| 1 | //===-- Memory.cpp --------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "lldb/Target/Memory.h" |
| 10 | #include "lldb/Target/Process.h" |
| 11 | #include "lldb/Utility/DataBufferHeap.h" |
| 12 | #include "lldb/Utility/LLDBLog.h" |
| 13 | #include "lldb/Utility/Log.h" |
| 14 | #include "lldb/Utility/RangeMap.h" |
| 15 | #include "lldb/Utility/State.h" |
| 16 | |
| 17 | #include <cinttypes> |
| 18 | #include <memory> |
| 19 | |
| 20 | using namespace lldb; |
| 21 | using namespace lldb_private; |
| 22 | |
| 23 | // MemoryCache constructor |
| 24 | MemoryCache::MemoryCache(Process &process) |
| 25 | : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(), |
| 26 | m_process(process), |
| 27 | m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {} |
| 28 | |
| 29 | // Destructor |
| 30 | MemoryCache::~MemoryCache() = default; |
| 31 | |
| 32 | void MemoryCache::Clear(bool clear_invalid_ranges) { |
| 33 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| 34 | m_L1_cache.clear(); |
| 35 | m_L2_cache.clear(); |
| 36 | if (clear_invalid_ranges) |
| 37 | m_invalid_ranges.Clear(); |
| 38 | m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize(); |
| 39 | } |
| 40 | |
| 41 | void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src, |
| 42 | size_t src_len) { |
| 43 | AddL1CacheData( |
| 44 | addr, data_buffer_sp: DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len)))); |
| 45 | } |
| 46 | |
| 47 | void MemoryCache::AddL1CacheData(lldb::addr_t addr, |
| 48 | const DataBufferSP &data_buffer_sp) { |
| 49 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| 50 | m_L1_cache[addr] = data_buffer_sp; |
| 51 | } |
| 52 | |
| 53 | void MemoryCache::Flush(addr_t addr, size_t size) { |
| 54 | if (size == 0) |
| 55 | return; |
| 56 | |
| 57 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| 58 | |
| 59 | // Erase any blocks from the L1 cache that intersect with the flush range |
| 60 | if (!m_L1_cache.empty()) { |
| 61 | AddrRange flush_range(addr, size); |
| 62 | BlockMap::iterator pos = m_L1_cache.upper_bound(x: addr); |
| 63 | if (pos != m_L1_cache.begin()) { |
| 64 | --pos; |
| 65 | } |
| 66 | while (pos != m_L1_cache.end()) { |
| 67 | AddrRange chunk_range(pos->first, pos->second->GetByteSize()); |
| 68 | if (!chunk_range.DoesIntersect(rhs: flush_range)) |
| 69 | break; |
| 70 | pos = m_L1_cache.erase(position: pos); |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | if (!m_L2_cache.empty()) { |
| 75 | const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; |
| 76 | const addr_t end_addr = (addr + size - 1); |
| 77 | const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size); |
| 78 | const addr_t last_cache_line_addr = |
| 79 | end_addr - (end_addr % cache_line_byte_size); |
| 80 | // Watch for overflow where size will cause us to go off the end of the |
| 81 | // 64 bit address space |
| 82 | uint32_t num_cache_lines; |
| 83 | if (last_cache_line_addr >= first_cache_line_addr) |
| 84 | num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) / |
| 85 | cache_line_byte_size) + |
| 86 | 1; |
| 87 | else |
| 88 | num_cache_lines = |
| 89 | (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size; |
| 90 | |
| 91 | uint32_t cache_idx = 0; |
| 92 | for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines; |
| 93 | curr_addr += cache_line_byte_size, ++cache_idx) { |
| 94 | BlockMap::iterator pos = m_L2_cache.find(x: curr_addr); |
| 95 | if (pos != m_L2_cache.end()) |
| 96 | m_L2_cache.erase(position: pos); |
| 97 | } |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | void MemoryCache::AddInvalidRange(lldb::addr_t base_addr, |
| 102 | lldb::addr_t byte_size) { |
| 103 | if (byte_size > 0) { |
