1 | //===- ConcatOutputSection.cpp --------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ConcatOutputSection.h" |
10 | #include "Config.h" |
11 | #include "OutputSegment.h" |
12 | #include "SymbolTable.h" |
13 | #include "Symbols.h" |
14 | #include "SyntheticSections.h" |
15 | #include "Target.h" |
16 | #include "lld/Common/CommonLinkerContext.h" |
17 | #include "llvm/BinaryFormat/MachO.h" |
18 | #include "llvm/Support/ScopedPrinter.h" |
19 | #include "llvm/Support/TimeProfiler.h" |
20 | |
21 | using namespace llvm; |
22 | using namespace llvm::MachO; |
23 | using namespace lld; |
24 | using namespace lld::macho; |
25 | |
26 | MapVector<NamePair, ConcatOutputSection *> macho::concatOutputSections; |
27 | |
28 | void ConcatOutputSection::addInput(ConcatInputSection *input) { |
29 | assert(input->parent == this); |
30 | if (inputs.empty()) { |
31 | align = input->align; |
32 | flags = input->getFlags(); |
33 | } else { |
34 | align = std::max(a: align, b: input->align); |
35 | finalizeFlags(input); |
36 | } |
37 | inputs.push_back(x: input); |
38 | } |
39 | |
40 | // Branch-range extension can be implemented in two ways, either through ... |
41 | // |
42 | // (1) Branch islands: Single branch instructions (also of limited range), |
43 | // that might be chained in multiple hops to reach the desired |
44 | // destination. On ARM64, as 16 branch islands are needed to hop between |
45 | // opposite ends of a 2 GiB program. LD64 uses branch islands exclusively, |
46 | // even when it needs excessive hops. |
47 | // |
48 | // (2) Thunks: Instruction(s) to load the destination address into a scratch |
49 | // register, followed by a register-indirect branch. Thunks are |
50 | // constructed to reach any arbitrary address, so need not be |
51 | // chained. Although thunks need not be chained, a program might need |
52 | // multiple thunks to the same destination distributed throughout a large |
53 | // program so that all call sites can have one within range. |
54 | // |
55 | // The optimal approach is to mix islands for destinations within two hops, |
56 | // and use thunks for destinations at greater distance. For now, we only |
57 | // implement thunks. TODO: Adding support for branch islands! |
58 | // |
59 | // Internally -- as expressed in LLD's data structures -- a |
60 | // branch-range-extension thunk consists of: |
61 | // |
62 | // (1) new Defined symbol for the thunk named |
63 | // <FUNCTION>.thunk.<SEQUENCE>, which references ... |
64 | // (2) new InputSection, which contains ... |
65 | // (3.1) new data for the instructions to load & branch to the far address + |
66 | // (3.2) new Relocs on instructions to load the far address, which reference ... |
67 | // (4.1) existing Defined symbol for the real function in __text, or |
68 | // (4.2) existing DylibSymbol for the real function in a dylib |
69 | // |
70 | // Nearly-optimal thunk-placement algorithm features: |
71 | // |
72 | // * Single pass: O(n) on the number of call sites. |
73 | // |
74 | // * Accounts for the exact space overhead of thunks - no heuristics |
75 | // |
76 | // * Exploits the full range of call instructions - forward & backward |
77 | // |
78 | // Data: |
79 | // |
80 | // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol |
81 | // to its thunk bookkeeper. |
82 | // |
83 | // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and |
84 | // distant call sites might be unable to reach the same thunk, so multiple |
85 | // thunks are necessary to serve all call sites in a very large program. A |
86 | // thunkInfo stores state for all thunks associated with a particular |
87 | // function: |
88 | // (a) thunk symbol |
89 | // (b) input section containing stub code, and |
90 | // (c) sequence number for the active thunk incarnation. |
91 | // When an old thunk goes out of range, we increment the sequence number and |
92 | // create a new thunk named <FUNCTION>.thunk.<SEQUENCE>. |
