| 1 | //===-- heap_find.c ---------------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file compiles into a dylib and can be used on darwin to find data that |
| 10 | // is contained in active malloc blocks. To use this make the project, then |
| 11 | // load the shared library in a debug session while you are stopped: |
| 12 | // |
| 13 | // (lldb) process load /path/to/libheap.dylib |
| 14 | // |
| 15 | // Now you can use the "find_pointer_in_heap" and "find_cstring_in_heap" |
| 16 | // functions in the expression parser. |
| 17 | // |
| 18 | // This will grep everything in all active allocation blocks and print and |
| 19 | // malloc blocks that contain the pointer 0x112233000000: |
| 20 | // |
| 21 | // (lldb) expression find_pointer_in_heap (0x112233000000) |
| 22 | // |
| 23 | // This will grep everything in all active allocation blocks and print and |
| 24 | // malloc blocks that contain the C string "hello" (as a substring, no |
| 25 | // NULL termination included): |
| 26 | // |
| 27 | // (lldb) expression find_cstring_in_heap ("hello") |
| 28 | // |
| 29 | // The results will be printed to the STDOUT of the inferior program. The |
| 30 | // return value of the "find_pointer_in_heap" function is the number of |
| 31 | // pointer references that were found. A quick example shows |
| 32 | // |
| 33 | // (lldb) expr find_pointer_in_heap(0x0000000104000410) |
| 34 | // (uint32_t) $5 = 0x00000002 |
| 35 | // 0x104000740: 0x0000000104000410 found in malloc block 0x104000730 + 16 |
| 36 | // (malloc_size = 48) |
| 37 | // 0x100820060: 0x0000000104000410 found in malloc block 0x100820000 + 96 |
| 38 | // (malloc_size = 4096) |
| 39 | // |
| 40 | // From the above output we see that 0x104000410 was found in the malloc block |
| 41 | // at 0x104000730 and 0x100820000. If we want to see what these blocks are, we |
| 42 | // can display the memory for this block using the "address" ("A" for short) |
| 43 | // format. The address format shows pointers, and if those pointers point to |
| 44 | // objects that have symbols or know data contents, it will display information |
| 45 | // about the pointers: |
| 46 | // |
| 47 | // (lldb) memory read --format address --count 1 0x104000730 |
| 48 | // 0x104000730: 0x0000000100002460 (void *)0x0000000100002488: MyString |
| 49 | // |
| 50 | // We can see that the first block is a "MyString" object that contains our |
| 51 | // pointer value at offset 16. |
| 52 | // |
| 53 | // Looking at the next pointers, are a bit more tricky: |
| 54 | // (lldb) memory read -fA 0x100820000 -c1 |
| 55 | // 0x100820000: 0x4f545541a1a1a1a1 |
| 56 | // (lldb) memory read 0x100820000 |
| 57 | // 0x100820000: a1 a1 a1 a1 41 55 54 4f 52 45 4c 45 41 53 45 21 ....AUTORELEASE! |
| 58 | // 0x100820010: 78 00 82 00 01 00 00 00 60 f9 e8 75 ff 7f 00 00 x.......`..u.... |
| 59 | // |
| 60 | // This is an objective C auto release pool object that contains our pointer. |
| 61 | // C++ classes will show up if they are virtual as something like: |
| 62 | // (lldb) memory read --format address --count 1 0x104008000 |
| 63 | // 0x104008000: 0x109008000 vtable for lldb_private::Process |
| 64 | // |
| 65 | // This is a clue that the 0x104008000 is a "lldb_private::Process *". |
| 66 | //===----------------------------------------------------------------------===// |
| 67 | // C includes |
| 68 | #include <assert.h> |
| 69 | #include <ctype.h> |
| 70 | #include <dlfcn.h> |
| 71 | #include <mach/mach.h> |
| 72 | #include <mach/mach_vm.h> |
| 73 | #include <malloc/malloc.h> |
| 74 | #include <objc/objc-runtime.h> |
| 75 | #include <stdio.h> |
| 76 | #include <stdlib.h> |
| 77 | #include <unistd.h> |
| 78 | |
| 79 | // C++ includes |
| 80 | #include <vector> |
| 81 | |
| 82 | // Redefine private types from "/usr/local/include/stack_logging.h" |
| 83 | typedef struct { |
| 84 | uint32_t type_flags; |
| 85 | uint64_t stack_identifier; |
| 86 | uint64_t argument; |
| 87 | mach_vm_address_t address; |
| 88 | } mach_stack_logging_record_t; |
| 89 | |
| 90 | // Redefine private defines from "/usr/local/include/stack_logging.h" |
| 91 | #define stack_logging_type_free 0 |
| 92 | #define stack_logging_type_generic 1 |
| 93 | #define stack_logging_type_alloc 2 |
| 94 | #define stack_logging_type_dealloc 4 |
| 95 | // This bit is made up by this code |
| 96 | #define stack_logging_type_vm_region 8 |
| 97 | |
| 98 | // Redefine private function prototypes from |
