1 | //===-- heap_find.c ---------------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file compiles into a dylib and can be used on darwin to find data that |
10 | // is contained in active malloc blocks. To use this make the project, then |
11 | // load the shared library in a debug session while you are stopped: |
12 | // |
13 | // (lldb) process load /path/to/libheap.dylib |
14 | // |
15 | // Now you can use the "find_pointer_in_heap" and "find_cstring_in_heap" |
16 | // functions in the expression parser. |
17 | // |
18 | // This will grep everything in all active allocation blocks and print and |
19 | // malloc blocks that contain the pointer 0x112233000000: |
20 | // |
21 | // (lldb) expression find_pointer_in_heap (0x112233000000) |
22 | // |
23 | // This will grep everything in all active allocation blocks and print and |
24 | // malloc blocks that contain the C string "hello" (as a substring, no |
25 | // NULL termination included): |
26 | // |
27 | // (lldb) expression find_cstring_in_heap ("hello") |
28 | // |
29 | // The results will be printed to the STDOUT of the inferior program. The |
30 | // return value of the "find_pointer_in_heap" function is the number of |
31 | // pointer references that were found. A quick example shows |
32 | // |
33 | // (lldb) expr find_pointer_in_heap(0x0000000104000410) |
34 | // (uint32_t) $5 = 0x00000002 |
35 | // 0x104000740: 0x0000000104000410 found in malloc block 0x104000730 + 16 |
36 | // (malloc_size = 48) |
37 | // 0x100820060: 0x0000000104000410 found in malloc block 0x100820000 + 96 |
38 | // (malloc_size = 4096) |
39 | // |
40 | // From the above output we see that 0x104000410 was found in the malloc block |
41 | // at 0x104000730 and 0x100820000. If we want to see what these blocks are, we |
42 | // can display the memory for this block using the "address" ("A" for short) |
43 | // format. The address format shows pointers, and if those pointers point to |
44 | // objects that have symbols or know data contents, it will display information |
45 | // about the pointers: |
46 | // |
47 | // (lldb) memory read --format address --count 1 0x104000730 |
48 | // 0x104000730: 0x0000000100002460 (void *)0x0000000100002488: MyString |
49 | // |
50 | // We can see that the first block is a "MyString" object that contains our |
51 | // pointer value at offset 16. |
52 | // |
53 | // Looking at the next pointers, are a bit more tricky: |
54 | // (lldb) memory read -fA 0x100820000 -c1 |
55 | // 0x100820000: 0x4f545541a1a1a1a1 |
56 | // (lldb) memory read 0x100820000 |
57 | // 0x100820000: a1 a1 a1 a1 41 55 54 4f 52 45 4c 45 41 53 45 21 ....AUTORELEASE! |
58 | // 0x100820010: 78 00 82 00 01 00 00 00 60 f9 e8 75 ff 7f 00 00 x.......`..u.... |
59 | // |
60 | // This is an objective C auto release pool object that contains our pointer. |
61 | // C++ classes will show up if they are virtual as something like: |
62 | // (lldb) memory read --format address --count 1 0x104008000 |
63 | // 0x104008000: 0x109008000 vtable for lldb_private::Process |
64 | // |
65 | // This is a clue that the 0x104008000 is a "lldb_private::Process *". |
66 | //===----------------------------------------------------------------------===// |
67 | // C includes |
68 | #include <assert.h> |
69 | #include <ctype.h> |
70 | #include <dlfcn.h> |
71 | #include <mach/mach.h> |
72 | #include <mach/mach_vm.h> |
73 | #include <malloc/malloc.h> |
74 | #include <objc/objc-runtime.h> |
75 | #include <stdio.h> |
76 | #include <stdlib.h> |
77 | #include <unistd.h> |
78 | |
79 | // C++ includes |
80 | #include <vector> |
81 | |
82 | // Redefine private types from "/usr/local/include/stack_logging.h" |
83 | typedef struct { |
84 | uint32_t type_flags; |
85 | uint64_t stack_identifier; |
86 | uint64_t argument; |
87 | mach_vm_address_t address; |
88 | } mach_stack_logging_record_t; |
89 | |
90 | // Redefine private defines from "/usr/local/include/stack_logging.h" |
91 | #define stack_logging_type_free 0 |
92 | #define stack_logging_type_generic 1 |
93 | #define stack_logging_type_alloc 2 |
94 | #define stack_logging_type_dealloc 4 |
95 | // This bit is made up by this code |
96 | #define stack_logging_type_vm_region 8 |
97 | |
