1 | //===----------------------------------------------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | // |
8 | // C++ interface to lower levels of libunwind |
9 | //===----------------------------------------------------------------------===// |
10 | |
11 | #ifndef __UNWINDCURSOR_HPP__ |
12 | #define __UNWINDCURSOR_HPP__ |
13 | |
14 | #include "shadow_stack_unwind.h" |
15 | #include <stdint.h> |
16 | #include <stdio.h> |
17 | #include <stdlib.h> |
18 | #include <unwind.h> |
19 | |
20 | #ifdef _WIN32 |
21 | #include <windows.h> |
22 | #include <ntverp.h> |
23 | #endif |
24 | #ifdef __APPLE__ |
25 | #include <mach-o/dyld.h> |
26 | #endif |
27 | #ifdef _AIX |
28 | #include <dlfcn.h> |
29 | #include <sys/debug.h> |
30 | #include <sys/pseg.h> |
31 | #endif |
32 | |
33 | #if defined(_LIBUNWIND_TARGET_LINUX) && \ |
34 | (defined(_LIBUNWIND_TARGET_AARCH64) || \ |
35 | defined(_LIBUNWIND_TARGET_LOONGARCH) || \ |
36 | defined(_LIBUNWIND_TARGET_RISCV) || defined(_LIBUNWIND_TARGET_S390X)) |
37 | #include <errno.h> |
38 | #include <signal.h> |
39 | #include <sys/syscall.h> |
40 | #include <unistd.h> |
41 | #define _LIBUNWIND_CHECK_LINUX_SIGRETURN 1 |
42 | #endif |
43 | |
44 | #if defined(_LIBUNWIND_TARGET_HAIKU) && defined(_LIBUNWIND_TARGET_X86_64) |
45 | #include <OS.h> |
46 | #include <signal.h> |
47 | #define _LIBUNWIND_CHECK_HAIKU_SIGRETURN 1 |
48 | #endif |
49 | |
50 | #include "AddressSpace.hpp" |
51 | #include "CompactUnwinder.hpp" |
52 | #include "config.h" |
53 | #include "DwarfInstructions.hpp" |
54 | #include "EHHeaderParser.hpp" |
55 | #include "libunwind.h" |
56 | #include "libunwind_ext.h" |
57 | #include "Registers.hpp" |
58 | #include "RWMutex.hpp" |
59 | #include "Unwind-EHABI.h" |
60 | |
61 | #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
62 | // Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and |
63 | // earlier) SDKs. |
64 | // MinGW-w64 has always provided this struct. |
65 | #if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \ |
66 | !defined(__MINGW32__) && VER_PRODUCTBUILD < 8000 |
67 | struct _DISPATCHER_CONTEXT { |
68 | ULONG64 ControlPc; |
69 | ULONG64 ImageBase; |
70 | PRUNTIME_FUNCTION FunctionEntry; |
71 | ULONG64 EstablisherFrame; |
72 | ULONG64 TargetIp; |
73 | PCONTEXT ContextRecord; |
74 | PEXCEPTION_ROUTINE LanguageHandler; |
75 | PVOID HandlerData; |
76 | PUNWIND_HISTORY_TABLE HistoryTable; |
77 | ULONG ScopeIndex; |
78 | ULONG Fill0; |
79 | }; |
80 | #endif |
81 | |
82 | struct UNWIND_INFO { |
83 | uint8_t Version : 3; |
84 | uint8_t Flags : 5; |
85 | uint8_t SizeOfProlog; |
86 | uint8_t CountOfCodes; |
87 | uint8_t FrameRegister : 4; |
88 | uint8_t FrameOffset : 4; |
89 | uint16_t UnwindCodes[2]; |
90 | }; |
91 | |
92 | #pragma clang diagnostic push |
93 | #pragma clang diagnostic ignored "-Wgnu-anonymous-struct" |
94 | union UNWIND_INFO_ARM { |
95 | DWORD HeaderData; |
96 | struct { |
97 | DWORD FunctionLength : 18; |
98 | DWORD Version : 2; |
99 | DWORD ExceptionDataPresent : 1; |
100 | DWORD EpilogInHeader : 1; |
101 | DWORD FunctionFragment : 1; |
102 | DWORD EpilogCount : 5; |
103 | DWORD CodeWords : 4; |
104 | }; |
105 | }; |
106 | #pragma clang diagnostic pop |
107 | |
108 | extern "C"_Unwind_Reason_Code __libunwind_seh_personality( |
109 | int, _Unwind_Action, uint64_t, _Unwind_Exception *, |
110 | struct _Unwind_Context *); |
111 | |
112 | #endif |
113 | |
114 | namespace libunwind { |
115 | |
116 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
117 | /// Cache of recently found FDEs. |
118 | template <typename A> |
119 | class _LIBUNWIND_HIDDEN DwarfFDECache { |
120 | typedef typename A::pint_t pint_t; |
121 | public: |
122 | static constexpr pint_t kSearchAll = static_cast<pint_t>(-1); |
123 | static pint_t findFDE(pint_t mh, pint_t pc); |
124 | static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde); |
125 | static void removeAllIn(pint_t mh); |
126 | static void iterateCacheEntries(void (*func)(unw_word_t ip_start, |
127 | unw_word_t ip_end, |
128 | unw_word_t fde, unw_word_t mh)); |
129 | |
130 | private: |
131 | |
132 | struct entry { |
133 | pint_t mh; |
134 | pint_t ip_start; |
135 | pint_t ip_end; |
136 | pint_t fde; |
137 | }; |
138 | |
139 | // These fields are all static to avoid needing an initializer. |
140 | // There is only one instance of this class per process. |
141 | static RWMutex _lock; |
142 | #ifdef __APPLE__ |
143 | static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide); |
144 | static bool _registeredForDyldUnloads; |
145 | #endif |
146 | static entry *_buffer; |
147 | static entry *_bufferUsed; |
148 | static entry *_bufferEnd; |
149 | static entry _initialBuffer[64]; |
150 | }; |
151 | |
152 | template <typename A> |
153 | typename DwarfFDECache<A>::entry * |
154 | DwarfFDECache<A>::_buffer = _initialBuffer; |
155 | |
156 | template <typename A> |
157 | typename DwarfFDECache<A>::entry * |
158 | DwarfFDECache<A>::_bufferUsed = _initialBuffer; |
159 | |
160 | template <typename A> |
161 | typename DwarfFDECache<A>::entry * |
162 | DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64]; |
163 | |
164 | template <typename A> |
165 | typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64]; |
166 | |
167 | template <typename A> |
168 | RWMutex DwarfFDECache<A>::_lock; |
169 | |
170 | #ifdef __APPLE__ |
171 | template <typename A> |
172 | bool DwarfFDECache<A>::_registeredForDyldUnloads = false; |
173 | #endif |
174 | |
175 | template <typename A> |
176 | typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) { |
177 | pint_t result = 0; |
178 | _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared()); |
179 | for (entry *p = _buffer; p < _bufferUsed; ++p) { |
180 | if ((mh == p->mh) || (mh == kSearchAll)) { |
181 | if ((p->ip_start <= pc) && (pc < p->ip_end)) { |
182 | result = p->fde; |
183 | break; |
184 | } |
185 | } |
186 | } |
187 | _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared()); |
188 | return result; |
189 | } |
190 | |
191 | template <typename A> |
192 | void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end, |
193 | pint_t fde) { |
194 | #if !defined(_LIBUNWIND_NO_HEAP) |
195 | _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); |
196 | if (_bufferUsed >= _bufferEnd) { |
197 | size_t oldSize = (size_t)(_bufferEnd - _buffer); |
198 | size_t newSize = oldSize * 4; |
199 | // Can't use operator new (we are below it). |
200 | entry *newBuffer = (entry *)malloc(size: newSize * sizeof(entry)); |
201 | memcpy(newBuffer, _buffer, oldSize * sizeof(entry)); |
202 | if (_buffer != _initialBuffer) |
203 | free(_buffer); |
204 | _buffer = newBuffer; |
205 | _bufferUsed = &newBuffer[oldSize]; |
206 | _bufferEnd = &newBuffer[newSize]; |
207 | } |
208 | _bufferUsed->mh = mh; |
209 | _bufferUsed->ip_start = ip_start; |
210 | _bufferUsed->ip_end = ip_end; |
211 | _bufferUsed->fde = fde; |
212 | ++_bufferUsed; |
213 | #ifdef __APPLE__ |
214 | if (!_registeredForDyldUnloads) { |
215 | _dyld_register_func_for_remove_image(&dyldUnloadHook); |
216 | _registeredForDyldUnloads = true; |
217 | } |
218 | #endif |
219 | _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); |
220 | #endif |
221 | } |
222 | |
223 | template <typename A> |
224 | void DwarfFDECache<A>::removeAllIn(pint_t mh) { |
225 | _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); |
226 | entry *d = _buffer; |
227 | for (const entry *s = _buffer; s < _bufferUsed; ++s) { |
228 | if (s->mh != mh) { |
229 | if (d != s) |
230 | *d = *s; |
231 | ++d; |
232 | } |
233 | } |
234 | _bufferUsed = d; |
235 | _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); |
236 | } |
237 | |
238 | #ifdef __APPLE__ |
239 | template <typename A> |
240 | void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) { |
241 | removeAllIn((pint_t) mh); |
242 | } |
243 | #endif |
244 | |
245 | template <typename A> |
246 | void DwarfFDECache<A>::iterateCacheEntries(void (*func)( |
247 | unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) { |
248 | _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); |
249 | for (entry *p = _buffer; p < _bufferUsed; ++p) { |
250 | (*func)(p->ip_start, p->ip_end, p->fde, p->mh); |
251 | } |
252 | _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); |
253 | } |
254 | #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
255 | |
256 | #define arrayoffsetof(type, index, field) \ |
257 | (sizeof(type) * (index) + offsetof(type, field)) |
258 | |
259 | #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
260 | template <typename A> class UnwindSectionHeader { |
261 | public: |
262 | UnwindSectionHeader(A &addressSpace, typename A::pint_t addr) |
263 | : _addressSpace(addressSpace), _addr(addr) {} |
264 | |
265 | uint32_t version() const { |
266 | return _addressSpace.get32(_addr + |
267 | offsetof(unwind_info_section_header, version)); |
268 | } |
269 | uint32_t commonEncodingsArraySectionOffset() const { |
270 | return _addressSpace.get32(_addr + |
271 | offsetof(unwind_info_section_header, |
272 | commonEncodingsArraySectionOffset)); |
273 | } |
274 | uint32_t commonEncodingsArrayCount() const { |
275 | return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, |
276 | commonEncodingsArrayCount)); |
277 | } |
278 | uint32_t personalityArraySectionOffset() const { |
279 | return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, |
280 | personalityArraySectionOffset)); |
281 | } |
282 | uint32_t personalityArrayCount() const { |
283 | return _addressSpace.get32( |
284 | _addr + offsetof(unwind_info_section_header, personalityArrayCount)); |
285 | } |
286 | uint32_t indexSectionOffset() const { |
287 | return _addressSpace.get32( |
288 | _addr + offsetof(unwind_info_section_header, indexSectionOffset)); |
289 | } |
290 | uint32_t indexCount() const { |
291 | return _addressSpace.get32( |
292 | _addr + offsetof(unwind_info_section_header, indexCount)); |
293 | } |
294 | |
295 | private: |
296 | A &_addressSpace; |
297 | typename A::pint_t _addr; |
298 | }; |
299 | |
300 | template <typename A> class UnwindSectionIndexArray { |
301 | public: |
302 | UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr) |
303 | : _addressSpace(addressSpace), _addr(addr) {} |
304 | |
305 | uint32_t functionOffset(uint32_t index) const { |
306 | return _addressSpace.get32( |
307 | _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, |
308 | functionOffset)); |
309 | } |
310 | uint32_t secondLevelPagesSectionOffset(uint32_t index) const { |
311 | return _addressSpace.get32( |
312 | _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, |
313 | secondLevelPagesSectionOffset)); |
314 | } |
315 | uint32_t lsdaIndexArraySectionOffset(uint32_t index) const { |
316 | return _addressSpace.get32( |
317 | _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, |
318 | lsdaIndexArraySectionOffset)); |
319 | } |
320 | |
321 | private: |
322 | A &_addressSpace; |
323 | typename A::pint_t _addr; |
324 | }; |
325 | |
326 | template <typename A> class UnwindSectionRegularPageHeader { |
327 | public: |
328 | UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr) |
329 | : _addressSpace(addressSpace), _addr(addr) {} |
330 | |
331 | uint32_t kind() const { |
332 | return _addressSpace.get32( |
333 | _addr + offsetof(unwind_info_regular_second_level_page_header, kind)); |
334 | } |
335 | uint16_t entryPageOffset() const { |
336 | return _addressSpace.get16( |
337 | _addr + offsetof(unwind_info_regular_second_level_page_header, |
338 | entryPageOffset)); |
339 | } |
340 | uint16_t entryCount() const { |
341 | return _addressSpace.get16( |
342 | _addr + |
343 | offsetof(unwind_info_regular_second_level_page_header, entryCount)); |
344 | } |
345 | |
346 | private: |
347 | A &_addressSpace; |
348 | typename A::pint_t _addr; |
349 | }; |
350 | |
351 | template <typename A> class UnwindSectionRegularArray { |
352 | public: |
353 | UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr) |
354 | : _addressSpace(addressSpace), _addr(addr) {} |
355 | |
356 | uint32_t functionOffset(uint32_t index) const { |
357 | return _addressSpace.get32( |
358 | _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index, |
359 | functionOffset)); |
360 | } |
361 | uint32_t encoding(uint32_t index) const { |
362 | return _addressSpace.get32( |
363 | _addr + |
364 | arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding)); |
365 | } |
366 | |
367 | private: |
368 | A &_addressSpace; |
369 | typename A::pint_t _addr; |
370 | }; |
371 | |
372 | template <typename A> class UnwindSectionCompressedPageHeader { |
373 | public: |
374 | UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr) |
375 | : _addressSpace(addressSpace), _addr(addr) {} |
376 | |
377 | uint32_t kind() const { |
378 | return _addressSpace.get32( |
379 | _addr + |
380 | offsetof(unwind_info_compressed_second_level_page_header, kind)); |
381 | } |
382 | uint16_t entryPageOffset() const { |
383 | return _addressSpace.get16( |
384 | _addr + offsetof(unwind_info_compressed_second_level_page_header, |
385 | entryPageOffset)); |
386 | } |
387 | uint16_t entryCount() const { |
388 | return _addressSpace.get16( |
389 | _addr + |
390 | offsetof(unwind_info_compressed_second_level_page_header, entryCount)); |
391 | } |
392 | uint16_t encodingsPageOffset() const { |
393 | return _addressSpace.get16( |
394 | _addr + offsetof(unwind_info_compressed_second_level_page_header, |
395 | encodingsPageOffset)); |
396 | } |
397 | uint16_t encodingsCount() const { |
398 | return _addressSpace.get16( |
399 | _addr + offsetof(unwind_info_compressed_second_level_page_header, |
400 | encodingsCount)); |
401 | } |
402 | |
403 | private: |
404 | A &_addressSpace; |
405 | typename A::pint_t _addr; |
406 | }; |
407 | |
408 | template <typename A> class UnwindSectionCompressedArray { |
409 | public: |
410 | UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr) |
411 | : _addressSpace(addressSpace), _addr(addr) {} |
412 | |
413 | uint32_t functionOffset(uint32_t index) const { |
414 | return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET( |
415 | _addressSpace.get32(_addr + index * sizeof(uint32_t))); |
416 | } |
417 | uint16_t encodingIndex(uint32_t index) const { |
418 | return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX( |
419 | _addressSpace.get32(_addr + index * sizeof(uint32_t))); |
420 | } |
421 | |
422 | private: |
423 | A &_addressSpace; |
424 | typename A::pint_t _addr; |
425 | }; |
426 | |
427 | template <typename A> class UnwindSectionLsdaArray { |
428 | public: |
429 | UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr) |
430 | : _addressSpace(addressSpace), _addr(addr) {} |
431 | |
432 | uint32_t functionOffset(uint32_t index) const { |
433 | return _addressSpace.get32( |
434 | _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, |
435 | index, functionOffset)); |
436 | } |
437 | uint32_t lsdaOffset(uint32_t index) const { |
438 | return _addressSpace.get32( |
439 | _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, |
440 | index, lsdaOffset)); |
441 | } |
442 | |
443 | private: |
444 | A &_addressSpace; |
445 | typename A::pint_t _addr; |
446 | }; |
447 | #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
448 | |
449 | class _LIBUNWIND_HIDDEN AbstractUnwindCursor { |
450 | public: |
451 | // NOTE: provide a class specific placement deallocation function (S5.3.4 p20) |
452 | // This avoids an unnecessary dependency to libc++abi. |
453 | void operator delete(void *, size_t) {} |
454 | |
455 | virtual ~AbstractUnwindCursor() {} |
456 | virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); } |
457 | virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); } |
458 | virtual void setReg(int, unw_word_t) { |
459 | _LIBUNWIND_ABORT("setReg not implemented"); |
460 | } |
461 | virtual bool validFloatReg(int) { |
462 | _LIBUNWIND_ABORT("validFloatReg not implemented"); |
463 | } |
464 | virtual unw_fpreg_t getFloatReg(int) { |
465 | _LIBUNWIND_ABORT("getFloatReg not implemented"); |
466 | } |
467 | virtual void setFloatReg(int, unw_fpreg_t) { |
468 | _LIBUNWIND_ABORT("setFloatReg not implemented"); |
469 | } |
470 | virtual int step(bool = false) { _LIBUNWIND_ABORT("step not implemented"); } |
471 | virtual void getInfo(unw_proc_info_t *) { |
