1 | //===-- Symtab.cpp --------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include <map> |
10 | #include <set> |
11 | |
12 | #include "lldb/Core/DataFileCache.h" |
13 | #include "lldb/Core/Module.h" |
14 | #include "lldb/Core/RichManglingContext.h" |
15 | #include "lldb/Core/Section.h" |
16 | #include "lldb/Symbol/ObjectFile.h" |
17 | #include "lldb/Symbol/Symbol.h" |
18 | #include "lldb/Symbol/SymbolContext.h" |
19 | #include "lldb/Symbol/Symtab.h" |
20 | #include "lldb/Target/Language.h" |
21 | #include "lldb/Utility/DataEncoder.h" |
22 | #include "lldb/Utility/Endian.h" |
23 | #include "lldb/Utility/RegularExpression.h" |
24 | #include "lldb/Utility/Stream.h" |
25 | #include "lldb/Utility/Timer.h" |
26 | |
27 | #include "llvm/ADT/ArrayRef.h" |
28 | #include "llvm/ADT/StringRef.h" |
29 | #include "llvm/Support/DJB.h" |
30 | |
31 | using namespace lldb; |
32 | using namespace lldb_private; |
33 | |
34 | Symtab::Symtab(ObjectFile *objfile) |
35 | : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this), |
36 | m_name_to_symbol_indices(), m_mutex(), |
37 | m_file_addr_to_index_computed(false), m_name_indexes_computed(false), |
38 | m_loaded_from_cache(false), m_saved_to_cache(false) { |
39 | m_name_to_symbol_indices.emplace(args: std::make_pair( |
40 | x: lldb::eFunctionNameTypeNone, y: UniqueCStringMap<uint32_t>())); |
41 | m_name_to_symbol_indices.emplace(args: std::make_pair( |
42 | x: lldb::eFunctionNameTypeBase, y: UniqueCStringMap<uint32_t>())); |
43 | m_name_to_symbol_indices.emplace(args: std::make_pair( |
44 | x: lldb::eFunctionNameTypeMethod, y: UniqueCStringMap<uint32_t>())); |
45 | m_name_to_symbol_indices.emplace(args: std::make_pair( |
46 | x: lldb::eFunctionNameTypeSelector, y: UniqueCStringMap<uint32_t>())); |
47 | } |
48 | |
49 | Symtab::~Symtab() = default; |
50 | |
51 | void Symtab::Reserve(size_t count) { |
52 | // Clients should grab the mutex from this symbol table and lock it manually |
53 | // when calling this function to avoid performance issues. |
54 | m_symbols.reserve(n: count); |
55 | } |
56 | |
57 | Symbol *Symtab::Resize(size_t count) { |
58 | // Clients should grab the mutex from this symbol table and lock it manually |
59 | // when calling this function to avoid performance issues. |
60 | m_symbols.resize(new_size: count); |
61 | return m_symbols.empty() ? nullptr : &m_symbols[0]; |
62 | } |
63 | |
64 | uint32_t Symtab::AddSymbol(const Symbol &symbol) { |
65 | // Clients should grab the mutex from this symbol table and lock it manually |
66 | // when calling this function to avoid performance issues. |
67 | uint32_t symbol_idx = m_symbols.size(); |
68 | auto &name_to_index = GetNameToSymbolIndexMap(type: lldb::eFunctionNameTypeNone); |
69 | name_to_index.Clear(); |
70 | m_file_addr_to_index.Clear(); |
71 | m_symbols.push_back(x: symbol); |
72 | m_file_addr_to_index_computed = false; |
73 | m_name_indexes_computed = false; |
74 | return symbol_idx; |
75 | } |
76 | |
77 | size_t Symtab::GetNumSymbols() const { |
78 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
79 | return m_symbols.size(); |
80 | } |
81 | |
82 | void Symtab::SectionFileAddressesChanged() { |
83 | m_file_addr_to_index.Clear(); |
84 | m_file_addr_to_index_computed = false; |
85 | } |
86 | |
87 | void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order, |
88 | Mangled::NamePreference name_preference) { |
89 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
90 | |
91 | // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); |
92 | s->Indent(); |
93 | const FileSpec &file_spec = m_objfile->GetFileSpec(); |
94 | const char *object_name = nullptr; |
95 | if (m_objfile->GetModule()) |
96 | object_name = m_objfile->GetModule()->GetObjectName().GetCString(); |
97 | |
98 | if (file_spec) |
99 | s->Printf(format: "Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, |
100 | file_spec.GetPath().c_str(), object_name ? "(" : "" , |
101 | object_name ? object_name : "" , object_name ? ")" : "" , |
102 | (uint64_t)m_symbols.size()); |
103 | else |
104 | s->Printf(format: "Symtab, num_symbols = %" PRIu64 "" , (uint64_t)m_symbols.size()); |
105 | |
106 | if (!m_symbols.empty()) { |
107 | switch (sort_order) { |
108 | case eSortOrderNone: { |
109 | s->PutCString(cstr: ":\n" ); |
110 | DumpSymbolHeader(s); |
111 | const_iterator begin = m_symbols.begin(); |
112 | const_iterator end = m_symbols.end(); |
113 | for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { |
114 | s->Indent(); |
115 | pos->Dump(s, target, index: std::distance(first: begin, last: pos), name_preference); |
116 | } |
117 | } |
118 | break; |
119 | |
120 | case eSortOrderByName: { |
121 | // Although we maintain a lookup by exact name map, the table isn't |
122 | // sorted by name. So we must make the ordered symbol list up ourselves. |
123 | s->PutCString(cstr: " (sorted by name):\n" ); |
124 | DumpSymbolHeader(s); |
125 | |
126 | std::multimap<llvm::StringRef, const Symbol *> name_map; |
127 | for (const Symbol &symbol : m_symbols) |
128 | name_map.emplace(args: symbol.GetName().GetStringRef(), args: &symbol); |
129 | |
130 | for (const auto &name_to_symbol : name_map) { |
131 | const Symbol *symbol = name_to_symbol.second; |
132 | s->Indent(); |
133 | symbol->Dump(s, target, index: symbol - &m_symbols[0], name_preference); |
134 | } |
135 | } break; |
136 | |
137 | case eSortOrderBySize: { |
138 | s->PutCString(cstr: " (sorted by size):\n" ); |
139 | DumpSymbolHeader(s); |
140 | |
141 | std::multimap<size_t, const Symbol *, std::greater<size_t>> size_map; |
142 | for (const Symbol &symbol : m_symbols) |
143 | size_map.emplace(args: symbol.GetByteSize(), args: &symbol); |
144 | |
145 | size_t idx = 0; |
146 | for (const auto &size_to_symbol : size_map) { |
147 | const Symbol *symbol = size_to_symbol.second; |
148 | s->Indent(); |
149 | symbol->Dump(s, target, index: idx++, name_preference); |
150 | } |
151 | } break; |
152 | |
153 | case eSortOrderByAddress: |
154 | s->PutCString(cstr: " (sorted by address):\n" ); |
155 | DumpSymbolHeader(s); |
156 | if (!m_file_addr_to_index_computed) |
157 | InitAddressIndexes(); |
158 | const size_t num_entries = m_file_addr_to_index.GetSize(); |
159 | for (size_t i = 0; i < num_entries; ++i) { |
160 | s->Indent(); |
161 | const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; |
162 | m_symbols[symbol_idx].Dump(s, target, index: symbol_idx, name_preference); |
163 | } |
164 | break; |
165 | } |
166 | } else { |
167 | s->PutCString(cstr: "\n" ); |
168 | } |
169 | } |
170 | |
171 | void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes, |
172 | Mangled::NamePreference name_preference) const { |
173 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
174 | |
175 | const size_t num_symbols = GetNumSymbols(); |
176 | // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); |
177 | s->Indent(); |