98 | // Redefine private function prototypes from |
99 | // "/usr/local/include/stack_logging.h" |
100 | extern "C" kern_return_t __mach_stack_logging_set_file_path(task_t task, |
101 | char *file_path); |
102 | |
103 | extern "C" kern_return_t |
104 | __mach_stack_logging_get_frames(task_t task, mach_vm_address_t address, |
105 | mach_vm_address_t *stack_frames_buffer, |
106 | uint32_t max_stack_frames, uint32_t *count); |
107 | |
108 | extern "C" kern_return_t __mach_stack_logging_enumerate_records( |
109 | task_t task, mach_vm_address_t address, |
110 | void enumerator(mach_stack_logging_record_t, void *), void *context); |
111 | |
112 | extern "C" kern_return_t __mach_stack_logging_frames_for_uniqued_stack( |
113 | task_t task, uint64_t stack_identifier, |
114 | mach_vm_address_t *stack_frames_buffer, uint32_t max_stack_frames, |
115 | uint32_t *count); |
116 | |
117 | extern "C" void *gdb_class_getClass(void *objc_class); |
118 | |
119 | static void range_info_callback(task_t task, void *baton, unsigned type, |
120 | uint64_t ptr_addr, uint64_t ptr_size); |
121 | |
122 | // Redefine private global variables prototypes from |
123 | // "/usr/local/include/stack_logging.h" |
124 | |
125 | extern "C" int stack_logging_enable_logging; |
126 | |
127 | // Local defines |
128 | #define MAX_FRAMES 1024 |
129 | |
130 | // Local Typedefs and Types |
131 | typedef void range_callback_t(task_t task, void *baton, unsigned type, |
132 | uint64_t ptr_addr, uint64_t ptr_size); |
133 | typedef void zone_callback_t(void *info, const malloc_zone_t *zone); |
134 | typedef int (*comare_function_t)(const void *, const void *); |
135 | struct range_callback_info_t { |
136 | zone_callback_t *zone_callback; |
137 | range_callback_t *range_callback; |
138 | void *baton; |
139 | int check_vm_regions; |
140 | }; |
141 | |
142 | enum data_type_t { |
143 | eDataTypeAddress, |
144 | eDataTypeContainsData, |
145 | eDataTypeObjC, |
146 | eDataTypeHeapInfo |
147 | }; |
148 | |
149 | struct aligned_data_t { |
150 | const uint8_t *buffer; |
151 | uint32_t size; |
152 | uint32_t align; |
153 | }; |
154 | |
155 | struct objc_data_t { |
156 | void *match_isa; // Set to NULL for all objective C objects |
157 | bool match_superclasses; |
158 | }; |
159 | |
160 | struct range_contains_data_callback_info_t { |
161 | data_type_t type; |
162 | const void *lookup_addr; |
163 | union { |
164 | uintptr_t addr; |
165 | aligned_data_t data; |
166 | objc_data_t objc; |
167 | }; |
168 | uint32_t match_count; |
169 | bool done; |
170 | bool unique; |
171 | }; |
172 | |
173 | struct malloc_match { |
174 | void *addr; |
175 | intptr_t size; |
176 | intptr_t offset; |
177 | uintptr_t type; |
178 | }; |
179 | |
180 | struct malloc_stack_entry { |
181 | const void *address; |
182 | uint64_t argument; |
183 | uint32_t type_flags; |
184 | uint32_t num_frames; |
185 | mach_vm_address_t frames[MAX_FRAMES]; |
186 | }; |
187 | |
188 | struct malloc_block_contents { |
189 | union { |
190 | Class isa; |
191 | void *pointers[2]; |
192 | }; |
193 | }; |
194 | |
195 | static int compare_void_ptr(const void *a, const void *b) { |
196 | Class a_ptr = *(Class *)a; |
197 | Class b_ptr = *(Class *)b; |
198 | if (a_ptr < b_ptr) |
199 | return -1; |
200 | if (a_ptr > b_ptr) |
201 | return +1; |
202 | return 0; |
203 | } |
204 | |
205 | class MatchResults { |
206 | enum { k_max_entries = 8 * 1024 }; |
207 | |
208 | public: |
209 | MatchResults() : m_size(0) {} |
210 | |
211 | void clear() { |
212 | m_size = 0; |
213 | bzero(&m_entries, sizeof(m_entries)); |
214 | } |
215 | |
216 | bool empty() const { return m_size == 0; } |
217 | |
218 | void push_back(const malloc_match &m, bool unique = false) { |
219 | if (unique) { |
220 | // Don't add the entry if there is already a match for this address |
221 | for (uint32_t i = 0; i < m_size; ++i) { |
222 | if (((uint8_t *)m_entries[i].addr + m_entries[i].offset) == |
223 | ((uint8_t *)m.addr + m.offset)) |
224 | return; // Duplicate entry |
225 | } |
226 | } |
227 | if (m_size < k_max_entries - 1) { |
228 | m_entries[m_size] = m; |
229 | m_size++; |
230 | } |
231 | } |
232 | |
233 | malloc_match *data() { |
234 | // If empty, return NULL |
235 | if (empty()) |
236 | return NULL; |