472 | _LIBUNWIND_ABORT("getInfo not implemented"); |
473 | } |
474 | virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); } |
475 | virtual bool isSignalFrame() { |
476 | _LIBUNWIND_ABORT("isSignalFrame not implemented"); |
477 | } |
478 | virtual bool getFunctionName(char *, size_t, unw_word_t *) { |
479 | _LIBUNWIND_ABORT("getFunctionName not implemented"); |
480 | } |
481 | virtual void setInfoBasedOnIPRegister(bool = false) { |
482 | _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented"); |
483 | } |
484 | virtual const char *getRegisterName(int) { |
485 | _LIBUNWIND_ABORT("getRegisterName not implemented"); |
486 | } |
487 | #ifdef __arm__ |
488 | virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); } |
489 | #endif |
490 | |
491 | #ifdef _AIX |
492 | virtual uintptr_t getDataRelBase() { |
493 | _LIBUNWIND_ABORT("getDataRelBase not implemented"); |
494 | } |
495 | #endif |
496 | |
497 | #if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS) |
498 | virtual void *get_registers() { |
499 | _LIBUNWIND_ABORT("get_registers not implemented"); |
500 | } |
501 | #endif |
502 | }; |
503 | |
504 | #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32) |
505 | |
506 | /// \c UnwindCursor contains all state (including all register values) during |
507 | /// an unwind. This is normally stack-allocated inside a unw_cursor_t. |
508 | template <typename A, typename R> |
509 | class UnwindCursor : public AbstractUnwindCursor { |
510 | typedef typename A::pint_t pint_t; |
511 | public: |
512 | UnwindCursor(unw_context_t *context, A &as); |
513 | UnwindCursor(CONTEXT *context, A &as); |
514 | UnwindCursor(A &as, void *threadArg); |
515 | virtual ~UnwindCursor() {} |
516 | virtual bool validReg(int); |
517 | virtual unw_word_t getReg(int); |
518 | virtual void setReg(int, unw_word_t); |
519 | virtual bool validFloatReg(int); |
520 | virtual unw_fpreg_t getFloatReg(int); |
521 | virtual void setFloatReg(int, unw_fpreg_t); |
522 | virtual int step(bool = false); |
523 | virtual void getInfo(unw_proc_info_t *); |
524 | virtual void jumpto(); |
525 | virtual bool isSignalFrame(); |
526 | virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); |
527 | virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); |
528 | virtual const char *getRegisterName(int num); |
529 | #ifdef __arm__ |
530 | virtual void saveVFPAsX(); |
531 | #endif |
532 | |
533 | DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; } |
534 | void setDispatcherContext(DISPATCHER_CONTEXT *disp) { |
535 | _dispContext = *disp; |
536 | _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData); |
537 | if (_dispContext.LanguageHandler) { |
538 | _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); |
539 | } else |
540 | _info.handler = 0; |
541 | } |
542 | |
543 | // libunwind does not and should not depend on C++ library which means that we |
544 | // need our own definition of inline placement new. |
545 | static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } |
546 | |
547 | private: |
548 | |
549 | pint_t getLastPC() const { return _dispContext.ControlPc; } |
550 | void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; } |
551 | RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { |
552 | #ifdef __arm__ |
553 | // Remove the thumb bit; FunctionEntry ranges don't include the thumb bit. |
554 | pc &= ~1U; |
555 | #endif |
556 | // If pc points exactly at the end of the range, we might resolve the |
557 | // next function instead. Decrement pc by 1 to fit inside the current |
558 | // function. |
559 | pc -= 1; |
560 | _dispContext.FunctionEntry = RtlLookupFunctionEntry(pc, |
561 | &_dispContext.ImageBase, |
562 | _dispContext.HistoryTable); |
563 | *base = _dispContext.ImageBase; |
564 | return _dispContext.FunctionEntry; |
565 | } |
566 | bool getInfoFromSEH(pint_t pc); |
567 | int stepWithSEHData() { |
568 | _dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER, |
569 | _dispContext.ImageBase, |
570 | _dispContext.ControlPc, |
571 | _dispContext.FunctionEntry, |
572 | _dispContext.ContextRecord, |
573 | &_dispContext.HandlerData, |
574 | &_dispContext.EstablisherFrame, |
575 | NULL); |
576 | // Update some fields of the unwind info now, since we have them. |
577 | _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData); |
578 | if (_dispContext.LanguageHandler) { |
579 | _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); |
580 | } else |
581 | _info.handler = 0; |
582 | return UNW_STEP_SUCCESS; |
583 | } |
584 | |
585 | A &_addressSpace; |
586 | unw_proc_info_t _info; |
587 | DISPATCHER_CONTEXT _dispContext; |
588 | CONTEXT _msContext; |
589 | UNWIND_HISTORY_TABLE _histTable; |
590 | bool _unwindInfoMissing; |
591 | }; |
592 | |
593 | |
594 | template <typename A, typename R> |
595 | UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) |
596 | : _addressSpace(as), _unwindInfoMissing(false) { |
597 | static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), |
598 | "UnwindCursor<> does not fit in unw_cursor_t"); |
599 | static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)), |
600 | "UnwindCursor<> requires more alignment than unw_cursor_t"); |
601 | memset(&_info, 0, sizeof(_info)); |
602 | memset(&_histTable, 0, sizeof(_histTable)); |
603 | memset(&_dispContext, 0, sizeof(_dispContext)); |
604 | _dispContext.ContextRecord = &_msContext; |
605 | _dispContext.HistoryTable = &_histTable; |
606 | // Initialize MS context from ours. |
607 | R r(context); |
608 | RtlCaptureContext(&_msContext); |
609 | _msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT; |
610 | #if defined(_LIBUNWIND_TARGET_X86_64) |
611 | _msContext.Rax = r.getRegister(UNW_X86_64_RAX); |
612 | _msContext.Rcx = r.getRegister(UNW_X86_64_RCX); |
613 | _msContext.Rdx = r.getRegister(UNW_X86_64_RDX); |
614 | _msContext.Rbx = r.getRegister(UNW_X86_64_RBX); |
615 | _msContext.Rsp = r.getRegister(UNW_X86_64_RSP); |
616 | _msContext.Rbp = r.getRegister(UNW_X86_64_RBP); |
617 | _msContext.Rsi = r.getRegister(UNW_X86_64_RSI); |
618 | _msContext.Rdi = r.getRegister(UNW_X86_64_RDI); |
619 | _msContext.R8 = r.getRegister(UNW_X86_64_R8); |
620 | _msContext.R9 = r.getRegister(UNW_X86_64_R9); |
621 | _msContext.R10 = r.getRegister(UNW_X86_64_R10); |
622 | _msContext.R11 = r.getRegister(UNW_X86_64_R11); |
623 | _msContext.R12 = r.getRegister(UNW_X86_64_R12); |
624 | _msContext.R13 = r.getRegister(UNW_X86_64_R13); |
625 | _msContext.R14 = r.getRegister(UNW_X86_64_R14); |
626 | _msContext.R15 = r.getRegister(UNW_X86_64_R15); |
627 | _msContext.Rip = r.getRegister(UNW_REG_IP); |
628 | union { |
629 | v128 v; |
630 | M128A m; |
631 | } t; |
632 | t.v = r.getVectorRegister(UNW_X86_64_XMM0); |
633 | _msContext.Xmm0 = t.m; |
634 | t.v = r.getVectorRegister(UNW_X86_64_XMM1); |
635 | _msContext.Xmm1 = t.m; |
636 | t.v = r.getVectorRegister(UNW_X86_64_XMM2); |
637 | _msContext.Xmm2 = t.m; |
638 | t.v = r.getVectorRegister(UNW_X86_64_XMM3); |
639 | _msContext.Xmm3 = t.m; |
640 | t.v = r.getVectorRegister(UNW_X86_64_XMM4); |
641 | _msContext.Xmm4 = t.m; |
642 | t.v = r.getVectorRegister(UNW_X86_64_XMM5); |
643 | _msContext.Xmm5 = t.m; |
644 | t.v = r.getVectorRegister(UNW_X86_64_XMM6); |
645 | _msContext.Xmm6 = t.m; |
646 | t.v = r.getVectorRegister(UNW_X86_64_XMM7); |
647 | _msContext.Xmm7 = t.m; |
648 | t.v = r.getVectorRegister(UNW_X86_64_XMM8); |
649 | _msContext.Xmm8 = t.m; |
650 | t.v = r.getVectorRegister(UNW_X86_64_XMM9); |
651 | _msContext.Xmm9 = t.m; |
652 | t.v = r.getVectorRegister(UNW_X86_64_XMM10); |
653 | _msContext.Xmm10 = t.m; |
654 | t.v = r.getVectorRegister(UNW_X86_64_XMM11); |
655 | _msContext.Xmm11 = t.m; |
656 | t.v = r.getVectorRegister(UNW_X86_64_XMM12); |
657 | _msContext.Xmm12 = t.m; |
658 | t.v = r.getVectorRegister(UNW_X86_64_XMM13); |
659 | _msContext.Xmm13 = t.m; |
660 | t.v = r.getVectorRegister(UNW_X86_64_XMM14); |
661 | _msContext.Xmm14 = t.m; |
662 | t.v = r.getVectorRegister(UNW_X86_64_XMM15); |
663 | _msContext.Xmm15 = t.m; |
664 | #elif defined(_LIBUNWIND_TARGET_ARM) |
665 | _msContext.R0 = r.getRegister(UNW_ARM_R0); |
666 | _msContext.R1 = r.getRegister(UNW_ARM_R1); |
667 | _msContext.R2 = r.getRegister(UNW_ARM_R2); |
668 | _msContext.R3 = r.getRegister(UNW_ARM_R3); |
669 | _msContext.R4 = r.getRegister(UNW_ARM_R4); |
670 | _msContext.R5 = r.getRegister(UNW_ARM_R5); |
671 | _msContext.R6 = r.getRegister(UNW_ARM_R6); |
672 | _msContext.R7 = r.getRegister(UNW_ARM_R7); |
673 | _msContext.R8 = r.getRegister(UNW_ARM_R8); |
674 | _msContext.R9 = r.getRegister(UNW_ARM_R9); |
675 | _msContext.R10 = r.getRegister(UNW_ARM_R10); |
676 | _msContext.R11 = r.getRegister(UNW_ARM_R11); |
677 | _msContext.R12 = r.getRegister(UNW_ARM_R12); |
678 | _msContext.Sp = r.getRegister(UNW_ARM_SP); |
679 | _msContext.Lr = r.getRegister(UNW_ARM_LR); |
680 | _msContext.Pc = r.getRegister(UNW_ARM_IP); |
681 | for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) { |
682 | union { |
683 | uint64_t w; |
684 | double d; |
685 | } d; |
686 | d.d = r.getFloatRegister(i); |
687 | _msContext.D[i - UNW_ARM_D0] = d.w; |
688 | } |
689 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
690 | for (int i = UNW_AARCH64_X0; i <= UNW_ARM64_X30; ++i) |
691 | _msContext.X[i - UNW_AARCH64_X0] = r.getRegister(i); |
692 | _msContext.Sp = r.getRegister(UNW_REG_SP); |
693 | _msContext.Pc = r.getRegister(UNW_REG_IP); |
694 | for (int i = UNW_AARCH64_V0; i <= UNW_ARM64_D31; ++i) |
695 | _msContext.V[i - UNW_AARCH64_V0].D[0] = r.getFloatRegister(i); |
696 | #endif |
697 | } |
698 | |
699 | template <typename A, typename R> |
700 | UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as) |
701 | : _addressSpace(as), _unwindInfoMissing(false) { |
702 | static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), |
703 | "UnwindCursor<> does not fit in unw_cursor_t"); |
704 | memset(&_info, 0, sizeof(_info)); |
705 | memset(&_histTable, 0, sizeof(_histTable)); |
706 | memset(&_dispContext, 0, sizeof(_dispContext)); |
707 | _dispContext.ContextRecord = &_msContext; |
708 | _dispContext.HistoryTable = &_histTable; |
709 | _msContext = *context; |
710 | } |
711 | |
712 | |
713 | template <typename A, typename R> |
714 | bool UnwindCursor<A, R>::validReg(int regNum) { |
715 | if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true; |
716 | #if defined(_LIBUNWIND_TARGET_X86_64) |
717 | if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_RIP) return true; |
718 | #elif defined(_LIBUNWIND_TARGET_ARM) |
719 | if ((regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) || |
720 | regNum == UNW_ARM_RA_AUTH_CODE) |
721 | return true; |
722 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
723 | if (regNum >= UNW_AARCH64_X0 && regNum <= UNW_ARM64_X30) return true; |
724 | #endif |
725 | return false; |
726 | } |
727 | |
728 | template <typename A, typename R> |
729 | unw_word_t UnwindCursor<A, R>::getReg(int regNum) { |
730 | switch (regNum) { |
731 | #if defined(_LIBUNWIND_TARGET_X86_64) |
732 | case UNW_X86_64_RIP: |
733 | case UNW_REG_IP: return _msContext.Rip; |
734 | case UNW_X86_64_RAX: return _msContext.Rax; |
735 | case UNW_X86_64_RDX: return _msContext.Rdx; |
736 | case UNW_X86_64_RCX: return _msContext.Rcx; |
737 | case UNW_X86_64_RBX: return _msContext.Rbx; |
738 | case UNW_REG_SP: |
739 | case UNW_X86_64_RSP: return _msContext.Rsp; |
740 | case UNW_X86_64_RBP: return _msContext.Rbp; |
741 | case UNW_X86_64_RSI: return _msContext.Rsi; |
742 | case UNW_X86_64_RDI: return _msContext.Rdi; |
743 | case UNW_X86_64_R8: return _msContext.R8; |
744 | case UNW_X86_64_R9: return _msContext.R9; |
745 | case UNW_X86_64_R10: return _msContext.R10; |
746 | case UNW_X86_64_R11: return _msContext.R11; |
747 | case UNW_X86_64_R12: return _msContext.R12; |
748 | case UNW_X86_64_R13: return _msContext.R13; |
749 | case UNW_X86_64_R14: return _msContext.R14; |
750 | case UNW_X86_64_R15: return _msContext.R15; |
751 | #elif defined(_LIBUNWIND_TARGET_ARM) |
752 | case UNW_ARM_R0: return _msContext.R0; |
753 | case UNW_ARM_R1: return _msContext.R1; |
754 | case UNW_ARM_R2: return _msContext.R2; |
755 | case UNW_ARM_R3: return _msContext.R3; |
756 | case UNW_ARM_R4: return _msContext.R4; |
757 | case UNW_ARM_R5: return _msContext.R5; |
758 | case UNW_ARM_R6: return _msContext.R6; |
759 | case UNW_ARM_R7: return _msContext.R7; |
760 | case UNW_ARM_R8: return _msContext.R8; |
761 | case UNW_ARM_R9: return _msContext.R9; |
762 | case UNW_ARM_R10: return _msContext.R10; |
763 | case UNW_ARM_R11: return _msContext.R11; |
764 | case UNW_ARM_R12: return _msContext.R12; |
765 | case UNW_REG_SP: |
766 | case UNW_ARM_SP: return _msContext.Sp; |
767 | case UNW_ARM_LR: return _msContext.Lr; |
768 | case UNW_REG_IP: |
769 | case UNW_ARM_IP: return _msContext.Pc; |
770 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
771 | case UNW_REG_SP: return _msContext.Sp; |
772 | case UNW_REG_IP: return _msContext.Pc; |
773 | default: return _msContext.X[regNum - UNW_AARCH64_X0]; |
774 | #endif |
775 | } |
776 | _LIBUNWIND_ABORT("unsupported register"); |
777 | } |
778 | |
779 | template <typename A, typename R> |
780 | void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { |
781 | switch (regNum) { |
782 | #if defined(_LIBUNWIND_TARGET_X86_64) |
783 | case UNW_X86_64_RIP: |
784 | case UNW_REG_IP: _msContext.Rip = value; break; |
785 | case UNW_X86_64_RAX: _msContext.Rax = value; break; |
786 | case UNW_X86_64_RDX: _msContext.Rdx = value; break; |
787 | case UNW_X86_64_RCX: _msContext.Rcx = value; break; |
788 | case UNW_X86_64_RBX: _msContext.Rbx = value; break; |
789 | case UNW_REG_SP: |
790 | case UNW_X86_64_RSP: _msContext.Rsp = value; break; |
791 | case UNW_X86_64_RBP: _msContext.Rbp = value; break; |
792 | case UNW_X86_64_RSI: _msContext.Rsi = value; break; |
793 | case UNW_X86_64_RDI: _msContext.Rdi = value; break; |
794 | case UNW_X86_64_R8: _msContext.R8 = value; break; |
795 | case UNW_X86_64_R9: _msContext.R9 = value; break; |
796 | case UNW_X86_64_R10: _msContext.R10 = value; break; |
797 | case UNW_X86_64_R11: _msContext.R11 = value; break; |
798 | case UNW_X86_64_R12: _msContext.R12 = value; break; |
799 | case UNW_X86_64_R13: _msContext.R13 = value; break; |
800 | case UNW_X86_64_R14: _msContext.R14 = value; break; |
801 | case UNW_X86_64_R15: _msContext.R15 = value; break; |
802 | #elif defined(_LIBUNWIND_TARGET_ARM) |
803 | case UNW_ARM_R0: _msContext.R0 = value; break; |
804 | case UNW_ARM_R1: _msContext.R1 = value; break; |
805 | case UNW_ARM_R2: _msContext.R2 = value; break; |
806 | case UNW_ARM_R3: _msContext.R3 = value; break; |
807 | case UNW_ARM_R4: _msContext.R4 = value; break; |
808 | case UNW_ARM_R5: _msContext.R5 = value; break; |
809 | case UNW_ARM_R6: _msContext.R6 = value; break; |
810 | case UNW_ARM_R7: _msContext.R7 = value; break; |
811 | case UNW_ARM_R8: _msContext.R8 = value; break; |
812 | case UNW_ARM_R9: _msContext.R9 = value; break; |
813 | case UNW_ARM_R10: _msContext.R10 = value; break; |
814 | case UNW_ARM_R11: _msContext.R11 = value; break; |
815 | case UNW_ARM_R12: _msContext.R12 = value; break; |
816 | case UNW_REG_SP: |
817 | case UNW_ARM_SP: _msContext.Sp = value; break; |
818 | case UNW_ARM_LR: _msContext.Lr = value; break; |
819 | case UNW_REG_IP: |
820 | case UNW_ARM_IP: _msContext.Pc = value; break; |
821 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
822 | case UNW_REG_SP: _msContext.Sp = value; break; |
823 | case UNW_REG_IP: _msContext.Pc = value; break; |
824 | case UNW_AARCH64_X0: |
825 | case UNW_AARCH64_X1: |
826 | case UNW_AARCH64_X2: |
827 | case UNW_AARCH64_X3: |
828 | case UNW_AARCH64_X4: |
829 | case UNW_AARCH64_X5: |
830 | case UNW_AARCH64_X6: |
831 | case UNW_AARCH64_X7: |
832 | case UNW_AARCH64_X8: |
833 | case UNW_AARCH64_X9: |
834 | case UNW_AARCH64_X10: |
835 | case UNW_AARCH64_X11: |
836 | case UNW_AARCH64_X12: |
837 | case UNW_AARCH64_X13: |
838 | case UNW_AARCH64_X14: |
839 | case UNW_AARCH64_X15: |
840 | case UNW_AARCH64_X16: |
841 | case UNW_AARCH64_X17: |
842 | case UNW_AARCH64_X18: |
843 | case UNW_AARCH64_X19: |
844 | case UNW_AARCH64_X20: |
845 | case UNW_AARCH64_X21: |
846 | case UNW_AARCH64_X22: |
847 | case UNW_AARCH64_X23: |
848 | case UNW_AARCH64_X24: |
849 | case UNW_AARCH64_X25: |