178 | s->Printf(format: "Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n" , |
179 | (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); |
180 | s->IndentMore(); |
181 | |
182 | if (!indexes.empty()) { |
183 | std::vector<uint32_t>::const_iterator pos; |
184 | std::vector<uint32_t>::const_iterator end = indexes.end(); |
185 | DumpSymbolHeader(s); |
186 | for (pos = indexes.begin(); pos != end; ++pos) { |
187 | size_t idx = *pos; |
188 | if (idx < num_symbols) { |
189 | s->Indent(); |
190 | m_symbols[idx].Dump(s, target, index: idx, name_preference); |
191 | } |
192 | } |
193 | } |
194 | s->IndentLess(); |
195 | } |
196 | |
197 | void Symtab::(Stream *s) { |
198 | s->Indent(s: " Debug symbol\n" ); |
199 | s->Indent(s: " |Synthetic symbol\n" ); |
200 | s->Indent(s: " ||Externally Visible\n" ); |
201 | s->Indent(s: " |||\n" ); |
202 | s->Indent(s: "Index UserID DSX Type File Address/Value Load " |
203 | "Address Size Flags Name\n" ); |
204 | s->Indent(s: "------- ------ --- --------------- ------------------ " |
205 | "------------------ ------------------ ---------- " |
206 | "----------------------------------\n" ); |
207 | } |
208 | |
209 | static int CompareSymbolID(const void *key, const void *p) { |
210 | const user_id_t match_uid = *(const user_id_t *)key; |
211 | const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); |
212 | if (match_uid < symbol_uid) |
213 | return -1; |
214 | if (match_uid > symbol_uid) |
215 | return 1; |
216 | return 0; |
217 | } |
218 | |
219 | Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { |
220 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
221 | |
222 | Symbol *symbol = |
223 | (Symbol *)::bsearch(key: &symbol_uid, base: &m_symbols[0], nmemb: m_symbols.size(), |
224 | size: sizeof(m_symbols[0]), compar: CompareSymbolID); |
225 | return symbol; |
226 | } |
227 | |
228 | Symbol *Symtab::SymbolAtIndex(size_t idx) { |
229 | // Clients should grab the mutex from this symbol table and lock it manually |
230 | // when calling this function to avoid performance issues. |
231 | if (idx < m_symbols.size()) |
232 | return &m_symbols[idx]; |
233 | return nullptr; |
234 | } |
235 | |
236 | const Symbol *Symtab::SymbolAtIndex(size_t idx) const { |
237 | // Clients should grab the mutex from this symbol table and lock it manually |
238 | // when calling this function to avoid performance issues. |
239 | if (idx < m_symbols.size()) |
240 | return &m_symbols[idx]; |
241 | return nullptr; |
242 | } |
243 | |
244 | static bool lldb_skip_name(llvm::StringRef mangled, |
245 | Mangled::ManglingScheme scheme) { |
246 | switch (scheme) { |
247 | case Mangled::eManglingSchemeItanium: { |
248 | if (mangled.size() < 3 || !mangled.starts_with(Prefix: "_Z" )) |
249 | return true; |
250 | |
251 | // Avoid the following types of symbols in the index. |
252 | switch (mangled[2]) { |
253 | case 'G': // guard variables |
254 | case 'T': // virtual tables, VTT structures, typeinfo structures + names |
255 | case 'Z': // named local entities (if we eventually handle |
256 | // eSymbolTypeData, we will want this back) |
257 | return true; |
258 | |
259 | default: |
260 | break; |
261 | } |
262 | |
263 | // Include this name in the index. |
264 | return false; |
265 | } |
266 | |
267 | // No filters for this scheme yet. Include all names in indexing. |
268 | case Mangled::eManglingSchemeMSVC: |
269 | case Mangled::eManglingSchemeRustV0: |
270 | case Mangled::eManglingSchemeD: |
271 | case Mangled::eManglingSchemeSwift: |
272 | return false; |
273 | |
274 | // Don't try and demangle things we can't categorize. |
275 | case Mangled::eManglingSchemeNone: |
276 | return true; |
277 | } |
278 | llvm_unreachable("unknown scheme!" ); |
279 | } |
280 | |
281 | void Symtab::InitNameIndexes() { |
282 | // Protected function, no need to lock mutex... |
283 | if (!m_name_indexes_computed) { |
284 | m_name_indexes_computed = true; |
285 | ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime()); |
286 | LLDB_SCOPED_TIMER(); |
287 | |
288 | // Collect all loaded language plugins. |
289 | std::vector<Language *> languages; |
290 | Language::ForEach(callback: [&languages](Language *l) { |
291 | languages.push_back(x: l); |
292 | return true; |
293 | }); |
294 | |
295 | auto &name_to_index = GetNameToSymbolIndexMap(type: lldb::eFunctionNameTypeNone); |
296 | auto &basename_to_index = |
297 | GetNameToSymbolIndexMap(type: lldb::eFunctionNameTypeBase); |
298 | auto &method_to_index = |
299 | GetNameToSymbolIndexMap(type: lldb::eFunctionNameTypeMethod); |
300 | auto &selector_to_index = |
301 | GetNameToSymbolIndexMap(type: lldb::eFunctionNameTypeSelector); |
302 | // Create the name index vector to be able to quickly search by name |
303 | const size_t num_symbols = m_symbols.size(); |
304 | name_to_index.Reserve(n: num_symbols); |
305 | |
306 | // The "const char *" in "class_contexts" and backlog::value_type::second |
307 | // must come from a ConstString::GetCString() |
308 | std::set<const char *> class_contexts; |
309 | std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog; |
310 | backlog.reserve(n: num_symbols / 2); |
311 | |
312 | // Instantiation of the demangler is expensive, so better use a single one |
313 | // for all entries during batch processing. |
314 | RichManglingContext rmc; |
315 | for (uint32_t value = 0; value < num_symbols; ++value) { |
316 | Symbol *symbol = &m_symbols[value]; |
317 | |
318 | // Don't let trampolines get into the lookup by name map If we ever need |
319 | // the trampoline symbols to be searchable by name we can remove this and |
320 | // then possibly add a new bool to any of the Symtab functions that |
321 | // lookup symbols by name to indicate if they want trampolines. We also |
322 | // don't want any synthetic symbols with auto generated names in the |
323 | // name lookups. |
324 | if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName()) |
325 | continue; |
326 | |
327 | // If the symbol's name string matched a Mangled::ManglingScheme, it is |
328 | // stored in the mangled field. |
329 | Mangled &mangled = symbol->GetMangled(); |
330 | if (ConstString name = mangled.GetMangledName()) { |
331 | name_to_index.Append(unique_cstr: name, value); |
332 | |
333 | if (symbol->ContainsLinkerAnnotations()) { |
334 | // If the symbol has linker annotations, also add the version without |
335 | // the annotations. |
336 | ConstString stripped = ConstString( |
337 | m_objfile->StripLinkerSymbolAnnotations(symbol_name: name.GetStringRef())); |
338 | name_to_index.Append(unique_cstr: stripped, value); |
339 | } |
340 | |
341 | const SymbolType type = symbol->GetType(); |
342 | if (type == eSymbolTypeCode || type == eSymbolTypeResolver) { |
343 | if (mangled.GetRichManglingInfo(context&: rmc, skip_mangled_name: lldb_skip_name)) { |
344 | RegisterMangledNameEntry(value, class_contexts, backlog, rmc); |
345 | continue; |