| 99 | // "/usr/local/include/stack_logging.h" |
| 100 | extern "C" kern_return_t __mach_stack_logging_set_file_path(task_t task, |
| 101 | char *file_path); |
| 102 | |
| 103 | extern "C" kern_return_t |
| 104 | __mach_stack_logging_get_frames(task_t task, mach_vm_address_t address, |
| 105 | mach_vm_address_t *stack_frames_buffer, |
| 106 | uint32_t max_stack_frames, uint32_t *count); |
| 107 | |
| 108 | extern "C" kern_return_t __mach_stack_logging_enumerate_records( |
| 109 | task_t task, mach_vm_address_t address, |
| 110 | void enumerator(mach_stack_logging_record_t, void *), void *context); |
| 111 | |
| 112 | extern "C" kern_return_t __mach_stack_logging_frames_for_uniqued_stack( |
| 113 | task_t task, uint64_t stack_identifier, |
| 114 | mach_vm_address_t *stack_frames_buffer, uint32_t max_stack_frames, |
| 115 | uint32_t *count); |
| 116 | |
| 117 | extern "C" void *gdb_class_getClass(void *objc_class); |
| 118 | |
| 119 | static void range_info_callback(task_t task, void *baton, unsigned type, |
| 120 | uint64_t ptr_addr, uint64_t ptr_size); |
| 121 | |
| 122 | // Redefine private global variables prototypes from |
| 123 | // "/usr/local/include/stack_logging.h" |
| 124 | |
| 125 | extern "C" int stack_logging_enable_logging; |
| 126 | |
| 127 | // Local defines |
| 128 | #define MAX_FRAMES 1024 |
| 129 | |
| 130 | // Local Typedefs and Types |
| 131 | typedef void range_callback_t(task_t task, void *baton, unsigned type, |
| 132 | uint64_t ptr_addr, uint64_t ptr_size); |
| 133 | typedef void zone_callback_t(void *info, const malloc_zone_t *zone); |
| 134 | typedef int (*comare_function_t)(const void *, const void *); |
| 135 | struct range_callback_info_t { |
| 136 | zone_callback_t *zone_callback; |
| 137 | range_callback_t *range_callback; |
| 138 | void *baton; |
| 139 | int check_vm_regions; |
| 140 | }; |
| 141 | |
| 142 | enum data_type_t { |
| 143 | eDataTypeAddress, |
| 144 | eDataTypeContainsData, |
| 145 | eDataTypeObjC, |
| 146 | eDataTypeHeapInfo |
| 147 | }; |
| 148 | |
| 149 | struct aligned_data_t { |
| 150 | const uint8_t *buffer; |
| 151 | uint32_t size; |
| 152 | uint32_t align; |
| 153 | }; |
| 154 | |
| 155 | struct objc_data_t { |
| 156 | void *match_isa; // Set to NULL for all objective C objects |
| 157 | bool match_superclasses; |
| 158 | }; |
| 159 | |
| 160 | struct range_contains_data_callback_info_t { |
| 161 | data_type_t type; |
| 162 | const void *lookup_addr; |
| 163 | union { |
| 164 | uintptr_t addr; |
| 165 | aligned_data_t data; |
| 166 | objc_data_t objc; |
| 167 | }; |
| 168 | uint32_t match_count; |
| 169 | bool done; |
| 170 | bool unique; |
| 171 | }; |
| 172 | |
| 173 | struct malloc_match { |
| 174 | void *addr; |
| 175 | intptr_t size; |
| 176 | intptr_t offset; |
| 177 | uintptr_t type; |
| 178 | }; |
| 179 | |
| 180 | struct malloc_stack_entry { |
| 181 | const void *address; |
| 182 | uint64_t argument; |
| 183 | uint32_t type_flags; |
| 184 | uint32_t num_frames; |
| 185 | mach_vm_address_t frames[MAX_FRAMES]; |
| 186 | }; |
| 187 | |
| 188 | struct malloc_block_contents { |
| 189 | union { |
| 190 | Class isa; |
| 191 | void *pointers[2]; |
| 192 | }; |
| 193 | }; |
| 194 | |
| 195 | static int compare_void_ptr(const void *a, const void *b) { |
| 196 | Class a_ptr = *(Class *)a; |
| 197 | Class b_ptr = *(Class *)b; |
| 198 | if (a_ptr < b_ptr) |
| 199 | return -1; |
| 200 | if (a_ptr > b_ptr) |
| 201 | return +1; |
| 202 | return 0; |
| 203 | } |
| 204 | |
| 205 | class MatchResults { |
| 206 | enum { k_max_entries = 8 * 1024 }; |
| 207 | |
| 208 | public: |
| 209 | MatchResults() : m_size(0) {} |
| 210 | |
| 211 | void clear() { |
| 212 | m_size = 0; |
| 213 | bzero(&m_entries, sizeof(m_entries)); |
| 214 | } |
| 215 | |
| 216 | bool empty() const { return m_size == 0; } |
| 217 | |
| 218 | void push_back(const malloc_match &m, bool unique = false) { |
| 219 | if (unique) { |
| 220 | // Don't add the entry if there is already a match for this address |
| 221 | for (uint32_t i = 0; i < m_size; ++i) { |
| 222 | if (((uint8_t *)m_entries[i].addr + m_entries[i].offset) == |
| 223 | ((uint8_t *)m.addr + m.offset)) |
| 224 | return; // Duplicate entry |
| 225 | } |
| 226 | } |
| 227 | if (m_size < k_max_entries - 1) { |
| 228 | m_entries[m_size] = m; |
| 229 | m_size++; |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | malloc_match *data() { |
| 234 | // If empty, return NULL |
| 235 | if (empty()) |
| 236 | return NULL; |