93 | // |
94 | // * A thunk consists of |
95 | // (a) a Defined symbol pointing to |
96 | // (b) an InputSection holding machine code (similar to a MachO stub), and |
97 | // (c) relocs referencing the real function for fixing up the stub code. |
98 | // |
99 | // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel |
100 | // to the inputs vector. We store new thunks via cheap vector append, rather |
101 | // than costly insertion into the inputs vector. |
102 | // |
103 | // Control Flow: |
104 | // |
105 | // * During address assignment, MergedInputSection::finalize() examines call |
106 | // sites by ascending address and creates thunks. When a function is beyond |
107 | // the range of a call site, we need a thunk. Place it at the largest |
108 | // available forward address from the call site. Call sites increase |
109 | // monotonically and thunks are always placed as far forward as possible; |
110 | // thus, we place thunks at monotonically increasing addresses. Once a thunk |
111 | // is placed, it and all previous input-section addresses are final. |
112 | // |
113 | // * ConcatInputSection::finalize() and ConcatInputSection::writeTo() merge |
114 | // the inputs and thunks vectors (both ordered by ascending address), which |
115 | // is simple and cheap. |
116 | |
117 | DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap; |
118 | |
119 | // Determine whether we need thunks, which depends on the target arch -- RISC |
120 | // (i.e., ARM) generally does because it has limited-range branch/call |
121 | // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs |
122 | // thunks for programs so large that branch source & destination addresses |
123 | // might differ more than the range of branch instruction(s). |
124 | bool TextOutputSection::needsThunks() const { |
125 | if (!target->usesThunks()) |
126 | return false; |
127 | uint64_t isecAddr = addr; |
128 | for (ConcatInputSection *isec : inputs) |
129 | isecAddr = alignToPowerOf2(Value: isecAddr, Align: isec->align) + isec->getSize(); |
130 | if (isecAddr - addr + in.stubs->getSize() <= |
131 | std::min(a: target->backwardBranchRange, b: target->forwardBranchRange)) |
132 | return false; |
133 | // Yes, this program is large enough to need thunks. |
134 | for (ConcatInputSection *isec : inputs) { |
135 | for (Reloc &r : isec->relocs) { |
136 | if (!target->hasAttr(type: r.type, bit: RelocAttrBits::BRANCH)) |
137 | continue; |
138 | auto *sym = r.referent.get<Symbol *>(); |
139 | // Pre-populate the thunkMap and memoize call site counts for every |
140 | // InputSection and ThunkInfo. We do this for the benefit of |
141 | // estimateStubsInRangeVA(). |
142 | ThunkInfo &thunkInfo = thunkMap[sym]; |
143 | // Knowing ThunkInfo call site count will help us know whether or not we |
144 | // might need to create more for this referent at the time we are |
145 | // estimating distance to __stubs in estimateStubsInRangeVA(). |
146 | ++thunkInfo.callSiteCount; |
147 | // We can avoid work on InputSections that have no BRANCH relocs. |
148 | isec->hasCallSites = true; |
149 | } |
150 | } |
151 | return true; |
152 | } |
153 | |
154 | // Since __stubs is placed after __text, we must estimate the address |
155 | // beyond which stubs are within range of a simple forward branch. |
156 | // This is called exactly once, when the last input section has been finalized. |
157 | uint64_t TextOutputSection::estimateStubsInRangeVA(size_t callIdx) const { |
158 | // Tally the functions which still have call sites remaining to process, |
159 | // which yields the maximum number of thunks we might yet place. |
160 | size_t maxPotentialThunks = 0; |
161 | for (auto &tp : thunkMap) { |
162 | ThunkInfo &ti = tp.second; |
163 | // This overcounts: Only sections that are in forward jump range from the |
164 | // currently-active section get finalized, and all input sections are |