346 | } |
347 | } |
348 | } |
349 | |
350 | // Symbol name strings that didn't match a Mangled::ManglingScheme, are |
351 | // stored in the demangled field. |
352 | if (ConstString name = mangled.GetDemangledName()) { |
353 | name_to_index.Append(unique_cstr: name, value); |
354 | |
355 | if (symbol->ContainsLinkerAnnotations()) { |
356 | // If the symbol has linker annotations, also add the version without |
357 | // the annotations. |
358 | name = ConstString( |
359 | m_objfile->StripLinkerSymbolAnnotations(symbol_name: name.GetStringRef())); |
360 | name_to_index.Append(unique_cstr: name, value); |
361 | } |
362 | |
363 | // If the demangled name turns out to be an ObjC name, and is a category |
364 | // name, add the version without categories to the index too. |
365 | for (Language *lang : languages) { |
366 | for (auto variant : lang->GetMethodNameVariants(method_name: name)) { |
367 | if (variant.GetType() & lldb::eFunctionNameTypeSelector) |
368 | selector_to_index.Append(unique_cstr: variant.GetName(), value); |
369 | else if (variant.GetType() & lldb::eFunctionNameTypeFull) |
370 | name_to_index.Append(unique_cstr: variant.GetName(), value); |
371 | else if (variant.GetType() & lldb::eFunctionNameTypeMethod) |
372 | method_to_index.Append(unique_cstr: variant.GetName(), value); |
373 | else if (variant.GetType() & lldb::eFunctionNameTypeBase) |
374 | basename_to_index.Append(unique_cstr: variant.GetName(), value); |
375 | } |
376 | } |
377 | } |
378 | } |
379 | |
380 | for (const auto &record : backlog) { |
381 | RegisterBacklogEntry(entry: record.first, decl_context: record.second, class_contexts); |
382 | } |
383 | |
384 | name_to_index.Sort(); |
385 | name_to_index.SizeToFit(); |
386 | selector_to_index.Sort(); |
387 | selector_to_index.SizeToFit(); |
388 | basename_to_index.Sort(); |
389 | basename_to_index.SizeToFit(); |
390 | method_to_index.Sort(); |
391 | method_to_index.SizeToFit(); |
392 | } |
393 | } |
394 | |
395 | void Symtab::RegisterMangledNameEntry( |
396 | uint32_t value, std::set<const char *> &class_contexts, |
397 | std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog, |
398 | RichManglingContext &rmc) { |
399 | // Only register functions that have a base name. |
400 | llvm::StringRef base_name = rmc.ParseFunctionBaseName(); |
401 | if (base_name.empty()) |
402 | return; |
403 | |
404 | // The base name will be our entry's name. |
405 | NameToIndexMap::Entry entry(ConstString(base_name), value); |
406 | llvm::StringRef decl_context = rmc.ParseFunctionDeclContextName(); |
407 | |
408 | // Register functions with no context. |
409 | if (decl_context.empty()) { |
410 | // This has to be a basename |
411 | auto &basename_to_index = |
412 | GetNameToSymbolIndexMap(type: lldb::eFunctionNameTypeBase); |
413 | basename_to_index.Append(e: entry); |
414 | // If there is no context (no namespaces or class scopes that come before |
415 | // the function name) then this also could be a fullname. |
416 | auto &name_to_index = GetNameToSymbolIndexMap(type: lldb::eFunctionNameTypeNone); |
417 | name_to_index.Append(e: entry); |
418 | return; |
419 | } |
420 | |
421 | // Make sure we have a pool-string pointer and see if we already know the |
422 | // context name. |
423 | const char *decl_context_ccstr = ConstString(decl_context).GetCString(); |
424 | auto it = class_contexts.find(x: decl_context_ccstr); |
425 | |
426 | auto &method_to_index = |
427 | GetNameToSymbolIndexMap(type: lldb::eFunctionNameTypeMethod); |
428 | // Register constructors and destructors. They are methods and create |
429 | // declaration contexts. |
430 | if (rmc.IsCtorOrDtor()) { |
431 | method_to_index.Append(e: entry); |
432 | if (it == class_contexts.end()) |
433 | class_contexts.insert(position: it, x: decl_context_ccstr); |
434 | return; |
435 | } |
436 | |
437 | // Register regular methods with a known declaration context. |
438 | if (it != class_contexts.end()) { |
439 | method_to_index.Append(e: entry); |
440 | return; |
441 | } |
442 | |
443 | // Regular methods in unknown declaration contexts are put to the backlog. We |
444 | // will revisit them once we processed all remaining symbols. |
445 | backlog.push_back(x: std::make_pair(x&: entry, y&: decl_context_ccstr)); |
446 | } |
447 | |
448 | void Symtab::RegisterBacklogEntry( |
449 | const NameToIndexMap::Entry &entry, const char *decl_context, |
450 | const std::set<const char *> &class_contexts) { |
451 | auto &method_to_index = |
452 | GetNameToSymbolIndexMap(type: lldb::eFunctionNameTypeMethod); |
453 | auto it = class_contexts.find(x: decl_context); |
454 | if (it != class_contexts.end()) { |
455 | method_to_index.Append(e: entry); |
456 | } else { |
457 | // If we got here, we have something that had a context (was inside |
458 | // a namespace or class) yet we don't know the entry |
459 | method_to_index.Append(e: entry); |
460 | auto &basename_to_index = |
461 | GetNameToSymbolIndexMap(type: lldb::eFunctionNameTypeBase); |
462 | basename_to_index.Append(e: entry); |
463 | } |
464 | } |
465 | |
466 | void Symtab::PreloadSymbols() { |
467 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
468 | InitNameIndexes(); |
469 | } |
470 | |
471 | void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, |
472 | bool add_demangled, bool add_mangled, |
473 | NameToIndexMap &name_to_index_map) const { |
474 | LLDB_SCOPED_TIMER(); |
475 | if (add_demangled || add_mangled) { |
476 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
477 | |
478 | // Create the name index vector to be able to quickly search by name |
479 | const size_t num_indexes = indexes.size(); |
480 | for (size_t i = 0; i < num_indexes; ++i) { |
481 | uint32_t value = indexes[i]; |
482 | assert(i < m_symbols.size()); |
483 | const Symbol *symbol = &m_symbols[value]; |
484 | |
485 | const Mangled &mangled = symbol->GetMangled(); |
486 | if (add_demangled) { |
487 | if (ConstString name = mangled.GetDemangledName()) |
488 | name_to_index_map.Append(unique_cstr: name, value); |
489 | } |
490 | |
491 | if (add_mangled) { |
492 | if (ConstString name = mangled.GetMangledName()) |
493 | name_to_index_map.Append(unique_cstr: name, value); |
494 | } |
495 | } |
496 | } |
497 | } |
498 | |
499 | uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, |
500 | std::vector<uint32_t> &indexes, |
501 | uint32_t start_idx, |
502 | uint32_t end_index) const { |
503 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
504 | |
505 | uint32_t prev_size = indexes.size(); |
506 | |
507 | const uint32_t count = std::min<uint32_t>(a: m_symbols.size(), b: end_index); |
508 | |
509 | for (uint32_t i = start_idx; i < count; ++i) { |
510 | if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) |
511 | indexes.push_back(x: i); |
512 | } |
513 | |
514 | return indexes.size() - prev_size; |
515 | } |
516 | |
517 | uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( |
