1 | //===-- ConstString.cpp ---------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "lldb/Utility/ConstString.h" |
10 | |
11 | #include "lldb/Utility/Stream.h" |
12 | |
13 | #include "llvm/ADT/StringMap.h" |
14 | #include "llvm/ADT/iterator.h" |
15 | #include "llvm/Support/Allocator.h" |
16 | #include "llvm/Support/DJB.h" |
17 | #include "llvm/Support/FormatProviders.h" |
18 | #include "llvm/Support/RWMutex.h" |
19 | #include "llvm/Support/Threading.h" |
20 | |
21 | #include <array> |
22 | #include <utility> |
23 | |
24 | #include <cinttypes> |
25 | #include <cstdint> |
26 | #include <cstring> |
27 | |
28 | using namespace lldb_private; |
29 | |
30 | class Pool { |
31 | public: |
32 | /// The default BumpPtrAllocatorImpl slab size. |
33 | static const size_t AllocatorSlabSize = 4096; |
34 | static const size_t SizeThreshold = AllocatorSlabSize; |
35 | /// Every Pool has its own allocator which receives an equal share of |
36 | /// the ConstString allocations. This means that when allocating many |
37 | /// ConstStrings, every allocator sees only its small share of allocations and |
38 | /// assumes LLDB only allocated a small amount of memory so far. In reality |
39 | /// LLDB allocated a total memory that is N times as large as what the |
40 | /// allocator sees (where N is the number of string pools). This causes that |
41 | /// the BumpPtrAllocator continues a long time to allocate memory in small |
42 | /// chunks which only makes sense when allocating a small amount of memory |
43 | /// (which is true from the perspective of a single allocator). On some |
44 | /// systems doing all these small memory allocations causes LLDB to spend |
45 | /// a lot of time in malloc, so we need to force all these allocators to |
46 | /// behave like one allocator in terms of scaling their memory allocations |
47 | /// with increased demand. To do this we set the growth delay for each single |
48 | /// allocator to a rate so that our pool of allocators scales their memory |
49 | /// allocations similar to a single BumpPtrAllocatorImpl. |
50 | /// |
51 | /// Currently we have 256 string pools and the normal growth delay of the |
52 | /// BumpPtrAllocatorImpl is 128 (i.e., the memory allocation size increases |
53 | /// every 128 full chunks), so by changing the delay to 1 we get a |
54 | /// total growth delay in our allocator collection of 256/1 = 256. This is |
55 | /// still only half as fast as a normal allocator but we can't go any faster |
56 | /// without decreasing the number of string pools. |
57 | static const size_t AllocatorGrowthDelay = 1; |
58 | typedef llvm::BumpPtrAllocatorImpl<llvm::MallocAllocator, AllocatorSlabSize, |
59 | SizeThreshold, AllocatorGrowthDelay> |
60 | Allocator; |
61 | typedef const char *StringPoolValueType; |
62 | typedef llvm::StringMap<StringPoolValueType, Allocator> StringPool; |
63 | typedef llvm::StringMapEntry<StringPoolValueType> StringPoolEntryType; |
64 | |
65 | static StringPoolEntryType & |
66 | GetStringMapEntryFromKeyData(const char *keyData) { |
67 | return StringPoolEntryType::GetStringMapEntryFromKeyData(keyData); |
68 | } |
69 | |
70 | static size_t GetConstCStringLength(const char *ccstr) { |
71 | if (ccstr != nullptr) { |
72 | // Since the entry is read only, and we derive the entry entirely from |
73 | // the pointer, we don't need the lock. |
74 | const StringPoolEntryType &entry = GetStringMapEntryFromKeyData(keyData: ccstr); |