| 104 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| 105 | InvalidRanges::Entry range(base_addr, byte_size); |
| 106 | m_invalid_ranges.Append(entry: range); |
| 107 | m_invalid_ranges.Sort(); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr, |
| 112 | lldb::addr_t byte_size) { |
| 113 | if (byte_size > 0) { |
| 114 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| 115 | const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(addr: base_addr); |
| 116 | if (idx != UINT32_MAX) { |
| 117 | const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(i: idx); |
| 118 | if (entry->GetRangeBase() == base_addr && |
| 119 | entry->GetByteSize() == byte_size) |
| 120 | return m_invalid_ranges.RemoveEntryAtIndex(idx); |
| 121 | } |
| 122 | } |
| 123 | return false; |
| 124 | } |
| 125 | |
| 126 | lldb::DataBufferSP MemoryCache::GetL2CacheLine(lldb::addr_t line_base_addr, |
| 127 | Status &error) { |
| 128 | // This function assumes that the address given is aligned correctly. |
| 129 | assert((line_base_addr % m_L2_cache_line_byte_size) == 0); |
| 130 | |
| 131 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| 132 | auto pos = m_L2_cache.find(x: line_base_addr); |
| 133 | if (pos != m_L2_cache.end()) |
| 134 | return pos->second; |
| 135 | |
| 136 | auto data_buffer_heap_sp = |
| 137 | std::make_shared<DataBufferHeap>(args&: m_L2_cache_line_byte_size, args: 0); |
| 138 | size_t process_bytes_read = m_process.ReadMemoryFromInferior( |
| 139 | vm_addr: line_base_addr, buf: data_buffer_heap_sp->GetBytes(), |
| 140 | size: data_buffer_heap_sp->GetByteSize(), error); |
| 141 | |
| 142 | // If we failed a read, not much we can do. |
| 143 | if (process_bytes_read == 0) |
| 144 | return lldb::DataBufferSP(); |
| 145 | |
| 146 | // If we didn't get a complete read, we can still cache what we did get. |
| 147 | if (process_bytes_read < m_L2_cache_line_byte_size) |
| 148 | data_buffer_heap_sp->SetByteSize(process_bytes_read); |
| 149 | |
| 150 | m_L2_cache[line_base_addr] = data_buffer_heap_sp; |
| 151 | return data_buffer_heap_sp; |
| 152 | } |
| 153 | |
| 154 | size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len, |
| 155 | Status &error) { |
| 156 | if (!dst || dst_len == 0) |
| 157 | return 0; |
| 158 | |
| 159 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| 160 | // FIXME: We should do a more thorough check to make sure that we're not |
| 161 | // overlapping with any invalid ranges (e.g. Read 0x100 - 0x200 but there's an |
| 162 | // invalid range 0x180 - 0x280). `FindEntryThatContains` has an implementation |
| 163 | // that takes a range, but it only checks to see if the argument is contained |
| 164 | // by an existing invalid range. It cannot check if the argument contains |
| 165 | // invalid ranges and cannot check for overlaps. |
| 166 | if (m_invalid_ranges.FindEntryThatContains(addr)) { |
| 167 | error = Status::FromErrorStringWithFormat( |
| 168 | format: "memory read failed for 0x%" PRIx64, addr); |
| 169 | return 0; |
| 170 | } |
| 171 | |
| 172 | // Check the L1 cache for a range that contains the entire memory read. |
| 173 | // L1 cache contains chunks of memory that are not required to be the size of |
| 174 | // an L2 cache line. We avoid trying to do partial reads from the L1 cache to |
| 175 | // simplify the implementation. |
| 176 | if (!m_L1_cache.empty()) { |
| 177 | AddrRange read_range(addr, dst_len); |
| 178 | BlockMap::iterator pos = m_L1_cache.upper_bound(x: addr); |
| 179 | if (pos != m_L1_cache.begin()) { |
| 180 | --pos; |
| 181 | } |
| 182 | AddrRange chunk_range(pos->first, pos->second->GetByteSize()); |
| 183 | if (chunk_range.Contains(range: read_range)) { |
| 184 | memcpy(dest: dst, src: pos->second->GetBytes() + (addr - chunk_range.GetRangeBase()), |