| 237 | // In not empty, terminate and return the result |
| 238 | malloc_match terminator_entry = {NULL, .size: 0, .offset: 0, .type: 0}; |
| 239 | // We always leave room for an empty entry at the end |
| 240 | m_entries[m_size] = terminator_entry; |
| 241 | return m_entries; |
| 242 | } |
| 243 | |
| 244 | protected: |
| 245 | malloc_match m_entries[k_max_entries]; |
| 246 | uint32_t m_size; |
| 247 | }; |
| 248 | |
| 249 | class MallocStackLoggingEntries { |
| 250 | enum { k_max_entries = 128 }; |
| 251 | |
| 252 | public: |
| 253 | MallocStackLoggingEntries() : m_size(0) {} |
| 254 | |
| 255 | void clear() { m_size = 0; } |
| 256 | |
| 257 | bool empty() const { return m_size == 0; } |
| 258 | |
| 259 | malloc_stack_entry *next() { |
| 260 | if (m_size < k_max_entries - 1) { |
| 261 | malloc_stack_entry *result = m_entries + m_size; |
| 262 | ++m_size; |
| 263 | return result; |
| 264 | } |
| 265 | return NULL; // Out of entries... |
| 266 | } |
| 267 | |
| 268 | malloc_stack_entry *data() { |
| 269 | // If empty, return NULL |
| 270 | if (empty()) |
| 271 | return NULL; |
| 272 | // In not empty, terminate and return the result |
| 273 | m_entries[m_size].address = NULL; |
| 274 | m_entries[m_size].argument = 0; |
| 275 | m_entries[m_size].type_flags = 0; |
| 276 | m_entries[m_size].num_frames = 0; |
| 277 | return m_entries; |
| 278 | } |
| 279 | |
| 280 | protected: |
| 281 | malloc_stack_entry m_entries[k_max_entries]; |
| 282 | uint32_t m_size; |
| 283 | }; |
| 284 | |
| 285 | // A safe way to allocate memory and keep it from interfering with the |
| 286 | // malloc enumerators. |
| 287 | void *safe_malloc(size_t n_bytes) { |
| 288 | if (n_bytes > 0) { |
| 289 | const int k_page_size = getpagesize(); |
| 290 | const mach_vm_size_t vm_size = |
| 291 | ((n_bytes + k_page_size - 1) / k_page_size) * k_page_size; |
| 292 | vm_address_t address = 0; |
| 293 | kern_return_t kerr = vm_allocate(mach_task_self(), &address, vm_size, true); |
| 294 | if (kerr == KERN_SUCCESS) |
| 295 | return (void *)address; |
| 296 | } |
| 297 | return NULL; |
| 298 | } |
| 299 | |
| 300 | // ObjCClasses |
| 301 | class ObjCClasses { |
| 302 | public: |
| 303 | ObjCClasses() : m_objc_class_ptrs(NULL), m_size(0) {} |
| 304 | |
| 305 | bool Update() { |
| 306 | // TODO: find out if class list has changed and update if needed |
| 307 | if (m_objc_class_ptrs == NULL) { |
| 308 | m_size = objc_getClassList(NULL, 0); |
| 309 | if (m_size > 0) { |
| 310 | // Allocate the class pointers |
| 311 | m_objc_class_ptrs = (Class *)safe_malloc(m_size * sizeof(Class)); |
| 312 | m_size = objc_getClassList(m_objc_class_ptrs, m_size); |
| 313 | // Sort Class pointers for quick lookup |
| 314 | ::qsort(m_objc_class_ptrs, m_size, sizeof(Class), compare_void_ptr); |
| 315 | } else |
| 316 | return false; |
| 317 | } |
| 318 | return true; |
| 319 | } |
| 320 | |
| 321 | uint32_t FindClassIndex(Class isa) { |
| 322 | Class *matching_class = (Class *)bsearch(&isa, m_objc_class_ptrs, m_size, |
| 323 | sizeof(Class), compare_void_ptr); |
| 324 | if (matching_class) { |
| 325 | uint32_t idx = matching_class - m_objc_class_ptrs; |
| 326 | return idx; |
| 327 | } |
| 328 | return UINT32_MAX; |
| 329 | } |
| 330 | |
| 331 | Class GetClassAtIndex(uint32_t idx) const { |
| 332 | if (idx < m_size) |
| 333 | return m_objc_class_ptrs[idx]; |
| 334 | return NULL; |
| 335 | } |
| 336 | uint32_t GetSize() const { return m_size; } |
| 337 | |
| 338 | private: |
| 339 | Class *m_objc_class_ptrs; |
| 340 | uint32_t m_size; |
| 341 | }; |
| 342 | |
| 343 | // Local global variables |
| 344 | MatchResults g_matches; |
| 345 | MallocStackLoggingEntries g_malloc_stack_history; |
| 346 | ObjCClasses g_objc_classes; |
| 347 | |
| 348 | // ObjCClassInfo |
| 349 | |
| 350 | enum HeapInfoSortType { eSortTypeNone, eSortTypeBytes, eSortTypeCount }; |
| 351 | |
| 352 | class ObjCClassInfo { |
| 353 | public: |
| 354 | ObjCClassInfo() : m_entries(NULL), m_size(0), m_sort_type(eSortTypeNone) {} |
| 355 | |
| 356 | void Update(const ObjCClasses &objc_classes) { |
| 357 | m_size = objc_classes.GetSize(); |
| 358 | m_entries = (Entry *)safe_malloc(m_size * sizeof(Entry)); |
| 359 | m_sort_type = eSortTypeNone; |
| 360 | Reset(); |
| 361 | } |
| 362 | |
| 363 | bool AddInstance(uint32_t idx, uint64_t ptr_size) { |
| 364 | if (m_size == 0) |
| 365 | Update(objc_classes: g_objc_classes); |
| 366 | // Update the totals for the classes |
| 367 | if (idx < m_size) { |