518 | SymbolType symbol_type, uint32_t flags_value, |
519 | std::vector<uint32_t> &indexes, uint32_t start_idx, |
520 | uint32_t end_index) const { |
521 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
522 | |
523 | uint32_t prev_size = indexes.size(); |
524 | |
525 | const uint32_t count = std::min<uint32_t>(a: m_symbols.size(), b: end_index); |
526 | |
527 | for (uint32_t i = start_idx; i < count; ++i) { |
528 | if ((symbol_type == eSymbolTypeAny || |
529 | m_symbols[i].GetType() == symbol_type) && |
530 | m_symbols[i].GetFlags() == flags_value) |
531 | indexes.push_back(x: i); |
532 | } |
533 | |
534 | return indexes.size() - prev_size; |
535 | } |
536 | |
537 | uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, |
538 | Debug symbol_debug_type, |
539 | Visibility symbol_visibility, |
540 | std::vector<uint32_t> &indexes, |
541 | uint32_t start_idx, |
542 | uint32_t end_index) const { |
543 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
544 | |
545 | uint32_t prev_size = indexes.size(); |
546 | |
547 | const uint32_t count = std::min<uint32_t>(a: m_symbols.size(), b: end_index); |
548 | |
549 | for (uint32_t i = start_idx; i < count; ++i) { |
550 | if (symbol_type == eSymbolTypeAny || |
551 | m_symbols[i].GetType() == symbol_type) { |
552 | if (CheckSymbolAtIndex(idx: i, symbol_debug_type, symbol_visibility)) |
553 | indexes.push_back(x: i); |
554 | } |
555 | } |
556 | |
557 | return indexes.size() - prev_size; |
558 | } |
559 | |
560 | uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { |
561 | if (!m_symbols.empty()) { |
562 | const Symbol *first_symbol = &m_symbols[0]; |
563 | if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) |
564 | return symbol - first_symbol; |
565 | } |
566 | return UINT32_MAX; |
567 | } |
568 | |
569 | struct SymbolSortInfo { |
570 | const bool sort_by_load_addr; |
571 | const Symbol *symbols; |
572 | }; |
573 | |
574 | namespace { |
575 | struct SymbolIndexComparator { |
576 | const std::vector<Symbol> &symbols; |
577 | std::vector<lldb::addr_t> &addr_cache; |
578 | |
579 | // Getting from the symbol to the Address to the File Address involves some |
580 | // work. Since there are potentially many symbols here, and we're using this |
581 | // for sorting so we're going to be computing the address many times, cache |
582 | // that in addr_cache. The array passed in has to be the same size as the |
583 | // symbols array passed into the member variable symbols, and should be |
584 | // initialized with LLDB_INVALID_ADDRESS. |
585 | // NOTE: You have to make addr_cache externally and pass it in because |
586 | // std::stable_sort |
587 | // makes copies of the comparator it is initially passed in, and you end up |
588 | // spending huge amounts of time copying this array... |
589 | |
590 | SymbolIndexComparator(const std::vector<Symbol> &s, |
591 | std::vector<lldb::addr_t> &a) |
592 | : symbols(s), addr_cache(a) { |
593 | assert(symbols.size() == addr_cache.size()); |
594 | } |
595 | bool operator()(uint32_t index_a, uint32_t index_b) { |
596 | addr_t value_a = addr_cache[index_a]; |
597 | if (value_a == LLDB_INVALID_ADDRESS) { |
598 | value_a = symbols[index_a].GetAddressRef().GetFileAddress(); |
599 | addr_cache[index_a] = value_a; |
600 | } |
601 | |
602 | addr_t value_b = addr_cache[index_b]; |
603 | if (value_b == LLDB_INVALID_ADDRESS) { |
604 | value_b = symbols[index_b].GetAddressRef().GetFileAddress(); |
605 | addr_cache[index_b] = value_b; |
606 | } |
607 | |
608 | if (value_a == value_b) { |
609 | // The if the values are equal, use the original symbol user ID |
610 | lldb::user_id_t uid_a = symbols[index_a].GetID(); |
611 | lldb::user_id_t uid_b = symbols[index_b].GetID(); |
612 | if (uid_a < uid_b) |
613 | return true; |
614 | if (uid_a > uid_b) |
615 | return false; |
616 | return false; |
617 | } else if (value_a < value_b) |
618 | return true; |
619 | |
620 | return false; |
621 | } |
622 | }; |
623 | } |
624 | |
625 | void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, |
626 | bool remove_duplicates) const { |
627 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
628 | LLDB_SCOPED_TIMER(); |
629 | // No need to sort if we have zero or one items... |
630 | if (indexes.size() <= 1) |
631 | return; |
632 | |
633 | // Sort the indexes in place using std::stable_sort. |
634 | // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly |
635 | // for performance, not correctness. The indexes vector tends to be "close" |
636 | // to sorted, which the stable sort handles better. |
637 | |
638 | std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); |
639 | |
640 | SymbolIndexComparator comparator(m_symbols, addr_cache); |
641 | std::stable_sort(first: indexes.begin(), last: indexes.end(), comp: comparator); |
642 | |
643 | // Remove any duplicates if requested |
644 | if (remove_duplicates) { |
645 | auto last = std::unique(first: indexes.begin(), last: indexes.end()); |
646 | indexes.erase(first: last, last: indexes.end()); |
647 | } |
648 | } |
649 | |
650 | uint32_t Symtab::GetNameIndexes(ConstString symbol_name, |
651 | std::vector<uint32_t> &indexes) { |
652 | auto &name_to_index = GetNameToSymbolIndexMap(type: lldb::eFunctionNameTypeNone); |
653 | const uint32_t count = name_to_index.GetValues(unique_cstr: symbol_name, values&: indexes); |
654 | if (count) |
655 | return count; |
656 | // Synthetic symbol names are not added to the name indexes, but they start |
657 | // with a prefix and end with a the symbol UserID. This allows users to find |
658 | // these symbols without having to add them to the name indexes. These |
659 | // queries will not happen very often since the names don't mean anything, so |
660 | // performance is not paramount in this case. |
661 | llvm::StringRef name = symbol_name.GetStringRef(); |
662 | // String the synthetic prefix if the name starts with it. |
663 | if (!name.consume_front(Prefix: Symbol::GetSyntheticSymbolPrefix())) |
664 | return 0; // Not a synthetic symbol name |
665 | |
666 | // Extract the user ID from the symbol name |
667 | unsigned long long uid = 0; |
668 | if (getAsUnsignedInteger(Str: name, /*Radix=*/10, Result&: uid)) |
669 | return 0; // Failed to extract the user ID as an integer |
670 | Symbol *symbol = FindSymbolByID(symbol_uid: uid); |
671 | if (symbol == nullptr) |
672 | return 0; |
673 | const uint32_t symbol_idx = GetIndexForSymbol(symbol); |
674 | if (symbol_idx == UINT32_MAX) |
675 | return 0; |
676 | indexes.push_back(x: symbol_idx); |
677 | return 1; |
678 | } |
679 | |
680 | uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, |
681 | std::vector<uint32_t> &indexes) { |
682 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
683 | |
684 | if (symbol_name) { |
685 | if (!m_name_indexes_computed) |
686 | InitNameIndexes(); |
687 | |
688 | return GetNameIndexes(symbol_name, indexes); |