| 185 | n: dst_len); |
| 186 | return dst_len; |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | // If the size of the read is greater than the size of an L2 cache line, we'll |
| 191 | // just read from the inferior. If that read is successful, we'll cache what |
| 192 | // we read in the L1 cache for future use. |
| 193 | if (dst_len > m_L2_cache_line_byte_size) { |
| 194 | size_t bytes_read = |
| 195 | m_process.ReadMemoryFromInferior(vm_addr: addr, buf: dst, size: dst_len, error); |
| 196 | if (bytes_read > 0) |
| 197 | AddL1CacheData(addr, src: dst, src_len: bytes_read); |
| 198 | return bytes_read; |
| 199 | } |
| 200 | |
| 201 | // If the size of the read fits inside one L2 cache line, we'll try reading |
| 202 | // from the L2 cache. Note that if the range of memory we're reading sits |
| 203 | // between two contiguous cache lines, we'll touch two cache lines instead of |
| 204 | // just one. |
| 205 | |
| 206 | // We're going to have all of our loads and reads be cache line aligned. |
| 207 | addr_t cache_line_offset = addr % m_L2_cache_line_byte_size; |
| 208 | addr_t cache_line_base_addr = addr - cache_line_offset; |
| 209 | DataBufferSP first_cache_line = GetL2CacheLine(line_base_addr: cache_line_base_addr, error); |
| 210 | // If we get nothing, then the read to the inferior likely failed. Nothing to |
| 211 | // do here. |
| 212 | if (!first_cache_line) |
| 213 | return 0; |
| 214 | |
| 215 | // If the cache line was not filled out completely and the offset is greater |
| 216 | // than what we have available, we can't do anything further here. |
| 217 | if (cache_line_offset >= first_cache_line->GetByteSize()) |
| 218 | return 0; |
| 219 | |
| 220 | uint8_t *dst_buf = (uint8_t *)dst; |
| 221 | size_t bytes_left = dst_len; |
| 222 | size_t read_size = first_cache_line->GetByteSize() - cache_line_offset; |
| 223 | if (read_size > bytes_left) |
| 224 | read_size = bytes_left; |
| 225 | |
| 226 | memcpy(dest: dst_buf + dst_len - bytes_left, |
| 227 | src: first_cache_line->GetBytes() + cache_line_offset, n: read_size); |
| 228 | bytes_left -= read_size; |
| 229 | |
| 230 | // If the cache line was not filled out completely and we still have data to |
| 231 | // read, we can't do anything further. |
| 232 | if (first_cache_line->GetByteSize() < m_L2_cache_line_byte_size && |
| 233 | bytes_left > 0) |
| 234 | return dst_len - bytes_left; |
| 235 | |
| 236 | // We'll hit this scenario if our read straddles two cache lines. |
| 237 | if (bytes_left > 0) { |
| 238 | cache_line_base_addr += m_L2_cache_line_byte_size; |
| 239 | |
| 240 | // FIXME: Until we are able to more thoroughly check for invalid ranges, we |
| 241 | // will have to check the second line to see if it is in an invalid range as |
| 242 | // well. See the check near the beginning of the function for more details. |
| 243 | if (m_invalid_ranges.FindEntryThatContains(addr: cache_line_base_addr)) { |
| 244 | error = Status::FromErrorStringWithFormat( |
| 245 | format: "memory read failed for 0x%" PRIx64, cache_line_base_addr); |
| 246 | return dst_len - bytes_left; |
| 247 | } |
| 248 | |
| 249 | DataBufferSP second_cache_line = |
| 250 | GetL2CacheLine(line_base_addr: cache_line_base_addr, error); |
| 251 | if (!second_cache_line) |
| 252 | return dst_len - bytes_left; |
| 253 | |
| 254 | read_size = bytes_left; |
| 255 | if (read_size > second_cache_line->GetByteSize()) |
| 256 | read_size = second_cache_line->GetByteSize(); |
| 257 | |
| 258 | memcpy(dest: dst_buf + dst_len - bytes_left, src: second_cache_line->GetBytes(), |
| 259 | n: read_size); |
| 260 | bytes_left -= read_size; |
| 261 | |
| 262 | return dst_len - bytes_left; |
| 263 | } |