850 | case UNW_AARCH64_X26: |
851 | case UNW_AARCH64_X27: |
852 | case UNW_AARCH64_X28: |
853 | case UNW_AARCH64_FP: |
854 | case UNW_AARCH64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break; |
855 | #endif |
856 | default: |
857 | _LIBUNWIND_ABORT("unsupported register"); |
858 | } |
859 | } |
860 | |
861 | template <typename A, typename R> |
862 | bool UnwindCursor<A, R>::validFloatReg(int regNum) { |
863 | #if defined(_LIBUNWIND_TARGET_ARM) |
864 | if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true; |
865 | if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true; |
866 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
867 | if (regNum >= UNW_AARCH64_V0 && regNum <= UNW_ARM64_D31) return true; |
868 | #else |
869 | (void)regNum; |
870 | #endif |
871 | return false; |
872 | } |
873 | |
874 | template <typename A, typename R> |
875 | unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { |
876 | #if defined(_LIBUNWIND_TARGET_ARM) |
877 | if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { |
878 | union { |
879 | uint32_t w; |
880 | float f; |
881 | } d; |
882 | d.w = _msContext.S[regNum - UNW_ARM_S0]; |
883 | return d.f; |
884 | } |
885 | if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { |
886 | union { |
887 | uint64_t w; |
888 | double d; |
889 | } d; |
890 | d.w = _msContext.D[regNum - UNW_ARM_D0]; |
891 | return d.d; |
892 | } |
893 | _LIBUNWIND_ABORT("unsupported float register"); |
894 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
895 | return _msContext.V[regNum - UNW_AARCH64_V0].D[0]; |
896 | #else |
897 | (void)regNum; |
898 | _LIBUNWIND_ABORT("float registers unimplemented"); |
899 | #endif |
900 | } |
901 | |
902 | template <typename A, typename R> |
903 | void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { |
904 | #if defined(_LIBUNWIND_TARGET_ARM) |
905 | if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { |
906 | union { |
907 | uint32_t w; |
908 | float f; |
909 | } d; |
910 | d.f = (float)value; |
911 | _msContext.S[regNum - UNW_ARM_S0] = d.w; |
912 | } |
913 | if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { |
914 | union { |
915 | uint64_t w; |
916 | double d; |
917 | } d; |
918 | d.d = value; |
919 | _msContext.D[regNum - UNW_ARM_D0] = d.w; |
920 | } |
921 | _LIBUNWIND_ABORT("unsupported float register"); |
922 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
923 | _msContext.V[regNum - UNW_AARCH64_V0].D[0] = value; |
924 | #else |
925 | (void)regNum; |
926 | (void)value; |
927 | _LIBUNWIND_ABORT("float registers unimplemented"); |
928 | #endif |
929 | } |
930 | |
931 | template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { |
932 | RtlRestoreContext(&_msContext, nullptr); |
933 | } |
934 | |
935 | #ifdef __arm__ |
936 | template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {} |
937 | #endif |
938 | |
939 | template <typename A, typename R> |
940 | const char *UnwindCursor<A, R>::getRegisterName(int regNum) { |
941 | return R::getRegisterName(regNum); |
942 | } |
943 | |
944 | template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { |
945 | return false; |
946 | } |
947 | |
948 | #else // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32) |
949 | |
950 | /// UnwindCursor contains all state (including all register values) during |
951 | /// an unwind. This is normally stack allocated inside a unw_cursor_t. |
952 | template <typename A, typename R> |
953 | class UnwindCursor : public AbstractUnwindCursor{ |
954 | typedef typename A::pint_t pint_t; |
955 | public: |
956 | UnwindCursor(unw_context_t *context, A &as); |
957 | UnwindCursor(A &as, void *threadArg); |
958 | virtual ~UnwindCursor() {} |
959 | virtual bool validReg(int); |
960 | virtual unw_word_t getReg(int); |
961 | virtual void setReg(int, unw_word_t); |
962 | virtual bool validFloatReg(int); |
963 | virtual unw_fpreg_t getFloatReg(int); |
964 | virtual void setFloatReg(int, unw_fpreg_t); |
965 | virtual int step(bool stage2 = false); |
966 | virtual void getInfo(unw_proc_info_t *); |
967 | virtual void jumpto(); |
968 | virtual bool isSignalFrame(); |
969 | virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); |
970 | virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); |
971 | virtual const char *getRegisterName(int num); |
972 | #ifdef __arm__ |
973 | virtual void saveVFPAsX(); |
974 | #endif |
975 | |
976 | #ifdef _AIX |
977 | virtual uintptr_t getDataRelBase(); |
978 | #endif |
979 | |
980 | #if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS) |
981 | virtual void *get_registers() { return &_registers; } |
982 | #endif |
983 | |
984 | // libunwind does not and should not depend on C++ library which means that we |
985 | // need our own definition of inline placement new. |
986 | static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } |
987 | |
988 | private: |
989 | |
990 | #if defined(_LIBUNWIND_ARM_EHABI) |
991 | bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections §s); |
992 | |
993 | int stepWithEHABI() { |
994 | size_t len = 0; |
995 | size_t off = 0; |
996 | // FIXME: Calling decode_eht_entry() here is violating the libunwind |
997 | // abstraction layer. |
998 | const uint32_t *ehtp = |
999 | decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info), |
1000 | &off, &len); |
1001 | if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) != |
1002 | _URC_CONTINUE_UNWIND) |
1003 | return UNW_STEP_END; |
1004 | return UNW_STEP_SUCCESS; |
1005 | } |
1006 | #endif |
1007 | |
1008 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) |
1009 | bool setInfoForSigReturn() { |
1010 | R dummy; |
1011 | return setInfoForSigReturn(dummy); |
1012 | } |
1013 | int stepThroughSigReturn() { |
1014 | R dummy; |
1015 | return stepThroughSigReturn(dummy); |
1016 | } |
1017 | bool isReadableAddr(const pint_t addr) const; |
1018 | #if defined(_LIBUNWIND_TARGET_AARCH64) |
1019 | bool setInfoForSigReturn(Registers_arm64 &); |
1020 | int stepThroughSigReturn(Registers_arm64 &); |
1021 | #endif |
1022 | #if defined(_LIBUNWIND_TARGET_LOONGARCH) |
1023 | bool setInfoForSigReturn(Registers_loongarch &); |
1024 | int stepThroughSigReturn(Registers_loongarch &); |
1025 | #endif |
1026 | #if defined(_LIBUNWIND_TARGET_RISCV) |
1027 | bool setInfoForSigReturn(Registers_riscv &); |
1028 | int stepThroughSigReturn(Registers_riscv &); |
1029 | #endif |
1030 | #if defined(_LIBUNWIND_TARGET_S390X) |
1031 | bool setInfoForSigReturn(Registers_s390x &); |
1032 | int stepThroughSigReturn(Registers_s390x &); |
1033 | #endif |
1034 | template <typename Registers> bool setInfoForSigReturn(Registers &) { |
1035 | return false; |
1036 | } |
1037 | template <typename Registers> int stepThroughSigReturn(Registers &) { |
1038 | return UNW_STEP_END; |
1039 | } |
1040 | #elif defined(_LIBUNWIND_CHECK_HAIKU_SIGRETURN) |
1041 | bool setInfoForSigReturn(); |
1042 | int stepThroughSigReturn(); |
1043 | #endif |
1044 | |
1045 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
1046 | bool getInfoFromFdeCie(const typename CFI_Parser<A>::FDE_Info &fdeInfo, |
1047 | const typename CFI_Parser<A>::CIE_Info &cieInfo, |
1048 | pint_t pc, uintptr_t dso_base); |
1049 | bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s, |
1050 | uint32_t fdeSectionOffsetHint=0); |
1051 | int stepWithDwarfFDE(bool stage2) { |
1052 | return DwarfInstructions<A, R>::stepWithDwarf( |
1053 | _addressSpace, (pint_t)this->getReg(UNW_REG_IP), |
1054 | (pint_t)_info.unwind_info, _registers, _isSignalFrame, stage2); |
1055 | } |
1056 | #endif |
1057 | |
1058 | #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
1059 | bool getInfoFromCompactEncodingSection(pint_t pc, |
1060 | const UnwindInfoSections §s); |
1061 | int stepWithCompactEncoding(bool stage2 = false) { |
1062 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
1063 | if ( compactSaysUseDwarf() ) |
1064 | return stepWithDwarfFDE(stage2); |
1065 | #endif |
1066 | R dummy; |
1067 | return stepWithCompactEncoding(dummy); |
1068 | } |
1069 | |
1070 | #if defined(_LIBUNWIND_TARGET_X86_64) |
1071 | int stepWithCompactEncoding(Registers_x86_64 &) { |
1072 | return CompactUnwinder_x86_64<A>::stepWithCompactEncoding( |
1073 | _info.format, _info.start_ip, _addressSpace, _registers); |
1074 | } |
1075 | #endif |
1076 | |
1077 | #if defined(_LIBUNWIND_TARGET_I386) |
1078 | int stepWithCompactEncoding(Registers_x86 &) { |
1079 | return CompactUnwinder_x86<A>::stepWithCompactEncoding( |
1080 | _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers); |
1081 | } |
1082 | #endif |
1083 | |
1084 | #if defined(_LIBUNWIND_TARGET_PPC) |
1085 | int stepWithCompactEncoding(Registers_ppc &) { |
1086 | return UNW_EINVAL; |
1087 | } |
1088 | #endif |
1089 | |
1090 | #if defined(_LIBUNWIND_TARGET_PPC64) |
1091 | int stepWithCompactEncoding(Registers_ppc64 &) { |
1092 | return UNW_EINVAL; |
1093 | } |
1094 | #endif |
1095 | |
1096 | |
1097 | #if defined(_LIBUNWIND_TARGET_AARCH64) |
1098 | int stepWithCompactEncoding(Registers_arm64 &) { |
1099 | return CompactUnwinder_arm64<A>::stepWithCompactEncoding( |
1100 | _info.format, _info.start_ip, _addressSpace, _registers); |
1101 | } |
1102 | #endif |
1103 | |
1104 | #if defined(_LIBUNWIND_TARGET_MIPS_O32) |
1105 | int stepWithCompactEncoding(Registers_mips_o32 &) { |
1106 | return UNW_EINVAL; |
1107 | } |
1108 | #endif |
1109 | |
1110 | #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) |
1111 | int stepWithCompactEncoding(Registers_mips_newabi &) { |
1112 | return UNW_EINVAL; |
1113 | } |
1114 | #endif |
1115 | |
1116 | #if defined(_LIBUNWIND_TARGET_LOONGARCH) |
1117 | int stepWithCompactEncoding(Registers_loongarch &) { return UNW_EINVAL; } |
1118 | #endif |
1119 | |
1120 | #if defined(_LIBUNWIND_TARGET_SPARC) |
1121 | int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; } |
1122 | #endif |
1123 | |
1124 | #if defined(_LIBUNWIND_TARGET_SPARC64) |
1125 | int stepWithCompactEncoding(Registers_sparc64 &) { return UNW_EINVAL; } |
1126 | #endif |
1127 | |
1128 | #if defined (_LIBUNWIND_TARGET_RISCV) |
1129 | int stepWithCompactEncoding(Registers_riscv &) { |
1130 | return UNW_EINVAL; |
1131 | } |
1132 | #endif |
1133 | |
1134 | bool compactSaysUseDwarf(uint32_t *offset=NULL) const { |
1135 | R dummy; |
1136 | return compactSaysUseDwarf(dummy, offset); |
1137 | } |
1138 | |
1139 | #if defined(_LIBUNWIND_TARGET_X86_64) |
1140 | bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const { |
1141 | if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) { |
1142 | if (offset) |
1143 | *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET); |
1144 | return true; |
1145 | } |
1146 | return false; |
1147 | } |
1148 | #endif |
1149 | |
1150 | #if defined(_LIBUNWIND_TARGET_I386) |
1151 | bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const { |
1152 | if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) { |
1153 | if (offset) |
1154 | *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET); |
1155 | return true; |
1156 | } |
1157 | return false; |
1158 | } |
1159 | #endif |
1160 | |
1161 | #if defined(_LIBUNWIND_TARGET_PPC) |
1162 | bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const { |
1163 | return true; |
1164 | } |
1165 | #endif |
1166 | |
1167 | #if defined(_LIBUNWIND_TARGET_PPC64) |
1168 | bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const { |
1169 | return true; |
1170 | } |
1171 | #endif |
1172 | |
1173 | #if defined(_LIBUNWIND_TARGET_AARCH64) |
1174 | bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const { |
1175 | if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) { |
1176 | if (offset) |
1177 | *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET); |
1178 | return true; |
1179 | } |
1180 | return false; |
1181 | } |
1182 | #endif |
1183 | |
1184 | #if defined(_LIBUNWIND_TARGET_MIPS_O32) |
1185 | bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const { |
1186 | return true; |
1187 | } |
1188 | #endif |
1189 | |
1190 | #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) |
1191 | bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const { |
1192 | return true; |
1193 | } |
1194 | #endif |
1195 | |
1196 | #if defined(_LIBUNWIND_TARGET_LOONGARCH) |
1197 | bool compactSaysUseDwarf(Registers_loongarch &, uint32_t *) const { |
1198 | return true; |
1199 | } |
1200 | #endif |
1201 | |
1202 | #if defined(_LIBUNWIND_TARGET_SPARC) |
1203 | bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; } |
1204 | #endif |
1205 | |
1206 | #if defined(_LIBUNWIND_TARGET_SPARC64) |
1207 | bool compactSaysUseDwarf(Registers_sparc64 &, uint32_t *) const { |
1208 | return true; |
1209 | } |
1210 | #endif |
1211 | |
1212 | #if defined (_LIBUNWIND_TARGET_RISCV) |
1213 | bool compactSaysUseDwarf(Registers_riscv &, uint32_t *) const { |
1214 | return true; |
1215 | } |
1216 | #endif |
1217 | |
1218 | #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
1219 | |
1220 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
1221 | compact_unwind_encoding_t dwarfEncoding() const { |
1222 | R dummy; |
1223 | return dwarfEncoding(dummy); |
1224 | } |
1225 | |
1226 | #if defined(_LIBUNWIND_TARGET_X86_64) |
1227 | compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const { |
1228 | return UNWIND_X86_64_MODE_DWARF; |
1229 | } |
1230 | #endif |
1231 | |
1232 | #if defined(_LIBUNWIND_TARGET_I386) |
1233 | compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const { |
1234 | return UNWIND_X86_MODE_DWARF; |
1235 | } |
1236 | #endif |
1237 | |
1238 | #if defined(_LIBUNWIND_TARGET_PPC) |
1239 | compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const { |
1240 | return 0; |
1241 | } |
1242 | #endif |
1243 | |
1244 | #if defined(_LIBUNWIND_TARGET_PPC64) |
1245 | compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const { |
1246 | return 0; |
1247 | } |
1248 | #endif |
1249 | |
1250 | #if defined(_LIBUNWIND_TARGET_AARCH64) |
1251 | compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const { |
1252 | return UNWIND_ARM64_MODE_DWARF; |
1253 | } |
1254 | #endif |
1255 | |
1256 | #if defined(_LIBUNWIND_TARGET_ARM) |
1257 | compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const { |
1258 | return 0; |
1259 | } |
1260 | #endif |
1261 | |
1262 | #if defined (_LIBUNWIND_TARGET_OR1K) |
1263 | compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const { |
1264 | return 0; |
1265 | } |
1266 | #endif |
1267 | |
1268 | #if defined (_LIBUNWIND_TARGET_HEXAGON) |
1269 | compact_unwind_encoding_t dwarfEncoding(Registers_hexagon &) const { |
1270 | return 0; |
1271 | } |
1272 | #endif |
1273 | |
1274 | #if defined (_LIBUNWIND_TARGET_MIPS_O32) |
1275 | compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const { |
1276 | return 0; |
1277 | } |
1278 | #endif |
1279 | |
1280 | #if defined (_LIBUNWIND_TARGET_MIPS_NEWABI) |
1281 | compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const { |
1282 | return 0; |
1283 | } |
1284 | #endif |
1285 | |
1286 | #if defined(_LIBUNWIND_TARGET_LOONGARCH) |
1287 | compact_unwind_encoding_t dwarfEncoding(Registers_loongarch &) const { |
1288 | return 0; |
1289 | } |
1290 | #endif |
1291 | |
1292 | #if defined(_LIBUNWIND_TARGET_SPARC) |
1293 | compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; } |
1294 | #endif |
1295 | |
1296 | #if defined(_LIBUNWIND_TARGET_SPARC64) |
1297 | compact_unwind_encoding_t dwarfEncoding(Registers_sparc64 &) const { |
1298 | return 0; |
1299 | } |
1300 | #endif |
1301 | |
1302 | #if defined (_LIBUNWIND_TARGET_RISCV) |
1303 | compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const { |
1304 | return 0; |
1305 | } |
1306 | #endif |
1307 | |
1308 | #if defined (_LIBUNWIND_TARGET_S390X) |
1309 | compact_unwind_encoding_t dwarfEncoding(Registers_s390x &) const { |
1310 | return 0; |
1311 | } |
1312 | #endif |
1313 | |
1314 | #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
1315 | |
1316 | #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
1317 | // For runtime environments using SEH unwind data without Windows runtime |
1318 | // support. |
1319 | pint_t getLastPC() const { /* FIXME: Implement */ return 0; } |
1320 | void setLastPC(pint_t pc) { /* FIXME: Implement */ } |
1321 | RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { |
1322 | /* FIXME: Implement */ |
1323 | *base = 0; |
1324 | return nullptr; |
1325 | } |
1326 | bool getInfoFromSEH(pint_t pc); |
1327 | int stepWithSEHData() { /* FIXME: Implement */ return 0; } |
1328 | #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
1329 | |
1330 | #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
1331 | bool getInfoFromTBTable(pint_t pc, R ®isters); |
1332 | int stepWithTBTable(pint_t pc, tbtable *TBTable, R ®isters, |
1333 | bool &isSignalFrame); |
1334 | int stepWithTBTableData() { |
1335 | return stepWithTBTable(reinterpret_cast<pint_t>(this->getReg(UNW_REG_IP)), |
1336 | reinterpret_cast<tbtable *>(_info.unwind_info), |
1337 | _registers, _isSignalFrame); |
1338 | } |
1339 | #endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
1340 | |
1341 | A &_addressSpace; |
1342 | R _registers; |
1343 | unw_proc_info_t _info; |
1344 | bool _unwindInfoMissing; |
1345 | bool _isSignalFrame; |
1346 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) || \ |
1347 | defined(_LIBUNWIND_TARGET_HAIKU) |
1348 | bool _isSigReturn = false; |
1349 | #endif |
1350 | }; |
1351 | |
1352 | |
1353 | template <typename A, typename R> |
1354 | UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) |
1355 | : _addressSpace(as), _registers(context), _unwindInfoMissing(false), |
1356 | _isSignalFrame(false) { |
1357 | static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), |
1358 | "UnwindCursor<> does not fit in unw_cursor_t"); |
1359 | static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)), |
1360 | "UnwindCursor<> requires more alignment than unw_cursor_t"); |
1361 | memset(s: &_info, c: 0, n: sizeof(_info)); |
1362 | } |
1363 | |
1364 | template <typename A, typename R> |
1365 | UnwindCursor<A, R>::UnwindCursor(A &as, void *) |
1366 | : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) { |
1367 | memset(s: &_info, c: 0, n: sizeof(_info)); |
1368 | // FIXME |
1369 | // fill in _registers from thread arg |
1370 | } |
1371 | |
1372 | |
1373 | template <typename A, typename R> |
1374 | bool UnwindCursor<A, R>::validReg(int regNum) { |
1375 | return _registers.validRegister(regNum); |
1376 | } |
1377 | |
1378 | template <typename A, typename R> |
1379 | unw_word_t UnwindCursor<A, R>::getReg(int regNum) { |
1380 | return _registers.getRegister(regNum); |
1381 | } |
1382 | |
1383 | template <typename A, typename R> |
1384 | void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { |
1385 | _registers.setRegister(regNum, (typename A::pint_t)value); |
1386 | } |
1387 | |
1388 | template <typename A, typename R> |
1389 | bool UnwindCursor<A, R>::validFloatReg(int regNum) { |
1390 | return _registers.validFloatRegister(regNum); |
1391 | } |
1392 | |
1393 | template <typename A, typename R> |
1394 | unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { |
1395 | return _registers.getFloatRegister(regNum); |
1396 | } |
1397 | |
1398 | template <typename A, typename R> |
1399 | void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { |
1400 | _registers.setFloatRegister(regNum, value); |
1401 | } |
1402 | |
1403 | template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { |
1404 | _registers.jumpto(); |
1405 | } |
1406 | |
1407 | #ifdef __arm__ |
1408 | template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() { |
1409 | _registers.saveVFPAsX(); |
1410 | } |
1411 | #endif |
1412 | |
1413 | #ifdef _AIX |
1414 | template <typename A, typename R> |
1415 | uintptr_t UnwindCursor<A, R>::getDataRelBase() { |
1416 | return reinterpret_cast<uintptr_t>(_info.extra); |
1417 | } |
1418 | #endif |
1419 | |
1420 | template <typename A, typename R> |
1421 | const char *UnwindCursor<A, R>::getRegisterName(int regNum) { |
1422 | return _registers.getRegisterName(regNum); |
1423 | } |
1424 | |
1425 | template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { |
1426 | return _isSignalFrame; |
1427 | } |
1428 | |
1429 | #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
1430 | |
1431 | #if defined(_LIBUNWIND_ARM_EHABI) |
1432 | template<typename A> |
1433 | struct EHABISectionIterator { |
1434 | typedef EHABISectionIterator _Self; |
1435 | |
1436 | typedef typename A::pint_t value_type; |
1437 | typedef typename A::pint_t* pointer; |
1438 | typedef typename A::pint_t& reference; |
1439 | typedef size_t size_type; |
1440 | typedef size_t difference_type; |
1441 | |
1442 | static _Self begin(A& addressSpace, const UnwindInfoSections& sects) { |
1443 | return _Self(addressSpace, sects, 0); |
1444 | } |
1445 | static _Self end(A& addressSpace, const UnwindInfoSections& sects) { |
1446 | return _Self(addressSpace, sects, |
1447 | sects.arm_section_length / sizeof(EHABIIndexEntry)); |
1448 | } |
1449 | |
1450 | EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i) |
1451 | : _i(i), _addressSpace(&addressSpace), _sects(§s) {} |
1452 | |
1453 | _Self& operator++() { ++_i; return *this; } |
1454 | _Self& operator+=(size_t a) { _i += a; return *this; } |
1455 | _Self& operator--() { assert(_i > 0); --_i; return *this; } |
1456 | _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; } |
1457 | |
1458 | _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; } |
1459 | _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; } |
1460 | |
1461 | size_t operator-(const _Self& other) const { return _i - other._i; } |
1462 | |
1463 | bool operator==(const _Self& other) const { |
1464 | assert(_addressSpace == other._addressSpace); |
1465 | assert(_sects == other._sects); |
1466 | return _i == other._i; |
1467 | } |
1468 | |
1469 | bool operator!=(const _Self& other) const { |
1470 | assert(_addressSpace == other._addressSpace); |
1471 | assert(_sects == other._sects); |
1472 | return _i != other._i; |
1473 | } |
1474 | |
1475 | typename A::pint_t operator*() const { return functionAddress(); } |
1476 | |
1477 | typename A::pint_t functionAddress() const { |
1478 | typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( |
1479 | EHABIIndexEntry, _i, functionOffset); |
1480 | return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr)); |
1481 | } |
1482 | |
1483 | typename A::pint_t dataAddress() { |
1484 | typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( |
1485 | EHABIIndexEntry, _i, data); |
1486 | return indexAddr; |
1487 | } |
1488 | |
1489 | private: |
1490 | size_t _i; |
1491 | A* _addressSpace; |
1492 | const UnwindInfoSections* _sects; |
1493 | }; |
1494 | |
1495 | namespace { |
1496 | |
1497 | template <typename A> |
1498 | EHABISectionIterator<A> EHABISectionUpperBound( |
1499 | EHABISectionIterator<A> first, |
1500 | EHABISectionIterator<A> last, |
1501 | typename A::pint_t value) { |
1502 | size_t len = last - first; |
1503 | while (len > 0) { |
1504 | size_t l2 = len / 2; |
1505 | EHABISectionIterator<A> m = first + l2; |
1506 | if (value < *m) { |
1507 | len = l2; |
1508 | } else { |
1509 | first = ++m; |
1510 | len -= l2 + 1; |
1511 | } |
1512 | } |
1513 | return first; |
1514 | } |
1515 | |
1516 | } |
1517 | |
1518 | template <typename A, typename R> |
1519 | bool UnwindCursor<A, R>::getInfoFromEHABISection( |
1520 | pint_t pc, |
1521 | const UnwindInfoSections §s) { |
1522 | EHABISectionIterator<A> begin = |
1523 | EHABISectionIterator<A>::begin(_addressSpace, sects); |
1524 | EHABISectionIterator<A> end = |
1525 | EHABISectionIterator<A>::end(_addressSpace, sects); |
1526 | if (begin == end) |
1527 | return false; |
1528 | |
1529 | EHABISectionIterator<A> itNextPC = EHABISectionUpperBound(begin, end, pc); |
1530 | if (itNextPC == begin) |
1531 | return false; |
1532 | EHABISectionIterator<A> itThisPC = itNextPC - 1; |
1533 | |
1534 | pint_t thisPC = itThisPC.functionAddress(); |
1535 | // If an exception is thrown from a function, corresponding to the last entry |
1536 | // in the table, we don't really know the function extent and have to choose a |
1537 | // value for nextPC. Choosing max() will allow the range check during trace to |
1538 | // succeed. |
1539 | pint_t nextPC = (itNextPC == end) ? UINTPTR_MAX : itNextPC.functionAddress(); |
1540 | pint_t indexDataAddr = itThisPC.dataAddress(); |
1541 | |
1542 | if (indexDataAddr == 0) |
1543 | return false; |
1544 | |
1545 | uint32_t indexData = _addressSpace.get32(indexDataAddr); |
1546 | if (indexData == UNW_EXIDX_CANTUNWIND) |
1547 | return false; |
1548 | |
1549 | // If the high bit is set, the exception handling table entry is inline inside |
1550 | // the index table entry on the second word (aka |indexDataAddr|). Otherwise, |
1551 | // the table points at an offset in the exception handling table (section 5 |
1552 | // EHABI). |
1553 | pint_t exceptionTableAddr; |
1554 | uint32_t exceptionTableData; |
1555 | bool isSingleWordEHT; |
1556 | if (indexData & 0x80000000) { |
1557 | exceptionTableAddr = indexDataAddr; |
1558 | // TODO(ajwong): Should this data be 0? |
1559 | exceptionTableData = indexData; |
1560 | isSingleWordEHT = true; |
1561 | } else { |
1562 | exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData); |
1563 | exceptionTableData = _addressSpace.get32(exceptionTableAddr); |
1564 | isSingleWordEHT = false; |
1565 | } |
1566 | |
1567 | // Now we know the 3 things: |
1568 | // exceptionTableAddr -- exception handler table entry. |
1569 | // exceptionTableData -- the data inside the first word of the eht entry. |
1570 | // isSingleWordEHT -- whether the entry is in the index. |
1571 | unw_word_t personalityRoutine = 0xbadf00d; |
1572 | bool scope32 = false; |
1573 | uintptr_t lsda; |
1574 | |
1575 | // If the high bit in the exception handling table entry is set, the entry is |
1576 | // in compact form (section 6.3 EHABI). |
1577 | if (exceptionTableData & 0x80000000) { |
1578 | // Grab the index of the personality routine from the compact form. |
1579 | uint32_t choice = (exceptionTableData & 0x0f000000) >> 24; |
1580 | uint32_t extraWords = 0; |
1581 | switch (choice) { |
1582 | case 0: |
1583 | personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0; |
1584 | extraWords = 0; |
1585 | scope32 = false; |
1586 | lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4); |
1587 | break; |
1588 | case 1: |
1589 | personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1; |
1590 | extraWords = (exceptionTableData & 0x00ff0000) >> 16; |
1591 | scope32 = false; |
1592 | lsda = exceptionTableAddr + (extraWords + 1) * 4; |
1593 | break; |
1594 | case 2: |
1595 | personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2; |
1596 | extraWords = (exceptionTableData & 0x00ff0000) >> 16; |
1597 | scope32 = true; |
1598 | lsda = exceptionTableAddr + (extraWords + 1) * 4; |
1599 | break; |
1600 | default: |
1601 | _LIBUNWIND_ABORT("unknown personality routine"); |
1602 | return false; |
1603 | } |
1604 | |
1605 | if (isSingleWordEHT) { |
1606 | if (extraWords != 0) { |
1607 | _LIBUNWIND_ABORT("index inlined table detected but pr function " |
1608 | "requires extra words"); |
1609 | return false; |
1610 | } |
1611 | } |
1612 | } else { |
1613 | pint_t personalityAddr = |
1614 | exceptionTableAddr + signExtendPrel31(exceptionTableData); |
1615 | personalityRoutine = personalityAddr; |
1616 | |
1617 | // ARM EHABI # 6.2, # 9.2 |
1618 | // |
1619 | // +---- ehtp |
1620 | // v |
1621 | // +--------------------------------------+ |
1622 | // | +--------+--------+--------+-------+ | |
1623 | // | |0| prel31 to personalityRoutine | | |
1624 | // | +--------+--------+--------+-------+ | |
1625 | // | | N | unwind opcodes | | <-- UnwindData |
1626 | // | +--------+--------+--------+-------+ | |
1627 | // | | Word 2 unwind opcodes | | |
1628 | // | +--------+--------+--------+-------+ | |
1629 | // | ... | |
1630 | // | +--------+--------+--------+-------+ | |
1631 | // | | Word N unwind opcodes | | |
1632 | // | +--------+--------+--------+-------+ | |
1633 | // | | LSDA | | <-- lsda |
1634 | // | | ... | | |
1635 | // | +--------+--------+--------+-------+ | |
1636 | // +--------------------------------------+ |
1637 | |
1638 | uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1; |
1639 | uint32_t FirstDataWord = *UnwindData; |
1640 | size_t N = ((FirstDataWord >> 24) & 0xff); |
1641 | size_t NDataWords = N + 1; |
1642 | lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords); |
1643 | } |
1644 | |
1645 | _info.start_ip = thisPC; |
1646 | _info.end_ip = nextPC; |
1647 | _info.handler = personalityRoutine; |
1648 | _info.unwind_info = exceptionTableAddr; |
1649 | _info.lsda = lsda; |
1650 | // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0. |
1651 | _info.flags = (isSingleWordEHT ? 1 : 0) | (scope32 ? 0x2 : 0); // Use enum? |
1652 | |
1653 | return true; |
1654 | } |
1655 | #endif |
1656 | |
1657 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
1658 | template <typename A, typename R> |
1659 | bool UnwindCursor<A, R>::getInfoFromFdeCie( |
1660 | const typename CFI_Parser<A>::FDE_Info &fdeInfo, |
1661 | const typename CFI_Parser<A>::CIE_Info &cieInfo, pint_t pc, |
1662 | uintptr_t dso_base) { |
1663 | typename CFI_Parser<A>::PrologInfo prolog; |
1664 | if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc, |
1665 | R::getArch(), &prolog)) { |
1666 | // Save off parsed FDE info |
1667 | _info.start_ip = fdeInfo.pcStart; |
1668 | _info.end_ip = fdeInfo.pcEnd; |
1669 | _info.lsda = fdeInfo.lsda; |
1670 | _info.handler = cieInfo.personality; |
1671 | // Some frameless functions need SP altered when resuming in function, so |
1672 | // propagate spExtraArgSize. |
1673 | _info.gp = prolog.spExtraArgSize; |
1674 | _info.flags = 0; |
1675 | _info.format = dwarfEncoding(); |
1676 | _info.unwind_info = fdeInfo.fdeStart; |
1677 | _info.unwind_info_size = static_cast<uint32_t>(fdeInfo.fdeLength); |
1678 | _info.extra = static_cast<unw_word_t>(dso_base); |
1679 | return true; |
1680 | } |
1681 | return false; |
1682 | } |
1683 | |
1684 | template <typename A, typename R> |
1685 | bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc, |
1686 | const UnwindInfoSections §s, |
1687 | uint32_t fdeSectionOffsetHint) { |
1688 | typename CFI_Parser<A>::FDE_Info fdeInfo; |
1689 | typename CFI_Parser<A>::CIE_Info cieInfo; |
1690 | bool foundFDE = false; |
1691 | bool foundInCache = false; |
1692 | // If compact encoding table gave offset into dwarf section, go directly there |
1693 | if (fdeSectionOffsetHint != 0) { |
1694 | foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, |
1695 | sects.dwarf_section_length, |
1696 | sects.dwarf_section + fdeSectionOffsetHint, |
1697 | &fdeInfo, &cieInfo); |
1698 | } |
1699 | #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) |
1700 | if (!foundFDE && (sects.dwarf_index_section != 0)) { |
1701 | foundFDE = EHHeaderParser<A>::findFDE( |
1702 | _addressSpace, pc, sects.dwarf_index_section, |
1703 | (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo); |
1704 | } |
1705 | #endif |
1706 | if (!foundFDE) { |
1707 | // otherwise, search cache of previously found FDEs. |
1708 | pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc); |
1709 | if (cachedFDE != 0) { |
1710 | foundFDE = |
1711 | CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, |
1712 | sects.dwarf_section_length, |
1713 | cachedFDE, &fdeInfo, &cieInfo); |
1714 | foundInCache = foundFDE; |
1715 | } |
1716 | } |
1717 | if (!foundFDE) { |
1718 | // Still not found, do full scan of __eh_frame section. |
1719 | foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, |
1720 | sects.dwarf_section_length, 0, |
1721 | &fdeInfo, &cieInfo); |
1722 | } |
1723 | if (foundFDE) { |
1724 | if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, dso_base: sects.dso_base)) { |
1725 | // Add to cache (to make next lookup faster) if we had no hint |
1726 | // and there was no index. |
1727 | if (!foundInCache && (fdeSectionOffsetHint == 0)) { |
1728 | #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) |
1729 | if (sects.dwarf_index_section == 0) |
1730 | #endif |
1731 | DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd, |
1732 | fdeInfo.fdeStart); |
1733 | } |
1734 | return true; |
1735 | } |
1736 | } |
1737 | //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc); |
1738 | return false; |
1739 | } |
1740 | #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
1741 | |
1742 | |
