| 1 | #include <fcntl.h> |
| 2 | #include <inttypes.h> |
| 3 | #include <mach-o/compact_unwind_encoding.h> |
| 4 | #include <mach-o/loader.h> |
| 5 | #include <mach-o/nlist.h> |
| 6 | #include <mach/machine.h> |
| 7 | #include <stdbool.h> |
| 8 | #include <stdint.h> |
| 9 | #include <stdio.h> |
| 10 | #include <stdlib.h> |
| 11 | #include <string.h> |
| 12 | #include <sys/errno.h> |
| 13 | #include <sys/mman.h> |
| 14 | #include <sys/stat.h> |
| 15 | #include <sys/types.h> |
| 16 | |
| 17 | #define (value, mask) \ |
| 18 | ((value >> __builtin_ctz(mask)) & (((1 << __builtin_popcount(mask))) - 1)) |
| 19 | |
| 20 | // A quick sketch of a program which can parse the compact unwind info |
| 21 | // used on Darwin systems for exception handling. The output of |
| 22 | // unwinddump will be more authoritative/reliable but this program |
| 23 | // can dump at least the UNWIND_X86_64_MODE_RBP_FRAME format entries |
| 24 | // correctly. |
| 25 | |
| 26 | struct symbol { |
| 27 | uint64_t file_address; |
| 28 | const char *name; |
| 29 | }; |
| 30 | |
| 31 | int symbol_compare(const void *a, const void *b) { |
| 32 | return (int)((struct symbol *)a)->file_address - |
| 33 | ((struct symbol *)b)->file_address; |
| 34 | } |
| 35 | |
| 36 | struct baton { |
| 37 | cpu_type_t cputype; |
| 38 | |
| 39 | uint8_t *; // pointer into this program's address space |
| 40 | uint8_t *compact_unwind_start; // pointer into this program's address space |
| 41 | |
| 42 | int addr_size; // 4 or 8 bytes, the size of addresses in this file |
| 43 | |
| 44 | uint64_t text_segment_vmaddr; // __TEXT segment vmaddr |
| 45 | uint64_t text_segment_file_offset; |
| 46 | |
| 47 | uint64_t text_section_vmaddr; // __TEXT,__text section vmaddr |
| 48 | uint64_t text_section_file_offset; |
| 49 | |
| 50 | uint64_t eh_section_file_address; // the file address of the __TEXT,__eh_frame |
| 51 | // section |
| 52 | |
| 53 | uint8_t |
| 54 | *lsda_array_start; // for the currently-being-processed first-level index |
| 55 | uint8_t |
| 56 | *lsda_array_end; // the lsda_array_start for the NEXT first-level index |
| 57 | |
| 58 | struct symbol *symbols; |
| 59 | int symbols_count; |
| 60 | |
| 61 | uint64_t *function_start_addresses; |
| 62 | int function_start_addresses_count; |
| 63 | |
| 64 | int current_index_table_number; |
| 65 | |
| 66 | struct ; |
| 67 | struct first_level_index_entry; |
| 68 | struct |
| 69 | ; |
| 70 | struct |
| 71 | ; |
| 72 | }; |
| 73 | |
| 74 | uint64_t read_leb128(uint8_t **offset) { |
| 75 | uint64_t result = 0; |
| 76 | int shift = 0; |
| 77 | while (1) { |
| 78 | uint8_t byte = **offset; |
| 79 | *offset = *offset + 1; |
| 80 | result |= (byte & 0x7f) << shift; |
| 81 | if ((byte & 0x80) == 0) |
| 82 | break; |
| 83 | shift += 7; |
| 84 | } |
| 85 | |
| 86 | return result; |
| 87 | } |
| 88 | |
| 89 | // step through the load commands in a thin mach-o binary, |
| 90 | // find the cputype and the start of the __TEXT,__unwind_info |
| 91 | // section, return a pointer to that section or NULL if not found. |
| 92 | |
| 93 | static void scan_macho_load_commands(struct baton *baton) { |
| 94 | struct symtab_command symtab_cmd; |
| 95 | uint64_t linkedit_segment_vmaddr; |
| 96 | uint64_t linkedit_segment_file_offset; |
| 97 | |
| 98 | baton->compact_unwind_start = 0; |
| 99 | |
| 100 | uint32_t *magic = (uint32_t *)baton->mach_header_start; |
| 101 | |
| 102 | if (*magic != MH_MAGIC && *magic != MH_MAGIC_64) { |
| 103 | printf(format: "Unexpected magic number 0x%x in header, exiting." , *magic); |
| 104 | exit(status: 1); |
| 105 | } |
| 106 | |
| 107 | bool is_64bit = false; |
| 108 | if (*magic == MH_MAGIC_64) |
