| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // UNSUPPORTED: no-threads, c++03 |
| 10 | |
| 11 | // <condition_variable> |
| 12 | |
| 13 | // class condition_variable_any; |
| 14 | |
| 15 | // template <class Lock, class Duration, class Predicate> |
| 16 | // bool |
| 17 | // wait_until(Lock& lock, |
| 18 | // const chrono::time_point<Clock, Duration>& abs_time, |
| 19 | // Predicate pred); |
| 20 | |
| 21 | #include <condition_variable> |
| 22 | #include <atomic> |
| 23 | #include <cassert> |
| 24 | #include <chrono> |
| 25 | #include <mutex> |
| 26 | #include <thread> |
| 27 | |
| 28 | #include "make_test_thread.h" |
| 29 | #include "test_macros.h" |
| 30 | |
| 31 | struct TestClock { |
| 32 | typedef std::chrono::milliseconds duration; |
| 33 | typedef duration::rep rep; |
| 34 | typedef duration::period period; |
| 35 | typedef std::chrono::time_point<TestClock> time_point; |
| 36 | static const bool is_steady = true; |
| 37 | |
| 38 | static time_point now() { |
| 39 | using namespace std::chrono; |
| 40 | return time_point(duration_cast<duration>(d: steady_clock::now().time_since_epoch())); |
| 41 | } |
| 42 | }; |
| 43 | |
| 44 | template <class Mutex> |
| 45 | struct MyLock : std::unique_lock<Mutex> { |
| 46 | using std::unique_lock<Mutex>::unique_lock; |
| 47 | }; |
| 48 | |
| 49 | template <class Lock, class Clock> |
| 50 | void test() { |
| 51 | using Mutex = typename Lock::mutex_type; |
| 52 | // Test unblocking via a call to notify_one() in another thread. |
| 53 | // |
| 54 | // To test this, we set a very long timeout in wait_until() and we try to minimize |
| 55 | // the likelihood that we got awoken by a spurious wakeup by updating the |
| 56 | // likely_spurious flag only immediately before we perform the notification. |
| 57 | { |
| 58 | std::atomic<bool> ready(false); |
| 59 | std::atomic<bool> likely_spurious(true); |
| 60 | auto timeout = Clock::now() + std::chrono::seconds(3600); |
| 61 | std::condition_variable_any cv; |
| 62 | Mutex mutex; |
| 63 | |
| 64 | std::thread t1 = support::make_test_thread([&] { |
| 65 | Lock lock(mutex); |
| 66 | ready = true; |
| 67 | bool result = cv.wait_until(lock, timeout, [&] { return !likely_spurious; }); |
| 68 | assert(result); // return value should be true since we didn't time out |
| 69 | assert(Clock::now() < timeout); |
| 70 | }); |
| 71 | |
| 72 | std::thread t2 = support::make_test_thread([&] { |
| 73 | while (!ready) { |
| 74 | // spin |
| 75 | } |
| 76 | |
| 77 | // Acquire the same mutex as t1. This ensures that the condition variable has started |
| 78 | // waiting (and hence released that mutex). |
| 79 | Lock lock(mutex); |
| 80 | |
| 81 | likely_spurious = false; |
| 82 | lock.unlock(); |
| 83 | cv.notify_one(); |
| 84 | }); |
| 85 | |
| 86 | t2.join(); |
| 87 | t1.join(); |
| 88 | } |
| 89 | |
| 90 | // Test unblocking via a timeout. |
| 91 | // |
| 92 | // To test this, we create a thread that waits on a condition variable with a certain |
| 93 | // timeout, and we never awaken it. The "stop waiting" predicate always returns false, |
| 94 | // which means that we can't get out of the wait via a spurious wakeup. |
| 95 | { |
| 96 | auto timeout = Clock::now() + std::chrono::milliseconds(250); |
| 97 | std::condition_variable_any cv; |
| 98 | Mutex mutex; |
| 99 | |
| 100 | std::thread t1 = support::make_test_thread([&] { |
| 101 | Lock lock(mutex); |
| 102 | bool result = cv.wait_until(lock, timeout, [] { return false; }); // never stop waiting (until timeout) |
| 103 | assert(!result); // return value should be false since the predicate returns false after the timeout |