75 | return entry.getKey().size(); |
76 | } |
77 | return 0; |
78 | } |
79 | |
80 | StringPoolValueType GetMangledCounterpart(const char *ccstr) { |
81 | if (ccstr != nullptr) { |
82 | const PoolEntry &pool = selectPool(s: llvm::StringRef(ccstr)); |
83 | llvm::sys::SmartScopedReader<false> rlock(pool.m_mutex); |
84 | return GetStringMapEntryFromKeyData(keyData: ccstr).getValue(); |
85 | } |
86 | return nullptr; |
87 | } |
88 | |
89 | const char *GetConstCString(const char *cstr) { |
90 | if (cstr != nullptr) |
91 | return GetConstCStringWithLength(cstr, cstr_len: strlen(s: cstr)); |
92 | return nullptr; |
93 | } |
94 | |
95 | const char *GetConstCStringWithLength(const char *cstr, size_t cstr_len) { |
96 | if (cstr != nullptr) |
97 | return GetConstCStringWithStringRef(string_ref: llvm::StringRef(cstr, cstr_len)); |
98 | return nullptr; |
99 | } |
100 | |
101 | const char *GetConstCStringWithStringRef(llvm::StringRef string_ref) { |
102 | if (string_ref.data()) { |
103 | const uint32_t string_hash = StringPool::hash(Key: string_ref); |
104 | PoolEntry &pool = selectPool(h: string_hash); |
105 | |
106 | { |
107 | llvm::sys::SmartScopedReader<false> rlock(pool.m_mutex); |
108 | auto it = pool.m_string_map.find(Key: string_ref, FullHashValue: string_hash); |
109 | if (it != pool.m_string_map.end()) |
110 | return it->getKeyData(); |
111 | } |
112 | |
113 | llvm::sys::SmartScopedWriter<false> wlock(pool.m_mutex); |
114 | StringPoolEntryType &entry = |
115 | *pool.m_string_map |
116 | .insert(KV: std::make_pair(x&: string_ref, y: nullptr), FullHashValue: string_hash) |
117 | .first; |
118 | return entry.getKeyData(); |
119 | } |
120 | return nullptr; |
121 | } |
122 | |
123 | const char * |
124 | GetConstCStringAndSetMangledCounterPart(llvm::StringRef demangled, |
125 | const char *mangled_ccstr) { |
126 | const char *demangled_ccstr = nullptr; |
127 | |
128 | { |
129 | const uint32_t demangled_hash = StringPool::hash(Key: demangled); |
130 | PoolEntry &pool = selectPool(h: demangled_hash); |
131 | llvm::sys::SmartScopedWriter<false> wlock(pool.m_mutex); |
132 | |
133 | // Make or update string pool entry with the mangled counterpart |
134 | StringPool &map = pool.m_string_map; |
135 | StringPoolEntryType &entry = |
136 | *map.try_emplace_with_hash(Key: demangled, FullHashValue: demangled_hash).first; |
137 | |
138 | entry.second = mangled_ccstr; |
139 | |
140 | // Extract the const version of the demangled_cstr |
141 | demangled_ccstr = entry.getKeyData(); |
142 | } |
143 | |
144 | { |
145 | // Now assign the demangled const string as the counterpart of the |
146 | // mangled const string... |
147 | PoolEntry &pool = selectPool(s: llvm::StringRef(mangled_ccstr)); |
148 | llvm::sys::SmartScopedWriter<false> wlock(pool.m_mutex); |
149 | GetStringMapEntryFromKeyData(keyData: mangled_ccstr).setValue(demangled_ccstr); |
150 | } |
151 | |
152 | // Return the constant demangled C string |
153 | return demangled_ccstr; |
154 | } |
155 | |
156 | const char *GetConstTrimmedCStringWithLength(const char *cstr, |
157 | size_t cstr_len) { |
158 | if (cstr != nullptr) { |
159 | const size_t trimmed_len = strnlen(string: cstr, maxlen: cstr_len); |
160 | return GetConstCStringWithLength(cstr, cstr_len: trimmed_len); |
161 | } |
162 | return nullptr; |
163 | } |
164 | |
165 | ConstString::MemoryStats GetMemoryStats() const { |
166 | ConstString::MemoryStats stats; |