| 109 | is_64bit = true; |
| 110 | |
| 111 | uint8_t *offset = baton->mach_header_start; |
| 112 | |
| 113 | struct mh; |
| 114 | memcpy(&mh, offset, sizeof(struct mach_header)); |
| 115 | if (is_64bit) |
| 116 | offset += sizeof(struct mach_header_64); |
| 117 | else |
| 118 | offset += sizeof(struct mach_header); |
| 119 | |
| 120 | if (is_64bit) |
| 121 | baton->addr_size = 8; |
| 122 | else |
| 123 | baton->addr_size = 4; |
| 124 | |
| 125 | baton->cputype = mh.cputype; |
| 126 | |
| 127 | uint8_t *start_of_load_commands = offset; |
| 128 | |
| 129 | uint32_t cur_cmd = 0; |
| 130 | while (cur_cmd < mh.ncmds && |
| 131 | (offset - start_of_load_commands) < mh.sizeofcmds) { |
| 132 | struct load_command lc; |
| 133 | uint32_t *lc_cmd = (uint32_t *)offset; |
| 134 | uint32_t *lc_cmdsize = (uint32_t *)offset + 1; |
| 135 | uint8_t *start_of_this_load_cmd = offset; |
| 136 | |
| 137 | if (*lc_cmd == LC_SEGMENT || *lc_cmd == LC_SEGMENT_64) { |
| 138 | char segment_name[17]; |
| 139 | segment_name[0] = '\0'; |
| 140 | uint32_t nsects = 0; |
| 141 | uint64_t segment_offset = 0; |
| 142 | uint64_t segment_vmaddr = 0; |
| 143 | |
| 144 | if (*lc_cmd == LC_SEGMENT_64) { |
| 145 | struct segment_command_64 seg; |
| 146 | memcpy(&seg, offset, sizeof(struct segment_command_64)); |
| 147 | memcpy(dest: &segment_name, src: &seg.segname, n: 16); |
| 148 | segment_name[16] = '\0'; |
| 149 | nsects = seg.nsects; |
| 150 | segment_offset = seg.fileoff; |
| 151 | segment_vmaddr = seg.vmaddr; |
| 152 | offset += sizeof(struct segment_command_64); |
| 153 | if ((seg.flags & SG_PROTECTED_VERSION_1) == SG_PROTECTED_VERSION_1) { |
| 154 | printf(format: "Segment '%s' is encrypted.\n" , segment_name); |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | if (*lc_cmd == LC_SEGMENT) { |
| 159 | struct segment_command seg; |
| 160 | memcpy(&seg, offset, sizeof(struct segment_command)); |
| 161 | memcpy(dest: &segment_name, src: &seg.segname, n: 16); |
| 162 | segment_name[16] = '\0'; |
| 163 | nsects = seg.nsects; |
| 164 | segment_offset = seg.fileoff; |
| 165 | segment_vmaddr = seg.vmaddr; |
| 166 | offset += sizeof(struct segment_command); |
| 167 | if ((seg.flags & SG_PROTECTED_VERSION_1) == SG_PROTECTED_VERSION_1) { |
| 168 | printf(format: "Segment '%s' is encrypted.\n" , segment_name); |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | if (nsects != 0 && strcmp(s1: segment_name, s2: "__TEXT" ) == 0) { |
| 173 | baton->text_segment_vmaddr = segment_vmaddr; |
| 174 | baton->text_segment_file_offset = segment_offset; |
| 175 | |
| 176 | uint32_t current_sect = 0; |
| 177 | while (current_sect < nsects && |
| 178 | (offset - start_of_this_load_cmd) < *lc_cmdsize) { |
| 179 | char sect_name[17]; |
| 180 | memcpy(dest: §_name, src: offset, n: 16); |
| 181 | sect_name[16] = '\0'; |
| 182 | if (strcmp(s1: sect_name, s2: "__unwind_info" ) == 0) { |
| 183 | if (is_64bit) { |
| 184 | struct section_64 sect; |
| 185 | memset(§, 0, sizeof(struct section_64)); |
| 186 | memcpy(§, offset, sizeof(struct section_64)); |
| 187 | baton->compact_unwind_start = |
| 188 | baton->mach_header_start + sect.offset; |
| 189 | } else { |
| 190 | struct section sect; |
| 191 | memset(§, 0, sizeof(struct section)); |
| 192 | memcpy(§, offset, sizeof(struct section)); |
| 193 | baton->compact_unwind_start = |
| 194 | baton->mach_header_start + sect.offset; |
| 195 | } |
| 196 | } |
| 197 | if (strcmp(s1: sect_name, s2: "__eh_frame" ) == 0) { |
| 198 | if (is_64bit) { |
| 199 | struct section_64 sect; |
| 200 | memset(§, 0, sizeof(struct section_64)); |
| 201 | memcpy(§, offset, sizeof(struct section_64)); |