| 104 | assert(Clock::now() >= timeout); |
| 105 | }); |
| 106 | |
| 107 | t1.join(); |
| 108 | } |
| 109 | |
| 110 | // Test unblocking via a spurious wakeup. |
| 111 | // |
| 112 | // To test this, we set a fairly long timeout in wait_until() and we basically never |
| 113 | // wake up the condition variable. This way, we are hoping to get out of the wait |
| 114 | // via a spurious wakeup. |
| 115 | // |
| 116 | // However, since spurious wakeups are not required to even happen, this test is |
| 117 | // only trying to trigger that code path, but not actually asserting that it is |
| 118 | // taken. In particular, we do need to eventually ensure we get out of the wait |
| 119 | // by standard means, so we actually wake up the thread at the end. |
| 120 | { |
| 121 | std::atomic<bool> ready(false); |
| 122 | std::atomic<bool> awoken(false); |
| 123 | auto timeout = Clock::now() + std::chrono::seconds(3600); |
| 124 | std::condition_variable_any cv; |
| 125 | Mutex mutex; |
| 126 | |
| 127 | std::thread t1 = support::make_test_thread([&] { |
| 128 | Lock lock(mutex); |
| 129 | ready = true; |
| 130 | bool result = cv.wait_until(lock, timeout, [&] { return true; }); |
| 131 | awoken = true; |
| 132 | assert(result); // return value should be true since we didn't time out |
| 133 | assert(Clock::now() < timeout); // can technically fail if t2 never executes and we timeout, but very unlikely |
| 134 | }); |
| 135 | |
| 136 | std::thread t2 = support::make_test_thread([&] { |
| 137 | while (!ready) { |
| 138 | // spin |
| 139 | } |
| 140 | |
| 141 | // Acquire the same mutex as t1. This ensures that the condition variable has started |
| 142 | // waiting (and hence released that mutex). |
| 143 | Lock lock(mutex); |
| 144 | lock.unlock(); |
| 145 | |
| 146 | // Give some time for t1 to be awoken spuriously so that code path is used. |
| 147 | std::this_thread::sleep_for(std::chrono::seconds(1)); |
| 148 | |
| 149 | // We would want to assert that the thread has been awoken after this time, |
| 150 | // however nothing guarantees us that it ever gets spuriously awoken, so |
| 151 | // we can't really check anything. This is still left here as documentation. |
| 152 | bool woke = awoken.load(); |
| 153 | assert(woke || !woke); |
| 154 | |
| 155 | // Whatever happened, actually awaken the condition variable to ensure the test |
| 156 | // doesn't keep running until the timeout. |
| 157 | cv.notify_one(); |
| 158 | }); |
| 159 | |
| 160 | t2.join(); |
| 161 | t1.join(); |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | int main(int, char**) { |
| 166 | // Run on multiple threads to speed up the test, and because it ought to work anyways. |
| 167 | std::thread tests[] = { |
| 168 | support::make_test_thread([] { |
| 169 | test<std::unique_lock<std::mutex>, TestClock>(); |
| 170 | test<std::unique_lock<std::mutex>, std::chrono::steady_clock>(); |
| 171 | }), |
| 172 | support::make_test_thread([] { |
| 173 | test<std::unique_lock<std::timed_mutex>, TestClock>(); |
| 174 | test<std::unique_lock<std::timed_mutex>, std::chrono::steady_clock>(); |
| 175 | }), |
| 176 | support::make_test_thread([] { |
| 177 | test<MyLock<std::mutex>, TestClock>(); |
| 178 | test<MyLock<std::mutex>, std::chrono::steady_clock>(); |
| 179 | }), |
| 180 | support::make_test_thread([] { |
| 181 | test<MyLock<std::timed_mutex>, TestClock>(); |
| 182 | test<MyLock<std::timed_mutex>, std::chrono::steady_clock>(); |
| 183 | })}; |
| 184 | |
| 185 | for (std::thread& t : tests) |
| 186 | t.join(); |
| 187 | |
| 188 | return 0; |
| 189 | } |
| 190 | |