237 | // In not empty, terminate and return the result |
238 | malloc_match terminator_entry = {NULL, .size: 0, .offset: 0, .type: 0}; |
239 | // We always leave room for an empty entry at the end |
240 | m_entries[m_size] = terminator_entry; |
241 | return m_entries; |
242 | } |
243 | |
244 | protected: |
245 | malloc_match m_entries[k_max_entries]; |
246 | uint32_t m_size; |
247 | }; |
248 | |
249 | class MallocStackLoggingEntries { |
250 | enum { k_max_entries = 128 }; |
251 | |
252 | public: |
253 | MallocStackLoggingEntries() : m_size(0) {} |
254 | |
255 | void clear() { m_size = 0; } |
256 | |
257 | bool empty() const { return m_size == 0; } |
258 | |
259 | malloc_stack_entry *next() { |
260 | if (m_size < k_max_entries - 1) { |
261 | malloc_stack_entry *result = m_entries + m_size; |
262 | ++m_size; |
263 | return result; |
264 | } |
265 | return NULL; // Out of entries... |
266 | } |
267 | |
268 | malloc_stack_entry *data() { |
269 | // If empty, return NULL |
270 | if (empty()) |
271 | return NULL; |
272 | // In not empty, terminate and return the result |
273 | m_entries[m_size].address = NULL; |
274 | m_entries[m_size].argument = 0; |
275 | m_entries[m_size].type_flags = 0; |
276 | m_entries[m_size].num_frames = 0; |
277 | return m_entries; |
278 | } |
279 | |
280 | protected: |
281 | malloc_stack_entry m_entries[k_max_entries]; |
282 | uint32_t m_size; |
283 | }; |
284 | |
285 | // A safe way to allocate memory and keep it from interfering with the |
286 | // malloc enumerators. |
287 | void *safe_malloc(size_t n_bytes) { |
288 | if (n_bytes > 0) { |
289 | const int k_page_size = getpagesize(); |
290 | const mach_vm_size_t vm_size = |
291 | ((n_bytes + k_page_size - 1) / k_page_size) * k_page_size; |
292 | vm_address_t address = 0; |
293 | kern_return_t kerr = vm_allocate(mach_task_self(), &address, vm_size, true); |
294 | if (kerr == KERN_SUCCESS) |
295 | return (void *)address; |
296 | } |
297 | return NULL; |
298 | } |
299 | |
300 | // ObjCClasses |
301 | class ObjCClasses { |
302 | public: |
303 | ObjCClasses() : m_objc_class_ptrs(NULL), m_size(0) {} |
304 | |
305 | bool Update() { |
306 | // TODO: find out if class list has changed and update if needed |
307 | if (m_objc_class_ptrs == NULL) { |
308 | m_size = objc_getClassList(NULL, 0); |
309 | if (m_size > 0) { |
310 | // Allocate the class pointers |
311 | m_objc_class_ptrs = (Class *)safe_malloc(m_size * sizeof(Class)); |
312 | m_size = objc_getClassList(m_objc_class_ptrs, m_size); |
313 | // Sort Class pointers for quick lookup |
314 | ::qsort(m_objc_class_ptrs, m_size, sizeof(Class), compare_void_ptr); |
315 | } else |
316 | return false; |
317 | } |
318 | return true; |
319 | } |
320 | |
321 | uint32_t FindClassIndex(Class isa) { |
322 | Class *matching_class = (Class *)bsearch(&isa, m_objc_class_ptrs, m_size, |
323 | sizeof(Class), compare_void_ptr); |
324 | if (matching_class) { |
325 | uint32_t idx = matching_class - m_objc_class_ptrs; |
326 | return idx; |
327 | } |
328 | return UINT32_MAX; |
329 | } |
330 | |
331 | Class GetClassAtIndex(uint32_t idx) const { |
332 | if (idx < m_size) |
333 | return m_objc_class_ptrs[idx]; |
334 | return NULL; |
335 | } |
336 | uint32_t GetSize() const { return m_size; } |
337 | |
338 | private: |
339 | Class *m_objc_class_ptrs; |
340 | uint32_t m_size; |
341 | }; |
342 | |
343 | // Local global variables |
344 | MatchResults g_matches; |
345 | MallocStackLoggingEntries g_malloc_stack_history; |
346 | ObjCClasses g_objc_classes; |
347 | |
348 | // ObjCClassInfo |
349 | |
350 | enum HeapInfoSortType { eSortTypeNone, eSortTypeBytes, eSortTypeCount }; |
351 | |
352 | class ObjCClassInfo { |
353 | public: |
354 | ObjCClassInfo() : m_entries(NULL), m_size(0), m_sort_type(eSortTypeNone) {} |
355 | |
356 | void Update(const ObjCClasses &objc_classes) { |
357 | m_size = objc_classes.GetSize(); |
358 | m_entries = (Entry *)safe_malloc(m_size * sizeof(Entry)); |
359 | m_sort_type = eSortTypeNone; |
360 | Reset(); |
361 | } |
362 | |
363 | bool AddInstance(uint32_t idx, uint64_t ptr_size) { |
364 | if (m_size == 0) |
365 | Update(objc_classes: g_objc_classes); |
366 | // Update the totals for the classes |
367 | if (idx < m_size) { |
368 | m_entries[idx].bytes += ptr_size; |