| 202 | baton->eh_section_file_address = sect.addr; |
| 203 | } else { |
| 204 | struct section sect; |
| 205 | memset(§, 0, sizeof(struct section)); |
| 206 | memcpy(§, offset, sizeof(struct section)); |
| 207 | baton->eh_section_file_address = sect.addr; |
| 208 | } |
| 209 | } |
| 210 | if (strcmp(s1: sect_name, s2: "__text" ) == 0) { |
| 211 | if (is_64bit) { |
| 212 | struct section_64 sect; |
| 213 | memset(§, 0, sizeof(struct section_64)); |
| 214 | memcpy(§, offset, sizeof(struct section_64)); |
| 215 | baton->text_section_vmaddr = sect.addr; |
| 216 | baton->text_section_file_offset = sect.offset; |
| 217 | } else { |
| 218 | struct section sect; |
| 219 | memset(§, 0, sizeof(struct section)); |
| 220 | memcpy(§, offset, sizeof(struct section)); |
| 221 | baton->text_section_vmaddr = sect.addr; |
| 222 | } |
| 223 | } |
| 224 | if (is_64bit) { |
| 225 | offset += sizeof(struct section_64); |
| 226 | } else { |
| 227 | offset += sizeof(struct section); |
| 228 | } |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | if (strcmp(s1: segment_name, s2: "__LINKEDIT" ) == 0) { |
| 233 | linkedit_segment_vmaddr = segment_vmaddr; |
| 234 | linkedit_segment_file_offset = segment_offset; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | if (*lc_cmd == LC_SYMTAB) { |
| 239 | memcpy(&symtab_cmd, offset, sizeof(struct symtab_command)); |
| 240 | } |
| 241 | |
| 242 | if (*lc_cmd == LC_DYSYMTAB) { |
| 243 | struct dysymtab_command dysymtab_cmd; |
| 244 | memcpy(&dysymtab_cmd, offset, sizeof(struct dysymtab_command)); |
| 245 | |
| 246 | int nlist_size = 12; |
| 247 | if (is_64bit) |
| 248 | nlist_size = 16; |
| 249 | |
| 250 | char *string_table = |
| 251 | (char *)(baton->mach_header_start + symtab_cmd.stroff); |
| 252 | uint8_t *local_syms = baton->mach_header_start + symtab_cmd.symoff + |
| 253 | (dysymtab_cmd.ilocalsym * nlist_size); |
| 254 | int local_syms_count = dysymtab_cmd.nlocalsym; |
| 255 | uint8_t *exported_syms = baton->mach_header_start + symtab_cmd.symoff + |
| 256 | (dysymtab_cmd.iextdefsym * nlist_size); |
| 257 | int exported_syms_count = dysymtab_cmd.nextdefsym; |
| 258 | |
| 259 | // We're only going to create records for a small number of these symbols |
| 260 | // but to |
| 261 | // simplify the memory management I'll allocate enough space to store all |
| 262 | // of them. |
| 263 | baton->symbols = (struct symbol *)malloc( |
| 264 | size: sizeof(struct symbol) * (local_syms_count + exported_syms_count)); |
| 265 | baton->symbols_count = 0; |
| 266 | |
| 267 | for (int i = 0; i < local_syms_count; i++) { |
| 268 | struct nlist_64 nlist; |
| 269 | memset(&nlist, 0, sizeof(struct nlist_64)); |
| 270 | if (is_64bit) { |
| 271 | memcpy(&nlist, local_syms + (i * nlist_size), |
| 272 | sizeof(struct nlist_64)); |
| 273 | } else { |
| 274 | struct nlist nlist_32; |
| 275 | memset(&nlist_32, 0, sizeof(struct nlist)); |
| 276 | memcpy(&nlist_32, local_syms + (i * nlist_size), |
| 277 | sizeof(struct nlist)); |
| 278 | nlist.n_un.n_strx = nlist_32.n_un.n_strx; |
| 279 | nlist.n_type = nlist_32.n_type; |
| 280 | nlist.n_sect = nlist_32.n_sect; |
| 281 | nlist.n_desc = nlist_32.n_desc; |
| 282 | nlist.n_value = nlist_32.n_value; |
| 283 | } |
| 284 | if ((nlist.n_type & N_STAB) == 0 && |
| 285 | ((nlist.n_type & N_EXT) == 1 || |
| 286 | ((nlist.n_type & N_TYPE) == N_TYPE && nlist.n_sect != NO_SECT)) && |
| 287 | nlist.n_value != 0 && nlist.n_value != baton->text_segment_vmaddr) { |
| 288 | baton->symbols[baton->symbols_count].file_address = nlist.n_value; |
| 289 | if (baton->cputype == CPU_TYPE_ARM) |
| 290 | baton->symbols[baton->symbols_count].file_address = |