167 | for (const auto &pool : m_string_pools) { |
168 | llvm::sys::SmartScopedReader<false> rlock(pool.m_mutex); |
169 | const Allocator &alloc = pool.m_string_map.getAllocator(); |
170 | stats.bytes_total += alloc.getTotalMemory(); |
171 | stats.bytes_used += alloc.getBytesAllocated(); |
172 | } |
173 | return stats; |
174 | } |
175 | |
176 | protected: |
177 | struct PoolEntry { |
178 | mutable llvm::sys::SmartRWMutex<false> m_mutex; |
179 | StringPool m_string_map; |
180 | }; |
181 | |
182 | std::array<PoolEntry, 256> m_string_pools; |
183 | |
184 | PoolEntry &selectPool(const llvm::StringRef &s) { |
185 | return selectPool(h: StringPool::hash(Key: s)); |
186 | } |
187 | |
188 | PoolEntry &selectPool(uint32_t h) { |
189 | return m_string_pools[((h >> 24) ^ (h >> 16) ^ (h >> 8) ^ h) & 0xff]; |
190 | } |
191 | }; |
192 | |
193 | // Frameworks and dylibs aren't supposed to have global C++ initializers so we |
194 | // hide the string pool in a static function so that it will get initialized on |
195 | // the first call to this static function. |
196 | // |
197 | // Note, for now we make the string pool a pointer to the pool, because we |
198 | // can't guarantee that some objects won't get destroyed after the global |
199 | // destructor chain is run, and trying to make sure no destructors touch |
200 | // ConstStrings is difficult. So we leak the pool instead. |
201 | static Pool &StringPool() { |
202 | static llvm::once_flag g_pool_initialization_flag; |
203 | static Pool *g_string_pool = nullptr; |
204 | |
205 | llvm::call_once(flag&: g_pool_initialization_flag, |
206 | F: []() { g_string_pool = new Pool(); }); |
207 | |
208 | return *g_string_pool; |
209 | } |
210 | |
211 | ConstString::ConstString(const char *cstr) |
212 | : m_string(StringPool().GetConstCString(cstr)) {} |
213 | |
214 | ConstString::ConstString(const char *cstr, size_t cstr_len) |
215 | : m_string(StringPool().GetConstCStringWithLength(cstr, cstr_len)) {} |
216 | |
217 | ConstString::ConstString(llvm::StringRef s) |
218 | : m_string(StringPool().GetConstCStringWithStringRef(string_ref: s)) {} |
219 | |
220 | bool ConstString::operator<(ConstString rhs) const { |
221 | if (m_string == rhs.m_string) |
222 | return false; |
223 | |
224 | llvm::StringRef lhs_string_ref(GetStringRef()); |
225 | llvm::StringRef rhs_string_ref(rhs.GetStringRef()); |
226 | |
227 | // If both have valid C strings, then return the comparison |
228 | if (lhs_string_ref.data() && rhs_string_ref.data()) |
229 | return lhs_string_ref < rhs_string_ref; |
230 | |
231 | // Else one of them was nullptr, so if LHS is nullptr then it is less than |
232 | return lhs_string_ref.data() == nullptr; |
233 | } |
234 | |
235 | Stream &lldb_private::operator<<(Stream &s, ConstString str) { |
236 | const char *cstr = str.GetCString(); |
237 | if (cstr != nullptr) |
238 | s << cstr; |
239 | |
240 | return s; |
241 | } |
242 | |
243 | size_t ConstString::GetLength() const { |
244 | return Pool::GetConstCStringLength(ccstr: m_string); |
245 | } |
246 | |
247 | bool ConstString::Equals(ConstString lhs, ConstString rhs, |
248 | const bool case_sensitive) { |
249 | if (lhs.m_string == rhs.m_string) |
250 | return true; |
251 | |
252 | // Since the pointers weren't equal, and identical ConstStrings always have |
253 | // identical pointers, the result must be false for case sensitive equality |
254 | // test. |
