1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // <unordered_map> |
10 | |
11 | // template <class Key, class T, class Hash = hash<Key>, class Pred = equal_to<Key>, |
12 | // class Alloc = allocator<pair<const Key, T>>> |
13 | // class unordered_multimap |
14 | |
15 | // size_type erase(const key_type& k); |
16 | |
17 | #include <unordered_map> |
18 | #include <string> |
19 | #include <set> |
20 | #include <cassert> |
21 | #include <cstddef> |
22 | |
23 | #include "test_macros.h" |
24 | #include "../../../check_consecutive.h" |
25 | #include "min_allocator.h" |
26 | |
27 | #if TEST_STD_VER >= 11 |
28 | template <typename Unordered> |
29 | bool only_deletions(const Unordered& whole, const Unordered& part) { |
30 | typename Unordered::const_iterator w = whole.begin(); |
31 | typename Unordered::const_iterator p = part.begin(); |
32 | |
33 | while (w != whole.end() && p != part.end()) { |
34 | if (*w == *p) |
35 | p++; |
36 | w++; |
37 | } |
38 | |
39 | return p == part.end(); |
40 | } |
41 | #endif |
42 | |
43 | int main(int, char**) { |
44 | { |
45 | typedef std::unordered_multimap<int, std::string> C; |
46 | typedef std::pair<int, std::string> P; |
47 | P a[] = { |
48 | P(1, "one" ), |
49 | P(2, "two" ), |
50 | P(3, "three" ), |
51 | P(4, "four" ), |
52 | P(1, "four" ), |
53 | P(2, "four" ), |
54 | }; |
55 | C c(a, a + sizeof(a) / sizeof(a[0])); |
56 | assert(c.erase(5) == 0); |
57 | assert(c.size() == 6); |
58 | typedef std::pair<C::const_iterator, C::const_iterator> Eq; |
59 | Eq eq = c.equal_range(x: 1); |
60 | assert(std::distance(eq.first, eq.second) == 2); |
61 | std::multiset<std::string> s; |
62 | s.insert(x: "one" ); |
63 | s.insert(x: "four" ); |
64 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
65 | eq = c.equal_range(x: 2); |
66 | assert(std::distance(eq.first, eq.second) == 2); |
67 | s.insert(x: "two" ); |
68 | s.insert(x: "four" ); |
69 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 2), end: c.end(), key: 2, values&: s); |
70 | eq = c.equal_range(x: 3); |
71 | assert(std::distance(eq.first, eq.second) == 1); |
72 | C::const_iterator k = eq.first; |
73 | assert(k->first == 3); |
74 | assert(k->second == "three" ); |
75 | eq = c.equal_range(x: 4); |
76 | assert(std::distance(eq.first, eq.second) == 1); |
77 | k = eq.first; |
78 | assert(k->first == 4); |
79 | assert(k->second == "four" ); |
80 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
81 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
82 | |
83 | assert(c.erase(2) == 2); |
84 | assert(c.size() == 4); |
85 | eq = c.equal_range(x: 1); |
86 | assert(std::distance(eq.first, eq.second) == 2); |
87 | s.insert(x: "one" ); |
88 | s.insert(x: "four" ); |
89 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
90 | eq = c.equal_range(x: 3); |
91 | assert(std::distance(eq.first, eq.second) == 1); |
92 | k = eq.first; |
93 | assert(k->first == 3); |
94 | assert(k->second == "three" ); |
95 | eq = c.equal_range(x: 4); |
96 | assert(std::distance(eq.first, eq.second) == 1); |
97 | k = eq.first; |
98 | assert(k->first == 4); |
99 | assert(k->second == "four" ); |
100 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
101 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
102 | |
103 | assert(c.erase(2) == 0); |
104 | assert(c.size() == 4); |
105 | eq = c.equal_range(x: 1); |
106 | assert(std::distance(eq.first, eq.second) == 2); |
107 | s.insert(x: "one" ); |
108 | s.insert(x: "four" ); |
109 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
110 | eq = c.equal_range(x: 3); |
111 | assert(std::distance(eq.first, eq.second) == 1); |
112 | k = eq.first; |
113 | assert(k->first == 3); |
114 | assert(k->second == "three" ); |
115 | eq = c.equal_range(x: 4); |
116 | assert(std::distance(eq.first, eq.second) == 1); |
117 | k = eq.first; |
118 | assert(k->first == 4); |
119 | assert(k->second == "four" ); |
120 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
121 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
122 | |
123 | assert(c.erase(4) == 1); |
124 | assert(c.size() == 3); |
125 | eq = c.equal_range(x: 1); |
126 | assert(std::distance(eq.first, eq.second) == 2); |
127 | s.insert(x: "one" ); |
128 | s.insert(x: "four" ); |