369 | ++m_entries[idx].count; |
370 | return true; |
371 | } |
372 | return false; |
373 | } |
374 | |
375 | void Reset() { |
376 | m_sort_type = eSortTypeNone; |
377 | for (uint32_t i = 0; i < m_size; ++i) { |
378 | // In case we sort the entries after gathering the data, we will |
379 | // want to know the index into the m_objc_class_ptrs[] array. |
380 | m_entries[i].idx = i; |
381 | m_entries[i].bytes = 0; |
382 | m_entries[i].count = 0; |
383 | } |
384 | } |
385 | void SortByTotalBytes(const ObjCClasses &objc_classes, bool print) { |
386 | if (m_sort_type != eSortTypeBytes && m_size > 0) { |
387 | ::qsort(m_entries, m_size, sizeof(Entry), |
388 | (comare_function_t)compare_bytes); |
389 | m_sort_type = eSortTypeBytes; |
390 | } |
391 | if (print && m_size > 0) { |
392 | puts(s: "Objective-C objects by total bytes:" ); |
393 | puts(s: "Total Bytes Class Name" ); |
394 | puts(s: "----------- " |
395 | "-----------------------------------------------------------------" ); |
396 | for (uint32_t i = 0; i < m_size && m_entries[i].bytes > 0; ++i) { |
397 | printf("%11llu %s\n" , m_entries[i].bytes, |
398 | class_getName(objc_classes.GetClassAtIndex(m_entries[i].idx))); |
399 | } |
400 | } |
401 | } |
402 | void SortByTotalCount(const ObjCClasses &objc_classes, bool print) { |
403 | if (m_sort_type != eSortTypeCount && m_size > 0) { |
404 | ::qsort(m_entries, m_size, sizeof(Entry), |
405 | (comare_function_t)compare_count); |
406 | m_sort_type = eSortTypeCount; |
407 | } |
408 | if (print && m_size > 0) { |
409 | puts(s: "Objective-C objects by total count:" ); |
410 | puts(s: "Count Class Name" ); |
411 | puts(s: "-------- " |
412 | "-----------------------------------------------------------------" ); |
413 | for (uint32_t i = 0; i < m_size && m_entries[i].count > 0; ++i) { |
414 | printf("%8u %s\n" , m_entries[i].count, |
415 | class_getName(objc_classes.GetClassAtIndex(m_entries[i].idx))); |
416 | } |
417 | } |
418 | } |
419 | |
420 | private: |
421 | struct Entry { |
422 | uint32_t idx; // Index into the m_objc_class_ptrs[] array |
423 | uint32_t count; // Number of object instances that were found |
424 | uint64_t bytes; // Total number of bytes for each objc class |
425 | }; |
426 | |
427 | static int compare_bytes(const Entry *a, const Entry *b) { |
428 | // Reverse the comparison to most bytes entries end up at top of list |
429 | if (a->bytes > b->bytes) |
430 | return -1; |
431 | if (a->bytes < b->bytes) |
432 | return +1; |
433 | return 0; |
434 | } |
435 | |
436 | static int compare_count(const Entry *a, const Entry *b) { |
437 | // Reverse the comparison to most count entries end up at top of list |
438 | if (a->count > b->count) |
439 | return -1; |
440 | if (a->count < b->count) |
441 | return +1; |
442 | return 0; |
443 | } |
444 | |
445 | Entry *m_entries; |
446 | uint32_t m_size; |
447 | HeapInfoSortType m_sort_type; |
448 | }; |
449 | |
450 | ObjCClassInfo g_objc_class_snapshot; |
451 | |
452 | // task_peek |
453 | // |
454 | // Reads memory from this tasks address space. This callback is needed |
455 | // by the code that iterates through all of the malloc blocks to read |
456 | // the memory in this process. |
457 | static kern_return_t task_peek(task_t task, vm_address_t remote_address, |
458 | vm_size_t size, void **local_memory) { |
459 | *local_memory = (void *)remote_address; |
460 | return KERN_SUCCESS; |
461 | } |
462 | |
463 | static const void foreach_zone_in_this_process(range_callback_info_t *info) { |
464 | if (info == NULL || info->zone_callback == NULL) |
465 | return; |
466 | |
467 | vm_address_t *zones = NULL; |
468 | unsigned int num_zones = 0; |
469 | |
470 | kern_return_t err = malloc_get_all_zones(0, task_peek, &zones, &num_zones); |
471 | if (KERN_SUCCESS == err) { |
472 | for (unsigned int i = 0; i < num_zones; ++i) { |
473 | info->zone_callback(info, (const malloc_zone_t *)zones[i]); |
474 | } |
475 | } |
476 | |
477 | if (info->check_vm_regions) { |
478 | #if defined(VM_REGION_SUBMAP_SHORT_INFO_COUNT_64) |
479 | typedef vm_region_submap_short_info_data_64_t RegionInfo; |
480 | enum { kRegionInfoSize = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64 }; |
481 | #else |
482 | typedef vm_region_submap_info_data_64_t RegionInfo; |
