1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // REQUIRES: long_tests |
10 | |
11 | // <random> |
12 | |
13 | // template<class RealType = double> |
14 | // class gamma_distribution |
15 | |
16 | // template<class _URNG> result_type operator()(_URNG& g); |
17 | |
18 | #include <random> |
19 | #include <cassert> |
20 | #include <vector> |
21 | #include <numeric> |
22 | |
23 | #include "test_macros.h" |
24 | |
25 | template <class T> |
26 | inline |
27 | T |
28 | sqr(T x) |
29 | { |
30 | return x * x; |
31 | } |
32 | |
33 | int main(int, char**) |
34 | { |
35 | { |
36 | typedef std::gamma_distribution<> D; |
37 | typedef std::mt19937 G; |
38 | G g; |
39 | D d(0.5, 2); |
40 | const int N = 1000000; |
41 | std::vector<D::result_type> u; |
42 | for (int i = 0; i < N; ++i) |
43 | { |
44 | D::result_type v = d(g); |
45 | assert(d.min() < v); |
46 | u.push_back(v); |
47 | } |
48 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
49 | double var = 0; |
50 | double skew = 0; |
51 | double kurtosis = 0; |
52 | for (unsigned i = 0; i < u.size(); ++i) |
53 | { |
54 | double dbl = (u[i] - mean); |
55 | double d2 = sqr(dbl); |
56 | var += d2; |
57 | skew += dbl * d2; |
58 | kurtosis += d2 * d2; |
59 | } |
60 | var /= u.size(); |
61 | double dev = std::sqrt(x: var); |
62 | skew /= u.size() * dev * var; |
63 | kurtosis /= u.size() * var * var; |
64 | kurtosis -= 3; |
65 | double x_mean = d.alpha() * d.beta(); |
66 | double x_var = d.alpha() * sqr(d.beta()); |
67 | double x_skew = 2 / std::sqrt(x: d.alpha()); |
68 | double x_kurtosis = 6 / d.alpha(); |
69 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
70 | assert(std::abs((var - x_var) / x_var) < 0.01); |
71 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
72 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
73 | } |
74 | { |
75 | typedef std::gamma_distribution<> D; |
76 | typedef std::mt19937 G; |
77 | G g; |
78 | D d(1, .5); |
79 | const int N = 1000000; |
80 | std::vector<D::result_type> u; |
81 | for (int i = 0; i < N; ++i) |
82 | { |
83 | D::result_type v = d(g); |
84 | assert(d.min() < v); |
85 | u.push_back(v); |
86 | } |
87 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
88 | double var = 0; |
89 | double skew = 0; |
90 | double kurtosis = 0; |
91 | for (unsigned i = 0; i < u.size(); ++i) |
92 | { |
93 | double dbl = (u[i] - mean); |
94 | double d2 = sqr(dbl); |
95 | var += d2; |
96 | skew += dbl * d2; |
97 | kurtosis += d2 * d2; |
98 | } |
99 | var /= u.size(); |
100 | double dev = std::sqrt(x: var); |
101 | skew /= u.size() * dev * var; |
102 | kurtosis /= u.size() * var * var; |
103 | kurtosis -= 3; |
104 | double x_mean = d.alpha() * d.beta(); |
105 | double x_var = d.alpha() * sqr(d.beta()); |
106 | double x_skew = 2 / std::sqrt(d.alpha()); |
107 | double x_kurtosis = 6 / d.alpha(); |
108 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
109 | assert(std::abs((var - x_var) / x_var) < 0.01); |
110 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
111 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
112 | } |
113 | { |
114 | typedef std::gamma_distribution<> D; |
115 | typedef std::mt19937 G; |
116 | G g; |
117 | D d(2, 3); |
118 | const int N = 1000000; |
119 | std::vector<D::result_type> u; |
120 | for (int i = 0; i < N; ++i) |
121 | { |
122 | D::result_type v = d(g); |
123 | assert(d.min() < v); |
124 | u.push_back(v); |
125 | } |
126 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
127 | double var = 0; |
128 | double skew = 0; |
129 | double kurtosis = 0; |
130 | for (unsigned i = 0; i < u.size(); ++i) |
131 | { |
132 | double dbl = (u[i] - mean); |
133 | double d2 = sqr(dbl); |
134 | var += d2; |
135 | skew += dbl * d2; |
136 | kurtosis += d2 * d2; |
137 | } |
138 | var /= u.size(); |
139 | double dev = std::sqrt(x: var); |
140 | skew /= u.size() * dev * var; |
141 | kurtosis /= u.size() * var * var; |
142 | kurtosis -= 3; |
143 | double x_mean = d.alpha() * d.beta(); |
144 | double x_var = d.alpha() * sqr(d.beta()); |
145 | double x_skew = 2 / std::sqrt(d.alpha()); |
146 | double x_kurtosis = 6 / d.alpha(); |
147 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
148 | assert(std::abs((var - x_var) / x_var) < 0.01); |
149 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
150 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
151 | } |
152 | |
153 | return 0; |
154 | } |
155 | |