| 368 | m_entries[idx].bytes += ptr_size; |
| 369 | ++m_entries[idx].count; |
| 370 | return true; |
| 371 | } |
| 372 | return false; |
| 373 | } |
| 374 | |
| 375 | void Reset() { |
| 376 | m_sort_type = eSortTypeNone; |
| 377 | for (uint32_t i = 0; i < m_size; ++i) { |
| 378 | // In case we sort the entries after gathering the data, we will |
| 379 | // want to know the index into the m_objc_class_ptrs[] array. |
| 380 | m_entries[i].idx = i; |
| 381 | m_entries[i].bytes = 0; |
| 382 | m_entries[i].count = 0; |
| 383 | } |
| 384 | } |
| 385 | void SortByTotalBytes(const ObjCClasses &objc_classes, bool print) { |
| 386 | if (m_sort_type != eSortTypeBytes && m_size > 0) { |
| 387 | ::qsort(m_entries, m_size, sizeof(Entry), |
| 388 | (comare_function_t)compare_bytes); |
| 389 | m_sort_type = eSortTypeBytes; |
| 390 | } |
| 391 | if (print && m_size > 0) { |
| 392 | puts(s: "Objective-C objects by total bytes:" ); |
| 393 | puts(s: "Total Bytes Class Name" ); |
| 394 | puts(s: "----------- " |
| 395 | "-----------------------------------------------------------------" ); |
| 396 | for (uint32_t i = 0; i < m_size && m_entries[i].bytes > 0; ++i) { |
| 397 | printf("%11llu %s\n" , m_entries[i].bytes, |
| 398 | class_getName(objc_classes.GetClassAtIndex(m_entries[i].idx))); |
| 399 | } |
| 400 | } |
| 401 | } |
| 402 | void SortByTotalCount(const ObjCClasses &objc_classes, bool print) { |
| 403 | if (m_sort_type != eSortTypeCount && m_size > 0) { |
| 404 | ::qsort(m_entries, m_size, sizeof(Entry), |
| 405 | (comare_function_t)compare_count); |
| 406 | m_sort_type = eSortTypeCount; |
| 407 | } |
| 408 | if (print && m_size > 0) { |
| 409 | puts(s: "Objective-C objects by total count:" ); |
| 410 | puts(s: "Count Class Name" ); |
| 411 | puts(s: "-------- " |
| 412 | "-----------------------------------------------------------------" ); |
| 413 | for (uint32_t i = 0; i < m_size && m_entries[i].count > 0; ++i) { |
| 414 | printf("%8u %s\n" , m_entries[i].count, |
| 415 | class_getName(objc_classes.GetClassAtIndex(m_entries[i].idx))); |
| 416 | } |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | private: |
| 421 | struct Entry { |
| 422 | uint32_t idx; // Index into the m_objc_class_ptrs[] array |
| 423 | uint32_t count; // Number of object instances that were found |
| 424 | uint64_t bytes; // Total number of bytes for each objc class |
| 425 | }; |
| 426 | |
| 427 | static int compare_bytes(const Entry *a, const Entry *b) { |
| 428 | // Reverse the comparison to most bytes entries end up at top of list |
| 429 | if (a->bytes > b->bytes) |
| 430 | return -1; |
| 431 | if (a->bytes < b->bytes) |
| 432 | return +1; |
| 433 | return 0; |
| 434 | } |
| 435 | |
| 436 | static int compare_count(const Entry *a, const Entry *b) { |
| 437 | // Reverse the comparison to most count entries end up at top of list |
| 438 | if (a->count > b->count) |
| 439 | return -1; |
| 440 | if (a->count < b->count) |
| 441 | return +1; |
| 442 | return 0; |
| 443 | } |
| 444 | |
| 445 | Entry *m_entries; |
| 446 | uint32_t m_size; |
| 447 | HeapInfoSortType m_sort_type; |
| 448 | }; |
| 449 | |
| 450 | ObjCClassInfo g_objc_class_snapshot; |
| 451 | |
| 452 | // task_peek |
| 453 | // |
| 454 | // Reads memory from this tasks address space. This callback is needed |
| 455 | // by the code that iterates through all of the malloc blocks to read |
| 456 | // the memory in this process. |
| 457 | static kern_return_t task_peek(task_t task, vm_address_t remote_address, |
| 458 | vm_size_t size, void **local_memory) { |
| 459 | *local_memory = (void *)remote_address; |
| 460 | return KERN_SUCCESS; |
| 461 | } |
| 462 | |
| 463 | static const void foreach_zone_in_this_process(range_callback_info_t *info) { |
| 464 | if (info == NULL || info->zone_callback == NULL) |
| 465 | return; |
| 466 | |
| 467 | vm_address_t *zones = NULL; |
| 468 | unsigned int num_zones = 0; |
| 469 | |
| 470 | kern_return_t err = malloc_get_all_zones(0, task_peek, &zones, &num_zones); |
| 471 | if (KERN_SUCCESS == err) { |
| 472 | for (unsigned int i = 0; i < num_zones; ++i) { |
| 473 | info->zone_callback(info, (const malloc_zone_t *)zones[i]); |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | if (info->check_vm_regions) { |
| 478 | #if defined(VM_REGION_SUBMAP_SHORT_INFO_COUNT_64) |
| 479 | typedef vm_region_submap_short_info_data_64_t RegionInfo; |
| 480 | enum { kRegionInfoSize = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64 }; |
