| 1 | #include <errno.h> |
| 2 | #include <fcntl.h> |
| 3 | #include <inttypes.h> |
| 4 | #include <mach-o/loader.h> |
| 5 | #include <mach/thread_status.h> |
| 6 | #include <stdio.h> |
| 7 | #include <stdlib.h> |
| 8 | #include <string.h> |
| 9 | #include <string> |
| 10 | #include <sys/errno.h> |
| 11 | #include <sys/stat.h> |
| 12 | #include <sys/types.h> |
| 13 | #include <sys/uio.h> |
| 14 | #include <unistd.h> |
| 15 | #include <uuid/uuid.h> |
| 16 | #include <vector> |
| 17 | |
| 18 | // Given a list of binaries, and optional slides to be applied, |
| 19 | // create a corefile whose memory is those binaries laid down at |
| 20 | // their slid addresses. |
| 21 | // |
| 22 | // Add a 'main bin spec' LC_NOTE for the first binary, and |
| 23 | // 'load binary' LC_NOTEs for any additional binaries, and |
| 24 | // these LC_NOTEs will ONLY have the vmaddr of the binary - no |
| 25 | // UUID, no slide, no filename. |
| 26 | // |
| 27 | // Test that lldb can use the load addresses, find the UUIDs, |
| 28 | // and load the binaries/dSYMs and put them at the correct load |
| 29 | // address. |
| 30 | |
| 31 | struct main_bin_spec_payload { |
| 32 | uint32_t version; |
| 33 | uint32_t type; |
| 34 | uint64_t address; |
| 35 | uint64_t slide; |
| 36 | uuid_t uuid; |
| 37 | uint32_t log2_pagesize; |
| 38 | uint32_t platform; |
| 39 | }; |
| 40 | |
| 41 | struct load_binary_payload { |
| 42 | uint32_t version; |
| 43 | uuid_t uuid; |
| 44 | uint64_t address; |
| 45 | uint64_t slide; |
| 46 | const char name[4]; |
| 47 | }; |
| 48 | |
| 49 | union uint32_buf { |
| 50 | uint8_t bytebuf[4]; |
| 51 | uint32_t val; |
| 52 | }; |
| 53 | |
| 54 | union uint64_buf { |
| 55 | uint8_t bytebuf[8]; |
| 56 | uint64_t val; |
| 57 | }; |
| 58 | |
| 59 | void add_uint64(std::vector<uint8_t> &buf, uint64_t val) { |
| 60 | uint64_buf conv; |
| 61 | conv.val = val; |
| 62 | for (int i = 0; i < 8; i++) |
| 63 | buf.push_back(x: conv.bytebuf[i]); |
| 64 | } |
| 65 | |
| 66 | void add_uint32(std::vector<uint8_t> &buf, uint32_t val) { |
| 67 | uint32_buf conv; |
| 68 | conv.val = val; |
| 69 | for (int i = 0; i < 4; i++) |
| 70 | buf.push_back(x: conv.bytebuf[i]); |
| 71 | } |
| 72 | |
| 73 | std::vector<uint8_t> lc_thread_load_command(cpu_type_t cputype) { |
| 74 | std::vector<uint8_t> data; |
| 75 | // Emit an LC_THREAD register context appropriate for the cputype |
| 76 | // of the binary we're embedded. The tests in this case do not |
| 77 | // use the register values, so 0's are fine, lldb needs to see at |
| 78 | // least one LC_THREAD in the corefile. |
| 79 | #if defined(__x86_64__) |
| 80 | if (cputype == CPU_TYPE_X86_64) { |
| 81 | add_uint32(buf&: data, val: LC_THREAD); // thread_command.cmd |
| 82 | add_uint32(data, |
| 83 | 16 + (x86_THREAD_STATE64_COUNT * 4)); // thread_command.cmdsize |
| 84 | add_uint32(data, x86_THREAD_STATE64); // thread_command.flavor |
| 85 | add_uint32(data, x86_THREAD_STATE64_COUNT); // thread_command.count |
| 86 | for (int i = 0; i < x86_THREAD_STATE64_COUNT; i++) { |
| 87 | add_uint32(data, 0); // whatever, just some empty register values |
| 88 | } |
| 89 | } |
| 90 | #endif |
| 91 | #if defined(__arm64__) || defined(__aarch64__) |
| 92 | if (cputype == CPU_TYPE_ARM64) { |
| 93 | add_uint32(data, LC_THREAD); // thread_command.cmd |
| 94 | add_uint32(data, |