483 | enum { kRegionInfoSize = VM_REGION_SUBMAP_INFO_COUNT_64 }; |
484 | #endif |
485 | task_t task = mach_task_self(); |
486 | mach_vm_address_t vm_region_base_addr; |
487 | mach_vm_size_t vm_region_size; |
488 | natural_t vm_region_depth; |
489 | RegionInfo vm_region_info; |
490 | |
491 | ((range_contains_data_callback_info_t *)info->baton)->unique = true; |
492 | |
493 | for (vm_region_base_addr = 0, vm_region_size = 1; vm_region_size != 0; |
494 | vm_region_base_addr += vm_region_size) { |
495 | mach_msg_type_number_t vm_region_info_size = kRegionInfoSize; |
496 | const kern_return_t err = mach_vm_region_recurse( |
497 | task, &vm_region_base_addr, &vm_region_size, &vm_region_depth, |
498 | (vm_region_recurse_info_t)&vm_region_info, &vm_region_info_size); |
499 | if (err) |
500 | break; |
501 | // Check all read + write regions. This will cover the thread stacks |
502 | // and any regions of memory that aren't covered by the heap |
503 | if (vm_region_info.protection & VM_PROT_WRITE && |
504 | vm_region_info.protection & VM_PROT_READ) { |
505 | // printf ("checking vm_region: [0x%16.16llx - 0x%16.16llx)\n", |
506 | // (uint64_t)vm_region_base_addr, (uint64_t)vm_region_base_addr + |
507 | // vm_region_size); |
508 | range_info_callback(task, info->baton, stack_logging_type_vm_region, |
509 | vm_region_base_addr, vm_region_size); |
510 | } |
511 | } |
512 | } |
513 | } |
514 | |
515 | // dump_malloc_block_callback |
516 | // |
517 | // A simple callback that will dump each malloc block and all available |
518 | // info from the enumeration callback perspective. |
519 | static void dump_malloc_block_callback(task_t task, void *baton, unsigned type, |
520 | uint64_t ptr_addr, uint64_t ptr_size) { |
521 | printf("task = 0x%4.4x: baton = %p, type = %u, ptr_addr = 0x%llx + 0x%llu\n" , |
522 | task, baton, type, ptr_addr, ptr_size); |
523 | } |
524 | |
525 | static void ranges_callback(task_t task, void *baton, unsigned type, |
526 | vm_range_t *ptrs, unsigned count) { |
527 | range_callback_info_t *info = (range_callback_info_t *)baton; |
528 | while (count--) { |
529 | info->range_callback(task, info->baton, type, ptrs->address, ptrs->size); |
530 | ptrs++; |
531 | } |
532 | } |
533 | |
534 | static void enumerate_range_in_zone(void *baton, const malloc_zone_t *zone) { |
535 | range_callback_info_t *info = (range_callback_info_t *)baton; |
536 | |
537 | if (zone && zone->introspect) |
538 | zone->introspect->enumerator( |
539 | mach_task_self(), info, MALLOC_PTR_IN_USE_RANGE_TYPE, |
540 | (vm_address_t)zone, task_peek, ranges_callback); |
541 | } |
542 | |
543 | static void range_info_callback(task_t task, void *baton, unsigned type, |
544 | uint64_t ptr_addr, uint64_t ptr_size) { |
545 | const uint64_t end_addr = ptr_addr + ptr_size; |
546 | |
547 | range_contains_data_callback_info_t *info = |
548 | (range_contains_data_callback_info_t *)baton; |
549 | switch (info->type) { |
550 | case eDataTypeAddress: |
551 | // Check if the current malloc block contains an address specified by |
552 | // "info->addr" |
553 | if (ptr_addr <= info->addr && info->addr < end_addr) { |
554 | ++info->match_count; |
555 | malloc_match match = {(void *)ptr_addr, ptr_size, info->addr - ptr_addr, |
556 | type}; |
557 | g_matches.push_back(m: match, unique: info->unique); |
558 | } |
559 | break; |
560 | |
561 | case eDataTypeContainsData: |
562 | // Check if the current malloc block contains data specified in "info->data" |
563 | { |
564 | const uint32_t size = info->data.size; |
565 | if (size < ptr_size) // Make sure this block can contain this data |
566 | { |
567 | uint8_t *ptr_data = NULL; |
568 | if (task_peek(task, ptr_addr, ptr_size, (void **)&ptr_data) == |
569 | KERN_SUCCESS) { |
570 | const void *buffer = info->data.buffer; |
571 | assert(ptr_data); |
572 | const uint32_t align = info->data.align; |
573 | for (uint64_t addr = ptr_addr; |
574 | addr < end_addr && ((end_addr - addr) >= size); |
575 | addr += align, ptr_data += align) { |
576 | if (memcmp(buffer, ptr_data, size) == 0) { |
577 | ++info->match_count; |
578 | malloc_match match = {(void *)ptr_addr, ptr_size, addr - ptr_addr, |
579 | type}; |
580 | g_matches.push_back(m: match, unique: info->unique); |
