1//===----------------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9// UNSUPPORTED: c++03, c++11, c++14, c++17
10
11// functional
12
13// template <class F, class... Args>
14// constexpr unspecified bind_front(F&&, Args&&...);
15
16#include <functional>
17#include <cassert>
18#include <concepts>
19#include <tuple>
20#include <type_traits>
21#include <utility>
22
23#include "callable_types.h"
24#include "test_macros.h"
25
26struct CopyMoveInfo {
27 enum { none, copy, move } copy_kind;
28
29 constexpr CopyMoveInfo() : copy_kind(none) {}
30 constexpr CopyMoveInfo(CopyMoveInfo const&) : copy_kind(copy) {}
31 constexpr CopyMoveInfo(CopyMoveInfo&&) : copy_kind(move) {}
32};
33
34template <class ...Args>
35struct is_bind_frontable {
36 template <class ...LocalArgs>
37 static auto test(int)
38 -> decltype((void)std::bind_front(std::declval<LocalArgs>()...), std::true_type());
39
40 template <class...>
41 static std::false_type test(...);
42
43 static constexpr bool value = decltype(test<Args...>(0))::value;
44};
45
46struct NotCopyMove {
47 NotCopyMove() = delete;
48 NotCopyMove(const NotCopyMove&) = delete;
49 NotCopyMove(NotCopyMove&&) = delete;
50 template <class ...Args>
51 void operator()(Args&& ...) const { }
52};
53
54struct NonConstCopyConstructible {
55 explicit NonConstCopyConstructible() {}
56 NonConstCopyConstructible(NonConstCopyConstructible&) {}
57};
58
59struct MoveConstructible {
60 explicit MoveConstructible() {}
61 MoveConstructible(MoveConstructible&&) {}
62};
63
64struct MakeTuple {
65 template <class ...Args>
66 constexpr auto operator()(Args&& ...args) const {
67 return std::make_tuple(std::forward<Args>(args)...);
68 }
69};
70
71template <int X>
72struct Elem {
73 template <int Y>
74 constexpr bool operator==(Elem<Y> const&) const
75 { return X == Y; }
76};
77
78constexpr bool test() {
79 // Bind arguments, call without arguments
80 {
81 {
82 auto f = std::bind_front(MakeTuple{});
83 assert(f() == std::make_tuple());
84 }
85 {
86 auto f = std::bind_front(MakeTuple{}, Elem<1>{});
87 assert(f() == std::make_tuple(Elem<1>{}));
88 }
89 {
90 auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{});
91 assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{}));
92 }
93 {
94 auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
95 assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}));
96 }
97 }
98
99 // Bind no arguments, call with arguments
100 {
101 {
102 auto f = std::bind_front(MakeTuple{});
103 assert(f(Elem<1>{}) == std::make_tuple(Elem<1>{}));
104 }
105 {
106 auto f = std::bind_front(MakeTuple{});
107 assert(f(Elem<1>{}, Elem<2>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}));
108 }
109 {
110 auto f = std::bind_front(MakeTuple{});
111 assert(f(Elem<1>{}, Elem<2>{}, Elem<3>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}));
112 }
113 }
114
115 // Bind arguments, call with arguments
116 {
117 {
118 auto f = std::bind_front(MakeTuple{}, Elem<1>{});
119 assert(f(Elem<10>{}) == std::make_tuple(Elem<1>{}, Elem<10>{}));
120 }
121 {
122 auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{});
123 assert(f(Elem<10>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<10>{}));
124 }
125 {
126 auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
127 assert(f(Elem<10>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}, Elem<10>{}));
128 }
129
130 {
131 auto f = std::bind_front(MakeTuple{}, Elem<1>{});
132 assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<1>{}, Elem<10>{}, Elem<11>{}));
133 }
134 {
135 auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{});
136 assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<10>{}, Elem<11>{}));
137 }
138 {
139 auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
140 assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}, Elem<10>{}, Elem<11>{}));
141 }
142 }
143
144 // Basic tests with fundamental types
145 {
146 int n = 2;
147 int m = 1;
148 int sum = 0;
149 auto add = [](int x, int y) { return x + y; };
150 auto addN = [](int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; };
151 auto add_ref = [&](int x, int y) -> int& { return sum = x + y; };
152 auto add_rref = [&](int x, int y) -> int&& { return std::move(sum = x + y); };
153
154 auto a = std::bind_front(add, m, n);
155 assert(a() == 3);
156
157 auto b = std::bind_front(addN, m, n, m, m, m, m);
158 assert(b() == 7);
159
160 auto c = std::bind_front(addN, n, m);
161 assert(c(1, 1, 1, 1) == 7);
162
163 auto d = std::bind_front(add_ref, n, m);
164 std::same_as<int&> decltype(auto) dresult(d());
165 assert(dresult == 3);
166
167 auto e = std::bind_front(add_rref, n, m);
168 std::same_as<int&&> decltype(auto) eresult(e());
169 assert(eresult == 3);
170
171 auto f = std::bind_front(add, n);
172 assert(f(3) == 5);
173
174 auto g = std::bind_front(add, n, 1);
175 assert(g() == 3);
176
177 auto h = std::bind_front(addN, 1, 1, 1);
178 assert(h(2, 2, 2) == 9);
179
180 auto i = std::bind_front(add_ref, n);
181 std::same_as<int&> decltype(auto) iresult(i(5));
182 assert(iresult == 7);
183
184 auto j = std::bind_front(add_rref, m);
185 std::same_as<int&&> decltype(auto) jresult(j(4));
186 assert(jresult == 5);
187 }
188
189 // Make sure we don't treat std::reference_wrapper specially.