165 | // finalized when estimateStubsInRangeVA() is called. So only backward |
166 | // jumps will need thunks, but we count all jumps. |
167 | if (ti.callSitesUsed < ti.callSiteCount) |
168 | maxPotentialThunks += 1; |
169 | } |
170 | // Tally the total size of input sections remaining to process. |
171 | uint64_t isecVA = inputs[callIdx]->getVA(); |
172 | uint64_t isecEnd = isecVA; |
173 | for (size_t i = callIdx; i < inputs.size(); i++) { |
174 | InputSection *isec = inputs[i]; |
175 | isecEnd = alignToPowerOf2(Value: isecEnd, Align: isec->align) + isec->getSize(); |
176 | } |
177 | // Estimate the address after which call sites can safely call stubs |
178 | // directly rather than through intermediary thunks. |
179 | uint64_t forwardBranchRange = target->forwardBranchRange; |
180 | assert(isecEnd > forwardBranchRange && |
181 | "should not run thunk insertion if all code fits in jump range" ); |
182 | assert(isecEnd - isecVA <= forwardBranchRange && |
183 | "should only finalize sections in jump range" ); |
184 | uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize + |
185 | in.stubs->getSize() - forwardBranchRange; |
186 | log(msg: "thunks = " + std::to_string(val: thunkMap.size()) + |
187 | ", potential = " + std::to_string(val: maxPotentialThunks) + |
188 | ", stubs = " + std::to_string(val: in.stubs->getSize()) + ", isecVA = " + |
189 | utohexstr(X: isecVA) + ", threshold = " + utohexstr(X: stubsInRangeVA) + |
190 | ", isecEnd = " + utohexstr(X: isecEnd) + |
191 | ", tail = " + utohexstr(X: isecEnd - isecVA) + |
192 | ", slop = " + utohexstr(X: forwardBranchRange - (isecEnd - isecVA))); |
193 | return stubsInRangeVA; |
194 | } |
195 | |
196 | void ConcatOutputSection::finalizeOne(ConcatInputSection *isec) { |
197 | size = alignToPowerOf2(Value: size, Align: isec->align); |
198 | fileSize = alignToPowerOf2(Value: fileSize, Align: isec->align); |
199 | isec->outSecOff = size; |
200 | isec->isFinal = true; |
201 | size += isec->getSize(); |
202 | fileSize += isec->getFileSize(); |
203 | } |
204 | |
205 | void ConcatOutputSection::finalizeContents() { |
206 | for (ConcatInputSection *isec : inputs) |
207 | finalizeOne(isec); |
208 | } |
209 | |
210 | void TextOutputSection::finalize() { |
211 | if (!needsThunks()) { |
212 | for (ConcatInputSection *isec : inputs) |
213 | finalizeOne(isec); |
214 | return; |
215 | } |
216 | |
217 | uint64_t forwardBranchRange = target->forwardBranchRange; |
218 | uint64_t backwardBranchRange = target->backwardBranchRange; |
219 | uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA; |
220 | size_t thunkSize = target->thunkSize; |
221 | size_t relocCount = 0; |
222 | size_t callSiteCount = 0; |
223 | size_t thunkCallCount = 0; |
224 | size_t thunkCount = 0; |
225 | |
226 | // Walk all sections in order. Finalize all sections that are less than |
227 | // forwardBranchRange in front of it. |
228 | // isecVA is the address of the current section. |
229 | // addr + size is the start address of the first non-finalized section. |
230 | |
231 | // inputs[finalIdx] is for finalization (address-assignment) |
232 | size_t finalIdx = 0; |
233 | // Kick-off by ensuring that the first input section has an address |
234 | for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx; |
235 | ++callIdx) { |
236 | if (finalIdx == callIdx) |
237 | finalizeOne(isec: inputs[finalIdx++]); |
238 | ConcatInputSection *isec = inputs[callIdx]; |
239 | assert(isec->isFinal); |
240 | uint64_t isecVA = isec->getVA(); |
241 | |
242 | // Assign addresses up-to the forward branch-range limit. |
243 | // Every call instruction needs a small number of bytes (on Arm64: 4), |
244 | // and each inserted thunk needs a slightly larger number of bytes |
245 | // (on Arm64: 12). If a section starts with a branch instruction and |
246 | // contains several branch instructions in succession, then the distance |