| 291 | baton->symbols[baton->symbols_count].file_address & ~1; |
| 292 | baton->symbols[baton->symbols_count].name = |
| 293 | string_table + nlist.n_un.n_strx; |
| 294 | baton->symbols_count++; |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | for (int i = 0; i < exported_syms_count; i++) { |
| 299 | struct nlist_64 nlist; |
| 300 | memset(&nlist, 0, sizeof(struct nlist_64)); |
| 301 | if (is_64bit) { |
| 302 | memcpy(&nlist, exported_syms + (i * nlist_size), |
| 303 | sizeof(struct nlist_64)); |
| 304 | } else { |
| 305 | struct nlist nlist_32; |
| 306 | memcpy(&nlist_32, exported_syms + (i * nlist_size), |
| 307 | sizeof(struct nlist)); |
| 308 | nlist.n_un.n_strx = nlist_32.n_un.n_strx; |
| 309 | nlist.n_type = nlist_32.n_type; |
| 310 | nlist.n_sect = nlist_32.n_sect; |
| 311 | nlist.n_desc = nlist_32.n_desc; |
| 312 | nlist.n_value = nlist_32.n_value; |
| 313 | } |
| 314 | if ((nlist.n_type & N_STAB) == 0 && |
| 315 | ((nlist.n_type & N_EXT) == 1 || |
| 316 | ((nlist.n_type & N_TYPE) == N_TYPE && nlist.n_sect != NO_SECT)) && |
| 317 | nlist.n_value != 0 && nlist.n_value != baton->text_segment_vmaddr) { |
| 318 | baton->symbols[baton->symbols_count].file_address = nlist.n_value; |
| 319 | if (baton->cputype == CPU_TYPE_ARM) |
| 320 | baton->symbols[baton->symbols_count].file_address = |
| 321 | baton->symbols[baton->symbols_count].file_address & ~1; |
| 322 | baton->symbols[baton->symbols_count].name = |
| 323 | string_table + nlist.n_un.n_strx; |
| 324 | baton->symbols_count++; |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | qsort(base: baton->symbols, nmemb: baton->symbols_count, size: sizeof(struct symbol), |
| 329 | compar: symbol_compare); |
| 330 | } |
| 331 | |
| 332 | if (*lc_cmd == LC_FUNCTION_STARTS) { |
| 333 | struct linkedit_data_command function_starts_cmd; |
| 334 | memcpy(&function_starts_cmd, offset, |
| 335 | sizeof(struct linkedit_data_command)); |
| 336 | |
| 337 | uint8_t *funcstarts_offset = |
| 338 | baton->mach_header_start + function_starts_cmd.dataoff; |
| 339 | uint8_t *function_end = funcstarts_offset + function_starts_cmd.datasize; |
| 340 | int count = 0; |
| 341 | |
| 342 | while (funcstarts_offset < function_end) { |
| 343 | if (read_leb128(offset: &funcstarts_offset) != 0) { |
| 344 | count++; |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | baton->function_start_addresses = |
| 349 | (uint64_t *)malloc(size: sizeof(uint64_t) * count); |
| 350 | baton->function_start_addresses_count = count; |
| 351 | |
| 352 | funcstarts_offset = |
| 353 | baton->mach_header_start + function_starts_cmd.dataoff; |
| 354 | uint64_t current_pc = baton->text_segment_vmaddr; |
| 355 | int i = 0; |
| 356 | while (funcstarts_offset < function_end) { |
| 357 | uint64_t func_start = read_leb128(offset: &funcstarts_offset); |
| 358 | if (func_start != 0) { |
| 359 | current_pc += func_start; |
| 360 | baton->function_start_addresses[i++] = current_pc; |
| 361 | } |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | offset = start_of_this_load_cmd + *lc_cmdsize; |
| 366 | cur_cmd++; |
| 367 | } |
| 368 | |
| 369 | // Augment the symbol table with the function starts table -- adding symbol |
| 370 | // entries |
| 371 | // for functions that were stripped. |
| 372 | |
| 373 | int unnamed_functions_to_add = 0; |
| 374 | for (int i = 0; i < baton->function_start_addresses_count; i++) { |
| 375 | struct symbol search_key; |
| 376 | search_key.file_address = baton->function_start_addresses[i]; |
| 377 | if (baton->cputype == CPU_TYPE_ARM) |
| 378 | search_key.file_address = search_key.file_address & ~1; |
| 379 | struct symbol *sym = |
