
65 | s.insert(x: "four" ); |
66 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
67 | eq = c.equal_range(x: 2); |
68 | assert(std::distance(eq.first, eq.second) == 2); |
69 | s.insert(x: "two" ); |
70 | s.insert(x: "four" ); |
71 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 2), end: c.end(), key: 2, values&: s); |
72 | eq = c.equal_range(x: 3); |
73 | assert(std::distance(eq.first, eq.second) == 1); |
74 | C::const_iterator k = eq.first; |
75 | assert(k->first == 3); |
76 | assert(k->second == "three" ); |
77 | eq = c.equal_range(x: 4); |
78 | assert(std::distance(eq.first, eq.second) == 1); |
79 | k = eq.first; |
80 | assert(k->first == 4); |
81 | assert(k->second == "four" ); |
82 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
83 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
84 | |
85 | assert(c.erase(2) == 2); |
86 | assert(c.size() == 4); |
87 | eq = c.equal_range(x: 1); |
88 | assert(std::distance(eq.first, eq.second) == 2); |
89 | s.insert(x: "one" ); |
90 | s.insert(x: "four" ); |
91 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
92 | eq = c.equal_range(x: 3); |
93 | assert(std::distance(eq.first, eq.second) == 1); |
94 | k = eq.first; |
95 | assert(k->first == 3); |
96 | assert(k->second == "three" ); |
97 | eq = c.equal_range(x: 4); |
98 | assert(std::distance(eq.first, eq.second) == 1); |
99 | k = eq.first; |
100 | assert(k->first == 4); |
101 | assert(k->second == "four" ); |
102 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
103 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
104 | |
105 | assert(c.erase(2) == 0); |
106 | assert(c.size() == 4); |
107 | eq = c.equal_range(x: 1); |
108 | assert(std::distance(eq.first, eq.second) == 2); |
109 | s.insert(x: "one" ); |
110 | s.insert(x: "four" ); |
111 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
112 | eq = c.equal_range(x: 3); |
113 | assert(std::distance(eq.first, eq.second) == 1); |
114 | k = eq.first; |
115 | assert(k->first == 3); |
116 | assert(k->second == "three" ); |
117 | eq = c.equal_range(x: 4); |
118 | assert(std::distance(eq.first, eq.second) == 1); |
119 | k = eq.first; |
120 | assert(k->first == 4); |
121 | assert(k->second == "four" ); |
122 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
123 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
124 | |
125 | assert(c.erase(4) == 1); |
126 | assert(c.size() == 3); |
127 | eq = c.equal_range(x: 1); |
128 | assert(std::distance(eq.first, eq.second) == 2); |
129 | s.insert(x: "one" ); |
130 | s.insert(x: "four" ); |
131 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
132 | eq = c.equal_range(x: 3); |
133 | assert(std::distance(eq.first, eq.second) == 1); |
134 | k = eq.first; |
135 | assert(k->first == 3); |
136 | assert(k->second == "three" ); |
137 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
138 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
139 | |
140 | assert(c.erase(4) == 0); |
141 | assert(c.size() == 3); |
142 | eq = c.equal_range(x: 1); |
143 | assert(std::distance(eq.first, eq.second) == 2); |
144 | s.insert(x: "one" ); |
145 | s.insert(x: "four" ); |
146 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
147 | eq = c.equal_range(x: 3); |
148 | assert(std::distance(eq.first, eq.second) == 1); |
149 | k = eq.first; |
150 | assert(k->first == 3); |
151 | assert(k->second == "three" ); |
152 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
153 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
154 | |
155 | assert(c.erase(1) == 2); |
156 | assert(c.size() == 1); |
157 | eq = c.equal_range(x: 3); |
158 | assert(std::distance(eq.first, eq.second) == 1); |
159 | k = eq.first; |
160 | assert(k->first == 3); |
161 | assert(k->second == "three" ); |
162 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
163 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
164 | |
165 | assert(c.erase(1) == 0); |
166 | assert(c.size() == 1); |
167 | eq = c.equal_range(x: 3); |
168 | assert(std::distance(eq.first, eq.second) == 1); |
169 | k = eq.first; |
170 | assert(k->first == 3); |
171 | assert(k->second == "three" ); |
172 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
173 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
174 | |
175 | assert(c.erase(3) == 1); |
176 | assert(c.size() == 0); |
177 | eq = c.equal_range(x: 3); |
178 | assert(std::distance(eq.first, eq.second) == 0); |
179 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
180 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
181 | |
182 | assert(c.erase(3) == 0); |
183 | assert(c.size() == 0); |
184 | eq = c.equal_range(x: 3); |
185 | assert(std::distance(eq.first, eq.second) == 0); |
186 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
187 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
188 | } |
189 | #if TEST_STD_VER >= 11 |
190 | { |
191 | typedef std::unordered_multimap<int, std::string, std::hash<int>, std::equal_to<int>, |
192 | min_allocator<std::pair<const int, std::string>>> C; |
193 | typedef std::pair<int, std::string> P; |
194 | P a[] = |
195 | { |
196 | P(1, "one" ), |
197 | P(2, "two" ), |
198 | P(3, "three" ), |
199 | P(4, "four" ), |
200 | P(1, "four" ), |
201 | P(2, "four" ), |
202 | }; |
203 | C c(a, a + sizeof(a)/sizeof(a[0])); |
204 | assert(c.erase(5) == 0); |
205 | assert(c.size() == 6); |
206 | typedef std::pair<C::const_iterator, C::const_iterator> Eq; |
207 | Eq eq = c.equal_range(1); |
208 | assert(std::distance(eq.first, eq.second) == 2); |