689 | } |
690 | return 0; |
691 | } |
692 | |
693 | uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, |
694 | Debug symbol_debug_type, |
695 | Visibility symbol_visibility, |
696 | std::vector<uint32_t> &indexes) { |
697 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
698 | |
699 | LLDB_SCOPED_TIMER(); |
700 | if (symbol_name) { |
701 | const size_t old_size = indexes.size(); |
702 | if (!m_name_indexes_computed) |
703 | InitNameIndexes(); |
704 | |
705 | std::vector<uint32_t> all_name_indexes; |
706 | const size_t name_match_count = |
707 | GetNameIndexes(symbol_name, indexes&: all_name_indexes); |
708 | for (size_t i = 0; i < name_match_count; ++i) { |
709 | if (CheckSymbolAtIndex(idx: all_name_indexes[i], symbol_debug_type, |
710 | symbol_visibility)) |
711 | indexes.push_back(x: all_name_indexes[i]); |
712 | } |
713 | return indexes.size() - old_size; |
714 | } |
715 | return 0; |
716 | } |
717 | |
718 | uint32_t |
719 | Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name, |
720 | SymbolType symbol_type, |
721 | std::vector<uint32_t> &indexes) { |
722 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
723 | |
724 | if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { |
725 | std::vector<uint32_t>::iterator pos = indexes.begin(); |
726 | while (pos != indexes.end()) { |
727 | if (symbol_type == eSymbolTypeAny || |
728 | m_symbols[*pos].GetType() == symbol_type) |
729 | ++pos; |
730 | else |
731 | pos = indexes.erase(position: pos); |
732 | } |
733 | } |
734 | return indexes.size(); |
735 | } |
736 | |
737 | uint32_t Symtab::AppendSymbolIndexesWithNameAndType( |
738 | ConstString symbol_name, SymbolType symbol_type, |
739 | Debug symbol_debug_type, Visibility symbol_visibility, |
740 | std::vector<uint32_t> &indexes) { |
741 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
742 | |
743 | if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, |
744 | symbol_visibility, indexes) > 0) { |
745 | std::vector<uint32_t>::iterator pos = indexes.begin(); |
746 | while (pos != indexes.end()) { |
747 | if (symbol_type == eSymbolTypeAny || |
748 | m_symbols[*pos].GetType() == symbol_type) |
749 | ++pos; |
750 | else |
751 | pos = indexes.erase(position: pos); |
752 | } |
753 | } |
754 | return indexes.size(); |
755 | } |
756 | |
757 | uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( |
758 | const RegularExpression ®exp, SymbolType symbol_type, |
759 | std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) { |
760 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
761 | |
762 | uint32_t prev_size = indexes.size(); |
763 | uint32_t sym_end = m_symbols.size(); |
764 | |
765 | for (uint32_t i = 0; i < sym_end; i++) { |
766 | if (symbol_type == eSymbolTypeAny || |
767 | m_symbols[i].GetType() == symbol_type) { |
768 | const char *name = |
769 | m_symbols[i].GetMangled().GetName(preference: name_preference).AsCString(); |
770 | if (name) { |
771 | if (regexp.Execute(string: name)) |
772 | indexes.push_back(x: i); |
773 | } |
774 | } |
775 | } |
776 | return indexes.size() - prev_size; |
777 | } |
778 | |
779 | uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( |
780 | const RegularExpression ®exp, SymbolType symbol_type, |
781 | Debug symbol_debug_type, Visibility symbol_visibility, |
782 | std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) { |
783 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
784 | |
785 | uint32_t prev_size = indexes.size(); |
786 | uint32_t sym_end = m_symbols.size(); |
787 | |
788 | for (uint32_t i = 0; i < sym_end; i++) { |
789 | if (symbol_type == eSymbolTypeAny || |
790 | m_symbols[i].GetType() == symbol_type) { |
791 | if (!CheckSymbolAtIndex(idx: i, symbol_debug_type, symbol_visibility)) |
792 | continue; |
793 | |
794 | const char *name = |
795 | m_symbols[i].GetMangled().GetName(preference: name_preference).AsCString(); |
796 | if (name) { |
797 | if (regexp.Execute(string: name)) |
798 | indexes.push_back(x: i); |
799 | } |
800 | } |
801 | } |
802 | return indexes.size() - prev_size; |
803 | } |
804 | |
805 | Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, |
806 | Debug symbol_debug_type, |
807 | Visibility symbol_visibility, |
808 | uint32_t &start_idx) { |
809 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
810 | |
811 | const size_t count = m_symbols.size(); |
812 | for (size_t idx = start_idx; idx < count; ++idx) { |
813 | if (symbol_type == eSymbolTypeAny || |
814 | m_symbols[idx].GetType() == symbol_type) { |
815 | if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { |
816 | start_idx = idx; |
817 | return &m_symbols[idx]; |
818 | } |
819 | } |
820 | } |
821 | return nullptr; |
822 | } |
823 | |
824 | void |
825 | Symtab::FindAllSymbolsWithNameAndType(ConstString name, |
826 | SymbolType symbol_type, |
827 | std::vector<uint32_t> &symbol_indexes) { |
828 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
829 | |
830 | // Initialize all of the lookup by name indexes before converting NAME to a |
831 | // uniqued string NAME_STR below. |
832 | if (!m_name_indexes_computed) |
833 | InitNameIndexes(); |
834 | |
835 | if (name) { |
836 | // The string table did have a string that matched, but we need to check |
837 | // the symbols and match the symbol_type if any was given. |
838 | AppendSymbolIndexesWithNameAndType(symbol_name: name, symbol_type, indexes&: symbol_indexes); |
839 | } |
840 | } |
841 | |
842 | void Symtab::FindAllSymbolsWithNameAndType( |
843 | ConstString name, SymbolType symbol_type, Debug symbol_debug_type, |
844 | Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { |
845 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
846 | |
847 | LLDB_SCOPED_TIMER(); |
848 | // Initialize all of the lookup by name indexes before converting NAME to a |
849 | // uniqued string NAME_STR below. |
850 | if (!m_name_indexes_computed) |
851 | InitNameIndexes(); |
852 | |
853 | if (name) { |
854 | // The string table did have a string that matched, but we need to check |
855 | // the symbols and match the symbol_type if any was given. |
856 | AppendSymbolIndexesWithNameAndType(symbol_name: name, symbol_type, symbol_debug_type, |
857 | symbol_visibility, indexes&: symbol_indexes); |
858 | } |
859 | } |
860 | |
861 | void Symtab::FindAllSymbolsMatchingRexExAndType( |
862 | const RegularExpression ®ex, SymbolType symbol_type, |
863 | Debug symbol_debug_type, Visibility symbol_visibility, |
864 | std::vector<uint32_t> &symbol_indexes, |
865 | Mangled::NamePreference name_preference) { |
866 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
867 | |
868 | AppendSymbolIndexesMatchingRegExAndType(regexp: regex, symbol_type, symbol_debug_type, |
869 | symbol_visibility, indexes&: symbol_indexes, |
870 | name_preference); |
871 | } |
872 | |
873 | Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name, |
874 | SymbolType symbol_type, |