581 | } |
582 | } |
583 | } else { |
584 | printf("0x%llx: error: couldn't read %llu bytes\n" , ptr_addr, |
585 | ptr_size); |
586 | } |
587 | } |
588 | } |
589 | break; |
590 | |
591 | case eDataTypeObjC: |
592 | // Check if the current malloc block contains an objective C object |
593 | // of any sort where the first pointer in the object is an OBJC class |
594 | // pointer (an isa) |
595 | { |
596 | malloc_block_contents *block_contents = NULL; |
597 | if (task_peek(task, ptr_addr, sizeof(void *), (void **)&block_contents) == |
598 | KERN_SUCCESS) { |
599 | // We assume that g_objc_classes is up to date |
600 | // that the class list was verified to have some classes in it |
601 | // before calling this function |
602 | const uint32_t objc_class_idx = |
603 | g_objc_classes.FindClassIndex(block_contents->isa); |
604 | if (objc_class_idx != UINT32_MAX) { |
605 | bool match = false; |
606 | if (info->objc.match_isa == 0) { |
607 | // Match any objective C object |
608 | match = true; |
609 | } else { |
610 | // Only match exact isa values in the current class or |
611 | // optionally in the super classes |
612 | if (info->objc.match_isa == block_contents->isa) |
613 | match = true; |
614 | else if (info->objc.match_superclasses) { |
615 | Class super = class_getSuperclass(block_contents->isa); |
616 | while (super) { |
617 | match = super == info->objc.match_isa; |
618 | if (match) |
619 | break; |
620 | super = class_getSuperclass(super); |
621 | } |
622 | } |
623 | } |
624 | if (match) { |
625 | // printf (" success\n"); |
626 | ++info->match_count; |
627 | malloc_match match = {(void *)ptr_addr, ptr_size, 0, type}; |
628 | g_matches.push_back(m: match, unique: info->unique); |
629 | } else { |
630 | // printf (" error: wrong class: %s\n", dl_info.dli_sname); |
631 | } |
632 | } else { |
633 | // printf ("\terror: symbol not objc class: %s\n", dl_info.dli_sname); |
634 | return; |
635 | } |
636 | } |
637 | } |
638 | break; |
639 | |
640 | case eDataTypeHeapInfo: |
641 | // Check if the current malloc block contains an objective C object |
642 | // of any sort where the first pointer in the object is an OBJC class |
643 | // pointer (an isa) |
644 | { |
645 | malloc_block_contents *block_contents = NULL; |
646 | if (task_peek(task, ptr_addr, sizeof(void *), (void **)&block_contents) == |
647 | KERN_SUCCESS) { |
648 | // We assume that g_objc_classes is up to date |
649 | // that the class list was verified to have some classes in it |
650 | // before calling this function |
651 | const uint32_t objc_class_idx = |
652 | g_objc_classes.FindClassIndex(block_contents->isa); |
653 | if (objc_class_idx != UINT32_MAX) { |
654 | // This is an objective C object |
655 | g_objc_class_snapshot.AddInstance(objc_class_idx, ptr_size); |
656 | } else { |
657 | // Classify other heap info |
658 | } |
659 | } |
660 | } |
661 | break; |
662 | } |
663 | } |
664 | |
665 | static void |
666 | get_stack_for_address_enumerator(mach_stack_logging_record_t stack_record, |
667 | void *task_ptr) { |
668 | malloc_stack_entry *stack_entry = g_malloc_stack_history.next(); |
669 | if (stack_entry) { |
670 | stack_entry->address = (void *)stack_record.address; |
671 | stack_entry->type_flags = stack_record.type_flags; |
672 | stack_entry->argument = stack_record.argument; |
673 | stack_entry->num_frames = 0; |
674 | stack_entry->frames[0] = 0; |
675 | kern_return_t err = __mach_stack_logging_frames_for_uniqued_stack( |
676 | *(task_t *)task_ptr, stack_record.stack_identifier, stack_entry->frames, |
677 | MAX_FRAMES, &stack_entry->num_frames); |
678 | // Terminate the frames with zero if there is room |
679 | if (stack_entry->num_frames < MAX_FRAMES) |
680 | stack_entry->frames[stack_entry->num_frames] = 0; |
681 | } |
682 | } |
683 | |
684 | malloc_stack_entry *get_stack_history_for_address(const void *addr, |
685 | int history) { |
686 | if (!stack_logging_enable_logging) |
687 | return NULL; |
688 | g_malloc_stack_history.clear(); |
689 | kern_return_t err; |
690 | task_t task = mach_task_self(); |
691 | if (history) { |
692 | err = __mach_stack_logging_enumerate_records( |
693 | task, (mach_vm_address_t)addr, get_stack_for_address_enumerator, &task); |