1743 | #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
1744 | template <typename A, typename R> |
1745 | bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc, |
1746 | const UnwindInfoSections §s) { |
1747 | const bool log = false; |
1748 | if (log) |
1749 | fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n", |
1750 | (uint64_t)pc, (uint64_t)sects.dso_base); |
1751 | |
1752 | const UnwindSectionHeader<A> sectionHeader(_addressSpace, |
1753 | sects.compact_unwind_section); |
1754 | if (sectionHeader.version() != UNWIND_SECTION_VERSION) |
1755 | return false; |
1756 | |
1757 | // do a binary search of top level index to find page with unwind info |
1758 | pint_t targetFunctionOffset = pc - sects.dso_base; |
1759 | const UnwindSectionIndexArray<A> topIndex(_addressSpace, |
1760 | sects.compact_unwind_section |
1761 | + sectionHeader.indexSectionOffset()); |
1762 | uint32_t low = 0; |
1763 | uint32_t high = sectionHeader.indexCount(); |
1764 | uint32_t last = high - 1; |
1765 | while (low < high) { |
1766 | uint32_t mid = (low + high) / 2; |
1767 | //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n", |
1768 | //mid, low, high, topIndex.functionOffset(mid)); |
1769 | if (topIndex.functionOffset(mid) <= targetFunctionOffset) { |
1770 | if ((mid == last) || |
1771 | (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) { |
1772 | low = mid; |
1773 | break; |
1774 | } else { |
1775 | low = mid + 1; |
1776 | } |
1777 | } else { |
1778 | high = mid; |
1779 | } |
1780 | } |
1781 | const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low); |
1782 | const uint32_t firstLevelNextPageFunctionOffset = |
1783 | topIndex.functionOffset(low + 1); |
1784 | const pint_t secondLevelAddr = |
1785 | sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low); |
1786 | const pint_t lsdaArrayStartAddr = |
1787 | sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low); |
1788 | const pint_t lsdaArrayEndAddr = |
1789 | sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1); |
1790 | if (log) |
1791 | fprintf(stderr, "\tfirst level search for result index=%d " |
1792 | "to secondLevelAddr=0x%llX\n", |
1793 | low, (uint64_t) secondLevelAddr); |
1794 | // do a binary search of second level page index |
1795 | uint32_t encoding = 0; |
1796 | pint_t funcStart = 0; |
1797 | pint_t funcEnd = 0; |
1798 | pint_t lsda = 0; |
1799 | pint_t personality = 0; |
1800 | uint32_t pageKind = _addressSpace.get32(secondLevelAddr); |
1801 | if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) { |
1802 | // regular page |
1803 | UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace, |
1804 | secondLevelAddr); |
1805 | UnwindSectionRegularArray<A> pageIndex( |
1806 | _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); |
1807 | // binary search looks for entry with e where index[e].offset <= pc < |
1808 | // index[e+1].offset |
1809 | if (log) |
1810 | fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in " |
1811 | "regular page starting at secondLevelAddr=0x%llX\n", |
1812 | (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr); |
1813 | low = 0; |
1814 | high = pageHeader.entryCount(); |
1815 | while (low < high) { |
1816 | uint32_t mid = (low + high) / 2; |
1817 | if (pageIndex.functionOffset(mid) <= targetFunctionOffset) { |
1818 | if (mid == (uint32_t)(pageHeader.entryCount() - 1)) { |
1819 | // at end of table |
1820 | low = mid; |
1821 | funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; |
1822 | break; |
1823 | } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) { |
1824 | // next is too big, so we found it |
1825 | low = mid; |
1826 | funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base; |
1827 | break; |
1828 | } else { |
1829 | low = mid + 1; |
1830 | } |
1831 | } else { |
1832 | high = mid; |
1833 | } |
1834 | } |
1835 | encoding = pageIndex.encoding(low); |
1836 | funcStart = pageIndex.functionOffset(low) + sects.dso_base; |
1837 | if (pc < funcStart) { |
1838 | if (log) |
1839 | fprintf( |
1840 | stderr, |
1841 | "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", |
1842 | (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); |
1843 | return false; |
1844 | } |
1845 | if (pc > funcEnd) { |
1846 | if (log) |
1847 | fprintf( |
1848 | stderr, |
1849 | "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", |
1850 | (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); |
1851 | return false; |
1852 | } |
1853 | } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) { |
1854 | // compressed page |
1855 | UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace, |
1856 | secondLevelAddr); |
1857 | UnwindSectionCompressedArray<A> pageIndex( |
1858 | _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); |
1859 | const uint32_t targetFunctionPageOffset = |
1860 | (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset); |
1861 | // binary search looks for entry with e where index[e].offset <= pc < |
1862 | // index[e+1].offset |
1863 | if (log) |
1864 | fprintf(stderr, "\tbinary search of compressed page starting at " |
1865 | "secondLevelAddr=0x%llX\n", |
1866 | (uint64_t) secondLevelAddr); |
1867 | low = 0; |
1868 | last = pageHeader.entryCount() - 1; |
1869 | high = pageHeader.entryCount(); |
1870 | while (low < high) { |
1871 | uint32_t mid = (low + high) / 2; |
1872 | if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) { |
1873 | if ((mid == last) || |
1874 | (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) { |
1875 | low = mid; |
1876 | break; |
1877 | } else { |
1878 | low = mid + 1; |
1879 | } |
1880 | } else { |
1881 | high = mid; |
1882 | } |
1883 | } |
1884 | funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset |
1885 | + sects.dso_base; |
1886 | if (low < last) |
1887 | funcEnd = |
1888 | pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset |
1889 | + sects.dso_base; |
1890 | else |
1891 | funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; |
1892 | if (pc < funcStart) { |
1893 | _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX " |
1894 | "not in second level compressed unwind table. " |
1895 | "funcStart=0x%llX", |
1896 | (uint64_t) pc, (uint64_t) funcStart); |
1897 | return false; |
1898 | } |
1899 | if (pc > funcEnd) { |
1900 | _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX " |
1901 | "not in second level compressed unwind table. " |
1902 | "funcEnd=0x%llX", |
1903 | (uint64_t) pc, (uint64_t) funcEnd); |
1904 | return false; |
1905 | } |
1906 | uint16_t encodingIndex = pageIndex.encodingIndex(low); |
1907 | if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) { |
1908 | // encoding is in common table in section header |
1909 | encoding = _addressSpace.get32( |
1910 | sects.compact_unwind_section + |
1911 | sectionHeader.commonEncodingsArraySectionOffset() + |
1912 | encodingIndex * sizeof(uint32_t)); |
1913 | } else { |
1914 | // encoding is in page specific table |
1915 | uint16_t pageEncodingIndex = |
1916 | encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount(); |
1917 | encoding = _addressSpace.get32(secondLevelAddr + |
1918 | pageHeader.encodingsPageOffset() + |
1919 | pageEncodingIndex * sizeof(uint32_t)); |
1920 | } |
1921 | } else { |
1922 | _LIBUNWIND_DEBUG_LOG( |
1923 | "malformed __unwind_info at 0x%0llX bad second level page", |
1924 | (uint64_t)sects.compact_unwind_section); |
1925 | return false; |
1926 | } |
1927 | |
1928 | // look up LSDA, if encoding says function has one |
1929 | if (encoding & UNWIND_HAS_LSDA) { |
1930 | UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr); |
1931 | uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base); |
1932 | low = 0; |
1933 | high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) / |
1934 | sizeof(unwind_info_section_header_lsda_index_entry); |
1935 | // binary search looks for entry with exact match for functionOffset |
1936 | if (log) |
1937 | fprintf(stderr, |
1938 | "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n", |
1939 | funcStartOffset); |
1940 | while (low < high) { |
1941 | uint32_t mid = (low + high) / 2; |
1942 | if (lsdaIndex.functionOffset(mid) == funcStartOffset) { |
1943 | lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base; |
1944 | break; |
1945 | } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) { |
1946 | low = mid + 1; |
1947 | } else { |
1948 | high = mid; |
1949 | } |
1950 | } |
1951 | if (lsda == 0) { |
1952 | _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for " |
1953 | "pc=0x%0llX, but lsda table has no entry", |
1954 | encoding, (uint64_t) pc); |
1955 | return false; |
1956 | } |
1957 | } |
1958 | |
1959 | // extract personality routine, if encoding says function has one |
1960 | uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >> |
1961 | (__builtin_ctz(UNWIND_PERSONALITY_MASK)); |
1962 | if (personalityIndex != 0) { |
1963 | --personalityIndex; // change 1-based to zero-based index |
1964 | if (personalityIndex >= sectionHeader.personalityArrayCount()) { |
1965 | _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, " |
1966 | "but personality table has only %d entries", |
1967 | encoding, personalityIndex, |
1968 | sectionHeader.personalityArrayCount()); |
1969 | return false; |
1970 | } |
1971 | int32_t personalityDelta = (int32_t)_addressSpace.get32( |
1972 | sects.compact_unwind_section + |
1973 | sectionHeader.personalityArraySectionOffset() + |
1974 | personalityIndex * sizeof(uint32_t)); |
1975 | pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta; |
1976 | personality = _addressSpace.getP(personalityPointer); |
1977 | if (log) |
1978 | fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " |
1979 | "personalityDelta=0x%08X, personality=0x%08llX\n", |
1980 | (uint64_t) pc, personalityDelta, (uint64_t) personality); |
1981 | } |
1982 | |
1983 | if (log) |
1984 | fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " |
1985 | "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n", |
1986 | (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart); |
1987 | _info.start_ip = funcStart; |
1988 | _info.end_ip = funcEnd; |
1989 | _info.lsda = lsda; |
1990 | _info.handler = personality; |
1991 | _info.gp = 0; |
1992 | _info.flags = 0; |
1993 | _info.format = encoding; |
1994 | _info.unwind_info = 0; |
1995 | _info.unwind_info_size = 0; |
1996 | _info.extra = sects.dso_base; |
1997 | return true; |
1998 | } |
1999 | #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
2000 | |
2001 | |
2002 | #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
2003 | template <typename A, typename R> |
2004 | bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) { |
2005 | pint_t base; |
2006 | RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base); |
2007 | if (!unwindEntry) { |
2008 | _LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX", (uint64_t) pc); |
2009 | return false; |
2010 | } |
2011 | _info.gp = 0; |
2012 | _info.flags = 0; |
2013 | _info.format = 0; |
2014 | _info.unwind_info_size = sizeof(RUNTIME_FUNCTION); |
2015 | _info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry); |
2016 | _info.extra = base; |
2017 | _info.start_ip = base + unwindEntry->BeginAddress; |
2018 | #ifdef _LIBUNWIND_TARGET_X86_64 |
2019 | _info.end_ip = base + unwindEntry->EndAddress; |
2020 | // Only fill in the handler and LSDA if they're stale. |
2021 | if (pc != getLastPC()) { |
2022 | UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData); |
2023 | if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) { |
2024 | // The personality is given in the UNWIND_INFO itself. The LSDA immediately |
2025 | // follows the UNWIND_INFO. (This follows how both Clang and MSVC emit |
2026 | // these structures.) |
2027 | // N.B. UNWIND_INFO structs are DWORD-aligned. |
2028 | uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1; |
2029 | const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]); |
2030 | _info.lsda = reinterpret_cast<unw_word_t>(handler+1); |
2031 | _dispContext.HandlerData = reinterpret_cast<void *>(_info.lsda); |
2032 | _dispContext.LanguageHandler = |
2033 | reinterpret_cast<EXCEPTION_ROUTINE *>(base + *handler); |
2034 | if (*handler) { |
2035 | _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); |
2036 | } else |
2037 | _info.handler = 0; |
2038 | } else { |
2039 | _info.lsda = 0; |
2040 | _info.handler = 0; |
2041 | } |
2042 | } |
2043 | #elif defined(_LIBUNWIND_TARGET_AARCH64) || defined(_LIBUNWIND_TARGET_ARM) |
2044 | |
2045 | #if defined(_LIBUNWIND_TARGET_AARCH64) |
2046 | #define FUNC_LENGTH_UNIT 4 |
2047 | #define XDATA_TYPE IMAGE_ARM64_RUNTIME_FUNCTION_ENTRY_XDATA |
2048 | #else |
2049 | #define FUNC_LENGTH_UNIT 2 |
2050 | #define XDATA_TYPE UNWIND_INFO_ARM |
2051 | #endif |
2052 | if (unwindEntry->Flag != 0) { // Packed unwind info |
2053 | _info.end_ip = |
2054 | _info.start_ip + unwindEntry->FunctionLength * FUNC_LENGTH_UNIT; |
2055 | // Only fill in the handler and LSDA if they're stale. |
2056 | if (pc != getLastPC()) { |
2057 | // Packed unwind info doesn't have an exception handler. |
2058 | _info.lsda = 0; |
2059 | _info.handler = 0; |
2060 | } |
2061 | } else { |
2062 | XDATA_TYPE *xdata = |
2063 | reinterpret_cast<XDATA_TYPE *>(base + unwindEntry->UnwindData); |
2064 | _info.end_ip = _info.start_ip + xdata->FunctionLength * FUNC_LENGTH_UNIT; |
2065 | // Only fill in the handler and LSDA if they're stale. |
2066 | if (pc != getLastPC()) { |
2067 | if (xdata->ExceptionDataPresent) { |
2068 | uint32_t offset = 1; // The main xdata |
2069 | uint32_t codeWords = xdata->CodeWords; |
2070 | uint32_t epilogScopes = xdata->EpilogCount; |
2071 | if (xdata->EpilogCount == 0 && xdata->CodeWords == 0) { |
2072 | // The extension word has got the same layout for both ARM and ARM64 |
2073 | uint32_t extensionWord = reinterpret_cast<uint32_t *>(xdata)[1]; |
2074 | codeWords = (extensionWord >> 16) & 0xff; |
2075 | epilogScopes = extensionWord & 0xffff; |
2076 | offset++; |
2077 | } |
2078 | if (!xdata->EpilogInHeader) |
2079 | offset += epilogScopes; |
2080 | offset += codeWords; |
2081 | uint32_t *exceptionHandlerInfo = |
2082 | reinterpret_cast<uint32_t *>(xdata) + offset; |
2083 | _dispContext.HandlerData = &exceptionHandlerInfo[1]; |
2084 | _dispContext.LanguageHandler = reinterpret_cast<EXCEPTION_ROUTINE *>( |
2085 | base + exceptionHandlerInfo[0]); |
2086 | _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData); |
2087 | if (exceptionHandlerInfo[0]) |
2088 | _info.handler = |
2089 | reinterpret_cast<unw_word_t>(__libunwind_seh_personality); |
2090 | else |
2091 | _info.handler = 0; |
2092 | } else { |
2093 | _info.lsda = 0; |
2094 | _info.handler = 0; |
2095 | } |
2096 | } |
2097 | } |
2098 | #endif |
2099 | setLastPC(pc); |
2100 | return true; |
2101 | } |
2102 | #endif |
2103 | |
2104 | #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
2105 | // Masks for traceback table field xtbtable. |
2106 | enum xTBTableMask : uint8_t { |
2107 | reservedBit = 0x02, // The traceback table was incorrectly generated if set |
2108 | // (see comments in function getInfoFromTBTable(). |
2109 | ehInfoBit = 0x08 // Exception handling info is present if set |
2110 | }; |
2111 | |
2112 | enum frameType : unw_word_t { |
2113 | frameWithXLEHStateTable = 0, |
2114 | frameWithEHInfo = 1 |
2115 | }; |
2116 | |
2117 | extern "C"{ |
2118 | typedef _Unwind_Reason_Code __xlcxx_personality_v0_t(int, _Unwind_Action, |
2119 | uint64_t, |
2120 | _Unwind_Exception *, |
2121 | struct _Unwind_Context *); |
2122 | } |
2123 | |
2124 | static __xlcxx_personality_v0_t *xlcPersonalityV0; |
2125 | static RWMutex xlcPersonalityV0InitLock; |
2126 | |
2127 | template <typename A, typename R> |
2128 | bool UnwindCursor<A, R>::getInfoFromTBTable(pint_t pc, R ®isters) { |
2129 | uint32_t *p = reinterpret_cast<uint32_t *>(pc); |
2130 | |
2131 | // Keep looking forward until a word of 0 is found. The traceback |
2132 | // table starts at the following word. |
2133 | while (*p) |
2134 | ++p; |
2135 | tbtable *TBTable = reinterpret_cast<tbtable *>(p + 1); |
2136 | |
2137 | if (_LIBUNWIND_TRACING_UNWINDING) { |
2138 | char functionBuf[512]; |
2139 | const char *functionName = functionBuf; |
2140 | unw_word_t offset; |
2141 | if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) { |