875 | Debug symbol_debug_type, |
876 | Visibility symbol_visibility) { |
877 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
878 | LLDB_SCOPED_TIMER(); |
879 | if (!m_name_indexes_computed) |
880 | InitNameIndexes(); |
881 | |
882 | if (name) { |
883 | std::vector<uint32_t> matching_indexes; |
884 | // The string table did have a string that matched, but we need to check |
885 | // the symbols and match the symbol_type if any was given. |
886 | if (AppendSymbolIndexesWithNameAndType(symbol_name: name, symbol_type, symbol_debug_type, |
887 | symbol_visibility, |
888 | indexes&: matching_indexes)) { |
889 | std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); |
890 | for (pos = matching_indexes.begin(); pos != end; ++pos) { |
891 | Symbol *symbol = SymbolAtIndex(idx: *pos); |
892 | |
893 | if (symbol->Compare(name, type: symbol_type)) |
894 | return symbol; |
895 | } |
896 | } |
897 | } |
898 | return nullptr; |
899 | } |
900 | |
901 | typedef struct { |
902 | const Symtab *symtab; |
903 | const addr_t file_addr; |
904 | Symbol *match_symbol; |
905 | const uint32_t *match_index_ptr; |
906 | addr_t match_offset; |
907 | } SymbolSearchInfo; |
908 | |
909 | // Add all the section file start address & size to the RangeVector, recusively |
910 | // adding any children sections. |
911 | static void AddSectionsToRangeMap(SectionList *sectlist, |
912 | RangeVector<addr_t, addr_t> §ion_ranges) { |
913 | const int num_sections = sectlist->GetNumSections(depth: 0); |
914 | for (int i = 0; i < num_sections; i++) { |
915 | SectionSP sect_sp = sectlist->GetSectionAtIndex(idx: i); |
916 | if (sect_sp) { |
917 | SectionList &child_sectlist = sect_sp->GetChildren(); |
918 | |
919 | // If this section has children, add the children to the RangeVector. |
920 | // Else add this section to the RangeVector. |
921 | if (child_sectlist.GetNumSections(depth: 0) > 0) { |
922 | AddSectionsToRangeMap(sectlist: &child_sectlist, section_ranges); |
923 | } else { |
924 | size_t size = sect_sp->GetByteSize(); |
925 | if (size > 0) { |
926 | addr_t base_addr = sect_sp->GetFileAddress(); |
927 | RangeVector<addr_t, addr_t>::Entry entry; |
928 | entry.SetRangeBase(base_addr); |
929 | entry.SetByteSize(size); |
930 | section_ranges.Append(entry); |
931 | } |
932 | } |
933 | } |
934 | } |
935 | } |
936 | |
937 | void Symtab::InitAddressIndexes() { |
938 | // Protected function, no need to lock mutex... |
939 | if (!m_file_addr_to_index_computed && !m_symbols.empty()) { |
940 | m_file_addr_to_index_computed = true; |
941 | |
942 | FileRangeToIndexMap::Entry entry; |
943 | const_iterator begin = m_symbols.begin(); |
944 | const_iterator end = m_symbols.end(); |
945 | for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { |
946 | if (pos->ValueIsAddress()) { |
947 | entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); |
948 | entry.SetByteSize(pos->GetByteSize()); |
949 | entry.data = std::distance(first: begin, last: pos); |
950 | m_file_addr_to_index.Append(entry); |
951 | } |
952 | } |
953 | const size_t num_entries = m_file_addr_to_index.GetSize(); |
954 | if (num_entries > 0) { |
955 | m_file_addr_to_index.Sort(); |
956 | |
957 | // Create a RangeVector with the start & size of all the sections for |
958 | // this objfile. We'll need to check this for any FileRangeToIndexMap |
959 | // entries with an uninitialized size, which could potentially be a large |
960 | // number so reconstituting the weak pointer is busywork when it is |
961 | // invariant information. |
962 | SectionList *sectlist = m_objfile->GetSectionList(); |
963 | RangeVector<addr_t, addr_t> section_ranges; |
964 | if (sectlist) { |
965 | AddSectionsToRangeMap(sectlist, section_ranges); |
966 | section_ranges.Sort(); |
967 | } |
968 | |
969 | // Iterate through the FileRangeToIndexMap and fill in the size for any |
970 | // entries that didn't already have a size from the Symbol (e.g. if we |
971 | // have a plain linker symbol with an address only, instead of debug info |
972 | // where we get an address and a size and a type, etc.) |
973 | for (size_t i = 0; i < num_entries; i++) { |
974 | FileRangeToIndexMap::Entry *entry = |
975 | m_file_addr_to_index.GetMutableEntryAtIndex(i); |
976 | if (entry->GetByteSize() == 0) { |
977 | addr_t curr_base_addr = entry->GetRangeBase(); |
978 | const RangeVector<addr_t, addr_t>::Entry *containing_section = |
979 | section_ranges.FindEntryThatContains(addr: curr_base_addr); |
980 | |
981 | // Use the end of the section as the default max size of the symbol |
982 | addr_t sym_size = 0; |
983 | if (containing_section) { |
984 | sym_size = |
985 | containing_section->GetByteSize() - |
986 | (entry->GetRangeBase() - containing_section->GetRangeBase()); |
987 | } |
988 | |
989 | for (size_t j = i; j < num_entries; j++) { |
990 | FileRangeToIndexMap::Entry *next_entry = |
991 | m_file_addr_to_index.GetMutableEntryAtIndex(i: j); |
992 | addr_t next_base_addr = next_entry->GetRangeBase(); |
993 | if (next_base_addr > curr_base_addr) { |
994 | addr_t size_to_next_symbol = next_base_addr - curr_base_addr; |
995 | |
996 | // Take the difference between this symbol and the next one as |
997 | // its size, if it is less than the size of the section. |
998 | if (sym_size == 0 || size_to_next_symbol < sym_size) { |
999 | sym_size = size_to_next_symbol; |
1000 | } |
1001 | break; |
1002 | } |
1003 | } |
1004 | |
1005 | if (sym_size > 0) { |
1006 | entry->SetByteSize(sym_size); |
1007 | Symbol &symbol = m_symbols[entry->data]; |
1008 | symbol.SetByteSize(sym_size); |
1009 | symbol.SetSizeIsSynthesized(true); |
1010 | } |
1011 | } |
1012 | } |
1013 | |
1014 | // Sort again in case the range size changes the ordering |
1015 | m_file_addr_to_index.Sort(); |
1016 | } |
1017 | } |
1018 | } |
1019 | |
1020 | void Symtab::Finalize() { |
1021 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
1022 | // Calculate the size of symbols inside InitAddressIndexes. |
1023 | InitAddressIndexes(); |
1024 | // Shrink to fit the symbols so we don't waste memory |
1025 | m_symbols.shrink_to_fit(); |
1026 | SaveToCache(); |
1027 | } |
1028 | |
1029 | Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { |
1030 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
1031 | if (!m_file_addr_to_index_computed) |
1032 | InitAddressIndexes(); |
1033 | |
1034 | const FileRangeToIndexMap::Entry *entry = |
1035 | m_file_addr_to_index.FindEntryStartsAt(addr: file_addr); |
1036 | if (entry) { |
1037 | Symbol *symbol = SymbolAtIndex(idx: entry->data); |
1038 | if (symbol->GetFileAddress() == file_addr) |
1039 | return symbol; |
1040 | } |
1041 | return nullptr; |
1042 | } |
1043 | |
1044 | Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { |
1045 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
1046 | |
1047 | if (!m_file_addr_to_index_computed) |
1048 | InitAddressIndexes(); |
1049 | |