| 95 | 16 + (ARM_THREAD_STATE64_COUNT * 4)); // thread_command.cmdsize |
| 96 | add_uint32(data, ARM_THREAD_STATE64); // thread_command.flavor |
| 97 | add_uint32(data, ARM_THREAD_STATE64_COUNT); // thread_command.count |
| 98 | for (int i = 0; i < ARM_THREAD_STATE64_COUNT; i++) { |
| 99 | add_uint32(data, 0); // whatever, just some empty register values |
| 100 | } |
| 101 | } |
| 102 | #endif |
| 103 | return data; |
| 104 | } |
| 105 | |
| 106 | void add_lc_note_main_bin_spec_load_command( |
| 107 | std::vector<std::vector<uint8_t>> &loadcmds, std::vector<uint8_t> &payload, |
| 108 | int payload_file_offset, std::string uuidstr, uint64_t address, |
| 109 | uint64_t slide) { |
| 110 | std::vector<uint8_t> loadcmd_data; |
| 111 | |
| 112 | add_uint32(loadcmd_data, LC_NOTE); // note_command.cmd |
| 113 | add_uint32(buf&: loadcmd_data, val: 40); // note_command.cmdsize |
| 114 | char lc_note_name[16]; |
| 115 | memset(s: lc_note_name, c: 0, n: 16); |
| 116 | strcpy(dest: lc_note_name, src: "main bin spec" ); |
| 117 | |
| 118 | // lc_note.data_owner |
| 119 | for (int i = 0; i < 16; i++) |
| 120 | loadcmd_data.push_back(x: lc_note_name[i]); |
| 121 | |
| 122 | // we start writing the payload at payload_file_offset to leave |
| 123 | // room at the start for the header & the load commands. |
| 124 | uint64_t current_payload_offset = payload.size() + payload_file_offset; |
| 125 | |
| 126 | add_uint64(buf&: loadcmd_data, val: current_payload_offset); // note_command.offset |
| 127 | add_uint64(buf&: loadcmd_data, |
| 128 | val: sizeof(struct main_bin_spec_payload)); // note_command.size |
| 129 | |
| 130 | loadcmds.push_back(x: loadcmd_data); |
| 131 | |
| 132 | // Now write the "main bin spec" payload. |
| 133 | add_uint32(buf&: payload, val: 2); // version |
| 134 | add_uint32(buf&: payload, val: 3); // type == 3 [ firmware, standalone, etc ] |
| 135 | add_uint64(buf&: payload, val: address); // load address |
| 136 | add_uint64(buf&: payload, val: slide); // slide |
| 137 | uuid_t uuid; |
| 138 | uuid_parse(in: uuidstr.c_str(), uu: uuid); |
| 139 | for (int i = 0; i < sizeof(uuid_t); i++) |
| 140 | payload.push_back(x: uuid[i]); |
| 141 | add_uint32(buf&: payload, val: 0); // log2_pagesize unspecified |
| 142 | add_uint32(buf&: payload, val: 0); // platform unspecified |
| 143 | } |
| 144 | |
| 145 | void add_lc_note_load_binary_load_command( |
| 146 | std::vector<std::vector<uint8_t>> &loadcmds, std::vector<uint8_t> &payload, |
| 147 | int payload_file_offset, std::string uuidstr, uint64_t address, |
| 148 | uint64_t slide) { |
| 149 | std::vector<uint8_t> loadcmd_data; |
| 150 | |
| 151 | add_uint32(loadcmd_data, LC_NOTE); // note_command.cmd |
| 152 | add_uint32(buf&: loadcmd_data, val: 40); // note_command.cmdsize |
| 153 | char lc_note_name[16]; |
| 154 | memset(s: lc_note_name, c: 0, n: 16); |
| 155 | strcpy(dest: lc_note_name, src: "load binary" ); |
| 156 | |
| 157 | // lc_note.data_owner |
| 158 | for (int i = 0; i < 16; i++) |
| 159 | loadcmd_data.push_back(x: lc_note_name[i]); |
| 160 | |
| 161 | // we start writing the payload at payload_file_offset to leave |
| 162 | // room at the start for the header & the load commands. |
| 163 | uint64_t current_payload_offset = payload.size() + payload_file_offset; |
| 164 | |
| 165 | add_uint64(buf&: loadcmd_data, val: current_payload_offset); // note_command.offset |