190 {
191 auto add = [](std::reference_wrapper<int> a, std::reference_wrapper<int> b) {
192 return a.get() + b.get();
193 };
194 int i = 1, j = 2;
195 auto f = std::bind_front(add, std::ref(i));
196 assert(f(std::ref(j)) == 3);
197 }
198
199 // Make sure we can call a function that's a pointer to a member function.
200 {
201 struct MemberFunction {
202 constexpr bool foo(int, int) { return true; }
203 };
204 MemberFunction value;
205 auto fn = std::bind_front(&MemberFunction::foo, value, 0);
206 assert(fn(0));
207 }
208
209 // Make sure that we copy the bound arguments into the unspecified-type.
210 {
211 auto add = [](int x, int y) { return x + y; };
212 int n = 2;
213 auto i = std::bind_front(add, n, 1);
214 n = 100;
215 assert(i() == 3);
216 }
217
218 // Make sure we pass the bound arguments to the function object
219 // with the right value category.
220 {
221 {
222 auto wasCopied = [](CopyMoveInfo info) {
223 return info.copy_kind == CopyMoveInfo::copy;
224 };
225 CopyMoveInfo info;
226 auto copied = std::bind_front(wasCopied, info);
227 assert(copied());
228 }
229
230 {
231 auto wasMoved = [](CopyMoveInfo info) {
232 return info.copy_kind == CopyMoveInfo::move;
233 };
234 CopyMoveInfo info;
235 auto moved = std::bind_front(wasMoved, info);
236 assert(std::move(moved)());
237 }
238 }
239
240 // Make sure we call the correctly cv-ref qualified operator() based on the
241 // value category of the bind_front unspecified-type.
242 {
243 struct F {
244 constexpr int operator()() & { return 1; }
245 constexpr int operator()() const& { return 2; }
246 constexpr int operator()() && { return 3; }
247 constexpr int operator()() const&& { return 4; }
248 };
249 auto x = std::bind_front(F{});
250 using X = decltype(x);
251 assert(static_cast<X&>(x)() == 1);
252 assert(static_cast<X const&>(x)() == 2);
253 assert(static_cast<X&&>(x)() == 3);
254 assert(static_cast<X const&&>(x)() == 4);
255 }
256
257 // Make sure the bind_front unspecified-type is NOT invocable when the call would select a
258 // differently-qualified operator().
259 //
260 // For example, if the call to `operator()() &` is ill-formed, the call to the unspecified-type
261 // should be ill-formed and not fall back to the `operator()() const&` overload.
262 {
263 // Make sure we delete the & overload when the underlying call isn't valid
264 {
265 struct F {
266 void operator()() & = delete;
267 void operator()() const&;
268 void operator()() &&;
269 void operator()() const&&;
270 };
271 using X = decltype(std::bind_front(F{}));
272 static_assert(!std::is_invocable_v<X&>);
273 static_assert( std::is_invocable_v<X const&>);
274 static_assert( std::is_invocable_v<X>);
275 static_assert( std::is_invocable_v<X const>);
276 }
277
278 // There's no way to make sure we delete the const& overload when the underlying call isn't valid,
279 // so we can't check this one.
280
281 // Make sure we delete the && overload when the underlying call isn't valid
282 {
283 struct F {
284 void operator()() &;
285 void operator()() const&;
286 void operator()() && = delete;
287 void operator()() const&&;
288 };
289 using X = decltype(std::bind_front(F{}));
290 static_assert( std::is_invocable_v<X&>);
291 static_assert( std::is_invocable_v<X const&>);
292 static_assert(!std::is_invocable_v<X>);
293 static_assert( std::is_invocable_v<X const>);
294 }
295
296 // Make sure we delete the const&& overload when the underlying call isn't valid
297 {
298 struct F {
299 void operator()() &;
300 void operator()() const&;
301 void operator()() &&;
302 void operator()() const&& = delete;
303 };
304 using X = decltype(std::bind_front(F{}));
305 static_assert( std::is_invocable_v<X&>);
306 static_assert( std::is_invocable_v<X const&>);
307 static_assert( std::is_invocable_v<X>);
308 static_assert(!std::is_invocable_v<X const>);
309 }
310 }
311
312 // Some examples by Tim Song
313 {
314 {
315 struct T { };
316 struct F {
317 void operator()(T&&) const &;
318 void operator()(T&&) && = delete;
319 };
320 using X = decltype(std::bind_front(F{}));
321 static_assert(!std::is_invocable_v<X, T>);
322 }
323
324 {
325 struct T { };
326 struct F {
327 void operator()(T const&) const;
328 void operator()(T&&) const = delete;
329 };
330 using X = decltype(std::bind_front(F{}, T{}));
331 static_assert(!std::is_invocable_v<X>);
332 }
333 }
334
335 // Test properties of the constructor of the unspecified-type returned by bind_front.