| 380 | bsearch(key: &search_key, base: baton->symbols, nmemb: baton->symbols_count, |
| 381 | size: sizeof(struct symbol), compar: symbol_compare); |
| 382 | if (sym == NULL) |
| 383 | unnamed_functions_to_add++; |
| 384 | } |
| 385 | |
| 386 | baton->symbols = (struct symbol *)realloc( |
| 387 | ptr: baton->symbols, size: sizeof(struct symbol) * |
| 388 | (baton->symbols_count + unnamed_functions_to_add)); |
| 389 | |
| 390 | int current_unnamed_symbol = 1; |
| 391 | int number_symbols_added = 0; |
| 392 | for (int i = 0; i < baton->function_start_addresses_count; i++) { |
| 393 | struct symbol search_key; |
| 394 | search_key.file_address = baton->function_start_addresses[i]; |
| 395 | if (baton->cputype == CPU_TYPE_ARM) |
| 396 | search_key.file_address = search_key.file_address & ~1; |
| 397 | struct symbol *sym = |
| 398 | bsearch(key: &search_key, base: baton->symbols, nmemb: baton->symbols_count, |
| 399 | size: sizeof(struct symbol), compar: symbol_compare); |
| 400 | if (sym == NULL) { |
| 401 | char *name; |
| 402 | asprintf(ptr: &name, fmt: "unnamed function #%d" , current_unnamed_symbol++); |
| 403 | baton->symbols[baton->symbols_count + number_symbols_added].file_address = |
| 404 | baton->function_start_addresses[i]; |
| 405 | baton->symbols[baton->symbols_count + number_symbols_added].name = name; |
| 406 | number_symbols_added++; |
| 407 | } |
| 408 | } |
| 409 | baton->symbols_count += number_symbols_added; |
| 410 | qsort(base: baton->symbols, nmemb: baton->symbols_count, size: sizeof(struct symbol), |
| 411 | compar: symbol_compare); |
| 412 | |
| 413 | // printf ("function start addresses\n"); |
| 414 | // for (int i = 0; i < baton->function_start_addresses_count; i++) |
| 415 | // { |
| 416 | // printf ("0x%012llx\n", baton->function_start_addresses[i]); |
| 417 | // } |
| 418 | |
| 419 | // printf ("symbol table names & addresses\n"); |
| 420 | // for (int i = 0; i < baton->symbols_count; i++) |
| 421 | // { |
| 422 | // printf ("0x%012llx %s\n", baton->symbols[i].file_address, |
| 423 | // baton->symbols[i].name); |
| 424 | // } |
| 425 | } |
| 426 | |
| 427 | void print_encoding_x86_64(struct baton baton, uint8_t *function_start, |
| 428 | uint32_t encoding) { |
| 429 | int mode = encoding & UNWIND_X86_64_MODE_MASK; |
| 430 | switch (mode) { |
| 431 | case UNWIND_X86_64_MODE_RBP_FRAME: { |
| 432 | printf(format: "frame func: CFA is rbp+%d " , 16); |
| 433 | printf(format: " rip=[CFA-8] rbp=[CFA-16]" ); |
| 434 | uint32_t saved_registers_offset = |
| 435 | EXTRACT_BITS(encoding, UNWIND_X86_64_RBP_FRAME_OFFSET); |
| 436 | |
| 437 | uint32_t saved_registers_locations = |
| 438 | EXTRACT_BITS(encoding, UNWIND_X86_64_RBP_FRAME_REGISTERS); |
| 439 | |
| 440 | saved_registers_offset += 2; |
| 441 | |
| 442 | for (int i = 0; i < 5; i++) { |
| 443 | switch (saved_registers_locations & 0x7) { |
| 444 | case UNWIND_X86_64_REG_NONE: |
| 445 | break; |
| 446 | case UNWIND_X86_64_REG_RBX: |
| 447 | printf(format: " rbx=[CFA-%d]" , saved_registers_offset * 8); |
| 448 | break; |
| 449 | case UNWIND_X86_64_REG_R12: |
| 450 | printf(format: " r12=[CFA-%d]" , saved_registers_offset * 8); |
| 451 | break; |
| 452 | case UNWIND_X86_64_REG_R13: |
| 453 | printf(format: " r13=[CFA-%d]" , saved_registers_offset * 8); |
| 454 | break; |
| 455 | case UNWIND_X86_64_REG_R14: |
| 456 | printf(format: " r14=[CFA-%d]" , saved_registers_offset * 8); |
| 457 | break; |
| 458 | case UNWIND_X86_64_REG_R15: |
| 459 | printf(format: " r15=[CFA-%d]" , saved_registers_offset * 8); |
| 460 | break; |
| 461 | } |
| 462 | saved_registers_offset--; |
| 463 | saved_registers_locations >>= 3; |
| 464 | } |
| 465 | } break; |
| 466 | |