1050 | const FileRangeToIndexMap::Entry *entry = |
1051 | m_file_addr_to_index.FindEntryThatContains(addr: file_addr); |
1052 | if (entry) { |
1053 | Symbol *symbol = SymbolAtIndex(idx: entry->data); |
1054 | if (symbol->ContainsFileAddress(file_addr)) |
1055 | return symbol; |
1056 | } |
1057 | return nullptr; |
1058 | } |
1059 | |
1060 | void Symtab::ForEachSymbolContainingFileAddress( |
1061 | addr_t file_addr, std::function<bool(Symbol *)> const &callback) { |
1062 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
1063 | |
1064 | if (!m_file_addr_to_index_computed) |
1065 | InitAddressIndexes(); |
1066 | |
1067 | std::vector<uint32_t> all_addr_indexes; |
1068 | |
1069 | // Get all symbols with file_addr |
1070 | const size_t addr_match_count = |
1071 | m_file_addr_to_index.FindEntryIndexesThatContain(addr: file_addr, |
1072 | indexes&: all_addr_indexes); |
1073 | |
1074 | for (size_t i = 0; i < addr_match_count; ++i) { |
1075 | Symbol *symbol = SymbolAtIndex(idx: all_addr_indexes[i]); |
1076 | if (symbol->ContainsFileAddress(file_addr)) { |
1077 | if (!callback(symbol)) |
1078 | break; |
1079 | } |
1080 | } |
1081 | } |
1082 | |
1083 | void Symtab::SymbolIndicesToSymbolContextList( |
1084 | std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { |
1085 | // No need to protect this call using m_mutex all other method calls are |
1086 | // already thread safe. |
1087 | |
1088 | const bool merge_symbol_into_function = true; |
1089 | size_t num_indices = symbol_indexes.size(); |
1090 | if (num_indices > 0) { |
1091 | SymbolContext sc; |
1092 | sc.module_sp = m_objfile->GetModule(); |
1093 | for (size_t i = 0; i < num_indices; i++) { |
1094 | sc.symbol = SymbolAtIndex(idx: symbol_indexes[i]); |
1095 | if (sc.symbol) |
1096 | sc_list.AppendIfUnique(sc, merge_symbol_into_function); |
1097 | } |
1098 | } |
1099 | } |
1100 | |
1101 | void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask, |
1102 | SymbolContextList &sc_list) { |
1103 | std::vector<uint32_t> symbol_indexes; |
1104 | |
1105 | // eFunctionNameTypeAuto should be pre-resolved by a call to |
1106 | // Module::LookupInfo::LookupInfo() |
1107 | assert((name_type_mask & eFunctionNameTypeAuto) == 0); |
1108 | |
1109 | if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { |
1110 | std::vector<uint32_t> temp_symbol_indexes; |
1111 | FindAllSymbolsWithNameAndType(name, symbol_type: eSymbolTypeAny, symbol_indexes&: temp_symbol_indexes); |
1112 | |
1113 | unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); |
1114 | if (temp_symbol_indexes_size > 0) { |
1115 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
1116 | for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { |
1117 | SymbolContext sym_ctx; |
1118 | sym_ctx.symbol = SymbolAtIndex(idx: temp_symbol_indexes[i]); |
1119 | if (sym_ctx.symbol) { |
1120 | switch (sym_ctx.symbol->GetType()) { |
1121 | case eSymbolTypeCode: |
1122 | case eSymbolTypeResolver: |
1123 | case eSymbolTypeReExported: |
1124 | case eSymbolTypeAbsolute: |
1125 | symbol_indexes.push_back(x: temp_symbol_indexes[i]); |
1126 | break; |
1127 | default: |
1128 | break; |
1129 | } |
1130 | } |
1131 | } |
1132 | } |
1133 | } |
1134 | |
1135 | if (!m_name_indexes_computed) |
1136 | InitNameIndexes(); |
1137 | |
1138 | for (lldb::FunctionNameType type : |
1139 | {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod, |
1140 | lldb::eFunctionNameTypeSelector}) { |
1141 | if (name_type_mask & type) { |
1142 | auto map = GetNameToSymbolIndexMap(type); |
1143 | |
1144 | const UniqueCStringMap<uint32_t>::Entry *match; |
1145 | for (match = map.FindFirstValueForName(unique_cstr: name); match != nullptr; |
1146 | match = map.FindNextValueForName(entry_ptr: match)) { |
1147 | symbol_indexes.push_back(x: match->value); |
1148 | } |
1149 | } |
1150 | } |
1151 | |
1152 | if (!symbol_indexes.empty()) { |
1153 | llvm::sort(C&: symbol_indexes); |
1154 | symbol_indexes.erase( |
1155 | first: std::unique(first: symbol_indexes.begin(), last: symbol_indexes.end()), |
1156 | last: symbol_indexes.end()); |
1157 | SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); |
1158 | } |
1159 | } |
1160 | |
1161 | const Symbol *Symtab::GetParent(Symbol *child_symbol) const { |
1162 | uint32_t child_idx = GetIndexForSymbol(symbol: child_symbol); |
1163 | if (child_idx != UINT32_MAX && child_idx > 0) { |
1164 | for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { |
1165 | const Symbol *symbol = SymbolAtIndex(idx); |
1166 | const uint32_t sibling_idx = symbol->GetSiblingIndex(); |
1167 | if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) |
1168 | return symbol; |
1169 | } |
1170 | } |
1171 | return nullptr; |
1172 | } |
1173 | |
1174 | std::string Symtab::GetCacheKey() { |
1175 | std::string key; |
1176 | llvm::raw_string_ostream strm(key); |
1177 | // Symbol table can come from different object files for the same module. A |
1178 | // module can have one object file as the main executable and might have |
1179 | // another object file in a separate symbol file. |
1180 | strm << m_objfile->GetModule()->GetCacheKey() << "-symtab-" |
1181 | << llvm::format_hex(N: m_objfile->GetCacheHash(), Width: 10); |
1182 | return strm.str(); |
1183 | } |
1184 | |
1185 | void Symtab::SaveToCache() { |
1186 | DataFileCache *cache = Module::GetIndexCache(); |
1187 | if (!cache) |
1188 | return; // Caching is not enabled. |
1189 | InitNameIndexes(); // Init the name indexes so we can cache them as well. |
1190 | const auto byte_order = endian::InlHostByteOrder(); |
1191 | DataEncoder file(byte_order, /*addr_size=*/8); |
1192 | // Encode will return false if the symbol table's object file doesn't have |
1193 | // anything to make a signature from. |
1194 | if (Encode(encoder&: file)) |
1195 | if (cache->SetCachedData(key: GetCacheKey(), data: file.GetData())) |
1196 | SetWasSavedToCache(); |
1197 | } |
1198 | |
1199 | constexpr llvm::StringLiteral kIdentifierCStrMap("CMAP" ); |
1200 | |
1201 | static void EncodeCStrMap(DataEncoder &encoder, ConstStringTable &strtab, |
1202 | const UniqueCStringMap<uint32_t> &cstr_map) { |
1203 | encoder.AppendData(data: kIdentifierCStrMap); |
1204 | encoder.AppendU32(value: cstr_map.GetSize()); |
1205 | for (const auto &entry: cstr_map) { |
1206 | // Make sure there are no empty strings. |
1207 | assert((bool)entry.cstring); |
1208 | encoder.AppendU32(value: strtab.Add(s: entry.cstring)); |
1209 | encoder.AppendU32(value: entry.value); |
1210 | } |
1211 | } |
1212 | |
1213 | bool (const DataExtractor &data, lldb::offset_t *offset_ptr, |
1214 | const StringTableReader &strtab, |
1215 | UniqueCStringMap<uint32_t> &cstr_map) { |
1216 | llvm::StringRef identifier((const char *)data.GetData(offset_ptr, length: 4), 4); |
1217 | if (identifier != kIdentifierCStrMap) |
1218 | return false; |
1219 | const uint32_t count = data.GetU32(offset_ptr); |
1220 | cstr_map.Reserve(n: count); |