| 166 | add_uint64(buf&: loadcmd_data, |
| 167 | val: sizeof(struct load_binary_payload)); // note_command.size |
| 168 | |
| 169 | loadcmds.push_back(x: loadcmd_data); |
| 170 | |
| 171 | // Now write the "load binary" payload. |
| 172 | add_uint32(buf&: payload, val: 1); // version |
| 173 | uuid_t uuid; |
| 174 | uuid_parse(in: uuidstr.c_str(), uu: uuid); |
| 175 | for (int i = 0; i < sizeof(uuid_t); i++) |
| 176 | payload.push_back(x: uuid[i]); |
| 177 | add_uint64(buf&: payload, val: address); // load address |
| 178 | add_uint64(buf&: payload, val: slide); // slide |
| 179 | add_uint32(buf&: payload, val: 0); // name |
| 180 | } |
| 181 | |
| 182 | void add_lc_segment(std::vector<std::vector<uint8_t>> &loadcmds, |
| 183 | std::vector<uint8_t> &payload, int payload_file_offset, |
| 184 | uint64_t vmaddr, uint64_t size) { |
| 185 | std::vector<uint8_t> loadcmd_data; |
| 186 | struct segment_command_64 seg; |
| 187 | seg.cmd = LC_SEGMENT_64; |
| 188 | seg.cmdsize = sizeof(struct segment_command_64); // no sections |
| 189 | memset(seg.segname, 0, 16); |
| 190 | seg.vmaddr = vmaddr; |
| 191 | seg.vmsize = size; |
| 192 | seg.fileoff = payload.size() + payload_file_offset; |
| 193 | seg.filesize = size; |
| 194 | seg.maxprot = 1; |
| 195 | seg.initprot = 1; |
| 196 | seg.nsects = 0; |
| 197 | seg.flags = 0; |
| 198 | |
| 199 | uint8_t *p = (uint8_t *)&seg; |
| 200 | for (int i = 0; i < sizeof(struct segment_command_64); i++) { |
| 201 | loadcmd_data.push_back(*(p + i)); |
| 202 | } |
| 203 | loadcmds.push_back(x: loadcmd_data); |
| 204 | } |
| 205 | |
| 206 | std::string scan_binary(const char *fn, uint64_t &vmaddr, cpu_type_t &cputype, |
| 207 | cpu_subtype_t &cpusubtype) { |
| 208 | FILE *f = fopen(filename: fn, modes: "r" ); |
| 209 | if (f == nullptr) { |
| 210 | fprintf(stderr, format: "Unable to open binary '%s' to get uuid\n" , fn); |
| 211 | exit(status: 1); |
| 212 | } |
| 213 | uint32_t num_of_load_cmds = 0; |
| 214 | uint32_t size_of_load_cmds = 0; |
| 215 | std::string uuid; |
| 216 | off_t file_offset = 0; |
| 217 | vmaddr = UINT64_MAX; |
| 218 | |
| 219 | uint8_t magic[4]; |
| 220 | if (::fread(ptr: magic, size: 1, n: 4, stream: f) != 4) { |
| 221 | fprintf(stderr, format: "Failed to read magic number from input file %s\n" , fn); |
| 222 | exit(status: 1); |
| 223 | } |
| 224 | uint8_t magic_32_be[] = {0xfe, 0xed, 0xfa, 0xce}; |
| 225 | uint8_t magic_32_le[] = {0xce, 0xfa, 0xed, 0xfe}; |
| 226 | uint8_t magic_64_be[] = {0xfe, 0xed, 0xfa, 0xcf}; |
| 227 | uint8_t magic_64_le[] = {0xcf, 0xfa, 0xed, 0xfe}; |
| 228 | |
| 229 | if (memcmp(s1: magic, s2: magic_32_be, n: 4) == 0 || |
| 230 | memcmp(s1: magic, s2: magic_64_be, n: 4) == 0) { |
| 231 | fprintf(stderr, format: "big endian corefiles not supported\n" ); |
| 232 | exit(status: 1); |
| 233 | } |
| 234 | |
| 235 | ::fseeko(stream: f, off: 0, SEEK_SET); |
| 236 | if (memcmp(s1: magic, s2: magic_32_le, n: 4) == 0) { |
| 237 | struct mh; |
| 238 | if (::fread(ptr: &mh, size: 1, n: sizeof(mh), stream: f) != sizeof(mh)) { |
| 239 | fprintf(stderr, format: "error reading mach header from input file\n" ); |
| 240 | exit(status: 1); |
| 241 | } |
| 242 | if (mh.cputype != CPU_TYPE_X86_64 && mh.cputype != CPU_TYPE_ARM64) { |
| 243 | fprintf(stderr, |
| 244 | format: "This tool creates an x86_64/arm64 corefile but " |