| 481 | #else |
| 482 | typedef vm_region_submap_info_data_64_t RegionInfo; |
| 483 | enum { kRegionInfoSize = VM_REGION_SUBMAP_INFO_COUNT_64 }; |
| 484 | #endif |
| 485 | task_t task = mach_task_self(); |
| 486 | mach_vm_address_t vm_region_base_addr; |
| 487 | mach_vm_size_t vm_region_size; |
| 488 | natural_t vm_region_depth; |
| 489 | RegionInfo vm_region_info; |
| 490 | |
| 491 | ((range_contains_data_callback_info_t *)info->baton)->unique = true; |
| 492 | |
| 493 | for (vm_region_base_addr = 0, vm_region_size = 1; vm_region_size != 0; |
| 494 | vm_region_base_addr += vm_region_size) { |
| 495 | mach_msg_type_number_t vm_region_info_size = kRegionInfoSize; |
| 496 | const kern_return_t err = mach_vm_region_recurse( |
| 497 | task, &vm_region_base_addr, &vm_region_size, &vm_region_depth, |
| 498 | (vm_region_recurse_info_t)&vm_region_info, &vm_region_info_size); |
| 499 | if (err) |
| 500 | break; |
| 501 | // Check all read + write regions. This will cover the thread stacks |
| 502 | // and any regions of memory that aren't covered by the heap |
| 503 | if (vm_region_info.protection & VM_PROT_WRITE && |
| 504 | vm_region_info.protection & VM_PROT_READ) { |
| 505 | // printf ("checking vm_region: [0x%16.16llx - 0x%16.16llx)\n", |
| 506 | // (uint64_t)vm_region_base_addr, (uint64_t)vm_region_base_addr + |
| 507 | // vm_region_size); |
| 508 | range_info_callback(task, info->baton, stack_logging_type_vm_region, |
| 509 | vm_region_base_addr, vm_region_size); |
| 510 | } |
| 511 | } |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | // dump_malloc_block_callback |
| 516 | // |
| 517 | // A simple callback that will dump each malloc block and all available |
| 518 | // info from the enumeration callback perspective. |
| 519 | static void dump_malloc_block_callback(task_t task, void *baton, unsigned type, |
| 520 | uint64_t ptr_addr, uint64_t ptr_size) { |
| 521 | printf("task = 0x%4.4x: baton = %p, type = %u, ptr_addr = 0x%llx + 0x%llu\n" , |
| 522 | task, baton, type, ptr_addr, ptr_size); |
| 523 | } |
| 524 | |
| 525 | static void ranges_callback(task_t task, void *baton, unsigned type, |
| 526 | vm_range_t *ptrs, unsigned count) { |
| 527 | range_callback_info_t *info = (range_callback_info_t *)baton; |
| 528 | while (count--) { |
| 529 | info->range_callback(task, info->baton, type, ptrs->address, ptrs->size); |
| 530 | ptrs++; |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | static void enumerate_range_in_zone(void *baton, const malloc_zone_t *zone) { |
| 535 | range_callback_info_t *info = (range_callback_info_t *)baton; |
| 536 | |
| 537 | if (zone && zone->introspect) |
| 538 | zone->introspect->enumerator( |
| 539 | mach_task_self(), info, MALLOC_PTR_IN_USE_RANGE_TYPE, |
| 540 | (vm_address_t)zone, task_peek, ranges_callback); |
| 541 | } |
| 542 | |
| 543 | static void range_info_callback(task_t task, void *baton, unsigned type, |
| 544 | uint64_t ptr_addr, uint64_t ptr_size) { |
| 545 | const uint64_t end_addr = ptr_addr + ptr_size; |
| 546 | |
| 547 | range_contains_data_callback_info_t *info = |
| 548 | (range_contains_data_callback_info_t *)baton; |
| 549 | switch (info->type) { |
| 550 | case eDataTypeAddress: |
| 551 | // Check if the current malloc block contains an address specified by |
| 552 | // "info->addr" |
| 553 | if (ptr_addr <= info->addr && info->addr < end_addr) { |
| 554 | ++info->match_count; |
| 555 | malloc_match match = {(void *)ptr_addr, ptr_size, info->addr - ptr_addr, |
| 556 | type}; |
| 557 | g_matches.push_back(m: match, unique: info->unique); |
| 558 | } |
| 559 | break; |
| 560 | |
| 561 | case eDataTypeContainsData: |
| 562 | // Check if the current malloc block contains data specified in "info->data" |
| 563 | { |
| 564 | const uint32_t size = info->data.size; |
| 565 | if (size < ptr_size) // Make sure this block can contain this data |
| 566 | { |
| 567 | uint8_t *ptr_data = NULL; |
| 568 | if (task_peek(task, ptr_addr, ptr_size, (void **)&ptr_data) == |
| 569 | KERN_SUCCESS) { |
| 570 | const void *buffer = info->data.buffer; |
| 571 | assert(ptr_data); |
| 572 | const uint32_t align = info->data.align; |
| 573 | for (uint64_t addr = ptr_addr; |
| 574 | addr < end_addr && ((end_addr - addr) >= size); |
| 575 | addr += align, ptr_data += align) { |
| 576 | if (memcmp(buffer, ptr_data, size) == 0) { |
| 577 | ++info->match_count; |
| 578 | malloc_match match = {(void *)ptr_addr, ptr_size, addr - ptr_addr, |