| 467 | case UNWIND_X86_64_MODE_STACK_IND: |
| 468 | case UNWIND_X86_64_MODE_STACK_IMMD: { |
| 469 | uint32_t stack_size = |
| 470 | EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE); |
| 471 | uint32_t register_count = |
| 472 | EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT); |
| 473 | uint32_t permutation = |
| 474 | EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION); |
| 475 | |
| 476 | if (mode == UNWIND_X86_64_MODE_STACK_IND && function_start) { |
| 477 | uint32_t stack_adjust = |
| 478 | EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_ADJUST); |
| 479 | |
| 480 | // offset into the function instructions; 0 == beginning of first |
| 481 | // instruction |
| 482 | uint32_t offset_to_subl_insn = |
| 483 | EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE); |
| 484 | |
| 485 | stack_size = *((uint32_t *)(function_start + offset_to_subl_insn)); |
| 486 | |
| 487 | stack_size += stack_adjust * 8; |
| 488 | |
| 489 | printf(format: "large stack " ); |
| 490 | } |
| 491 | |
| 492 | if (mode == UNWIND_X86_64_MODE_STACK_IND) { |
| 493 | printf(format: "frameless function: stack size %d, register count %d " , |
| 494 | stack_size * 8, register_count); |
| 495 | } else { |
| 496 | printf(format: "frameless function: stack size %d, register count %d " , |
| 497 | stack_size, register_count); |
| 498 | } |
| 499 | |
| 500 | if (register_count == 0) { |
| 501 | printf(format: " no registers saved" ); |
| 502 | } else { |
| 503 | |
| 504 | // We need to include (up to) 6 registers in 10 bits. |
| 505 | // That would be 18 bits if we just used 3 bits per reg to indicate |
| 506 | // the order they're saved on the stack. |
| 507 | // |
| 508 | // This is done with Lehmer code permutation, e.g. see |
| 509 | // http://stackoverflow.com/questions/1506078/fast-permutation-number-permutation-mapping-algorithms |
| 510 | int permunreg[6]; |
| 511 | |
| 512 | // This decodes the variable-base number in the 10 bits |
| 513 | // and gives us the Lehmer code sequence which can then |
| 514 | // be decoded. |
| 515 | |
| 516 | switch (register_count) { |
| 517 | case 6: |
| 518 | permunreg[0] = permutation / 120; // 120 == 5! |
| 519 | permutation -= (permunreg[0] * 120); |
| 520 | permunreg[1] = permutation / 24; // 24 == 4! |
| 521 | permutation -= (permunreg[1] * 24); |
| 522 | permunreg[2] = permutation / 6; // 6 == 3! |
| 523 | permutation -= (permunreg[2] * 6); |
| 524 | permunreg[3] = permutation / 2; // 2 == 2! |
| 525 | permutation -= (permunreg[3] * 2); |
| 526 | permunreg[4] = permutation; // 1 == 1! |
| 527 | permunreg[5] = 0; |
| 528 | break; |
| 529 | case 5: |
| 530 | permunreg[0] = permutation / 120; |
| 531 | permutation -= (permunreg[0] * 120); |
| 532 | permunreg[1] = permutation / 24; |
| 533 | permutation -= (permunreg[1] * 24); |
| 534 | permunreg[2] = permutation / 6; |
| 535 | permutation -= (permunreg[2] * 6); |
| 536 | permunreg[3] = permutation / 2; |
| 537 | permutation -= (permunreg[3] * 2); |
| 538 | permunreg[4] = permutation; |
| 539 | break; |
| 540 | case 4: |
| 541 | permunreg[0] = permutation / 60; |
| 542 | permutation -= (permunreg[0] * 60); |
| 543 | permunreg[1] = permutation / 12; |
| 544 | permutation -= (permunreg[1] * 12); |
| 545 | permunreg[2] = permutation / 3; |
| 546 | permutation -= (permunreg[2] * 3); |
| 547 | permunreg[3] = permutation; |
| 548 | break; |
| 549 | case 3: |
| 550 | permunreg[0] = permutation / 20; |
| 551 | permutation -= (permunreg[0] * 20); |
| 552 | permunreg[1] = permutation / 4; |
| 553 | permutation -= (permunreg[1] * 4); |
| 554 | permunreg[2] = permutation; |
| 555 | break; |
| 556 | case 2: |