| 264 | |
| 265 | return dst_len; |
| 266 | } |
| 267 | |
| 268 | AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size, |
| 269 | uint32_t permissions, uint32_t chunk_size) |
| 270 | : m_range(addr, byte_size), m_permissions(permissions), |
| 271 | m_chunk_size(chunk_size) |
| 272 | { |
| 273 | // The entire address range is free to start with. |
| 274 | m_free_blocks.Append(entry: m_range); |
| 275 | assert(byte_size > chunk_size); |
| 276 | } |
| 277 | |
| 278 | AllocatedBlock::~AllocatedBlock() = default; |
| 279 | |
| 280 | lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) { |
| 281 | // We must return something valid for zero bytes. |
| 282 | if (size == 0) |
| 283 | size = 1; |
| 284 | Log *log = GetLog(mask: LLDBLog::Process); |
| 285 | |
| 286 | const size_t free_count = m_free_blocks.GetSize(); |
| 287 | for (size_t i=0; i<free_count; ++i) |
| 288 | { |
| 289 | auto &free_block = m_free_blocks.GetEntryRef(i); |
| 290 | const lldb::addr_t range_size = free_block.GetByteSize(); |
| 291 | if (range_size >= size) |
| 292 | { |
| 293 | // We found a free block that is big enough for our data. Figure out how |
| 294 | // many chunks we will need and calculate the resulting block size we |
| 295 | // will reserve. |
| 296 | addr_t addr = free_block.GetRangeBase(); |
| 297 | size_t num_chunks = CalculateChunksNeededForSize(size); |
| 298 | lldb::addr_t block_size = num_chunks * m_chunk_size; |
| 299 | lldb::addr_t bytes_left = range_size - block_size; |
| 300 | if (bytes_left == 0) |
| 301 | { |
| 302 | // The newly allocated block will take all of the bytes in this |
| 303 | // available block, so we can just add it to the allocated ranges and |
| 304 | // remove the range from the free ranges. |
| 305 | m_reserved_blocks.Insert(entry: free_block, combine: false); |
| 306 | m_free_blocks.RemoveEntryAtIndex(idx: i); |
| 307 | } |
| 308 | else |
| 309 | { |
| 310 | // Make the new allocated range and add it to the allocated ranges. |
| 311 | Range<lldb::addr_t, uint32_t> reserved_block(free_block); |
| 312 | reserved_block.SetByteSize(block_size); |
| 313 | // Insert the reserved range and don't combine it with other blocks in |
| 314 | // the reserved blocks list. |
| 315 | m_reserved_blocks.Insert(entry: reserved_block, combine: false); |
| 316 | // Adjust the free range in place since we won't change the sorted |
| 317 | // ordering of the m_free_blocks list. |
| 318 | free_block.SetRangeBase(reserved_block.GetRangeEnd()); |
| 319 | free_block.SetByteSize(bytes_left); |
| 320 | } |
| 321 | LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}" , this, size, addr); |
| 322 | return addr; |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}" , this, size, |
| 327 | LLDB_INVALID_ADDRESS); |
| 328 | return LLDB_INVALID_ADDRESS; |
| 329 | } |
| 330 | |
| 331 | bool AllocatedBlock::FreeBlock(addr_t addr) { |
| 332 | bool success = false; |
| 333 | auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr); |
| 334 | if (entry_idx != UINT32_MAX) |
| 335 | { |
| 336 | m_free_blocks.Insert(entry: m_reserved_blocks.GetEntryRef(i: entry_idx), combine: true); |
| 337 | m_reserved_blocks.RemoveEntryAtIndex(idx: entry_idx); |
| 338 | success = true; |
| 339 | } |
| 340 | Log *log = GetLog(mask: LLDBLog::Process); |
| 341 | LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}" , this, addr, success); |
| 342 | return success; |
| 343 | } |
| 344 | |
| 345 | AllocatedMemoryCache::AllocatedMemoryCache(Process &process) |
| 346 | : m_process(process), m_mutex(), m_memory_map() {} |
| 347 | |
| 348 | AllocatedMemoryCache::~AllocatedMemoryCache() = default; |
| 349 | |
| 350 | void AllocatedMemoryCache::Clear(bool deallocate_memory) { |
