1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // REQUIRES: long_tests |
10 | |
11 | // <random> |
12 | |
13 | // template<class RealType = double> |
14 | // class chi_squared_distribution |
15 | |
16 | // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm); |
17 | |
18 | #include <random> |
19 | #include <cassert> |
20 | #include <vector> |
21 | #include <numeric> |
22 | #include <cstddef> |
23 | |
24 | #include "test_macros.h" |
25 | |
26 | template <class T> |
27 | inline |
28 | T |
29 | sqr(T x) |
30 | { |
31 | return x * x; |
32 | } |
33 | |
34 | int main(int, char**) |
35 | { |
36 | { |
37 | typedef std::chi_squared_distribution<> D; |
38 | typedef D::param_type P; |
39 | typedef std::minstd_rand G; |
40 | G g; |
41 | D d(0.5); |
42 | P p(1); |
43 | const int N = 1000000; |
44 | std::vector<D::result_type> u; |
45 | for (int i = 0; i < N; ++i) |
46 | { |
47 | D::result_type v = d(g, p); |
48 | assert(d.min() < v); |
49 | u.push_back(v); |
50 | } |
51 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
52 | double var = 0; |
53 | double skew = 0; |
54 | double kurtosis = 0; |
55 | for (std::size_t i = 0; i < u.size(); ++i) |
56 | { |
57 | double dbl = (u[i] - mean); |
58 | double d2 = sqr(dbl); |
59 | var += d2; |
60 | skew += dbl * d2; |
61 | kurtosis += d2 * d2; |
62 | } |
63 | var /= u.size(); |
64 | double dev = std::sqrt(x: var); |
65 | skew /= u.size() * dev * var; |
66 | kurtosis /= u.size() * var * var; |
67 | kurtosis -= 3; |
68 | double x_mean = p.n(); |
69 | double x_var = 2 * p.n(); |
70 | double x_skew = std::sqrt(x: 8 / p.n()); |
71 | double x_kurtosis = 12 / p.n(); |
72 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
73 | assert(std::abs((var - x_var) / x_var) < 0.01); |
74 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
75 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
76 | } |
77 | { |
78 | typedef std::chi_squared_distribution<> D; |
79 | typedef D::param_type P; |
80 | typedef std::mt19937 G; |
81 | G g; |
82 | D d(1); |
83 | P p(2); |
84 | const int N = 1000000; |
85 | std::vector<D::result_type> u; |
86 | for (int i = 0; i < N; ++i) |
87 | { |
88 | D::result_type v = d(g, p); |
89 | assert(d.min() < v); |
90 | u.push_back(v); |
91 | } |
92 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
93 | double var = 0; |
94 | double skew = 0; |
95 | double kurtosis = 0; |
96 | for (std::size_t i = 0; i < u.size(); ++i) |
97 | { |
98 | double dbl = (u[i] - mean); |
99 | double d2 = sqr(dbl); |
100 | var += d2; |
101 | skew += dbl * d2; |
102 | kurtosis += d2 * d2; |
103 | } |
104 | var /= u.size(); |
105 | double dev = std::sqrt(x: var); |
106 | skew /= u.size() * dev * var; |
107 | kurtosis /= u.size() * var * var; |
108 | kurtosis -= 3; |
109 | double x_mean = p.n(); |
110 | double x_var = 2 * p.n(); |
111 | double x_skew = std::sqrt(8 / p.n()); |
112 | double x_kurtosis = 12 / p.n(); |
113 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
114 | assert(std::abs((var - x_var) / x_var) < 0.01); |
115 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
116 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
117 | } |
118 | { |
119 | typedef std::chi_squared_distribution<> D; |
120 | typedef D::param_type P; |
121 | typedef std::minstd_rand G; |
122 | G g; |
123 | D d(2); |
124 | P p(.5); |
125 | const int N = 1000000; |
126 | std::vector<D::result_type> u; |
127 | for (int i = 0; i < N; ++i) |
128 | { |
129 | D::result_type v = d(g, p); |
130 | assert(d.min() < v); |
131 | u.push_back(v); |
132 | } |
133 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
134 | double var = 0; |
135 | double skew = 0; |
136 | double kurtosis = 0; |
137 | for (std::size_t i = 0; i < u.size(); ++i) |
138 | { |
139 | double dbl = (u[i] - mean); |
140 | double d2 = sqr(dbl); |
141 | var += d2; |
142 | skew += dbl * d2; |
143 | kurtosis += d2 * d2; |
144 | } |
145 | var /= u.size(); |
146 | double dev = std::sqrt(x: var); |
147 | skew /= u.size() * dev * var; |
148 | kurtosis /= u.size() * var * var; |
149 | kurtosis -= 3; |
150 | double x_mean = p.n(); |
151 | double x_var = 2 * p.n(); |
152 | double x_skew = std::sqrt(8 / p.n()); |
153 | double x_kurtosis = 12 / p.n(); |
154 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
155 | assert(std::abs((var - x_var) / x_var) < 0.01); |
156 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
157 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
158 | } |
159 | |
160 | return 0; |
161 | } |
162 | |