| 557 | permunreg[0] = permutation / 5; |
| 558 | permutation -= (permunreg[0] * 5); |
| 559 | permunreg[1] = permutation; |
| 560 | break; |
| 561 | case 1: |
| 562 | permunreg[0] = permutation; |
| 563 | break; |
| 564 | } |
| 565 | |
| 566 | // Decode the Lehmer code for this permutation of |
| 567 | // the registers v. http://en.wikipedia.org/wiki/Lehmer_code |
| 568 | |
| 569 | int registers[6]; |
| 570 | bool used[7] = {false, false, false, false, false, false, false}; |
| 571 | for (int i = 0; i < register_count; i++) { |
| 572 | int renum = 0; |
| 573 | for (int j = 1; j < 7; j++) { |
| 574 | if (used[j] == false) { |
| 575 | if (renum == permunreg[i]) { |
| 576 | registers[i] = j; |
| 577 | used[j] = true; |
| 578 | break; |
| 579 | } |
| 580 | renum++; |
| 581 | } |
| 582 | } |
| 583 | } |
| 584 | |
| 585 | if (mode == UNWIND_X86_64_MODE_STACK_IND) { |
| 586 | printf(format: " CFA is rsp+%d " , stack_size); |
| 587 | } else { |
| 588 | printf(format: " CFA is rsp+%d " , stack_size * 8); |
| 589 | } |
| 590 | |
| 591 | uint32_t saved_registers_offset = 1; |
| 592 | printf(format: " rip=[CFA-%d]" , saved_registers_offset * 8); |
| 593 | saved_registers_offset++; |
| 594 | |
| 595 | for (int i = (sizeof(registers) / sizeof(int)) - 1; i >= 0; i--) { |
| 596 | switch (registers[i]) { |
| 597 | case UNWIND_X86_64_REG_NONE: |
| 598 | break; |
| 599 | case UNWIND_X86_64_REG_RBX: |
| 600 | printf(format: " rbx=[CFA-%d]" , saved_registers_offset * 8); |
| 601 | saved_registers_offset++; |
| 602 | break; |
| 603 | case UNWIND_X86_64_REG_R12: |
| 604 | printf(format: " r12=[CFA-%d]" , saved_registers_offset * 8); |
| 605 | saved_registers_offset++; |
| 606 | break; |
| 607 | case UNWIND_X86_64_REG_R13: |
| 608 | printf(format: " r13=[CFA-%d]" , saved_registers_offset * 8); |
| 609 | saved_registers_offset++; |
| 610 | break; |
| 611 | case UNWIND_X86_64_REG_R14: |
| 612 | printf(format: " r14=[CFA-%d]" , saved_registers_offset * 8); |
| 613 | saved_registers_offset++; |
| 614 | break; |
| 615 | case UNWIND_X86_64_REG_R15: |
| 616 | printf(format: " r15=[CFA-%d]" , saved_registers_offset * 8); |
| 617 | saved_registers_offset++; |
| 618 | break; |
| 619 | case UNWIND_X86_64_REG_RBP: |
| 620 | printf(format: " rbp=[CFA-%d]" , saved_registers_offset * 8); |
| 621 | saved_registers_offset++; |
| 622 | break; |
| 623 | } |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | } break; |
| 628 | |
| 629 | case UNWIND_X86_64_MODE_DWARF: { |
| 630 | uint32_t dwarf_offset = encoding & UNWIND_X86_DWARF_SECTION_OFFSET; |
| 631 | printf( |
| 632 | format: "DWARF unwind instructions: FDE at offset %d (file address 0x%" PRIx64 |
| 633 | ")" , |
| 634 | dwarf_offset, dwarf_offset + baton.eh_section_file_address); |
| 635 | } break; |
| 636 | |
| 637 | case 0: { |
| 638 | printf(format: " no unwind information" ); |
| 639 | } break; |
| 640 | } |
| 641 | } |
| 642 | |
| 643 | void print_encoding_i386(struct baton baton, uint8_t *function_start, |
| 644 | uint32_t encoding) { |
| 645 | int mode = encoding & UNWIND_X86_MODE_MASK; |
| 646 | switch (mode) { |
| 647 | case UNWIND_X86_MODE_EBP_FRAME: { |
| 648 | printf(format: "frame func: CFA is ebp+%d " , 8); |
| 649 | printf(format: " eip=[CFA-4] ebp=[CFA-8]" ); |
| 650 | uint32_t saved_registers_offset = |
| 651 | EXTRACT_BITS(encoding, UNWIND_X86_EBP_FRAME_OFFSET); |
| 652 | |
| 653 | uint32_t saved_registers_locations = |
| 654 | EXTRACT_BITS(encoding, UNWIND_X86_EBP_FRAME_REGISTERS); |
| 655 | |
| 656 | saved_registers_offset += 2; |
| 657 | |
| 658 | for (int i = 0; i < 5; i++) { |
| 659 | switch (saved_registers_locations & 0x7) { |