| 245 | "the supplied binary '%s' is cputype 0x%x\n" , |
| 246 | fn, (uint32_t)mh.cputype); |
| 247 | exit(status: 1); |
| 248 | } |
| 249 | num_of_load_cmds = mh.ncmds; |
| 250 | size_of_load_cmds = mh.sizeofcmds; |
| 251 | file_offset += sizeof(struct mach_header); |
| 252 | cputype = mh.cputype; |
| 253 | cpusubtype = mh.cpusubtype; |
| 254 | } else { |
| 255 | struct mh; |
| 256 | if (::fread(ptr: &mh, size: 1, n: sizeof(mh), stream: f) != sizeof(mh)) { |
| 257 | fprintf(stderr, format: "error reading mach header from input file\n" ); |
| 258 | exit(status: 1); |
| 259 | } |
| 260 | if (mh.cputype != CPU_TYPE_X86_64 && mh.cputype != CPU_TYPE_ARM64) { |
| 261 | fprintf(stderr, |
| 262 | format: "This tool creates an x86_64/arm64 corefile but " |
| 263 | "the supplied binary '%s' is cputype 0x%x\n" , |
| 264 | fn, (uint32_t)mh.cputype); |
| 265 | exit(status: 1); |
| 266 | } |
| 267 | num_of_load_cmds = mh.ncmds; |
| 268 | size_of_load_cmds = mh.sizeofcmds; |
| 269 | file_offset += sizeof(struct mach_header_64); |
| 270 | cputype = mh.cputype; |
| 271 | cpusubtype = mh.cpusubtype; |
| 272 | } |
| 273 | |
| 274 | off_t load_cmds_offset = file_offset; |
| 275 | |
| 276 | for (int i = 0; i < num_of_load_cmds && |
| 277 | (file_offset - load_cmds_offset) < size_of_load_cmds; |
| 278 | i++) { |
| 279 | ::fseeko(stream: f, off: file_offset, SEEK_SET); |
| 280 | uint32_t cmd; |
| 281 | uint32_t cmdsize; |
| 282 | ::fread(ptr: &cmd, size: sizeof(uint32_t), n: 1, stream: f); |
| 283 | ::fread(ptr: &cmdsize, size: sizeof(uint32_t), n: 1, stream: f); |
| 284 | if (vmaddr == UINT64_MAX && cmd == LC_SEGMENT_64) { |
| 285 | struct segment_command_64 segcmd; |
| 286 | ::fseeko(stream: f, off: file_offset, SEEK_SET); |
| 287 | if (::fread(ptr: &segcmd, size: 1, n: sizeof(segcmd), stream: f) != sizeof(segcmd)) { |
| 288 | fprintf(stderr, format: "Unable to read LC_SEGMENT_64 load command.\n" ); |
| 289 | exit(status: 1); |
| 290 | } |
| 291 | if (strcmp("__TEXT" , segcmd.segname) == 0) |
| 292 | vmaddr = segcmd.vmaddr; |
| 293 | } |
| 294 | if (cmd == LC_UUID) { |
| 295 | struct uuid_command uuidcmd; |
| 296 | ::fseeko(stream: f, off: file_offset, SEEK_SET); |
| 297 | if (::fread(ptr: &uuidcmd, size: 1, n: sizeof(uuidcmd), stream: f) != sizeof(uuidcmd)) { |
| 298 | fprintf(stderr, format: "Unable to read LC_UUID load command.\n" ); |
| 299 | exit(status: 1); |
| 300 | } |
| 301 | uuid_string_t uuidstr; |
| 302 | uuid_unparse(uuidcmd.uuid, uuidstr); |
| 303 | uuid = uuidstr; |
| 304 | } |
| 305 | file_offset += cmdsize; |
| 306 | } |
| 307 | return uuid; |
| 308 | } |
| 309 | |
| 310 | void slide_macho_binary(std::vector<uint8_t> &image, uint64_t slide) { |
| 311 | uint8_t *p = image.data(); |
| 312 | struct *mh = (struct mach_header_64 *)p; |
| 313 | p += sizeof(struct mach_header_64); |
| 314 | for (int lc_idx = 0; lc_idx < mh->ncmds; lc_idx++) { |
| 315 | struct load_command *lc = (struct load_command *)p; |
| 316 | if (lc->cmd == LC_SEGMENT_64) { |
| 317 | struct segment_command_64 *seg = (struct segment_command_64 *)p; |
| 318 | if (seg->maxprot != 0 && seg->nsects > 0) { |
| 319 | seg->vmaddr += slide; |
| 320 | uint8_t *j = p + sizeof(segment_command_64); |
| 321 | for (int sect_idx = 0; sect_idx < seg->nsects; sect_idx++) { |
| 322 | struct section_64 *sect = (struct section_64 *)j; |