129 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
130 | eq = c.equal_range(x: 3); |
131 | assert(std::distance(eq.first, eq.second) == 1); |
132 | k = eq.first; |
133 | assert(k->first == 3); |
134 | assert(k->second == "three" ); |
135 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
136 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
137 | |
138 | assert(c.erase(4) == 0); |
139 | assert(c.size() == 3); |
140 | eq = c.equal_range(x: 1); |
141 | assert(std::distance(eq.first, eq.second) == 2); |
142 | s.insert(x: "one" ); |
143 | s.insert(x: "four" ); |
144 | CheckConsecutiveKeys<C::const_iterator>(pos: c.find(x: 1), end: c.end(), key: 1, values&: s); |
145 | eq = c.equal_range(x: 3); |
146 | assert(std::distance(eq.first, eq.second) == 1); |
147 | k = eq.first; |
148 | assert(k->first == 3); |
149 | assert(k->second == "three" ); |
150 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
151 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
152 | |
153 | assert(c.erase(1) == 2); |
154 | assert(c.size() == 1); |
155 | eq = c.equal_range(x: 3); |
156 | assert(std::distance(eq.first, eq.second) == 1); |
157 | k = eq.first; |
158 | assert(k->first == 3); |
159 | assert(k->second == "three" ); |
160 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
161 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
162 | |
163 | assert(c.erase(1) == 0); |
164 | assert(c.size() == 1); |
165 | eq = c.equal_range(x: 3); |
166 | assert(std::distance(eq.first, eq.second) == 1); |
167 | k = eq.first; |
168 | assert(k->first == 3); |
169 | assert(k->second == "three" ); |
170 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
171 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
172 | |
173 | assert(c.erase(3) == 1); |
174 | assert(c.size() == 0); |
175 | eq = c.equal_range(x: 3); |
176 | assert(std::distance(eq.first, eq.second) == 0); |
177 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
178 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
179 | |
180 | assert(c.erase(3) == 0); |
181 | assert(c.size() == 0); |
182 | eq = c.equal_range(x: 3); |
183 | assert(std::distance(eq.first, eq.second) == 0); |
184 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
185 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
186 | } |
187 | #if TEST_STD_VER >= 11 |
188 | { |
189 | typedef std::unordered_multimap<int, |
190 | std::string, |
191 | std::hash<int>, |
192 | std::equal_to<int>, |
193 | min_allocator<std::pair<const int, std::string>>> |
194 | C; |
195 | typedef std::pair<int, std::string> P; |
196 | P a[] = { |
197 | P(1, "one" ), |
198 | P(2, "two" ), |
199 | P(3, "three" ), |
200 | P(4, "four" ), |
201 | P(1, "four" ), |
202 | P(2, "four" ), |
203 | }; |
204 | C c(a, a + sizeof(a) / sizeof(a[0])); |
205 | assert(c.erase(5) == 0); |
206 | assert(c.size() == 6); |
207 | typedef std::pair<C::const_iterator, C::const_iterator> Eq; |
208 | Eq eq = c.equal_range(1); |
209 | assert(std::distance(eq.first, eq.second) == 2); |
210 | std::multiset<std::string> s; |
211 | s.insert("one" ); |
212 | s.insert("four" ); |
213 | CheckConsecutiveKeys<C::const_iterator>(c.find(1), c.end(), 1, s); |
214 | eq = c.equal_range(2); |
215 | assert(std::distance(eq.first, eq.second) == 2); |
216 | s.insert("two" ); |
217 | s.insert("four" ); |
218 | CheckConsecutiveKeys<C::const_iterator>(c.find(2), c.end(), 2, s); |
219 | eq = c.equal_range(3); |
220 | assert(std::distance(eq.first, eq.second) == 1); |
221 | C::const_iterator k = eq.first; |
222 | assert(k->first == 3); |
223 | assert(k->second == "three" ); |
224 | eq = c.equal_range(4); |
225 | assert(std::distance(eq.first, eq.second) == 1); |
226 | k = eq.first; |
227 | assert(k->first == 4); |
228 | assert(k->second == "four" ); |
229 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
230 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
231 | |
232 | assert(c.erase(2) == 2); |
233 | assert(c.size() == 4); |
234 | eq = c.equal_range(1); |
235 | assert(std::distance(eq.first, eq.second) == 2); |
236 | s.insert("one" ); |
237 | s.insert("four" ); |
238 | CheckConsecutiveKeys<C::const_iterator>(c.find(1), c.end(), 1, s); |
239 | eq = c.equal_range(3); |
