1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // UNSUPPORTED: c++03 |
10 | |
11 | // <unordered_set> |
12 | |
13 | // template <class Value, class Hash = hash<Value>, class Pred = equal_to<Value>, |
14 | // class Alloc = allocator<Value>> |
15 | // class unordered_set |
16 | |
17 | // unordered_set& operator=(unordered_set&& u); |
18 | |
19 | #include <unordered_set> |
20 | #include <cassert> |
21 | #include <cfloat> |
22 | #include <cmath> |
23 | #include <cstddef> |
24 | |
25 | #include "test_macros.h" |
26 | #include "../../../test_compare.h" |
27 | #include "../../../test_hash.h" |
28 | #include "test_allocator.h" |
29 | #include "min_allocator.h" |
30 | |
31 | int main(int, char**) |
32 | { |
33 | { |
34 | typedef test_allocator<int> A; |
35 | typedef std::unordered_set<int, |
36 | test_hash<int>, |
37 | test_equal_to<int>, |
38 | A |
39 | > C; |
40 | typedef int P; |
41 | P a[] = |
42 | { |
43 | P(1), |
44 | P(2), |
45 | P(3), |
46 | P(4), |
47 | P(1), |
48 | P(2) |
49 | }; |
50 | C c0(a, a + sizeof(a)/sizeof(a[0]), |
51 | 7, |
52 | test_hash<int>(8), |
53 | test_equal_to<int>(9), |
54 | A(10) |
55 | ); |
56 | C c(a, a + 2, |
57 | 7, |
58 | test_hash<int>(2), |
59 | test_equal_to<int>(3), |
60 | A(4) |
61 | ); |
62 | c = std::move(c0); |
63 | LIBCPP_ASSERT(c.bucket_count() == 7); |
64 | assert(c.size() == 4); |
65 | assert(c.count(1) == 1); |
66 | assert(c.count(2) == 1); |
67 | assert(c.count(3) == 1); |
68 | assert(c.count(4) == 1); |
69 | assert(c.hash_function() == test_hash<int>(8)); |
70 | assert(c.key_eq() == test_equal_to<int>(9)); |
71 | assert(c.get_allocator() == A(4)); |
72 | assert(!c.empty()); |
73 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
74 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
75 | assert(fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
76 | assert(c.max_load_factor() == 1); |
77 | } |
78 | { |
79 | typedef test_allocator<int> A; |
80 | typedef std::unordered_set<int, |
81 | test_hash<int>, |
82 | test_equal_to<int>, |
83 | A |
84 | > C; |
85 | typedef int P; |
86 | P a[] = |
87 | { |
88 | P(1), |
89 | P(2), |
90 | P(3), |
91 | P(4), |
92 | P(1), |
93 | P(2) |
94 | }; |
95 | C c0(a, a + sizeof(a)/sizeof(a[0]), |
96 | 7, |
97 | test_hash<int>(8), |
98 | test_equal_to<int>(9), |
99 | A(10) |
100 | ); |
101 | C c(a, a + 2, |
102 | 7, |
103 | test_hash<int>(2), |
104 | test_equal_to<int>(3), |
105 | A(10) |
106 | ); |
107 | C::iterator it0 = c0.begin(); |
108 | c = std::move(c0); |
109 | LIBCPP_ASSERT(c.bucket_count() == 7); |
110 | assert(c.size() == 4); |
111 | assert(c.count(1) == 1); |
112 | assert(c.count(2) == 1); |
113 | assert(c.count(3) == 1); |
114 | assert(c.count(4) == 1); |
115 | assert(c.hash_function() == test_hash<int>(8)); |
116 | assert(c.key_eq() == test_equal_to<int>(9)); |
117 | assert(c.get_allocator() == A(10)); |
118 | assert(!c.empty()); |
119 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
120 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
121 | assert(fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
122 | assert(c.max_load_factor() == 1); |
123 | assert(it0 == c.begin()); // Iterators remain valid |
124 | } |
125 | { |
126 | typedef other_allocator<int> A; |
127 | typedef std::unordered_set<int, |
128 | test_hash<int>, |
129 | test_equal_to<int>, |
130 | A |
131 | > C; |
132 | typedef int P; |
133 | P a[] = |
134 | { |
135 | P(1), |
136 | P(2), |
137 | P(3), |
138 | P(4), |
139 | P(1), |
140 | P(2) |
141 | }; |
142 | C c0(a, a + sizeof(a)/sizeof(a[0]), |
143 | 7, |
144 | test_hash<int>(8), |
145 | test_equal_to<int>(9), |
146 | A(10) |
147 | ); |
148 | C c(a, a + 2, |
149 | 7, |
150 | test_hash<int>(2), |
151 | test_equal_to<int>(3), |
152 | A(4) |
153 | ); |
154 | C::iterator it0 = c0.begin(); |
155 | c = std::move(c0); |
156 | LIBCPP_ASSERT(c.bucket_count() == 7); |
157 | assert(c.size() == 4); |
158 | assert(c.count(1) == 1); |
159 | assert(c.count(2) == 1); |
160 | assert(c.count(3) == 1); |
161 | assert(c.count(4) == 1); |
162 | assert(c.hash_function() == test_hash<int>(8)); |
163 | assert(c.key_eq() == test_equal_to<int>(9)); |
164 | assert(c.get_allocator() == A(10)); |
165 | assert(!c.empty()); |
166 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
167 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
168 | assert(fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
169 | assert(c.max_load_factor() == 1); |
170 | assert(it0 == c.begin()); // Iterators remain valid |
171 | } |
172 | { |
173 | typedef min_allocator<int> A; |
174 | typedef std::unordered_set<int, |
175 | test_hash<int>, |
176 | test_equal_to<int>, |
177 | A |
178 | > C; |
179 | typedef int P; |
180 | P a[] = |
181 | { |
182 | P(1), |
183 | P(2), |
184 | P(3), |
185 | P(4), |
186 | P(1), |
187 | P(2) |
188 | }; |
189 | C c0(a, a + sizeof(a)/sizeof(a[0]), |
190 | 7, |
191 | test_hash<int>(8), |
192 | test_equal_to<int>(9), |
193 | A() |
194 | ); |
195 | C c(a, a + 2, |
196 | 7, |
197 | test_hash<int>(2), |
198 | test_equal_to<int>(3), |
199 | A() |
200 | ); |
201 | C::iterator it0 = c0.begin(); |
202 | c = std::move(c0); |
203 | LIBCPP_ASSERT(c.bucket_count() == 7); |
204 | assert(c.size() == 4); |
205 | assert(c.count(1) == 1); |
206 | assert(c.count(2) == 1); |
207 | assert(c.count(3) == 1); |
208 | assert(c.count(4) == 1); |
209 | assert(c.hash_function() == test_hash<int>(8)); |
210 | assert(c.key_eq() == test_equal_to<int>(9)); |
211 | assert(c.get_allocator() == A()); |
212 | assert(!c.empty()); |
213 | assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); |
214 | assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); |
215 | assert(fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
216 | assert(c.max_load_factor() == 1); |
217 | assert(it0 == c.begin()); // Iterators remain valid |
218 | } |
219 | |
220 | return 0; |
221 | } |
222 | |