247 | // from the current position to the position where the thunks are inserted |
248 | // grows. So leave room for a bunch of thunks. |
249 | unsigned slop = 256 * thunkSize; |
250 | while (finalIdx < endIdx) { |
251 | uint64_t expectedNewSize = |
252 | alignToPowerOf2(Value: addr + size, Align: inputs[finalIdx]->align) + |
253 | inputs[finalIdx]->getSize(); |
254 | if (expectedNewSize >= isecVA + forwardBranchRange - slop) |
255 | break; |
256 | finalizeOne(isec: inputs[finalIdx++]); |
257 | } |
258 | |
259 | if (!isec->hasCallSites) |
260 | continue; |
261 | |
262 | if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) { |
263 | // When we have finalized all input sections, __stubs (destined |
264 | // to follow __text) comes within range of forward branches and |
265 | // we can estimate the threshold address after which we can |
266 | // reach any stub with a forward branch. Note that although it |
267 | // sits in the middle of a loop, this code executes only once. |
268 | // It is in the loop because we need to call it at the proper |
269 | // time: the earliest call site from which the end of __text |
270 | // (and start of __stubs) comes within range of a forward branch. |
271 | stubsInRangeVA = estimateStubsInRangeVA(callIdx); |
272 | } |
273 | // Process relocs by ascending address, i.e., ascending offset within isec |
274 | std::vector<Reloc> &relocs = isec->relocs; |
275 | // FIXME: This property does not hold for object files produced by ld64's |
276 | // `-r` mode. |
277 | assert(is_sorted(relocs, |
278 | [](Reloc &a, Reloc &b) { return a.offset > b.offset; })); |
279 | for (Reloc &r : reverse(C&: relocs)) { |
280 | ++relocCount; |
281 | if (!target->hasAttr(type: r.type, bit: RelocAttrBits::BRANCH)) |
282 | continue; |
283 | ++callSiteCount; |
284 | // Calculate branch reachability boundaries |
285 | uint64_t callVA = isecVA + r.offset; |
286 | uint64_t lowVA = |
287 | backwardBranchRange < callVA ? callVA - backwardBranchRange : 0; |
288 | uint64_t highVA = callVA + forwardBranchRange; |
289 | // Calculate our call referent address |
290 | auto *funcSym = r.referent.get<Symbol *>(); |
291 | ThunkInfo &thunkInfo = thunkMap[funcSym]; |
292 | // The referent is not reachable, so we need to use a thunk ... |
293 | if (funcSym->isInStubs() && callVA >= stubsInRangeVA) { |
294 | assert(callVA != TargetInfo::outOfRangeVA); |
295 | // ... Oh, wait! We are close enough to the end that __stubs |
296 | // are now within range of a simple forward branch. |
297 | continue; |
298 | } |
299 | uint64_t funcVA = funcSym->resolveBranchVA(); |
300 | ++thunkInfo.callSitesUsed; |
301 | if (lowVA <= funcVA && funcVA <= highVA) { |
302 | // The referent is reachable with a simple call instruction. |
303 | continue; |
304 | } |
305 | ++thunkInfo.thunkCallCount; |
306 | ++thunkCallCount; |
307 | // If an existing thunk is reachable, use it ... |
308 | if (thunkInfo.sym) { |
309 | uint64_t thunkVA = thunkInfo.isec->getVA(); |
310 | if (lowVA <= thunkVA && thunkVA <= highVA) { |
311 | r.referent = thunkInfo.sym; |
312 | continue; |
313 | } |
314 | } |
315 | // ... otherwise, create a new thunk. |
316 | if (addr + size > highVA) { |
317 | // There were too many consecutive branch instructions for `slop` |
318 | // above. If you hit this: For the current algorithm, just bumping up |
319 | // slop above and trying again is probably simplest. (See also PR51578 |
320 | // comment 5). |
321 | fatal(msg: Twine(__FUNCTION__) + ": FIXME: thunk range overrun" ); |
322 | } |
323 | thunkInfo.isec = |
324 | makeSyntheticInputSection(segName: isec->getSegName(), sectName: isec->getName()); |
325 | thunkInfo.isec->parent = this; |
326 | assert(thunkInfo.isec->live); |
327 | |
328 | StringRef thunkName = saver().save(S: funcSym->getName() + ".thunk." + |
329 | std::to_string(val: thunkInfo.sequence++)); |
330 | if (!isa<Defined>(Val: funcSym) || cast<Defined>(Val: funcSym)->isExternal()) { |