255 | if (case_sensitive) |
256 | return false; |
257 | |
258 | // perform case insensitive equality test |
259 | llvm::StringRef lhs_string_ref(lhs.GetStringRef()); |
260 | llvm::StringRef rhs_string_ref(rhs.GetStringRef()); |
261 | return lhs_string_ref.equals_insensitive(RHS: rhs_string_ref); |
262 | } |
263 | |
264 | int ConstString::Compare(ConstString lhs, ConstString rhs, |
265 | const bool case_sensitive) { |
266 | // If the iterators are the same, this is the same string |
267 | const char *lhs_cstr = lhs.m_string; |
268 | const char *rhs_cstr = rhs.m_string; |
269 | if (lhs_cstr == rhs_cstr) |
270 | return 0; |
271 | if (lhs_cstr && rhs_cstr) { |
272 | llvm::StringRef lhs_string_ref(lhs.GetStringRef()); |
273 | llvm::StringRef rhs_string_ref(rhs.GetStringRef()); |
274 | |
275 | if (case_sensitive) { |
276 | return lhs_string_ref.compare(RHS: rhs_string_ref); |
277 | } else { |
278 | return lhs_string_ref.compare_insensitive(RHS: rhs_string_ref); |
279 | } |
280 | } |
281 | |
282 | if (lhs_cstr) |
283 | return +1; // LHS isn't nullptr but RHS is |
284 | else |
285 | return -1; // LHS is nullptr but RHS isn't |
286 | } |
287 | |
288 | void ConstString::Dump(Stream *s, const char *fail_value) const { |
289 | if (s != nullptr) { |
290 | const char *cstr = AsCString(value_if_empty: fail_value); |
291 | if (cstr != nullptr) |
292 | s->PutCString(cstr); |
293 | } |
294 | } |
295 | |
296 | void ConstString::DumpDebug(Stream *s) const { |
297 | const char *cstr = GetCString(); |
298 | size_t cstr_len = GetLength(); |
299 | // Only print the parens if we have a non-nullptr string |
300 | const char *parens = cstr ? "\"" : "" ; |
301 | s->Printf(format: "%*p: ConstString, string = %s%s%s, length = %" PRIu64, |
302 | static_cast<int>(sizeof(void *) * 2), |
303 | static_cast<const void *>(this), parens, cstr, parens, |
304 | static_cast<uint64_t>(cstr_len)); |
305 | } |
306 | |
307 | void ConstString::SetCString(const char *cstr) { |
308 | m_string = StringPool().GetConstCString(cstr); |
309 | } |
310 | |
311 | void ConstString::SetString(llvm::StringRef s) { |
312 | m_string = StringPool().GetConstCStringWithStringRef(string_ref: s); |
313 | } |
314 | |
315 | void ConstString::SetStringWithMangledCounterpart(llvm::StringRef demangled, |
316 | ConstString mangled) { |
317 | m_string = StringPool().GetConstCStringAndSetMangledCounterPart( |
318 | demangled, mangled_ccstr: mangled.m_string); |
319 | } |
320 | |
321 | bool ConstString::GetMangledCounterpart(ConstString &counterpart) const { |
322 | counterpart.m_string = StringPool().GetMangledCounterpart(ccstr: m_string); |
323 | return (bool)counterpart; |
324 | } |
325 | |
326 | void ConstString::SetCStringWithLength(const char *cstr, size_t cstr_len) { |
327 | m_string = StringPool().GetConstCStringWithLength(cstr, cstr_len); |
328 | } |
329 | |
330 | void ConstString::SetTrimmedCStringWithLength(const char *cstr, |
331 | size_t cstr_len) { |
332 | m_string = StringPool().GetConstTrimmedCStringWithLength(cstr, cstr_len); |
333 | } |
334 | |
335 | ConstString::MemoryStats ConstString::GetMemoryStats() { |
336 | return StringPool().GetMemoryStats(); |
337 | } |
338 | |
339 | void llvm::format_provider<ConstString>::format(const ConstString &CS, |
340 | llvm::raw_ostream &OS, |
341 | llvm::StringRef Options) { |
342 | format_provider<StringRef>::format(V: CS.GetStringRef(), Stream&: OS, Style: Options); |
343 | } |
344 | |