694 | } else { |
695 | malloc_stack_entry *stack_entry = g_malloc_stack_history.next(); |
696 | if (stack_entry) { |
697 | stack_entry->address = addr; |
698 | stack_entry->type_flags = stack_logging_type_alloc; |
699 | stack_entry->argument = 0; |
700 | stack_entry->num_frames = 0; |
701 | stack_entry->frames[0] = 0; |
702 | err = __mach_stack_logging_get_frames(task, (mach_vm_address_t)addr, |
703 | stack_entry->frames, MAX_FRAMES, |
704 | &stack_entry->num_frames); |
705 | if (err == 0 && stack_entry->num_frames > 0) { |
706 | // Terminate the frames with zero if there is room |
707 | if (stack_entry->num_frames < MAX_FRAMES) |
708 | stack_entry->frames[stack_entry->num_frames] = 0; |
709 | } else { |
710 | g_malloc_stack_history.clear(); |
711 | } |
712 | } |
713 | } |
714 | // Return data if there is any |
715 | return g_malloc_stack_history.data(); |
716 | } |
717 | |
718 | // find_pointer_in_heap |
719 | // |
720 | // Finds a pointer value inside one or more currently valid malloc |
721 | // blocks. |
722 | malloc_match *find_pointer_in_heap(const void *addr, int check_vm_regions) { |
723 | g_matches.clear(); |
724 | // Setup "info" to look for a malloc block that contains data |
725 | // that is the pointer |
726 | if (addr) { |
727 | range_contains_data_callback_info_t data_info; |
728 | data_info.type = eDataTypeContainsData; // Check each block for data |
729 | data_info.data.buffer = |
730 | (uint8_t *)&addr; // What data? The pointer value passed in |
731 | data_info.data.size = |
732 | sizeof(addr); // How many bytes? The byte size of a pointer |
733 | data_info.data.align = sizeof(addr); // Align to a pointer byte size |
734 | data_info.match_count = 0; // Initialize the match count to zero |
735 | data_info.done = false; // Set done to false so searching doesn't stop |
736 | data_info.unique = false; // Set to true when iterating on the vm_regions |
737 | range_callback_info_t info = {enumerate_range_in_zone, range_info_callback, |
738 | &data_info, check_vm_regions}; |
739 | foreach_zone_in_this_process(info: &info); |
740 | } |
741 | return g_matches.data(); |
742 | } |
743 | |
744 | // find_pointer_in_memory |
745 | // |
746 | // Finds a pointer value inside one or more currently valid malloc |
747 | // blocks. |
748 | malloc_match *find_pointer_in_memory(uint64_t memory_addr, uint64_t memory_size, |
749 | const void *addr) { |
750 | g_matches.clear(); |
751 | // Setup "info" to look for a malloc block that contains data |
752 | // that is the pointer |
753 | range_contains_data_callback_info_t data_info; |
754 | data_info.type = eDataTypeContainsData; // Check each block for data |
755 | data_info.data.buffer = |
756 | (uint8_t *)&addr; // What data? The pointer value passed in |
757 | data_info.data.size = |
758 | sizeof(addr); // How many bytes? The byte size of a pointer |
759 | data_info.data.align = sizeof(addr); // Align to a pointer byte size |
760 | data_info.match_count = 0; // Initialize the match count to zero |
761 | data_info.done = false; // Set done to false so searching doesn't stop |
762 | data_info.unique = false; // Set to true when iterating on the vm_regions |
763 | range_info_callback(mach_task_self(), &data_info, stack_logging_type_generic, |
764 | memory_addr, memory_size); |
765 | return g_matches.data(); |
766 | } |
767 | |
768 | // find_objc_objects_in_memory |
769 | // |
770 | // Find all instances of ObjC classes 'c', or all ObjC classes if 'c' is |
771 | // NULL. If 'c' is non NULL, then also check objects to see if they |
772 | // inherit from 'c' |
773 | malloc_match *find_objc_objects_in_memory(void *isa, int check_vm_regions) { |
774 | g_matches.clear(); |
775 | if (g_objc_classes.Update()) { |
776 | // Setup "info" to look for a malloc block that contains data |
777 | // that is the pointer |
778 | range_contains_data_callback_info_t data_info; |
779 | data_info.type = eDataTypeObjC; // Check each block for data |
780 | data_info.objc.match_isa = isa; |
781 | data_info.objc.match_superclasses = true; |
782 | data_info.match_count = 0; // Initialize the match count to zero |
783 | data_info.done = false; // Set done to false so searching doesn't stop |
784 | data_info.unique = false; // Set to true when iterating on the vm_regions |