| 351 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| 352 | if (m_process.IsAlive() && deallocate_memory) { |
| 353 | PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); |
| 354 | for (pos = m_memory_map.begin(); pos != end; ++pos) |
| 355 | m_process.DoDeallocateMemory(ptr: pos->second->GetBaseAddress()); |
| 356 | } |
| 357 | m_memory_map.clear(); |
| 358 | } |
| 359 | |
| 360 | AllocatedMemoryCache::AllocatedBlockSP |
| 361 | AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions, |
| 362 | uint32_t chunk_size, Status &error) { |
| 363 | AllocatedBlockSP block_sp; |
| 364 | const size_t page_size = 4096; |
| 365 | const size_t num_pages = (byte_size + page_size - 1) / page_size; |
| 366 | const size_t page_byte_size = num_pages * page_size; |
| 367 | |
| 368 | addr_t addr = m_process.DoAllocateMemory(size: page_byte_size, permissions, error); |
| 369 | |
| 370 | Log *log = GetLog(mask: LLDBLog::Process); |
| 371 | if (log) { |
| 372 | LLDB_LOGF(log, |
| 373 | "Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 |
| 374 | ", permissions = %s) => 0x%16.16" PRIx64, |
| 375 | (uint32_t)page_byte_size, GetPermissionsAsCString(permissions), |
| 376 | (uint64_t)addr); |
| 377 | } |
| 378 | |
| 379 | if (addr != LLDB_INVALID_ADDRESS) { |
| 380 | block_sp = std::make_shared<AllocatedBlock>(args&: addr, args: page_byte_size, |
| 381 | args&: permissions, args&: chunk_size); |
| 382 | m_memory_map.insert(x: std::make_pair(x&: permissions, y&: block_sp)); |
| 383 | } |
| 384 | return block_sp; |
| 385 | } |
| 386 | |
| 387 | lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size, |
| 388 | uint32_t permissions, |
| 389 | Status &error) { |
| 390 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| 391 | |
| 392 | addr_t addr = LLDB_INVALID_ADDRESS; |
| 393 | std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> |
| 394 | range = m_memory_map.equal_range(x: permissions); |
| 395 | |
| 396 | for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; |
| 397 | ++pos) { |
| 398 | addr = (*pos).second->ReserveBlock(size: byte_size); |
| 399 | if (addr != LLDB_INVALID_ADDRESS) |
| 400 | break; |
| 401 | } |
| 402 | |
| 403 | if (addr == LLDB_INVALID_ADDRESS) { |
| 404 | AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, chunk_size: 16, error)); |
| 405 | |
| 406 | if (block_sp) |
| 407 | addr = block_sp->ReserveBlock(size: byte_size); |
| 408 | } |
| 409 | Log *log = GetLog(mask: LLDBLog::Process); |
| 410 | LLDB_LOGF(log, |
| 411 | "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 |
| 412 | ", permissions = %s) => 0x%16.16" PRIx64, |
| 413 | (uint32_t)byte_size, GetPermissionsAsCString(permissions), |
| 414 | (uint64_t)addr); |
| 415 | return addr; |
| 416 | } |
| 417 | |
| 418 | bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) { |
| 419 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| 420 | |
| 421 | PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); |
| 422 | bool success = false; |
| 423 | for (pos = m_memory_map.begin(); pos != end; ++pos) { |
| 424 | if (pos->second->Contains(addr)) { |
| 425 | success = pos->second->FreeBlock(addr); |
| 426 | break; |
| 427 | } |
| 428 | } |
| 429 | Log *log = GetLog(mask: LLDBLog::Process); |
| 430 | LLDB_LOGF(log, |
| 431 | "AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 |
| 432 | ") => %i" , |
| 433 | (uint64_t)addr, success); |
| 434 | return success; |
| 435 | } |
| 436 | |
| 437 | bool AllocatedMemoryCache::IsInCache(lldb::addr_t addr) const { |
| 438 | std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| 439 | |
| 440 | return llvm::any_of(Range: m_memory_map, P: [addr](const auto &block) { |
| 441 | return block.second->Contains(addr); |
| 442 | }); |
| 443 | } |
| 444 | |