336 {
337 {
338 MoveOnlyCallable<bool> value(true);
339 auto ret = std::bind_front(std::move(value), 1);
340 assert(ret());
341 assert(ret(1, 2, 3));
342
343 auto ret1 = std::move(ret);
344 assert(!ret());
345 assert(ret1());
346 assert(ret1(1, 2, 3));
347
348 using RetT = decltype(ret);
349 static_assert( std::is_move_constructible<RetT>::value);
350 static_assert(!std::is_copy_constructible<RetT>::value);
351 static_assert(!std::is_move_assignable<RetT>::value);
352 static_assert(!std::is_copy_assignable<RetT>::value);
353 }
354 {
355 CopyCallable<bool> value(true);
356 auto ret = std::bind_front(value, 1);
357 assert(ret());
358 assert(ret(1, 2, 3));
359
360 auto ret1 = std::move(ret);
361 assert(ret1());
362 assert(ret1(1, 2, 3));
363
364 auto ret2 = std::bind_front(std::move(value), 1);
365 assert(!ret());
366 assert(ret2());
367 assert(ret2(1, 2, 3));
368
369 using RetT = decltype(ret);
370 static_assert( std::is_move_constructible<RetT>::value);
371 static_assert( std::is_copy_constructible<RetT>::value);
372 static_assert(!std::is_move_assignable<RetT>::value);
373 static_assert(!std::is_copy_assignable<RetT>::value);
374 }
375 {
376 CopyAssignableWrapper value(true);
377 using RetT = decltype(std::bind_front(value, 1));
378
379 static_assert(std::is_move_constructible<RetT>::value);
380 static_assert(std::is_copy_constructible<RetT>::value);
381 static_assert(std::is_move_assignable<RetT>::value);
382 static_assert(std::is_copy_assignable<RetT>::value);
383 }
384 {
385 MoveAssignableWrapper value(true);
386 using RetT = decltype(std::bind_front(std::move(value), 1));
387
388 static_assert( std::is_move_constructible<RetT>::value);
389 static_assert(!std::is_copy_constructible<RetT>::value);
390 static_assert( std::is_move_assignable<RetT>::value);
391 static_assert(!std::is_copy_assignable<RetT>::value);
392 }
393 }
394
395 // Make sure bind_front is SFINAE friendly
396 {
397 static_assert(!std::is_constructible_v<NotCopyMove, NotCopyMove&>);
398 static_assert(!std::is_move_constructible_v<NotCopyMove>);
399 static_assert(!is_bind_frontable<NotCopyMove>::value);
400 static_assert(!is_bind_frontable<NotCopyMove&>::value);
401
402 auto takeAnything = [](auto&& ...) { };
403 static_assert(!std::is_constructible_v<MoveConstructible, MoveConstructible&>);
404 static_assert( std::is_move_constructible_v<MoveConstructible>);
405 static_assert( is_bind_frontable<decltype(takeAnything), MoveConstructible>::value);
406 static_assert(!is_bind_frontable<decltype(takeAnything), MoveConstructible&>::value);
407
408 static_assert( std::is_constructible_v<NonConstCopyConstructible, NonConstCopyConstructible&>);
409 static_assert(!std::is_move_constructible_v<NonConstCopyConstructible>);
410 static_assert(!is_bind_frontable<decltype(takeAnything), NonConstCopyConstructible&>::value);
411 static_assert(!is_bind_frontable<decltype(takeAnything), NonConstCopyConstructible>::value);
412 }
413
414 // Make sure bind_front's unspecified type's operator() is SFINAE-friendly
415 {
416 using T = decltype(std::bind_front(std::declval<int(*)(int, int)>(), 1));
417 static_assert(!std::is_invocable<T>::value);
418 static_assert( std::is_invocable<T, int>::value);
419 static_assert(!std::is_invocable<T, void*>::value);
420 static_assert(!std::is_invocable<T, int, int>::value);
421 }
422
423 return true;
424}
425
426int main(int, char**) {
427 test();
428 static_assert(test());
429
430 return 0;
431}
432

source code of libcxx/test/std/utilities/function.objects/func.bind_front/bind_front.pass.cpp