| 579 | type}; |
| 580 | g_matches.push_back(m: match, unique: info->unique); |
| 581 | } |
| 582 | } |
| 583 | } else { |
| 584 | printf("0x%llx: error: couldn't read %llu bytes\n" , ptr_addr, |
| 585 | ptr_size); |
| 586 | } |
| 587 | } |
| 588 | } |
| 589 | break; |
| 590 | |
| 591 | case eDataTypeObjC: |
| 592 | // Check if the current malloc block contains an objective C object |
| 593 | // of any sort where the first pointer in the object is an OBJC class |
| 594 | // pointer (an isa) |
| 595 | { |
| 596 | malloc_block_contents *block_contents = NULL; |
| 597 | if (task_peek(task, ptr_addr, sizeof(void *), (void **)&block_contents) == |
| 598 | KERN_SUCCESS) { |
| 599 | // We assume that g_objc_classes is up to date |
| 600 | // that the class list was verified to have some classes in it |
| 601 | // before calling this function |
| 602 | const uint32_t objc_class_idx = |
| 603 | g_objc_classes.FindClassIndex(block_contents->isa); |
| 604 | if (objc_class_idx != UINT32_MAX) { |
| 605 | bool match = false; |
| 606 | if (info->objc.match_isa == 0) { |
| 607 | // Match any objective C object |
| 608 | match = true; |
| 609 | } else { |
| 610 | // Only match exact isa values in the current class or |
| 611 | // optionally in the super classes |
| 612 | if (info->objc.match_isa == block_contents->isa) |
| 613 | match = true; |
| 614 | else if (info->objc.match_superclasses) { |
| 615 | Class super = class_getSuperclass(block_contents->isa); |
| 616 | while (super) { |
| 617 | match = super == info->objc.match_isa; |
| 618 | if (match) |
| 619 | break; |
| 620 | super = class_getSuperclass(super); |
| 621 | } |
| 622 | } |
| 623 | } |
| 624 | if (match) { |
| 625 | // printf (" success\n"); |
| 626 | ++info->match_count; |
| 627 | malloc_match match = {(void *)ptr_addr, ptr_size, 0, type}; |
| 628 | g_matches.push_back(m: match, unique: info->unique); |
| 629 | } else { |
| 630 | // printf (" error: wrong class: %s\n", dl_info.dli_sname); |
| 631 | } |
| 632 | } else { |
| 633 | // printf ("\terror: symbol not objc class: %s\n", dl_info.dli_sname); |
| 634 | return; |
| 635 | } |
| 636 | } |
| 637 | } |
| 638 | break; |
| 639 | |
| 640 | case eDataTypeHeapInfo: |
| 641 | // Check if the current malloc block contains an objective C object |
| 642 | // of any sort where the first pointer in the object is an OBJC class |
| 643 | // pointer (an isa) |
| 644 | { |
| 645 | malloc_block_contents *block_contents = NULL; |
| 646 | if (task_peek(task, ptr_addr, sizeof(void *), (void **)&block_contents) == |
| 647 | KERN_SUCCESS) { |
| 648 | // We assume that g_objc_classes is up to date |
| 649 | // that the class list was verified to have some classes in it |
| 650 | // before calling this function |
| 651 | const uint32_t objc_class_idx = |
| 652 | g_objc_classes.FindClassIndex(block_contents->isa); |
| 653 | if (objc_class_idx != UINT32_MAX) { |
| 654 | // This is an objective C object |
| 655 | g_objc_class_snapshot.AddInstance(objc_class_idx, ptr_size); |
| 656 | } else { |
| 657 | // Classify other heap info |
| 658 | } |
| 659 | } |
| 660 | } |
| 661 | break; |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | static void |
| 666 | get_stack_for_address_enumerator(mach_stack_logging_record_t stack_record, |
| 667 | void *task_ptr) { |
| 668 | malloc_stack_entry *stack_entry = g_malloc_stack_history.next(); |
| 669 | if (stack_entry) { |
| 670 | stack_entry->address = (void *)stack_record.address; |
| 671 | stack_entry->type_flags = stack_record.type_flags; |
| 672 | stack_entry->argument = stack_record.argument; |
| 673 | stack_entry->num_frames = 0; |
| 674 | stack_entry->frames[0] = 0; |
| 675 | kern_return_t err = __mach_stack_logging_frames_for_uniqued_stack( |
| 676 | *(task_t *)task_ptr, stack_record.stack_identifier, stack_entry->frames, |
| 677 | MAX_FRAMES, &stack_entry->num_frames); |
| 678 | // Terminate the frames with zero if there is room |
| 679 | if (stack_entry->num_frames < MAX_FRAMES) |
| 680 | stack_entry->frames[stack_entry->num_frames] = 0; |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | malloc_stack_entry *get_stack_history_for_address(const void *addr, |
| 685 | int history) { |
| 686 | if (!stack_logging_enable_logging) |
| 687 | return NULL; |
| 688 | g_malloc_stack_history.clear(); |
| 689 | kern_return_t err; |
| 690 | task_t task = mach_task_self(); |
| 691 | if (history) { |
| 692 | err = __mach_stack_logging_enumerate_records( |