331 | r.referent = thunkInfo.sym = symtab->addDefined( |
332 | name: thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, size: thunkSize, |
333 | /*isWeakDef=*/false, /*isPrivateExtern=*/true, |
334 | /*isReferencedDynamically=*/false, /*noDeadStrip=*/false, |
335 | /*isWeakDefCanBeHidden=*/false); |
336 | } else { |
337 | r.referent = thunkInfo.sym = make<Defined>( |
338 | args&: thunkName, /*file=*/args: nullptr, args&: thunkInfo.isec, /*value=*/args: 0, args&: thunkSize, |
339 | /*isWeakDef=*/args: false, /*isExternal=*/args: false, /*isPrivateExtern=*/args: true, |
340 | /*includeInSymtab=*/args: true, /*isReferencedDynamically=*/args: false, |
341 | /*noDeadStrip=*/args: false, /*isWeakDefCanBeHidden=*/args: false); |
342 | } |
343 | thunkInfo.sym->used = true; |
344 | target->populateThunk(thunk: thunkInfo.isec, funcSym); |
345 | finalizeOne(isec: thunkInfo.isec); |
346 | thunks.push_back(x: thunkInfo.isec); |
347 | ++thunkCount; |
348 | } |
349 | } |
350 | |
351 | log(msg: "thunks for " + parent->name + "," + name + |
352 | ": funcs = " + std::to_string(val: thunkMap.size()) + |
353 | ", relocs = " + std::to_string(val: relocCount) + |
354 | ", all calls = " + std::to_string(val: callSiteCount) + |
355 | ", thunk calls = " + std::to_string(val: thunkCallCount) + |
356 | ", thunks = " + std::to_string(val: thunkCount)); |
357 | } |
358 | |
359 | void ConcatOutputSection::writeTo(uint8_t *buf) const { |
360 | for (ConcatInputSection *isec : inputs) |
361 | isec->writeTo(buf: buf + isec->outSecOff); |
362 | } |
363 | |
364 | void TextOutputSection::writeTo(uint8_t *buf) const { |
365 | // Merge input sections from thunk & ordinary vectors |
366 | size_t i = 0, ie = inputs.size(); |
367 | size_t t = 0, te = thunks.size(); |
368 | while (i < ie || t < te) { |
369 | while (i < ie && (t == te || inputs[i]->empty() || |
370 | inputs[i]->outSecOff < thunks[t]->outSecOff)) { |
371 | inputs[i]->writeTo(buf: buf + inputs[i]->outSecOff); |
372 | ++i; |
373 | } |
374 | while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) { |
375 | thunks[t]->writeTo(buf: buf + thunks[t]->outSecOff); |
376 | ++t; |
377 | } |
378 | } |
379 | } |
380 | |
381 | void ConcatOutputSection::finalizeFlags(InputSection *input) { |
382 | switch (sectionType(flags: input->getFlags())) { |
383 | default /*type-unspec'ed*/: |
384 | // FIXME: Add additional logic here when supporting emitting obj files. |
385 | break; |
386 | case S_4BYTE_LITERALS: |
387 | case S_8BYTE_LITERALS: |
388 | case S_16BYTE_LITERALS: |
389 | case S_CSTRING_LITERALS: |
390 | case S_ZEROFILL: |
391 | case S_LAZY_SYMBOL_POINTERS: |
392 | case S_MOD_TERM_FUNC_POINTERS: |
393 | case S_THREAD_LOCAL_REGULAR: |
394 | case S_THREAD_LOCAL_ZEROFILL: |
395 | case S_THREAD_LOCAL_VARIABLES: |
396 | case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS: |
397 | case S_THREAD_LOCAL_VARIABLE_POINTERS: |
398 | case S_NON_LAZY_SYMBOL_POINTERS: |
399 | case S_SYMBOL_STUBS: |
400 | flags |= input->getFlags(); |
401 | break; |
402 | } |
403 | } |
404 | |
405 | ConcatOutputSection * |
406 | ConcatOutputSection::getOrCreateForInput(const InputSection *isec) { |
407 | NamePair names = maybeRenameSection(key: {isec->getSegName(), isec->getName()}); |
408 | ConcatOutputSection *&osec = concatOutputSections[names]; |
409 | if (!osec) { |
410 | if (isec->getSegName() == segment_names::text && |
411 | isec->getName() != section_names::gccExceptTab && |
412 | isec->getName() != section_names::ehFrame) |
413 | osec = make<TextOutputSection>(args&: names.second); |
414 | else |
415 | osec = make<ConcatOutputSection>(args&: names.second); |
416 | } |
417 | return osec; |
418 | } |
419 | |
420 | NamePair macho::maybeRenameSection(NamePair key) { |
421 | auto newNames = config->sectionRenameMap.find(Val: key); |
422 | if (newNames != config->sectionRenameMap.end()) |
423 | return newNames->second; |
424 | return key; |
425 | } |
426 | |