1221 | for (uint32_t i=0; i<count; ++i) |
1222 | { |
1223 | llvm::StringRef str(strtab.Get(offset: data.GetU32(offset_ptr))); |
1224 | uint32_t value = data.GetU32(offset_ptr); |
1225 | // No empty strings in the name indexes in Symtab |
1226 | if (str.empty()) |
1227 | return false; |
1228 | cstr_map.Append(unique_cstr: ConstString(str), value); |
1229 | } |
1230 | // We must sort the UniqueCStringMap after decoding it since it is a vector |
1231 | // of UniqueCStringMap::Entry objects which contain a ConstString and type T. |
1232 | // ConstString objects are sorted by "const char *" and then type T and |
1233 | // the "const char *" are point values that will depend on the order in which |
1234 | // ConstString objects are created and in which of the 256 string pools they |
1235 | // are created in. So after we decode all of the entries, we must sort the |
1236 | // name map to ensure name lookups succeed. If we encode and decode within |
1237 | // the same process we wouldn't need to sort, so unit testing didn't catch |
1238 | // this issue when first checked in. |
1239 | cstr_map.Sort(); |
1240 | return true; |
1241 | } |
1242 | |
1243 | constexpr llvm::StringLiteral kIdentifierSymbolTable("SYMB" ); |
1244 | constexpr uint32_t CURRENT_CACHE_VERSION = 1; |
1245 | |
1246 | /// The encoding format for the symbol table is as follows: |
1247 | /// |
1248 | /// Signature signature; |
1249 | /// ConstStringTable strtab; |
1250 | /// Identifier four character code: 'SYMB' |
1251 | /// uint32_t version; |
1252 | /// uint32_t num_symbols; |
1253 | /// Symbol symbols[num_symbols]; |
1254 | /// uint8_t num_cstr_maps; |
1255 | /// UniqueCStringMap<uint32_t> cstr_maps[num_cstr_maps] |
1256 | bool Symtab::Encode(DataEncoder &encoder) const { |
1257 | // Name indexes must be computed before calling this function. |
1258 | assert(m_name_indexes_computed); |
1259 | |
1260 | // Encode the object file's signature |
1261 | CacheSignature signature(m_objfile); |
1262 | if (!signature.Encode(encoder)) |
1263 | return false; |
1264 | ConstStringTable strtab; |
1265 | |
1266 | // Encoder the symbol table into a separate encoder first. This allows us |
1267 | // gather all of the strings we willl need in "strtab" as we will need to |
1268 | // write the string table out before the symbol table. |
1269 | DataEncoder symtab_encoder(encoder.GetByteOrder(), |
1270 | encoder.GetAddressByteSize()); |
1271 | symtab_encoder.AppendData(data: kIdentifierSymbolTable); |
1272 | // Encode the symtab data version. |
1273 | symtab_encoder.AppendU32(value: CURRENT_CACHE_VERSION); |
1274 | // Encode the number of symbols. |
1275 | symtab_encoder.AppendU32(value: m_symbols.size()); |
1276 | // Encode the symbol data for all symbols. |
1277 | for (const auto &symbol: m_symbols) |
1278 | symbol.Encode(encoder&: symtab_encoder, strtab); |
1279 | |
1280 | // Emit a byte for how many C string maps we emit. We will fix this up after |
1281 | // we emit the C string maps since we skip emitting C string maps if they are |
1282 | // empty. |
1283 | size_t num_cmaps_offset = symtab_encoder.GetByteSize(); |
1284 | uint8_t num_cmaps = 0; |
1285 | symtab_encoder.AppendU8(value: 0); |
1286 | for (const auto &pair: m_name_to_symbol_indices) { |
1287 | if (pair.second.IsEmpty()) |
1288 | continue; |
1289 | ++num_cmaps; |
1290 | symtab_encoder.AppendU8(value: pair.first); |
1291 | EncodeCStrMap(encoder&: symtab_encoder, strtab, cstr_map: pair.second); |
1292 | } |
1293 | if (num_cmaps > 0) |
1294 | symtab_encoder.PutU8(offset: num_cmaps_offset, value: num_cmaps); |
1295 | |
1296 | // Now that all strings have been gathered, we will emit the string table. |
1297 | strtab.Encode(encoder); |
1298 | // Followed by the symbol table data. |
1299 | encoder.AppendData(data: symtab_encoder.GetData()); |
1300 | return true; |
1301 | } |
1302 | |
1303 | bool Symtab::(const DataExtractor &data, lldb::offset_t *offset_ptr, |
1304 | bool &signature_mismatch) { |
1305 | signature_mismatch = false; |
1306 | CacheSignature signature; |
1307 | StringTableReader strtab; |
1308 | { // Scope for "elapsed" object below so it can measure the time parse. |
1309 | ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabParseTime()); |
1310 | if (!signature.Decode(data, offset_ptr)) |
1311 | return false; |
1312 | if (CacheSignature(m_objfile) != signature) { |
1313 | signature_mismatch = true; |
1314 | return false; |
1315 | } |
1316 | // We now decode the string table for all strings in the data cache file. |
1317 | if (!strtab.Decode(data, offset_ptr)) |
1318 | return false; |
1319 | |
1320 | // And now we can decode the symbol table with string table we just decoded. |
1321 | llvm::StringRef identifier((const char *)data.GetData(offset_ptr, length: 4), 4); |
1322 | if (identifier != kIdentifierSymbolTable) |
1323 | return false; |
1324 | const uint32_t version = data.GetU32(offset_ptr); |
1325 | if (version != CURRENT_CACHE_VERSION) |
1326 | return false; |
1327 | const uint32_t num_symbols = data.GetU32(offset_ptr); |
1328 | if (num_symbols == 0) |
1329 | return true; |
1330 | m_symbols.resize(new_size: num_symbols); |
1331 | SectionList *sections = m_objfile->GetModule()->GetSectionList(); |
1332 | for (uint32_t i=0; i<num_symbols; ++i) { |
1333 | if (!m_symbols[i].Decode(data, offset_ptr, section_list: sections, strtab)) |
1334 | return false; |
1335 | } |
1336 | } |
1337 | |
1338 | { // Scope for "elapsed" object below so it can measure the time to index. |
1339 | ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime()); |
1340 | const uint8_t num_cstr_maps = data.GetU8(offset_ptr); |
1341 | for (uint8_t i=0; i<num_cstr_maps; ++i) { |
1342 | uint8_t type = data.GetU8(offset_ptr); |
1343 | UniqueCStringMap<uint32_t> &cstr_map = |
1344 | GetNameToSymbolIndexMap(type: (lldb::FunctionNameType)type); |
1345 | if (!DecodeCStrMap(data, offset_ptr, strtab, cstr_map)) |
1346 | return false; |
1347 | } |
1348 | m_name_indexes_computed = true; |
1349 | } |
1350 | return true; |
1351 | } |
1352 | |
1353 | bool Symtab::LoadFromCache() { |
1354 | DataFileCache *cache = Module::GetIndexCache(); |
1355 | if (!cache) |
1356 | return false; |
1357 | |
1358 | std::unique_ptr<llvm::MemoryBuffer> mem_buffer_up = |
1359 | cache->GetCachedData(key: GetCacheKey()); |
1360 | if (!mem_buffer_up) |
1361 | return false; |
1362 | DataExtractor data(mem_buffer_up->getBufferStart(), |
1363 | mem_buffer_up->getBufferSize(), |
1364 | m_objfile->GetByteOrder(), |
1365 | m_objfile->GetAddressByteSize()); |
1366 | bool signature_mismatch = false; |
1367 | lldb::offset_t offset = 0; |
1368 | const bool result = Decode(data, offset_ptr: &offset, signature_mismatch); |
1369 | if (signature_mismatch) |
1370 | cache->RemoveCacheFile(key: GetCacheKey()); |
1371 | if (result) |
1372 | SetWasLoadedFromCache(); |
1373 | return result; |
1374 | } |
1375 | |