| 323 | sect->addr += slide; |
| 324 | j += sizeof(struct section_64); |
| 325 | } |
| 326 | } |
| 327 | } |
| 328 | p += lc->cmdsize; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | int main(int argc, char **argv) { |
| 333 | if (argc < 3) { |
| 334 | fprintf(stderr, |
| 335 | format: "usage: output-corefile binary1[@optional-slide] " |
| 336 | "[binary2[@optional-slide] [binary3[@optional-slide] ...]]\n" ); |
| 337 | exit(status: 1); |
| 338 | } |
| 339 | |
| 340 | // An array of load commands (in the form of byte arrays) |
| 341 | std::vector<std::vector<uint8_t>> load_commands; |
| 342 | |
| 343 | // An array of corefile contents (page data, lc_note data, etc) |
| 344 | std::vector<uint8_t> payload; |
| 345 | |
| 346 | std::vector<std::string> input_filenames; |
| 347 | std::vector<uint64_t> input_slides; |
| 348 | std::vector<uint64_t> input_filesizes; |
| 349 | std::vector<uint64_t> input_filevmaddrs; |
| 350 | uint64_t main_binary_cputype = CPU_TYPE_ARM64; |
| 351 | uint64_t vmaddr = UINT64_MAX; |
| 352 | cpu_type_t cputype; |
| 353 | cpu_subtype_t cpusubtype; |
| 354 | for (int i = 2; i < argc; i++) { |
| 355 | std::string filename; |
| 356 | std::string filename_and_opt_hex(argv[i]); |
| 357 | uint64_t slide = 0; |
| 358 | auto at_pos = filename_and_opt_hex.find_last_of(c: '@'); |
| 359 | if (at_pos == std::string::npos) { |
| 360 | filename = filename_and_opt_hex; |
| 361 | } else { |
| 362 | filename = filename_and_opt_hex.substr(pos: 0, n: at_pos); |
| 363 | std::string hexstr = filename_and_opt_hex.substr(pos: at_pos + 1); |
| 364 | errno = 0; |
| 365 | slide = (uint64_t)strtoull(nptr: hexstr.c_str(), endptr: nullptr, base: 16); |
| 366 | if (errno != 0) { |
| 367 | fprintf(stderr, format: "Unable to parse hex slide value in %s\n" , argv[i]); |
| 368 | exit(status: 1); |
| 369 | } |
| 370 | } |
| 371 | struct stat stbuf; |
| 372 | if (stat(file: filename.c_str(), buf: &stbuf) == -1) { |
| 373 | fprintf(stderr, format: "Unable to stat '%s', exiting.\n" , filename.c_str()); |
| 374 | exit(status: 1); |
| 375 | } |
| 376 | input_filenames.push_back(x: filename); |
| 377 | input_slides.push_back(x: slide); |
| 378 | input_filesizes.push_back(x: stbuf.st_size); |
| 379 | scan_binary(filename.c_str(), vmaddr, cputype, cpusubtype); |
| 380 | input_filevmaddrs.push_back(x: vmaddr + slide); |
| 381 | if (i == 2) { |
| 382 | main_binary_cputype = cputype; |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | const char *output_corefile_name = argv[1]; |
| 387 | std::string empty_uuidstr = "00000000-0000-0000-0000-000000000000" ; |
| 388 | |
| 389 | // First add all the load commands / payload so we can figure out how large |
| 390 | // the load commands will actually be. |
| 391 | load_commands.push_back(lc_thread_load_command(cputype)); |
| 392 | |
| 393 | add_lc_note_main_bin_spec_load_command(loadcmds&: load_commands, payload, payload_file_offset: 0, |
| 394 | uuidstr: empty_uuidstr, address: 0, UINT64_MAX); |
| 395 | for (int i = 1; i < input_filenames.size(); i++) { |
| 396 | add_lc_note_load_binary_load_command(loadcmds&: load_commands, payload, payload_file_offset: 0, |
| 397 | uuidstr: empty_uuidstr, address: 0, UINT64_MAX); |
| 398 | } |
| 399 | |
| 400 | for (int i = 0; i < input_filenames.size(); i++) { |