2142 | functionName = ".anonymous."; |
2143 | } |
2144 | _LIBUNWIND_TRACE_UNWINDING("%s: Look up traceback table of func=%s at %p", |
2145 | __func__, functionName, |
2146 | reinterpret_cast<void *>(TBTable)); |
2147 | } |
2148 | |
2149 | // If the traceback table does not contain necessary info, bypass this frame. |
2150 | if (!TBTable->tb.has_tboff) |
2151 | return false; |
2152 | |
2153 | // Structure tbtable_ext contains important data we are looking for. |
2154 | p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext); |
2155 | |
2156 | // Skip field parminfo if it exists. |
2157 | if (TBTable->tb.fixedparms || TBTable->tb.floatparms) |
2158 | ++p; |
2159 | |
2160 | // p now points to tb_offset, the offset from start of function to TB table. |
2161 | unw_word_t start_ip = |
2162 | reinterpret_cast<unw_word_t>(TBTable) - *p - sizeof(uint32_t); |
2163 | unw_word_t end_ip = reinterpret_cast<unw_word_t>(TBTable); |
2164 | ++p; |
2165 | |
2166 | _LIBUNWIND_TRACE_UNWINDING("start_ip=%p, end_ip=%p\n", |
2167 | reinterpret_cast<void *>(start_ip), |
2168 | reinterpret_cast<void *>(end_ip)); |
2169 | |
2170 | // Skip field hand_mask if it exists. |
2171 | if (TBTable->tb.int_hndl) |
2172 | ++p; |
2173 | |
2174 | unw_word_t lsda = 0; |
2175 | unw_word_t handler = 0; |
2176 | unw_word_t flags = frameType::frameWithXLEHStateTable; |
2177 | |
2178 | if (TBTable->tb.lang == TB_CPLUSPLUS && TBTable->tb.has_ctl) { |
2179 | // State table info is available. The ctl_info field indicates the |
2180 | // number of CTL anchors. There should be only one entry for the C++ |
2181 | // state table. |
2182 | assert(*p == 1 && "libunwind: there must be only one ctl_info entry"); |
2183 | ++p; |
2184 | // p points to the offset of the state table into the stack. |
2185 | pint_t stateTableOffset = *p++; |
2186 | |
2187 | int framePointerReg; |
2188 | |
2189 | // Skip fields name_len and name if exist. |
2190 | if (TBTable->tb.name_present) { |
2191 | const uint16_t name_len = *(reinterpret_cast<uint16_t *>(p)); |
2192 | p = reinterpret_cast<uint32_t *>(reinterpret_cast<char *>(p) + name_len + |
2193 | sizeof(uint16_t)); |
2194 | } |
2195 | |
2196 | if (TBTable->tb.uses_alloca) |
2197 | framePointerReg = *(reinterpret_cast<char *>(p)); |
2198 | else |
2199 | framePointerReg = 1; // default frame pointer == SP |
2200 | |
2201 | _LIBUNWIND_TRACE_UNWINDING( |
2202 | "framePointerReg=%d, framePointer=%p, " |
2203 | "stateTableOffset=%#lx\n", |
2204 | framePointerReg, |
2205 | reinterpret_cast<void *>(_registers.getRegister(framePointerReg)), |
2206 | stateTableOffset); |
2207 | lsda = _registers.getRegister(framePointerReg) + stateTableOffset; |
2208 | |
2209 | // Since the traceback table generated by the legacy XLC++ does not |
2210 | // provide the location of the personality for the state table, |
2211 | // function __xlcxx_personality_v0(), which is the personality for the state |
2212 | // table and is exported from libc++abi, is directly assigned as the |
2213 | // handler here. When a legacy XLC++ frame is encountered, the symbol |
2214 | // is resolved dynamically using dlopen() to avoid a hard dependency of |
2215 | // libunwind on libc++abi in cases such as non-C++ applications. |
2216 | |
2217 | // Resolve the function pointer to the state table personality if it has |
2218 | // not already been done. |
2219 | if (xlcPersonalityV0 == NULL) { |
2220 | xlcPersonalityV0InitLock.lock(); |
2221 | if (xlcPersonalityV0 == NULL) { |
2222 | // Resolve __xlcxx_personality_v0 using dlopen(). |
2223 | const char *libcxxabi = "libc++abi.a(libc++abi.so.1)"; |
2224 | void *libHandle; |
2225 | // The AIX dlopen() sets errno to 0 when it is successful, which |
2226 | // clobbers the value of errno from the user code. This is an AIX |
2227 | // bug because according to POSIX it should not set errno to 0. To |
2228 | // workaround before AIX fixes the bug, errno is saved and restored. |
2229 | int saveErrno = errno; |
2230 | libHandle = dlopen(libcxxabi, RTLD_MEMBER | RTLD_NOW); |
2231 | if (libHandle == NULL) { |
2232 | _LIBUNWIND_TRACE_UNWINDING("dlopen() failed with errno=%d\n", errno); |
2233 | assert(0 && "dlopen() failed"); |
2234 | } |
2235 | xlcPersonalityV0 = reinterpret_cast<__xlcxx_personality_v0_t *>( |
2236 | dlsym(libHandle, "__xlcxx_personality_v0")); |
2237 | if (xlcPersonalityV0 == NULL) { |
2238 | _LIBUNWIND_TRACE_UNWINDING("dlsym() failed with errno=%d\n", errno); |
2239 | dlclose(libHandle); |
2240 | assert(0 && "dlsym() failed"); |
2241 | } |
2242 | errno = saveErrno; |
2243 | } |
2244 | xlcPersonalityV0InitLock.unlock(); |
2245 | } |
2246 | handler = reinterpret_cast<unw_word_t>(xlcPersonalityV0); |
2247 | _LIBUNWIND_TRACE_UNWINDING("State table: LSDA=%p, Personality=%p\n", |
2248 | reinterpret_cast<void *>(lsda), |
2249 | reinterpret_cast<void *>(handler)); |
2250 | } else if (TBTable->tb.longtbtable) { |
2251 | // This frame has the traceback table extension. Possible cases are |
2252 | // 1) a C++ frame that has the 'eh_info' structure; 2) a C++ frame that |
2253 | // is not EH aware; or, 3) a frame of other languages. We need to figure out |
2254 | // if the traceback table extension contains the 'eh_info' structure. |
2255 | // |
2256 | // We also need to deal with the complexity arising from some XL compiler |
2257 | // versions use the wrong ordering of 'longtbtable' and 'has_vec' bits |
2258 | // where the 'longtbtable' bit is meant to be the 'has_vec' bit and vice |
2259 | // versa. For frames of code generated by those compilers, the 'longtbtable' |
2260 | // bit may be set but there isn't really a traceback table extension. |
2261 | // |
2262 | // In </usr/include/sys/debug.h>, there is the following definition of |
2263 | // 'struct tbtable_ext'. It is not really a structure but a dummy to |
2264 | // collect the description of optional parts of the traceback table. |
2265 | // |
2266 | // struct tbtable_ext { |
2267 | // ... |
2268 | // char alloca_reg; /* Register for alloca automatic storage */ |
2269 | // struct vec_ext vec_ext; /* Vector extension (if has_vec is set) */ |
2270 | // unsigned char xtbtable; /* More tbtable fields, if longtbtable is set*/ |
2271 | // }; |
2272 | // |
2273 | // Depending on how the 'has_vec'/'longtbtable' bit is interpreted, the data |
2274 | // following 'alloca_reg' can be treated either as 'struct vec_ext' or |
2275 | // 'unsigned char xtbtable'. 'xtbtable' bits are defined in |
2276 | // </usr/include/sys/debug.h> as flags. The 7th bit '0x02' is currently |
2277 | // unused and should not be set. 'struct vec_ext' is defined in |
2278 | // </usr/include/sys/debug.h> as follows: |
2279 | // |
2280 | // struct vec_ext { |
2281 | // unsigned vr_saved:6; /* Number of non-volatile vector regs saved |
2282 | // */ |
2283 | // /* first register saved is assumed to be */ |
2284 | // /* 32 - vr_saved */ |
2285 | // unsigned saves_vrsave:1; /* Set if vrsave is saved on the stack */ |
2286 | // unsigned has_varargs:1; |
2287 | // ... |
2288 | // }; |
2289 | // |
2290 | // Here, the 7th bit is used as 'saves_vrsave'. To determine whether it |
2291 | // is 'struct vec_ext' or 'xtbtable' that follows 'alloca_reg', |
2292 | // we checks if the 7th bit is set or not because 'xtbtable' should |
2293 | // never have the 7th bit set. The 7th bit of 'xtbtable' will be reserved |
2294 | // in the future to make sure the mitigation works. This mitigation |
2295 | // is not 100% bullet proof because 'struct vec_ext' may not always have |
2296 | // 'saves_vrsave' bit set. |
2297 | // |
2298 | // 'reservedBit' is defined in enum 'xTBTableMask' above as the mask for |
2299 | // checking the 7th bit. |
2300 | |
2301 | // p points to field name len. |
2302 | uint8_t *charPtr = reinterpret_cast<uint8_t *>(p); |
2303 | |
2304 | // Skip fields name_len and name if they exist. |
2305 | if (TBTable->tb.name_present) { |
2306 | const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr)); |
2307 | charPtr = charPtr + name_len + sizeof(uint16_t); |
2308 | } |
2309 | |
2310 | // Skip field alloc_reg if it exists. |
2311 | if (TBTable->tb.uses_alloca) |
2312 | ++charPtr; |
2313 | |
2314 | // Check traceback table bit has_vec. Skip struct vec_ext if it exists. |
2315 | if (TBTable->tb.has_vec) |
2316 | // Note struct vec_ext does exist at this point because whether the |
2317 | // ordering of longtbtable and has_vec bits is correct or not, both |
2318 | // are set. |
2319 | charPtr += sizeof(struct vec_ext); |
2320 | |
2321 | // charPtr points to field 'xtbtable'. Check if the EH info is available. |
2322 | // Also check if the reserved bit of the extended traceback table field |
2323 | // 'xtbtable' is set. If it is, the traceback table was incorrectly |
2324 | // generated by an XL compiler that uses the wrong ordering of 'longtbtable' |
2325 | // and 'has_vec' bits and this is in fact 'struct vec_ext'. So skip the |
2326 | // frame. |
2327 | if ((*charPtr & xTBTableMask::ehInfoBit) && |
2328 | !(*charPtr & xTBTableMask::reservedBit)) { |
2329 | // Mark this frame has the new EH info. |
2330 | flags = frameType::frameWithEHInfo; |
2331 | |
2332 | // eh_info is available. |
2333 | charPtr++; |
2334 | // The pointer is 4-byte aligned. |
2335 | if (reinterpret_cast<uintptr_t>(charPtr) % 4) |
2336 | charPtr += 4 - reinterpret_cast<uintptr_t>(charPtr) % 4; |
2337 | uintptr_t *ehInfo = |
2338 | reinterpret_cast<uintptr_t *>(*(reinterpret_cast<uintptr_t *>( |
2339 | registers.getRegister(2) + |
2340 | *(reinterpret_cast<uintptr_t *>(charPtr))))); |
2341 | |
2342 | // ehInfo points to structure en_info. The first member is version. |
2343 | // Only version 0 is currently supported. |
2344 | assert(*(reinterpret_cast<uint32_t *>(ehInfo)) == 0 && |
2345 | "libunwind: ehInfo version other than 0 is not supported"); |
2346 | |
2347 | // Increment ehInfo to point to member lsda. |
2348 | ++ehInfo; |
2349 | lsda = *ehInfo++; |
2350 | |
2351 | // enInfo now points to member personality. |
2352 | handler = *ehInfo; |
2353 | |
2354 | _LIBUNWIND_TRACE_UNWINDING("Range table: LSDA=%#lx, Personality=%#lx\n", |
2355 | lsda, handler); |
2356 | } |
2357 | } |
2358 | |
2359 | _info.start_ip = start_ip; |
2360 | _info.end_ip = end_ip; |
2361 | _info.lsda = lsda; |
2362 | _info.handler = handler; |
2363 | _info.gp = 0; |
2364 | _info.flags = flags; |
2365 | _info.format = 0; |
2366 | _info.unwind_info = reinterpret_cast<unw_word_t>(TBTable); |
2367 | _info.unwind_info_size = 0; |
2368 | _info.extra = registers.getRegister(2); |
2369 | |
2370 | return true; |
2371 | } |
2372 | |
2373 | // Step back up the stack following the frame back link. |
2374 | template <typename A, typename R> |
2375 | int UnwindCursor<A, R>::stepWithTBTable(pint_t pc, tbtable *TBTable, |
2376 | R ®isters, bool &isSignalFrame) { |
2377 | if (_LIBUNWIND_TRACING_UNWINDING) { |
2378 | char functionBuf[512]; |
2379 | const char *functionName = functionBuf; |
2380 | unw_word_t offset; |
2381 | if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) { |
2382 | functionName = ".anonymous."; |
2383 | } |
2384 | _LIBUNWIND_TRACE_UNWINDING( |
2385 | "%s: Look up traceback table of func=%s at %p, pc=%p, " |
2386 | "SP=%p, saves_lr=%d, stores_bc=%d", |
2387 | __func__, functionName, reinterpret_cast<void *>(TBTable), |
2388 | reinterpret_cast<void *>(pc), |
2389 | reinterpret_cast<void *>(registers.getSP()), TBTable->tb.saves_lr, |
2390 | TBTable->tb.stores_bc); |
2391 | } |
2392 | |
2393 | #if defined(__powerpc64__) |
2394 | // Instruction to reload TOC register "ld r2,40(r1)" |
2395 | const uint32_t loadTOCRegInst = 0xe8410028; |
2396 | const int32_t unwPPCF0Index = UNW_PPC64_F0; |
2397 | const int32_t unwPPCV0Index = UNW_PPC64_V0; |
2398 | #else |
2399 | // Instruction to reload TOC register "lwz r2,20(r1)" |
2400 | const uint32_t loadTOCRegInst = 0x80410014; |
2401 | const int32_t unwPPCF0Index = UNW_PPC_F0; |
2402 | const int32_t unwPPCV0Index = UNW_PPC_V0; |
2403 | #endif |
2404 | |
2405 | // lastStack points to the stack frame of the next routine up. |
2406 | pint_t curStack = static_cast<pint_t>(registers.getSP()); |
2407 | pint_t lastStack = *reinterpret_cast<pint_t *>(curStack); |
2408 | |
2409 | if (lastStack == 0) |
2410 | return UNW_STEP_END; |
2411 | |
2412 | R newRegisters = registers; |
2413 | |
2414 | // If backchain is not stored, use the current stack frame. |
2415 | if (!TBTable->tb.stores_bc) |
2416 | lastStack = curStack; |
2417 | |
2418 | // Return address is the address after call site instruction. |
2419 | pint_t returnAddress; |
2420 | |
2421 | if (isSignalFrame) { |
2422 | _LIBUNWIND_TRACE_UNWINDING("Possible signal handler frame: lastStack=%p", |
2423 | reinterpret_cast<void *>(lastStack)); |
2424 | |
2425 | sigcontext *sigContext = reinterpret_cast<sigcontext *>( |
2426 | reinterpret_cast<char *>(lastStack) + STKMINALIGN); |
2427 | returnAddress = sigContext->sc_jmpbuf.jmp_context.iar; |
2428 | |
2429 | bool useSTKMIN = false; |
2430 | if (returnAddress < 0x10000000) { |
2431 | // Try again using STKMIN. |
2432 | sigContext = reinterpret_cast<sigcontext *>( |
2433 | reinterpret_cast<char *>(lastStack) + STKMIN); |
2434 | returnAddress = sigContext->sc_jmpbuf.jmp_context.iar; |
2435 | if (returnAddress < 0x10000000) { |
2436 | _LIBUNWIND_TRACE_UNWINDING("Bad returnAddress=%p from sigcontext=%p", |
2437 | reinterpret_cast<void *>(returnAddress), |
2438 | reinterpret_cast<void *>(sigContext)); |
2439 | return UNW_EBADFRAME; |
2440 | } |
2441 | useSTKMIN = true; |
2442 | } |
2443 | _LIBUNWIND_TRACE_UNWINDING("Returning from a signal handler %s: " |
2444 | "sigContext=%p, returnAddress=%p. " |
2445 | "Seems to be a valid address", |
2446 | useSTKMIN ? "STKMIN": "STKMINALIGN", |
2447 | reinterpret_cast<void *>(sigContext), |
2448 | reinterpret_cast<void *>(returnAddress)); |
2449 | |
2450 | // Restore the condition register from sigcontext. |
2451 | newRegisters.setCR(sigContext->sc_jmpbuf.jmp_context.cr); |
2452 | |
2453 | // Save the LR in sigcontext for stepping up when the function that |
2454 | // raised the signal is a leaf function. This LR has the return address |
2455 | // to the caller of the leaf function. |
2456 | newRegisters.setLR(sigContext->sc_jmpbuf.jmp_context.lr); |
2457 | _LIBUNWIND_TRACE_UNWINDING( |
2458 | "Save LR=%p from sigcontext", |
2459 | reinterpret_cast<void *>(sigContext->sc_jmpbuf.jmp_context.lr)); |
2460 | |
2461 | // Restore GPRs from sigcontext. |
2462 | for (int i = 0; i < 32; ++i) |
2463 | newRegisters.setRegister(i, sigContext->sc_jmpbuf.jmp_context.gpr[i]); |
2464 | |
2465 | // Restore FPRs from sigcontext. |
2466 | for (int i = 0; i < 32; ++i) |
2467 | newRegisters.setFloatRegister(i + unwPPCF0Index, |
2468 | sigContext->sc_jmpbuf.jmp_context.fpr[i]); |
2469 | |
2470 | // Restore vector registers if there is an associated extended context |
2471 | // structure. |
2472 | if (sigContext->sc_jmpbuf.jmp_context.msr & __EXTCTX) { |
2473 | ucontext_t *uContext = reinterpret_cast<ucontext_t *>(sigContext); |
2474 | if (uContext->__extctx->__extctx_magic == __EXTCTX_MAGIC) { |
2475 | for (int i = 0; i < 32; ++i) |
2476 | newRegisters.setVectorRegister( |
2477 | i + unwPPCV0Index, *(reinterpret_cast<v128 *>( |
2478 | &(uContext->__extctx->__vmx.__vr[i])))); |
2479 | } |
2480 | } |
2481 | } else { |
2482 | // Step up a normal frame. |
2483 | |
2484 | if (!TBTable->tb.saves_lr && registers.getLR()) { |
2485 | // This case should only occur if we were called from a signal handler |
2486 | // and the signal occurred in a function that doesn't save the LR. |
2487 | returnAddress = static_cast<pint_t>(registers.getLR()); |
2488 | _LIBUNWIND_TRACE_UNWINDING("Use saved LR=%p", |
2489 | reinterpret_cast<void *>(returnAddress)); |
2490 | } else { |
2491 | // Otherwise, use the LR value in the stack link area. |
2492 | returnAddress = reinterpret_cast<pint_t *>(lastStack)[2]; |
2493 | } |
2494 | |
2495 | // Reset LR in the current context. |
2496 | newRegisters.setLR(static_cast<uintptr_t>(NULL)); |
2497 | |
2498 | _LIBUNWIND_TRACE_UNWINDING( |
2499 | "Extract info from lastStack=%p, returnAddress=%p", |
2500 | reinterpret_cast<void *>(lastStack), |
2501 | reinterpret_cast<void *>(returnAddress)); |