| 693 | task, (mach_vm_address_t)addr, get_stack_for_address_enumerator, &task); |
| 694 | } else { |
| 695 | malloc_stack_entry *stack_entry = g_malloc_stack_history.next(); |
| 696 | if (stack_entry) { |
| 697 | stack_entry->address = addr; |
| 698 | stack_entry->type_flags = stack_logging_type_alloc; |
| 699 | stack_entry->argument = 0; |
| 700 | stack_entry->num_frames = 0; |
| 701 | stack_entry->frames[0] = 0; |
| 702 | err = __mach_stack_logging_get_frames(task, (mach_vm_address_t)addr, |
| 703 | stack_entry->frames, MAX_FRAMES, |
| 704 | &stack_entry->num_frames); |
| 705 | if (err == 0 && stack_entry->num_frames > 0) { |
| 706 | // Terminate the frames with zero if there is room |
| 707 | if (stack_entry->num_frames < MAX_FRAMES) |
| 708 | stack_entry->frames[stack_entry->num_frames] = 0; |
| 709 | } else { |
| 710 | g_malloc_stack_history.clear(); |
| 711 | } |
| 712 | } |
| 713 | } |
| 714 | // Return data if there is any |
| 715 | return g_malloc_stack_history.data(); |
| 716 | } |
| 717 | |
| 718 | // find_pointer_in_heap |
| 719 | // |
| 720 | // Finds a pointer value inside one or more currently valid malloc |
| 721 | // blocks. |
| 722 | malloc_match *find_pointer_in_heap(const void *addr, int check_vm_regions) { |
| 723 | g_matches.clear(); |
| 724 | // Setup "info" to look for a malloc block that contains data |
| 725 | // that is the pointer |
| 726 | if (addr) { |
| 727 | range_contains_data_callback_info_t data_info; |
| 728 | data_info.type = eDataTypeContainsData; // Check each block for data |
| 729 | data_info.data.buffer = |
| 730 | (uint8_t *)&addr; // What data? The pointer value passed in |
| 731 | data_info.data.size = |
| 732 | sizeof(addr); // How many bytes? The byte size of a pointer |
| 733 | data_info.data.align = sizeof(addr); // Align to a pointer byte size |
| 734 | data_info.match_count = 0; // Initialize the match count to zero |
| 735 | data_info.done = false; // Set done to false so searching doesn't stop |
| 736 | data_info.unique = false; // Set to true when iterating on the vm_regions |
| 737 | range_callback_info_t info = {enumerate_range_in_zone, range_info_callback, |
| 738 | &data_info, check_vm_regions}; |
| 739 | foreach_zone_in_this_process(info: &info); |
| 740 | } |
| 741 | return g_matches.data(); |
| 742 | } |
| 743 | |
| 744 | // find_pointer_in_memory |
| 745 | // |
| 746 | // Finds a pointer value inside one or more currently valid malloc |
| 747 | // blocks. |
| 748 | malloc_match *find_pointer_in_memory(uint64_t memory_addr, uint64_t memory_size, |
| 749 | const void *addr) { |
| 750 | g_matches.clear(); |
| 751 | // Setup "info" to look for a malloc block that contains data |
| 752 | // that is the pointer |
| 753 | range_contains_data_callback_info_t data_info; |
| 754 | data_info.type = eDataTypeContainsData; // Check each block for data |
| 755 | data_info.data.buffer = |
| 756 | (uint8_t *)&addr; // What data? The pointer value passed in |
| 757 | data_info.data.size = |
| 758 | sizeof(addr); // How many bytes? The byte size of a pointer |
| 759 | data_info.data.align = sizeof(addr); // Align to a pointer byte size |
| 760 | data_info.match_count = 0; // Initialize the match count to zero |
| 761 | data_info.done = false; // Set done to false so searching doesn't stop |
| 762 | data_info.unique = false; // Set to true when iterating on the vm_regions |
| 763 | range_info_callback(mach_task_self(), &data_info, stack_logging_type_generic, |
| 764 | memory_addr, memory_size); |
| 765 | return g_matches.data(); |
| 766 | } |
| 767 | |
| 768 | // find_objc_objects_in_memory |
| 769 | // |
| 770 | // Find all instances of ObjC classes 'c', or all ObjC classes if 'c' is |
| 771 | // NULL. If 'c' is non NULL, then also check objects to see if they |
| 772 | // inherit from 'c' |
| 773 | malloc_match *find_objc_objects_in_memory(void *isa, int check_vm_regions) { |
| 774 | g_matches.clear(); |
| 775 | if (g_objc_classes.Update()) { |
| 776 | // Setup "info" to look for a malloc block that contains data |
| 777 | // that is the pointer |
| 778 | range_contains_data_callback_info_t data_info; |
| 779 | data_info.type = eDataTypeObjC; // Check each block for data |
| 780 | data_info.objc.match_isa = isa; |
| 781 | data_info.objc.match_superclasses = true; |
| 782 | data_info.match_count = 0; // Initialize the match count to zero |
| 783 | data_info.done = false; // Set done to false so searching doesn't stop |