240 | assert(std::distance(eq.first, eq.second) == 1); |
241 | k = eq.first; |
242 | assert(k->first == 3); |
243 | assert(k->second == "three" ); |
244 | eq = c.equal_range(4); |
245 | assert(std::distance(eq.first, eq.second) == 1); |
246 | k = eq.first; |
247 | assert(k->first == 4); |
248 | assert(k->second == "four" ); |
249 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
250 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
251 | |
252 | assert(c.erase(2) == 0); |
253 | assert(c.size() == 4); |
254 | eq = c.equal_range(1); |
255 | assert(std::distance(eq.first, eq.second) == 2); |
256 | s.insert("one" ); |
257 | s.insert("four" ); |
258 | CheckConsecutiveKeys<C::const_iterator>(c.find(1), c.end(), 1, s); |
259 | eq = c.equal_range(3); |
260 | assert(std::distance(eq.first, eq.second) == 1); |
261 | k = eq.first; |
262 | assert(k->first == 3); |
263 | assert(k->second == "three" ); |
264 | eq = c.equal_range(4); |
265 | assert(std::distance(eq.first, eq.second) == 1); |
266 | k = eq.first; |
267 | assert(k->first == 4); |
268 | assert(k->second == "four" ); |
269 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
270 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
271 | |
272 | assert(c.erase(4) == 1); |
273 | assert(c.size() == 3); |
274 | eq = c.equal_range(1); |
275 | assert(std::distance(eq.first, eq.second) == 2); |
276 | s.insert("one" ); |
277 | s.insert("four" ); |
278 | CheckConsecutiveKeys<C::const_iterator>(c.find(1), c.end(), 1, s); |
279 | eq = c.equal_range(3); |
280 | assert(std::distance(eq.first, eq.second) == 1); |
281 | k = eq.first; |
282 | assert(k->first == 3); |
283 | assert(k->second == "three" ); |
284 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
285 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
286 | |
287 | assert(c.erase(4) == 0); |
288 | assert(c.size() == 3); |
289 | eq = c.equal_range(1); |
290 | assert(std::distance(eq.first, eq.second) == 2); |
291 | s.insert("one" ); |
292 | s.insert("four" ); |
293 | CheckConsecutiveKeys<C::const_iterator>(c.find(1), c.end(), 1, s); |
294 | eq = c.equal_range(3); |
295 | assert(std::distance(eq.first, eq.second) == 1); |
296 | k = eq.first; |
297 | assert(k->first == 3); |
298 | assert(k->second == "three" ); |
299 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
300 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
301 | |
302 | assert(c.erase(1) == 2); |
303 | assert(c.size() == 1); |
304 | eq = c.equal_range(3); |
305 | assert(std::distance(eq.first, eq.second) == 1); |
306 | k = eq.first; |
307 | assert(k->first == 3); |
308 | assert(k->second == "three" ); |
309 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
310 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
311 | |
312 | assert(c.erase(1) == 0); |
313 | assert(c.size() == 1); |
314 | eq = c.equal_range(3); |
315 | assert(std::distance(eq.first, eq.second) == 1); |
316 | k = eq.first; |
317 | assert(k->first == 3); |
318 | assert(k->second == "three" ); |
319 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
320 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
321 | |
322 | assert(c.erase(3) == 1); |
323 | assert(c.size() == 0); |
324 | eq = c.equal_range(3); |
325 | assert(std::distance(eq.first, eq.second) == 0); |
326 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
327 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
328 | |
329 | assert(c.erase(3) == 0); |
330 | assert(c.size() == 0); |
331 | eq = c.equal_range(3); |
332 | assert(std::distance(eq.first, eq.second) == 0); |
333 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
334 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
335 | } |
336 | { |
337 | typedef std::unordered_multimap<int, int> C; |
338 | C m, m2; |
339 | for (int i = 0; i < 10; ++i) { |
340 | for (int j = 0; j < 2; ++j) { |
341 | m.insert(std::make_pair(i, j)); |
342 | m2.insert(std::make_pair(i, j)); |
343 | } |
344 | } |
345 | |
346 | C::iterator i = m2.begin(); |
347 | int ctr = 0; |
348 | while (i != m2.end()) { |
349 | if (ctr++ % 2 == 0) |
350 | m2.erase(i++); |
351 | else |
352 | ++i; |
353 | } |
354 | |
355 | assert(only_deletions(m, m2)); |
356 | } |
357 | #endif |
358 | |
359 | return 0; |
360 | } |
361 | |