2502 | _LIBUNWIND_TRACE_UNWINDING("fpr_regs=%d, gpr_regs=%d, saves_cr=%d", |
2503 | TBTable->tb.fpr_saved, TBTable->tb.gpr_saved, |
2504 | TBTable->tb.saves_cr); |
2505 | |
2506 | // Restore FP registers. |
2507 | char *ptrToRegs = reinterpret_cast<char *>(lastStack); |
2508 | double *FPRegs = reinterpret_cast<double *>( |
2509 | ptrToRegs - (TBTable->tb.fpr_saved * sizeof(double))); |
2510 | for (int i = 0; i < TBTable->tb.fpr_saved; ++i) |
2511 | newRegisters.setFloatRegister( |
2512 | 32 - TBTable->tb.fpr_saved + i + unwPPCF0Index, FPRegs[i]); |
2513 | |
2514 | // Restore GP registers. |
2515 | ptrToRegs = reinterpret_cast<char *>(FPRegs); |
2516 | uintptr_t *GPRegs = reinterpret_cast<uintptr_t *>( |
2517 | ptrToRegs - (TBTable->tb.gpr_saved * sizeof(uintptr_t))); |
2518 | for (int i = 0; i < TBTable->tb.gpr_saved; ++i) |
2519 | newRegisters.setRegister(32 - TBTable->tb.gpr_saved + i, GPRegs[i]); |
2520 | |
2521 | // Restore Vector registers. |
2522 | ptrToRegs = reinterpret_cast<char *>(GPRegs); |
2523 | |
2524 | // Restore vector registers only if this is a Clang frame. Also |
2525 | // check if traceback table bit has_vec is set. If it is, structure |
2526 | // vec_ext is available. |
2527 | if (_info.flags == frameType::frameWithEHInfo && TBTable->tb.has_vec) { |
2528 | |
2529 | // Get to the vec_ext structure to check if vector registers are saved. |
2530 | uint32_t *p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext); |
2531 | |
2532 | // Skip field parminfo if exists. |
2533 | if (TBTable->tb.fixedparms || TBTable->tb.floatparms) |
2534 | ++p; |
2535 | |
2536 | // Skip field tb_offset if exists. |
2537 | if (TBTable->tb.has_tboff) |
2538 | ++p; |
2539 | |
2540 | // Skip field hand_mask if exists. |
2541 | if (TBTable->tb.int_hndl) |
2542 | ++p; |
2543 | |
2544 | // Skip fields ctl_info and ctl_info_disp if exist. |
2545 | if (TBTable->tb.has_ctl) { |
2546 | // Skip field ctl_info. |
2547 | ++p; |
2548 | // Skip field ctl_info_disp. |
2549 | ++p; |
2550 | } |
2551 | |
2552 | // Skip fields name_len and name if exist. |
2553 | // p is supposed to point to field name_len now. |
2554 | uint8_t *charPtr = reinterpret_cast<uint8_t *>(p); |
2555 | if (TBTable->tb.name_present) { |
2556 | const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr)); |
2557 | charPtr = charPtr + name_len + sizeof(uint16_t); |
2558 | } |
2559 | |
2560 | // Skip field alloc_reg if it exists. |
2561 | if (TBTable->tb.uses_alloca) |
2562 | ++charPtr; |
2563 | |
2564 | struct vec_ext *vec_ext = reinterpret_cast<struct vec_ext *>(charPtr); |
2565 | |
2566 | _LIBUNWIND_TRACE_UNWINDING("vr_saved=%d", vec_ext->vr_saved); |
2567 | |
2568 | // Restore vector register(s) if saved on the stack. |
2569 | if (vec_ext->vr_saved) { |
2570 | // Saved vector registers are 16-byte aligned. |
2571 | if (reinterpret_cast<uintptr_t>(ptrToRegs) % 16) |
2572 | ptrToRegs -= reinterpret_cast<uintptr_t>(ptrToRegs) % 16; |
2573 | v128 *VecRegs = reinterpret_cast<v128 *>(ptrToRegs - vec_ext->vr_saved * |
2574 | sizeof(v128)); |
2575 | for (int i = 0; i < vec_ext->vr_saved; ++i) { |
2576 | newRegisters.setVectorRegister( |
2577 | 32 - vec_ext->vr_saved + i + unwPPCV0Index, VecRegs[i]); |
2578 | } |
2579 | } |
2580 | } |
2581 | if (TBTable->tb.saves_cr) { |
2582 | // Get the saved condition register. The condition register is only |
2583 | // a single word. |
2584 | newRegisters.setCR( |
2585 | *(reinterpret_cast<uint32_t *>(lastStack + sizeof(uintptr_t)))); |
2586 | } |
2587 | |
2588 | // Restore the SP. |
2589 | newRegisters.setSP(lastStack); |
2590 | |
2591 | // The first instruction after return. |
2592 | uint32_t firstInstruction = *(reinterpret_cast<uint32_t *>(returnAddress)); |
2593 | |
2594 | // Do we need to set the TOC register? |
2595 | _LIBUNWIND_TRACE_UNWINDING( |
2596 | "Current gpr2=%p", |
2597 | reinterpret_cast<void *>(newRegisters.getRegister(2))); |
2598 | if (firstInstruction == loadTOCRegInst) { |
2599 | _LIBUNWIND_TRACE_UNWINDING( |
2600 | "Set gpr2=%p from frame", |
2601 | reinterpret_cast<void *>(reinterpret_cast<pint_t *>(lastStack)[5])); |
2602 | newRegisters.setRegister(2, reinterpret_cast<pint_t *>(lastStack)[5]); |
2603 | } |
2604 | } |
2605 | _LIBUNWIND_TRACE_UNWINDING("lastStack=%p, returnAddress=%p, pc=%p\n", |
2606 | reinterpret_cast<void *>(lastStack), |
2607 | reinterpret_cast<void *>(returnAddress), |
2608 | reinterpret_cast<void *>(pc)); |
2609 | |
2610 | // The return address is the address after call site instruction, so |
2611 | // setting IP to that simulates a return. |
2612 | newRegisters.setIP(reinterpret_cast<uintptr_t>(returnAddress)); |
2613 | |
2614 | // Simulate the step by replacing the register set with the new ones. |
2615 | registers = newRegisters; |
2616 | |
2617 | // Check if the next frame is a signal frame. |
2618 | pint_t nextStack = *(reinterpret_cast<pint_t *>(registers.getSP())); |
2619 | |
2620 | // Return address is the address after call site instruction. |
2621 | pint_t nextReturnAddress = reinterpret_cast<pint_t *>(nextStack)[2]; |
2622 | |
2623 | if (nextReturnAddress > 0x01 && nextReturnAddress < 0x10000) { |
2624 | _LIBUNWIND_TRACE_UNWINDING("The next is a signal handler frame: " |
2625 | "nextStack=%p, next return address=%p\n", |
2626 | reinterpret_cast<void *>(nextStack), |
2627 | reinterpret_cast<void *>(nextReturnAddress)); |
2628 | isSignalFrame = true; |
2629 | } else { |
2630 | isSignalFrame = false; |
2631 | } |
2632 | return UNW_STEP_SUCCESS; |
2633 | } |
2634 | #endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
2635 | |
2636 | template <typename A, typename R> |
2637 | void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) { |
2638 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) || \ |
2639 | defined(_LIBUNWIND_CHECK_HAIKU_SIGRETURN) |
2640 | _isSigReturn = false; |
2641 | #endif |
2642 | |
2643 | pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
2644 | #if defined(_LIBUNWIND_ARM_EHABI) |
2645 | // Remove the thumb bit so the IP represents the actual instruction address. |
2646 | // This matches the behaviour of _Unwind_GetIP on arm. |
2647 | pc &= (pint_t)~0x1; |
2648 | #endif |
2649 | |
2650 | // Exit early if at the top of the stack. |
2651 | if (pc == 0) { |
2652 | _unwindInfoMissing = true; |
2653 | return; |
2654 | } |
2655 | |
2656 | // If the last line of a function is a "throw" the compiler sometimes |
2657 | // emits no instructions after the call to __cxa_throw. This means |
2658 | // the return address is actually the start of the next function. |
2659 | // To disambiguate this, back up the pc when we know it is a return |
2660 | // address. |
2661 | if (isReturnAddress) |
2662 | #if defined(_AIX) |
2663 | // PC needs to be a 4-byte aligned address to be able to look for a |
2664 | // word of 0 that indicates the start of the traceback table at the end |
2665 | // of a function on AIX. |
2666 | pc -= 4; |
2667 | #else |
2668 | --pc; |
2669 | #endif |
2670 | |
2671 | #if !(defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32)) && \ |
2672 | !defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
2673 | // In case of this is frame of signal handler, the IP saved in the signal |
2674 | // handler points to first non-executed instruction, while FDE/CIE expects IP |
2675 | // to be after the first non-executed instruction. |
2676 | if (_isSignalFrame) |
2677 | ++pc; |
2678 | #endif |
2679 | |
2680 | // Ask address space object to find unwind sections for this pc. |
2681 | UnwindInfoSections sects; |
2682 | if (_addressSpace.findUnwindSections(pc, sects)) { |
2683 | #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
2684 | // If there is a compact unwind encoding table, look there first. |
2685 | if (sects.compact_unwind_section != 0) { |
2686 | if (this->getInfoFromCompactEncodingSection(pc, sects)) { |
2687 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
2688 | // Found info in table, done unless encoding says to use dwarf. |
2689 | uint32_t dwarfOffset; |
2690 | if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) { |
2691 | if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) { |
2692 | // found info in dwarf, done |
2693 | return; |
2694 | } |
2695 | } |
2696 | #endif |
2697 | // If unwind table has entry, but entry says there is no unwind info, |
2698 | // record that we have no unwind info. |
2699 | if (_info.format == 0) |
2700 | _unwindInfoMissing = true; |
2701 | return; |
2702 | } |
2703 | } |
2704 | #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
2705 | |
2706 | #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
2707 | // If there is SEH unwind info, look there next. |
2708 | if (this->getInfoFromSEH(pc)) |
2709 | return; |
2710 | #endif |
2711 | |
2712 | #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
2713 | // If there is unwind info in the traceback table, look there next. |
2714 | if (this->getInfoFromTBTable(pc, _registers)) |
2715 | return; |
2716 | #endif |
2717 | |
2718 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
2719 | // If there is dwarf unwind info, look there next. |
2720 | if (sects.dwarf_section != 0) { |
2721 | if (this->getInfoFromDwarfSection(pc, sects)) { |
2722 | // found info in dwarf, done |
2723 | return; |
2724 | } |
2725 | } |
2726 | #endif |
2727 | |
2728 | #if defined(_LIBUNWIND_ARM_EHABI) |
2729 | // If there is ARM EHABI unwind info, look there next. |
2730 | if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects)) |
2731 | return; |
2732 | #endif |
2733 | } |
2734 | |
2735 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
2736 | // There is no static unwind info for this pc. Look to see if an FDE was |
2737 | // dynamically registered for it. |
2738 | pint_t cachedFDE = DwarfFDECache<A>::findFDE(DwarfFDECache<A>::kSearchAll, |
2739 | pc); |
2740 | if (cachedFDE != 0) { |
2741 | typename CFI_Parser<A>::FDE_Info fdeInfo; |
2742 | typename CFI_Parser<A>::CIE_Info cieInfo; |
2743 | if (!CFI_Parser<A>::decodeFDE(_addressSpace, cachedFDE, &fdeInfo, &cieInfo)) |
2744 | if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, dso_base: 0)) |
2745 | return; |
2746 | } |
2747 | |
2748 | // Lastly, ask AddressSpace object about platform specific ways to locate |
2749 | // other FDEs. |
2750 | pint_t fde; |
2751 | if (_addressSpace.findOtherFDE(pc, fde)) { |
2752 | typename CFI_Parser<A>::FDE_Info fdeInfo; |
2753 | typename CFI_Parser<A>::CIE_Info cieInfo; |
2754 | if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) { |
2755 | // Double check this FDE is for a function that includes the pc. |
2756 | if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) |
2757 | if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, dso_base: 0)) |
2758 | return; |
2759 | } |
2760 | } |
2761 | #endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
2762 | |
2763 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) || \ |
2764 | defined(_LIBUNWIND_CHECK_HAIKU_SIGRETURN) |
2765 | if (setInfoForSigReturn()) |
2766 | return; |
2767 | #endif |
2768 | |
2769 | // no unwind info, flag that we can't reliably unwind |
2770 | _unwindInfoMissing = true; |
2771 | } |
2772 | |
2773 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \ |
2774 | defined(_LIBUNWIND_TARGET_AARCH64) |
2775 | template <typename A, typename R> |
2776 | bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_arm64 &) { |
2777 | // Look for the sigreturn trampoline. The trampoline's body is two |
2778 | // specific instructions (see below). Typically the trampoline comes from the |
2779 | // vDSO[1] (i.e. the __kernel_rt_sigreturn function). A libc might provide its |
2780 | // own restorer function, though, or user-mode QEMU might write a trampoline |
2781 | // onto the stack. |
2782 | // |
2783 | // This special code path is a fallback that is only used if the trampoline |
2784 | // lacks proper (e.g. DWARF) unwind info. On AArch64, a new DWARF register |
2785 | // constant for the PC needs to be defined before DWARF can handle a signal |
2786 | // trampoline. This code may segfault if the target PC is unreadable, e.g.: |
2787 | // - The PC points at a function compiled without unwind info, and which is |
2788 | // part of an execute-only mapping (e.g. using -Wl,--execute-only). |
2789 | // - The PC is invalid and happens to point to unreadable or unmapped memory. |
2790 | // |
2791 | // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/vdso/sigreturn.S |
2792 | const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
2793 | // The PC might contain an invalid address if the unwind info is bad, so |
2794 | // directly accessing it could cause a SIGSEGV. |
2795 | if (!isReadableAddr(pc)) |
2796 | return false; |
2797 | auto *instructions = reinterpret_cast<const uint32_t *>(pc); |
2798 | // Look for instructions: mov x8, #0x8b; svc #0x0 |
2799 | if (instructions[0] != 0xd2801168 || instructions[1] != 0xd4000001) |
2800 | return false; |
2801 | |
2802 | _info = {}; |
2803 | _info.start_ip = pc; |
2804 | _info.end_ip = pc + 4; |
2805 | _isSigReturn = true; |
2806 | return true; |
2807 | } |
2808 | |
2809 | template <typename A, typename R> |
2810 | int UnwindCursor<A, R>::stepThroughSigReturn(Registers_arm64 &) { |
2811 | // In the signal trampoline frame, sp points to an rt_sigframe[1], which is: |
2812 | // - 128-byte siginfo struct |
2813 | // - ucontext struct: |
2814 | // - 8-byte long (uc_flags) |
2815 | // - 8-byte pointer (uc_link) |
2816 | // - 24-byte stack_t |
2817 | // - 128-byte signal set |
2818 | // - 8 bytes of padding because sigcontext has 16-byte alignment |
2819 | // - sigcontext/mcontext_t |
2820 | // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/signal.c |
2821 | const pint_t kOffsetSpToSigcontext = (128 + 8 + 8 + 24 + 128 + 8); // 304 |
2822 | |
2823 | // Offsets from sigcontext to each register. |
2824 | const pint_t kOffsetGprs = 8; // offset to "__u64 regs[31]" field |
2825 | const pint_t kOffsetSp = 256; // offset to "__u64 sp" field |
2826 | const pint_t kOffsetPc = 264; // offset to "__u64 pc" field |
2827 | |
2828 | pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext; |
2829 | |
2830 | for (int i = 0; i <= 30; ++i) { |
2831 | uint64_t value = _addressSpace.get64(sigctx + kOffsetGprs + |
2832 | static_cast<pint_t>(i * 8)); |
2833 | _registers.setRegister(UNW_AARCH64_X0 + i, value); |
2834 | } |
2835 | _registers.setSP(_addressSpace.get64(sigctx + kOffsetSp)); |
2836 | _registers.setIP(_addressSpace.get64(sigctx + kOffsetPc)); |
2837 | _isSignalFrame = true; |
2838 | return UNW_STEP_SUCCESS; |
2839 | } |
2840 | #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && |
2841 | // defined(_LIBUNWIND_TARGET_AARCH64) |
2842 | |
2843 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \ |
2844 | defined(_LIBUNWIND_TARGET_LOONGARCH) |
2845 | template <typename A, typename R> |
2846 | bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_loongarch &) { |
2847 | const pint_t pc = static_cast<pint_t>(getReg(UNW_REG_IP)); |
2848 | // The PC might contain an invalid address if the unwind info is bad, so |
2849 | // directly accessing it could cause a SIGSEGV. |
2850 | if (!isReadableAddr(pc)) |
2851 | return false; |
2852 | const auto *instructions = reinterpret_cast<const uint32_t *>(pc); |
2853 | // Look for the two instructions used in the sigreturn trampoline |
2854 | // __vdso_rt_sigreturn: |
2855 | // |
2856 | // 0x03822c0b li a7,0x8b |
2857 | // 0x002b0000 syscall 0 |
2858 | if (instructions[0] != 0x03822c0b || instructions[1] != 0x002b0000) |
2859 | return false; |
2860 | |
2861 | _info = {}; |
2862 | _info.start_ip = pc; |
2863 | _info.end_ip = pc + 4; |
2864 | _isSigReturn = true; |
2865 | return true; |
2866 | } |
2867 | |
2868 | template <typename A, typename R> |
2869 | int UnwindCursor<A, R>::stepThroughSigReturn(Registers_loongarch &) { |
2870 | // In the signal trampoline frame, sp points to an rt_sigframe[1], which is: |
2871 | // - 128-byte siginfo struct |
2872 | // - ucontext_t struct: |
2873 | // - 8-byte long (__uc_flags) |
2874 | // - 8-byte pointer (*uc_link) |
2875 | // - 24-byte uc_stack |
2876 | // - 8-byte uc_sigmask |
2877 | // - 120-byte of padding to allow sigset_t to be expanded in the future |