| 784 | data_info.unique = false; // Set to true when iterating on the vm_regions |
| 785 | range_callback_info_t info = {enumerate_range_in_zone, range_info_callback, |
| 786 | &data_info, check_vm_regions}; |
| 787 | foreach_zone_in_this_process(info: &info); |
| 788 | } |
| 789 | return g_matches.data(); |
| 790 | } |
| 791 | |
| 792 | // get_heap_info |
| 793 | // |
| 794 | // Gather information for all allocations on the heap and report |
| 795 | // statistics. |
| 796 | |
| 797 | void get_heap_info(int sort_type) { |
| 798 | if (g_objc_classes.Update()) { |
| 799 | // Reset all stats |
| 800 | g_objc_class_snapshot.Reset(); |
| 801 | // Setup "info" to look for a malloc block that contains data |
| 802 | // that is the pointer |
| 803 | range_contains_data_callback_info_t data_info; |
| 804 | data_info.type = eDataTypeHeapInfo; // Check each block for data |
| 805 | data_info.match_count = 0; // Initialize the match count to zero |
| 806 | data_info.done = false; // Set done to false so searching doesn't stop |
| 807 | data_info.unique = false; // Set to true when iterating on the vm_regions |
| 808 | const int check_vm_regions = false; |
| 809 | range_callback_info_t info = {enumerate_range_in_zone, range_info_callback, |
| 810 | &data_info, check_vm_regions}; |
| 811 | foreach_zone_in_this_process(info: &info); |
| 812 | |
| 813 | // Sort and print byte total bytes |
| 814 | switch (sort_type) { |
| 815 | case eSortTypeNone: |
| 816 | default: |
| 817 | case eSortTypeBytes: |
| 818 | g_objc_class_snapshot.SortByTotalBytes(objc_classes: g_objc_classes, print: true); |
| 819 | break; |
| 820 | |
| 821 | case eSortTypeCount: |
| 822 | g_objc_class_snapshot.SortByTotalCount(objc_classes: g_objc_classes, print: true); |
| 823 | break; |
| 824 | } |
| 825 | } else { |
| 826 | printf(format: "error: no objective C classes\n" ); |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | // find_cstring_in_heap |
| 831 | // |
| 832 | // Finds a C string inside one or more currently valid malloc blocks. |
| 833 | malloc_match *find_cstring_in_heap(const char *s, int check_vm_regions) { |
| 834 | g_matches.clear(); |
| 835 | if (s == NULL || s[0] == '\0') { |
| 836 | printf(format: "error: invalid argument (empty cstring)\n" ); |
| 837 | return NULL; |
| 838 | } |
| 839 | // Setup "info" to look for a malloc block that contains data |
| 840 | // that is the C string passed in aligned on a 1 byte boundary |
| 841 | range_contains_data_callback_info_t data_info; |
| 842 | data_info.type = eDataTypeContainsData; // Check each block for data |
| 843 | data_info.data.buffer = (uint8_t *)s; // What data? The C string passed in |
| 844 | data_info.data.size = strlen(s); // How many bytes? The length of the C string |
| 845 | data_info.data.align = |
| 846 | 1; // Data doesn't need to be aligned, so set the alignment to 1 |
| 847 | data_info.match_count = 0; // Initialize the match count to zero |
| 848 | data_info.done = false; // Set done to false so searching doesn't stop |
| 849 | data_info.unique = false; // Set to true when iterating on the vm_regions |
| 850 | range_callback_info_t info = {enumerate_range_in_zone, range_info_callback, |
| 851 | &data_info, check_vm_regions}; |
| 852 | foreach_zone_in_this_process(info: &info); |
| 853 | return g_matches.data(); |
| 854 | } |
| 855 | |
| 856 | // find_block_for_address |
| 857 | // |
| 858 | // Find the malloc block that whose address range contains "addr". |
| 859 | malloc_match *find_block_for_address(const void *addr, int check_vm_regions) { |
| 860 | g_matches.clear(); |
| 861 | // Setup "info" to look for a malloc block that contains data |
| 862 | // that is the C string passed in aligned on a 1 byte boundary |
| 863 | range_contains_data_callback_info_t data_info; |
| 864 | data_info.type = eDataTypeAddress; // Check each block to see if the block |
| 865 | // contains the address passed in |
| 866 | data_info.addr = (uintptr_t)addr; // What data? The C string passed in |
| 867 | data_info.match_count = 0; // Initialize the match count to zero |
| 868 | data_info.done = false; // Set done to false so searching doesn't stop |
| 869 | data_info.unique = false; // Set to true when iterating on the vm_regions |
| 870 | range_callback_info_t info = {enumerate_range_in_zone, range_info_callback, |
| 871 | &data_info, check_vm_regions}; |
| 872 | foreach_zone_in_this_process(info: &info); |
| 873 | return g_matches.data(); |
| 874 | } |
| 875 | |