1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // UNSUPPORTED: no-threads, c++03 |
10 | |
11 | // <condition_variable> |
12 | |
13 | // class condition_variable; |
14 | |
15 | // template <class Rep, class Period> |
16 | // cv_status |
17 | // wait_for(unique_lock<mutex>& lock, |
18 | // const chrono::duration<Rep, Period>& rel_time); |
19 | |
20 | #include <condition_variable> |
21 | #include <atomic> |
22 | #include <cassert> |
23 | #include <chrono> |
24 | #include <mutex> |
25 | #include <thread> |
26 | |
27 | #include "make_test_thread.h" |
28 | #include "test_macros.h" |
29 | |
30 | template <class Function> |
31 | std::chrono::microseconds measure(Function f) { |
32 | std::chrono::high_resolution_clock::time_point start = std::chrono::high_resolution_clock::now(); |
33 | f(); |
34 | std::chrono::high_resolution_clock::time_point end = std::chrono::high_resolution_clock::now(); |
35 | return std::chrono::duration_cast<std::chrono::microseconds>(d: end - start); |
36 | } |
37 | |
38 | int main(int, char**) { |
39 | // Test unblocking via a call to notify_one() in another thread. |
40 | // |
41 | // To test this, we set a very long timeout in wait_for() and we wait |
42 | // again in case we get awoken spuriously. Note that it can actually |
43 | // happen that we get awoken spuriously and fail to recognize it |
44 | // (making this test useless), but the likelihood should be small. |
45 | { |
46 | std::atomic<bool> ready(false); |
47 | std::atomic<bool> likely_spurious(true); |
48 | auto timeout = std::chrono::seconds(3600); |
49 | std::condition_variable cv; |
50 | std::mutex mutex; |
51 | |
52 | std::thread t1 = support::make_test_thread([&] { |
53 | std::unique_lock<std::mutex> lock(mutex); |
54 | auto elapsed = measure([&] { |
55 | ready = true; |
56 | do { |
57 | std::cv_status result = cv.wait_for(lock, timeout); |
58 | assert(result == std::cv_status::no_timeout); |
59 | } while (likely_spurious); |
60 | }); |
61 | |
62 | // This can technically fail if we have many spurious awakenings, but in practice the |
63 | // tolerance is so high that it shouldn't be a problem. |
64 | assert(elapsed < timeout); |
65 | }); |
66 | |
67 | std::thread t2 = support::make_test_thread([&] { |
68 | while (!ready) { |
69 | // spin |
70 | } |
71 | |
72 | // Acquire the same mutex as t1. This blocks the condition variable inside its wait call |
73 | // so we can notify it while it is waiting. |
74 | std::unique_lock<std::mutex> lock(mutex); |
75 | cv.notify_one(); |
76 | likely_spurious = false; |
77 | lock.unlock(); |
78 | }); |
79 | |
80 | t2.join(); |
81 | t1.join(); |
82 | } |
83 | |
84 | // Test unblocking via a timeout. |
85 | // |
86 | // To test this, we create a thread that waits on a condition variable |
87 | // with a certain timeout, and we never awaken it. To guard against |
88 | // spurious wakeups, we wait again whenever we are awoken for a reason |
89 | // other than a timeout. |
90 | { |
91 | auto timeout = std::chrono::milliseconds(250); |
92 | std::condition_variable cv; |
93 | std::mutex mutex; |
94 | |
95 | std::thread t1 = support::make_test_thread([&] { |
96 | std::unique_lock<std::mutex> lock(mutex); |
97 | std::cv_status result; |
98 | do { |
99 | auto elapsed = measure([&] { result = cv.wait_for(lock, timeout); }); |
100 | if (result == std::cv_status::timeout) |
101 | assert(elapsed >= timeout); |
102 | } while (result != std::cv_status::timeout); |
103 | }); |
104 | |
105 | t1.join(); |
106 | } |
107 | |
108 | return 0; |
109 | } |
110 | |