2878 | // - 8 bytes of padding because sigcontext has 16-byte alignment |
2879 | // - struct sigcontext uc_mcontext |
2880 | // [1] |
2881 | // https://github.com/torvalds/linux/blob/master/arch/loongarch/kernel/signal.c |
2882 | const pint_t kOffsetSpToSigcontext = 128 + 8 + 8 + 24 + 8 + 128; |
2883 | |
2884 | const pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext; |
2885 | _registers.setIP(_addressSpace.get64(sigctx)); |
2886 | for (int i = UNW_LOONGARCH_R1; i <= UNW_LOONGARCH_R31; ++i) { |
2887 | // skip R0 |
2888 | uint64_t value = |
2889 | _addressSpace.get64(sigctx + static_cast<pint_t>((i + 1) * 8)); |
2890 | _registers.setRegister(i, value); |
2891 | } |
2892 | _isSignalFrame = true; |
2893 | return UNW_STEP_SUCCESS; |
2894 | } |
2895 | #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && |
2896 | // defined(_LIBUNWIND_TARGET_LOONGARCH) |
2897 | |
2898 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \ |
2899 | defined(_LIBUNWIND_TARGET_RISCV) |
2900 | template <typename A, typename R> |
2901 | bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_riscv &) { |
2902 | const pint_t pc = static_cast<pint_t>(getReg(UNW_REG_IP)); |
2903 | // The PC might contain an invalid address if the unwind info is bad, so |
2904 | // directly accessing it could cause a SIGSEGV. |
2905 | if (!isReadableAddr(pc)) |
2906 | return false; |
2907 | const auto *instructions = reinterpret_cast<const uint32_t *>(pc); |
2908 | // Look for the two instructions used in the sigreturn trampoline |
2909 | // __vdso_rt_sigreturn: |
2910 | // |
2911 | // 0x08b00893 li a7,0x8b |
2912 | // 0x00000073 ecall |
2913 | if (instructions[0] != 0x08b00893 || instructions[1] != 0x00000073) |
2914 | return false; |
2915 | |
2916 | _info = {}; |
2917 | _info.start_ip = pc; |
2918 | _info.end_ip = pc + 4; |
2919 | _isSigReturn = true; |
2920 | return true; |
2921 | } |
2922 | |
2923 | template <typename A, typename R> |
2924 | int UnwindCursor<A, R>::stepThroughSigReturn(Registers_riscv &) { |
2925 | // In the signal trampoline frame, sp points to an rt_sigframe[1], which is: |
2926 | // - 128-byte siginfo struct |
2927 | // - ucontext_t struct: |
2928 | // - 8-byte long (__uc_flags) |
2929 | // - 8-byte pointer (*uc_link) |
2930 | // - 24-byte uc_stack |
2931 | // - 8-byte uc_sigmask |
2932 | // - 120-byte of padding to allow sigset_t to be expanded in the future |
2933 | // - 8 bytes of padding because sigcontext has 16-byte alignment |
2934 | // - struct sigcontext uc_mcontext |
2935 | // [1] |
2936 | // https://github.com/torvalds/linux/blob/master/arch/riscv/kernel/signal.c |
2937 | const pint_t kOffsetSpToSigcontext = 128 + 8 + 8 + 24 + 8 + 128; |
2938 | |
2939 | const pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext; |
2940 | _registers.setIP(_addressSpace.get64(sigctx)); |
2941 | for (int i = UNW_RISCV_X1; i <= UNW_RISCV_X31; ++i) { |
2942 | uint64_t value = _addressSpace.get64(sigctx + static_cast<pint_t>(i * 8)); |
2943 | _registers.setRegister(i, value); |
2944 | } |
2945 | _isSignalFrame = true; |
2946 | return UNW_STEP_SUCCESS; |
2947 | } |
2948 | #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && |
2949 | // defined(_LIBUNWIND_TARGET_RISCV) |
2950 | |
2951 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \ |
2952 | defined(_LIBUNWIND_TARGET_S390X) |
2953 | template <typename A, typename R> |
2954 | bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_s390x &) { |
2955 | // Look for the sigreturn trampoline. The trampoline's body is a |
2956 | // specific instruction (see below). Typically the trampoline comes from the |
2957 | // vDSO (i.e. the __kernel_[rt_]sigreturn function). A libc might provide its |
2958 | // own restorer function, though, or user-mode QEMU might write a trampoline |
2959 | // onto the stack. |
2960 | const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
2961 | // The PC might contain an invalid address if the unwind info is bad, so |
2962 | // directly accessing it could cause a SIGSEGV. |
2963 | if (!isReadableAddr(pc)) |
2964 | return false; |
2965 | const auto inst = *reinterpret_cast<const uint16_t *>(pc); |
2966 | if (inst == 0x0a77 || inst == 0x0aad) { |
2967 | _info = {}; |
2968 | _info.start_ip = pc; |
2969 | _info.end_ip = pc + 2; |
2970 | _isSigReturn = true; |
2971 | return true; |
2972 | } |
2973 | return false; |
2974 | } |
2975 | |
2976 | template <typename A, typename R> |
2977 | int UnwindCursor<A, R>::stepThroughSigReturn(Registers_s390x &) { |
2978 | // Determine current SP. |
2979 | const pint_t sp = static_cast<pint_t>(this->getReg(UNW_REG_SP)); |
2980 | // According to the s390x ABI, the CFA is at (incoming) SP + 160. |
2981 | const pint_t cfa = sp + 160; |
2982 | |
2983 | // Determine current PC and instruction there (this must be either |
2984 | // a "svc __NR_sigreturn" or "svc __NR_rt_sigreturn"). |
2985 | const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
2986 | const uint16_t inst = _addressSpace.get16(pc); |
2987 | |
2988 | // Find the addresses of the signo and sigcontext in the frame. |
2989 | pint_t pSigctx = 0; |
2990 | pint_t pSigno = 0; |
2991 | |
2992 | // "svc __NR_sigreturn" uses a non-RT signal trampoline frame. |
2993 | if (inst == 0x0a77) { |
2994 | // Layout of a non-RT signal trampoline frame, starting at the CFA: |
2995 | // - 8-byte signal mask |
2996 | // - 8-byte pointer to sigcontext, followed by signo |
2997 | // - 4-byte signo |
2998 | pSigctx = _addressSpace.get64(cfa + 8); |
2999 | pSigno = pSigctx + 344; |
3000 | } |
3001 | |
3002 | // "svc __NR_rt_sigreturn" uses a RT signal trampoline frame. |
3003 | if (inst == 0x0aad) { |
3004 | // Layout of a RT signal trampoline frame, starting at the CFA: |
3005 | // - 8-byte retcode (+ alignment) |
3006 | // - 128-byte siginfo struct (starts with signo) |
3007 | // - ucontext struct: |
3008 | // - 8-byte long (uc_flags) |
3009 | // - 8-byte pointer (uc_link) |
3010 | // - 24-byte stack_t |
3011 | // - 8 bytes of padding because sigcontext has 16-byte alignment |
3012 | // - sigcontext/mcontext_t |
3013 | pSigctx = cfa + 8 + 128 + 8 + 8 + 24 + 8; |
3014 | pSigno = cfa + 8; |
3015 | } |
3016 | |
3017 | assert(pSigctx != 0); |
3018 | assert(pSigno != 0); |
3019 | |
3020 | // Offsets from sigcontext to each register. |
3021 | const pint_t kOffsetPc = 8; |
3022 | const pint_t kOffsetGprs = 16; |
3023 | const pint_t kOffsetFprs = 216; |
3024 | |
3025 | // Restore all registers. |
3026 | for (int i = 0; i < 16; ++i) { |
3027 | uint64_t value = _addressSpace.get64(pSigctx + kOffsetGprs + |
3028 | static_cast<pint_t>(i * 8)); |
3029 | _registers.setRegister(UNW_S390X_R0 + i, value); |
3030 | } |
3031 | for (int i = 0; i < 16; ++i) { |
3032 | static const int fpr[16] = { |
3033 | UNW_S390X_F0, UNW_S390X_F1, UNW_S390X_F2, UNW_S390X_F3, |
3034 | UNW_S390X_F4, UNW_S390X_F5, UNW_S390X_F6, UNW_S390X_F7, |
3035 | UNW_S390X_F8, UNW_S390X_F9, UNW_S390X_F10, UNW_S390X_F11, |
3036 | UNW_S390X_F12, UNW_S390X_F13, UNW_S390X_F14, UNW_S390X_F15 |
3037 | }; |
3038 | double value = _addressSpace.getDouble(pSigctx + kOffsetFprs + |
3039 | static_cast<pint_t>(i * 8)); |
3040 | _registers.setFloatRegister(fpr[i], value); |
3041 | } |
3042 | _registers.setIP(_addressSpace.get64(pSigctx + kOffsetPc)); |
3043 | |
3044 | // SIGILL, SIGFPE and SIGTRAP are delivered with psw_addr |
3045 | // after the faulting instruction rather than before it. |
3046 | // Do not set _isSignalFrame in that case. |
3047 | uint32_t signo = _addressSpace.get32(pSigno); |
3048 | _isSignalFrame = (signo != 4 && signo != 5 && signo != 8); |
3049 | |
3050 | return UNW_STEP_SUCCESS; |
3051 | } |
3052 | #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && |
3053 | // defined(_LIBUNWIND_TARGET_S390X) |
3054 | |
3055 | #if defined(_LIBUNWIND_CHECK_HAIKU_SIGRETURN) |
3056 | template <typename A, typename R> |
3057 | bool UnwindCursor<A, R>::setInfoForSigReturn() { |
3058 | Dl_info dlinfo; |
3059 | const auto isSignalHandler = [&](pint_t addr) { |
3060 | if (!dladdr(reinterpret_cast<void *>(addr), &dlinfo)) |
3061 | return false; |
3062 | if (strcmp(dlinfo.dli_fname, "commpage")) |
3063 | return false; |
3064 | if (dlinfo.dli_sname == NULL || |
3065 | strcmp(dlinfo.dli_sname, "commpage_signal_handler")) |
3066 | return false; |
3067 | return true; |
3068 | }; |
3069 | |
3070 | pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
3071 | if (!isSignalHandler(pc)) |
3072 | return false; |
3073 | |
3074 | pint_t start = reinterpret_cast<pint_t>(dlinfo.dli_saddr); |
3075 | |
3076 | static size_t signalHandlerSize = 0; |
3077 | if (signalHandlerSize == 0) { |
3078 | size_t boundLow = 0; |
3079 | size_t boundHigh = static_cast<size_t>(-1); |
3080 | |
3081 | area_info areaInfo; |
3082 | if (get_area_info(area_for(dlinfo.dli_saddr), &areaInfo) == B_OK) |
3083 | boundHigh = areaInfo.size; |
3084 | |
3085 | while (boundLow < boundHigh) { |
3086 | size_t boundMid = boundLow + ((boundHigh - boundLow) / 2); |
3087 | pint_t test = start + boundMid; |
3088 | if (test >= start && isSignalHandler(test)) |
3089 | boundLow = boundMid + 1; |
3090 | else |
3091 | boundHigh = boundMid; |
3092 | } |
3093 | |
3094 | signalHandlerSize = boundHigh; |
3095 | } |
3096 | |
3097 | _info = {}; |
3098 | _info.start_ip = start; |
3099 | _info.end_ip = start + signalHandlerSize; |
3100 | _isSigReturn = true; |
3101 | |
3102 | return true; |
3103 | } |
3104 | |
3105 | template <typename A, typename R> |
3106 | int UnwindCursor<A, R>::stepThroughSigReturn() { |
3107 | _isSignalFrame = true; |
3108 | |
3109 | #if defined(_LIBUNWIND_TARGET_X86_64) |
3110 | // Layout of the stack before function call: |
3111 | // - signal_frame_data |
3112 | // + siginfo_t (public struct, fairly stable) |
3113 | // + ucontext_t (public struct, fairly stable) |
3114 | // - mcontext_t -> Offset 0x70, this is what we want. |
3115 | // - frame->ip (8 bytes) |
3116 | // - frame->bp (8 bytes). Not written by the kernel, |
3117 | // but the signal handler has a "push %rbp" instruction. |
3118 | pint_t bp = this->getReg(UNW_X86_64_RBP); |
3119 | vregs *regs = (vregs *)(bp + 0x70); |
3120 | |
3121 | _registers.setRegister(UNW_REG_IP, regs->rip); |
3122 | _registers.setRegister(UNW_REG_SP, regs->rsp); |
3123 | _registers.setRegister(UNW_X86_64_RAX, regs->rax); |
3124 | _registers.setRegister(UNW_X86_64_RDX, regs->rdx); |
3125 | _registers.setRegister(UNW_X86_64_RCX, regs->rcx); |
3126 | _registers.setRegister(UNW_X86_64_RBX, regs->rbx); |
3127 | _registers.setRegister(UNW_X86_64_RSI, regs->rsi); |
3128 | _registers.setRegister(UNW_X86_64_RDI, regs->rdi); |
3129 | _registers.setRegister(UNW_X86_64_RBP, regs->rbp); |
3130 | _registers.setRegister(UNW_X86_64_R8, regs->r8); |
3131 | _registers.setRegister(UNW_X86_64_R9, regs->r9); |
3132 | _registers.setRegister(UNW_X86_64_R10, regs->r10); |
3133 | _registers.setRegister(UNW_X86_64_R11, regs->r11); |
3134 | _registers.setRegister(UNW_X86_64_R12, regs->r12); |
3135 | _registers.setRegister(UNW_X86_64_R13, regs->r13); |
3136 | _registers.setRegister(UNW_X86_64_R14, regs->r14); |
3137 | _registers.setRegister(UNW_X86_64_R15, regs->r15); |
3138 | // TODO: XMM |
3139 | #endif // defined(_LIBUNWIND_TARGET_X86_64) |
3140 | |
3141 | return UNW_STEP_SUCCESS; |
3142 | } |
3143 | #endif // defined(_LIBUNWIND_CHECK_HAIKU_SIGRETURN) |
3144 | |
3145 | template <typename A, typename R> int UnwindCursor<A, R>::step(bool stage2) { |
3146 | (void)stage2; |
3147 | // Bottom of stack is defined is when unwind info cannot be found. |
3148 | if (_unwindInfoMissing) |
3149 | return UNW_STEP_END; |
3150 | |
3151 | // Use unwinding info to modify register set as if function returned. |
3152 | int result; |
3153 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) || \ |
3154 | defined(_LIBUNWIND_CHECK_HAIKU_SIGRETURN) |
3155 | if (_isSigReturn) { |
3156 | result = this->stepThroughSigReturn(); |
3157 | } else |
3158 | #endif |
3159 | { |
3160 | #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
3161 | result = this->stepWithCompactEncoding(stage2); |
3162 | #elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
3163 | result = this->stepWithSEHData(); |
3164 | #elif defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
3165 | result = this->stepWithTBTableData(); |
3166 | #elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
3167 | result = this->stepWithDwarfFDE(stage2); |
3168 | #elif defined(_LIBUNWIND_ARM_EHABI) |
3169 | result = this->stepWithEHABI(); |
3170 | #else |
3171 | #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \ |
3172 | _LIBUNWIND_SUPPORT_SEH_UNWIND or \ |
3173 | _LIBUNWIND_SUPPORT_DWARF_UNWIND or \ |
3174 | _LIBUNWIND_ARM_EHABI |
3175 | #endif |
3176 | } |
3177 | |
3178 | // update info based on new PC |
3179 | if (result == UNW_STEP_SUCCESS) { |
3180 | this->setInfoBasedOnIPRegister(true); |
3181 | if (_unwindInfoMissing) |
3182 | return UNW_STEP_END; |
3183 | } |
3184 | |
3185 | return result; |
3186 | } |
3187 | |
3188 | template <typename A, typename R> |
3189 | void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) { |
3190 | if (_unwindInfoMissing) |
3191 | memset(s: info, c: 0, n: sizeof(*info)); |
3192 | else |
3193 | *info = _info; |
3194 | } |
3195 | |
3196 | template <typename A, typename R> |
3197 | bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen, |
3198 | unw_word_t *offset) { |
3199 | return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP), |
3200 | buf, bufLen, offset); |
3201 | } |
3202 | |
3203 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) |
3204 | template <typename A, typename R> |
3205 | bool UnwindCursor<A, R>::isReadableAddr(const pint_t addr) const { |
3206 | // We use SYS_rt_sigprocmask, inspired by Abseil's AddressIsReadable. |
3207 | |
3208 | const auto sigsetAddr = reinterpret_cast<sigset_t *>(addr); |
3209 | // We have to check that addr is nullptr because sigprocmask allows that |
3210 | // as an argument without failure. |
3211 | if (!sigsetAddr) |
3212 | return false; |
3213 | const auto saveErrno = errno; |
3214 | // We MUST use a raw syscall here, as wrappers may try to access |
3215 | // sigsetAddr which may cause a SIGSEGV. A raw syscall however is |
3216 | // safe. Additionally, we need to pass the kernel_sigset_size, which is |
3217 | // different from libc sizeof(sigset_t). For the majority of architectures, |
3218 | // it's 64 bits (_NSIG), and libc NSIG is _NSIG + 1. |
3219 | const auto kernelSigsetSize = NSIG / 8; |
3220 | [[maybe_unused]] const int Result = syscall( |
3221 | SYS_rt_sigprocmask, /*how=*/~0, sigsetAddr, nullptr, kernelSigsetSize); |
3222 | // Because our "how" is invalid, this syscall should always fail, and our |
3223 | // errno should always be EINVAL or an EFAULT. This relies on the Linux |
3224 | // kernel to check copy_from_user before checking if the "how" argument is |
3225 | // invalid. |
3226 | assert(Result == -1); |
3227 | assert(errno == EFAULT || errno == EINVAL); |
3228 | const auto readable = errno != EFAULT; |
3229 | errno = saveErrno; |
3230 | return readable; |
3231 | } |
3232 | #endif |
3233 | |
3234 | #if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS) |
3235 | extern "C"void *__libunwind_shstk_get_registers(unw_cursor_t *cursor) { |
3236 | AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor; |
3237 | return co->get_registers(); |
3238 | } |
3239 | #endif |
3240 | } // namespace libunwind |
3241 | |
3242 | #endif // __UNWINDCURSOR_HPP__ |
3243 |
Definitions
- DwarfFDECache
- entry
- _buffer
- _bufferUsed
- _bufferEnd
- _initialBuffer
- _lock
- findFDE
- add
- removeAllIn
- iterateCacheEntries
- AbstractUnwindCursor
- operator delete
- ~AbstractUnwindCursor
- validReg
- getReg
- setReg
- validFloatReg
- getFloatReg
- setFloatReg
- step
- getInfo
- jumpto
- isSignalFrame
- getFunctionName
- setInfoBasedOnIPRegister
- getRegisterName
- UnwindCursor
- ~UnwindCursor
- operator new
- stepWithDwarfFDE
- dwarfEncoding
- UnwindCursor
- UnwindCursor
- validReg
- getReg
- setReg
- validFloatReg
- getFloatReg
- setFloatReg
- jumpto
- getRegisterName
- isSignalFrame
- getInfoFromFdeCie
- getInfoFromDwarfSection
- setInfoBasedOnIPRegister
- step
- getInfo
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more