209 | std::multiset<std::string> s; |
210 | s.insert("one" ); |
211 | s.insert("four" ); |
212 | CheckConsecutiveKeys<C::const_iterator>(c.find(1), c.end(), 1, s); |
213 | eq = c.equal_range(2); |
214 | assert(std::distance(eq.first, eq.second) == 2); |
215 | s.insert("two" ); |
216 | s.insert("four" ); |
217 | CheckConsecutiveKeys<C::const_iterator>(c.find(2), c.end(), 2, s); |
218 | eq = c.equal_range(3); |
219 | assert(std::distance(eq.first, eq.second) == 1); |
220 | C::const_iterator k = eq.first; |
221 | assert(k->first == 3); |
222 | assert(k->second == "three" ); |
223 | eq = c.equal_range(4); |
224 | assert(std::distance(eq.first, eq.second) == 1); |
225 | k = eq.first; |
226 | assert(k->first == 4); |
227 | assert(k->second == "four" ); |
228 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
229 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
230 | |
231 | assert(c.erase(2) == 2); |
232 | assert(c.size() == 4); |
233 | eq = c.equal_range(1); |
234 | assert(std::distance(eq.first, eq.second) == 2); |
235 | s.insert("one" ); |
236 | s.insert("four" ); |
237 | CheckConsecutiveKeys<C::const_iterator>(c.find(1), c.end(), 1, s); |
238 | eq = c.equal_range(3); |
239 | assert(std::distance(eq.first, eq.second) == 1); |
240 | k = eq.first; |
241 | assert(k->first == 3); |
242 | assert(k->second == "three" ); |
243 | eq = c.equal_range(4); |
244 | assert(std::distance(eq.first, eq.second) == 1); |
245 | k = eq.first; |
246 | assert(k->first == 4); |
247 | assert(k->second == "four" ); |
248 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
249 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
250 | |
251 | assert(c.erase(2) == 0); |
252 | assert(c.size() == 4); |
253 | eq = c.equal_range(1); |
254 | assert(std::distance(eq.first, eq.second) == 2); |
255 | s.insert("one" ); |
256 | s.insert("four" ); |
257 | CheckConsecutiveKeys<C::const_iterator>(c.find(1), c.end(), 1, s); |
258 | eq = c.equal_range(3); |
259 | assert(std::distance(eq.first, eq.second) == 1); |
260 | k = eq.first; |
261 | assert(k->first == 3); |
262 | assert(k->second == "three" ); |
263 | eq = c.equal_range(4); |
264 | assert(std::distance(eq.first, eq.second) == 1); |
265 | k = eq.first; |
266 | assert(k->first == 4); |
267 | assert(k->second == "four" ); |
268 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
269 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
270 | |
271 | assert(c.erase(4) == 1); |
272 | assert(c.size() == 3); |
273 | eq = c.equal_range(1); |
274 | assert(std::distance(eq.first, eq.second) == 2); |
275 | s.insert("one" ); |
276 | s.insert("four" ); |
277 | CheckConsecutiveKeys<C::const_iterator>(c.find(1), c.end(), 1, s); |
278 | eq = c.equal_range(3); |
279 | assert(std::distance(eq.first, eq.second) == 1); |
280 | k = eq.first; |
281 | assert(k->first == 3); |
282 | assert(k->second == "three" ); |
283 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
284 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
285 | |
286 | assert(c.erase(4) == 0); |
287 | assert(c.size() == 3); |
288 | eq = c.equal_range(1); |
289 | assert(std::distance(eq.first, eq.second) == 2); |
290 | s.insert("one" ); |
291 | s.insert("four" ); |
292 | CheckConsecutiveKeys<C::const_iterator>(c.find(1), c.end(), 1, s); |
293 | eq = c.equal_range(3); |
294 | assert(std::distance(eq.first, eq.second) == 1); |
295 | k = eq.first; |
296 | assert(k->first == 3); |
297 | assert(k->second == "three" ); |
298 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
299 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
300 | |
301 | assert(c.erase(1) == 2); |
302 | assert(c.size() == 1); |
303 | eq = c.equal_range(3); |
304 | assert(std::distance(eq.first, eq.second) == 1); |
305 | k = eq.first; |
306 | assert(k->first == 3); |
307 | assert(k->second == "three" ); |
308 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
309 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
310 | |
311 | assert(c.erase(1) == 0); |
312 | assert(c.size() == 1); |
313 | eq = c.equal_range(3); |
314 | assert(std::distance(eq.first, eq.second) == 1); |
315 | k = eq.first; |
316 | assert(k->first == 3); |
317 | assert(k->second == "three" ); |
318 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
319 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
320 | |
321 | assert(c.erase(3) == 1); |
322 | assert(c.size() == 0); |
323 | eq = c.equal_range(3); |
324 | assert(std::distance(eq.first, eq.second) == 0); |
325 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
326 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
327 | |
328 | assert(c.erase(3) == 0); |
329 | assert(c.size() == 0); |
330 | eq = c.equal_range(3); |
331 | assert(std::distance(eq.first, eq.second) == 0); |
332 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
333 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
334 | } |
335 | { |
336 | typedef std::unordered_multimap<int, int> C; |
337 | C m, m2; |
338 | for ( int i = 0; i < 10; ++i ) { |
339 | for (int j = 0; j < 2; ++j ) { |
340 | m.insert (std::make_pair(i,j)); |
341 | m2.insert(std::make_pair(i,j)); |
342 | } |
343 | } |
344 | |
345 | C::iterator i = m2.begin(); |
346 | int ctr = 0; |
347 | while (i != m2.end()) { |
348 | if (ctr++ % 2 == 0) |
349 | m2.erase(i++); |
350 | else |
351 | ++i; |
352 | } |
353 | |
354 | assert (only_deletions (m, m2)); |
355 | } |
356 | #endif |
357 | |
358 | return 0; |
359 | } |
360 | |