785 | range_callback_info_t info = {enumerate_range_in_zone, range_info_callback, |
786 | &data_info, check_vm_regions}; |
787 | foreach_zone_in_this_process(info: &info); |
788 | } |
789 | return g_matches.data(); |
790 | } |
791 | |
792 | // get_heap_info |
793 | // |
794 | // Gather information for all allocations on the heap and report |
795 | // statistics. |
796 | |
797 | void get_heap_info(int sort_type) { |
798 | if (g_objc_classes.Update()) { |
799 | // Reset all stats |
800 | g_objc_class_snapshot.Reset(); |
801 | // Setup "info" to look for a malloc block that contains data |
802 | // that is the pointer |
803 | range_contains_data_callback_info_t data_info; |
804 | data_info.type = eDataTypeHeapInfo; // Check each block for data |
805 | data_info.match_count = 0; // Initialize the match count to zero |
806 | data_info.done = false; // Set done to false so searching doesn't stop |
807 | data_info.unique = false; // Set to true when iterating on the vm_regions |
808 | const int check_vm_regions = false; |
809 | range_callback_info_t info = {enumerate_range_in_zone, range_info_callback, |
810 | &data_info, check_vm_regions}; |
811 | foreach_zone_in_this_process(info: &info); |
812 | |
813 | // Sort and print byte total bytes |
814 | switch (sort_type) { |
815 | case eSortTypeNone: |
816 | default: |
817 | case eSortTypeBytes: |
818 | g_objc_class_snapshot.SortByTotalBytes(objc_classes: g_objc_classes, print: true); |
819 | break; |
820 | |
821 | case eSortTypeCount: |
822 | g_objc_class_snapshot.SortByTotalCount(objc_classes: g_objc_classes, print: true); |
823 | break; |
824 | } |
825 | } else { |
826 | printf(format: "error: no objective C classes\n" ); |
827 | } |
828 | } |
829 | |
830 | // find_cstring_in_heap |
831 | // |
832 | // Finds a C string inside one or more currently valid malloc blocks. |
833 | malloc_match *find_cstring_in_heap(const char *s, int check_vm_regions) { |
834 | g_matches.clear(); |
835 | if (s == NULL || s[0] == '\0') { |
836 | printf(format: "error: invalid argument (empty cstring)\n" ); |
837 | return NULL; |
838 | } |
839 | // Setup "info" to look for a malloc block that contains data |
840 | // that is the C string passed in aligned on a 1 byte boundary |
841 | range_contains_data_callback_info_t data_info; |
842 | data_info.type = eDataTypeContainsData; // Check each block for data |
843 | data_info.data.buffer = (uint8_t *)s; // What data? The C string passed in |
844 | data_info.data.size = strlen(s); // How many bytes? The length of the C string |
845 | data_info.data.align = |
846 | 1; // Data doesn't need to be aligned, so set the alignment to 1 |
847 | data_info.match_count = 0; // Initialize the match count to zero |
848 | data_info.done = false; // Set done to false so searching doesn't stop |
849 | data_info.unique = false; // Set to true when iterating on the vm_regions |
850 | range_callback_info_t info = {enumerate_range_in_zone, range_info_callback, |
851 | &data_info, check_vm_regions}; |
852 | foreach_zone_in_this_process(info: &info); |
853 | return g_matches.data(); |
854 | } |
855 | |
856 | // find_block_for_address |
857 | // |
858 | // Find the malloc block that whose address range contains "addr". |
859 | malloc_match *find_block_for_address(const void *addr, int check_vm_regions) { |
860 | g_matches.clear(); |
861 | // Setup "info" to look for a malloc block that contains data |
862 | // that is the C string passed in aligned on a 1 byte boundary |
863 | range_contains_data_callback_info_t data_info; |
864 | data_info.type = eDataTypeAddress; // Check each block to see if the block |
865 | // contains the address passed in |
866 | data_info.addr = (uintptr_t)addr; // What data? The C string passed in |
867 | data_info.match_count = 0; // Initialize the match count to zero |
868 | data_info.done = false; // Set done to false so searching doesn't stop |
869 | data_info.unique = false; // Set to true when iterating on the vm_regions |
870 | range_callback_info_t info = {enumerate_range_in_zone, range_info_callback, |
871 | &data_info, check_vm_regions}; |
872 | foreach_zone_in_this_process(info: &info); |
873 | return g_matches.data(); |
874 | } |
875 | |