| 401 | add_lc_segment(loadcmds&: load_commands, payload, payload_file_offset: 0, vmaddr: 0, size: 0); |
| 402 | } |
| 403 | |
| 404 | int size_of_load_commands = 0; |
| 405 | for (const auto &lc : load_commands) |
| 406 | size_of_load_commands += lc.size(); |
| 407 | |
| 408 | int size_of_header_and_load_cmds = |
| 409 | sizeof(struct mach_header_64) + size_of_load_commands; |
| 410 | |
| 411 | // Erase the load commands / payload now that we know how much space is |
| 412 | // needed, redo it. |
| 413 | load_commands.clear(); |
| 414 | payload.clear(); |
| 415 | |
| 416 | // Push the LC_THREAD load command. |
| 417 | load_commands.push_back(lc_thread_load_command(main_binary_cputype)); |
| 418 | |
| 419 | const off_t payload_offset = size_of_header_and_load_cmds; |
| 420 | |
| 421 | add_lc_note_main_bin_spec_load_command(loadcmds&: load_commands, payload, payload_file_offset: payload_offset, |
| 422 | uuidstr: empty_uuidstr, address: input_filevmaddrs[0], |
| 423 | UINT64_MAX); |
| 424 | |
| 425 | for (int i = 1; i < input_filenames.size(); i++) { |
| 426 | add_lc_note_load_binary_load_command(loadcmds&: load_commands, payload, payload_file_offset: payload_offset, |
| 427 | uuidstr: empty_uuidstr, address: input_filevmaddrs[i], |
| 428 | UINT64_MAX); |
| 429 | } |
| 430 | |
| 431 | for (int i = 0; i < input_filenames.size(); i++) { |
| 432 | add_lc_segment(loadcmds&: load_commands, payload, payload_file_offset: payload_offset, vmaddr: input_filevmaddrs[i], |
| 433 | size: input_filesizes[i]); |
| 434 | |
| 435 | // Copy the contents of the binary into payload. |
| 436 | int fd = open(file: input_filenames[i].c_str(), O_RDONLY); |
| 437 | if (fd == -1) { |
| 438 | fprintf(stderr, format: "Unable to open %s for reading\n" , |
| 439 | input_filenames[i].c_str()); |
| 440 | exit(status: 1); |
| 441 | } |
| 442 | std::vector<uint8_t> binary_contents; |
| 443 | for (int j = 0; j < input_filesizes[i]; j++) { |
| 444 | uint8_t byte; |
| 445 | read(fd: fd, buf: &byte, nbytes: 1); |
| 446 | binary_contents.push_back(x: byte); |
| 447 | } |
| 448 | close(fd: fd); |
| 449 | |
| 450 | size_t cur_payload_size = payload.size(); |
| 451 | payload.resize(new_size: cur_payload_size + binary_contents.size()); |
| 452 | slide_macho_binary(image&: binary_contents, slide: input_slides[i]); |
| 453 | memcpy(dest: payload.data() + cur_payload_size, src: binary_contents.data(), |
| 454 | n: binary_contents.size()); |
| 455 | } |
| 456 | |
| 457 | struct mach_header_64 mh; |
| 458 | mh.magic = MH_MAGIC_64; |
| 459 | mh.cputype = cputype; |
| 460 | |
| 461 | mh.cpusubtype = cpusubtype; |
| 462 | mh.filetype = MH_CORE; |
| 463 | mh.ncmds = load_commands.size(); |
| 464 | mh.sizeofcmds = size_of_load_commands; |
| 465 | mh.flags = 0; |
| 466 | mh.reserved = 0; |
| 467 | |
| 468 | FILE *f = fopen(filename: output_corefile_name, modes: "w" ); |
| 469 | |
| 470 | if (f == nullptr) { |
| 471 | fprintf(stderr, format: "Unable to open file %s for writing\n" , |
| 472 | output_corefile_name); |
| 473 | exit(status: 1); |
| 474 | } |
| 475 | |
| 476 | fwrite(&mh, sizeof(mh), 1, f); |
| 477 | |
| 478 | for (const auto &lc : load_commands) |
| 479 | fwrite(ptr: lc.data(), size: lc.size(), n: 1, s: f); |
| 480 | |
| 481 | fwrite(ptr: payload.data(), size: payload.size(), n: 1, s: f); |
| 482 | |
| 483 | fclose(stream: f); |
| 484 | } |
| 485 | |