| 660 | case UNWIND_X86_REG_NONE: |
| 661 | break; |
| 662 | case UNWIND_X86_REG_EBX: |
| 663 | printf(format: " ebx=[CFA-%d]" , saved_registers_offset * 4); |
| 664 | break; |
| 665 | case UNWIND_X86_REG_ECX: |
| 666 | printf(format: " ecx=[CFA-%d]" , saved_registers_offset * 4); |
| 667 | break; |
| 668 | case UNWIND_X86_REG_EDX: |
| 669 | printf(format: " edx=[CFA-%d]" , saved_registers_offset * 4); |
| 670 | break; |
| 671 | case UNWIND_X86_REG_EDI: |
| 672 | printf(format: " edi=[CFA-%d]" , saved_registers_offset * 4); |
| 673 | break; |
| 674 | case UNWIND_X86_REG_ESI: |
| 675 | printf(format: " esi=[CFA-%d]" , saved_registers_offset * 4); |
| 676 | break; |
| 677 | } |
| 678 | saved_registers_offset--; |
| 679 | saved_registers_locations >>= 3; |
| 680 | } |
| 681 | } break; |
| 682 | |
| 683 | case UNWIND_X86_MODE_STACK_IND: |
| 684 | case UNWIND_X86_MODE_STACK_IMMD: { |
| 685 | uint32_t stack_size = |
| 686 | EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_SIZE); |
| 687 | uint32_t register_count = |
| 688 | EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_REG_COUNT); |
| 689 | uint32_t permutation = |
| 690 | EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION); |
| 691 | |
| 692 | if (mode == UNWIND_X86_MODE_STACK_IND && function_start) { |
| 693 | uint32_t stack_adjust = |
| 694 | EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_ADJUST); |
| 695 | |
| 696 | // offset into the function instructions; 0 == beginning of first |
| 697 | // instruction |
| 698 | uint32_t offset_to_subl_insn = |
| 699 | EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_SIZE); |
| 700 | |
| 701 | stack_size = *((uint32_t *)(function_start + offset_to_subl_insn)); |
| 702 | |
| 703 | stack_size += stack_adjust * 4; |
| 704 | |
| 705 | printf(format: "large stack " ); |
| 706 | } |
| 707 | |
| 708 | if (mode == UNWIND_X86_MODE_STACK_IND) { |
| 709 | printf(format: "frameless function: stack size %d, register count %d " , |
| 710 | stack_size, register_count); |
| 711 | } else { |
| 712 | printf(format: "frameless function: stack size %d, register count %d " , |
| 713 | stack_size * 4, register_count); |
| 714 | } |
| 715 | |
| 716 | if (register_count == 0) { |
| 717 | printf(format: " no registers saved" ); |
| 718 | } else { |
| 719 | |
| 720 | // We need to include (up to) 6 registers in 10 bits. |
| 721 | // That would be 18 bits if we just used 3 bits per reg to indicate |
| 722 | // the order they're saved on the stack. |
| 723 | // |
| 724 | // This is done with Lehmer code permutation, e.g. see |
| 725 | // http://stackoverflow.com/questions/1506078/fast-permutation-number-permutation-mapping-algorithms |
| 726 | int permunreg[6]; |
| 727 | |
| 728 | // This decodes the variable-base number in the 10 bits |
| 729 | // and gives us the Lehmer code sequence which can then |
| 730 | // be decoded. |
| 731 | |
| 732 | switch (register_count) { |
| 733 | case 6: |
| 734 | permunreg[0] = permutation / 120; // 120 == 5! |
| 735 | permutation -= (permunreg[0] * 120); |
| 736 | permunreg[1] = permutation / 24; // 24 == 4! |
| 737 | permutation -= (permunreg[1] * 24); |
| 738 | permunreg[2] = permutation / 6; // 6 == 3! |
| 739 | permutation -= (permunreg[2] * 6); |
| 740 | permunreg[3] = permutation / 2; // 2 == 2! |
| 741 | permutation -= (permunreg[3] * 2); |
| 742 | permunreg[4] = permutation; // 1 == 1! |
| 743 | permunreg[5] = 0; |
| 744 | break; |
| 745 | case 5: |
| 746 | permunreg[0] = permutation / 120; |
| 747 | permutation -= (permunreg[0] * 120); |
| 748 | permunreg[1] = permutation / 24; |
| 749 | permutation -= (permunreg[1] * 24); |
| 750 | permunreg[2] = permutation / 6; |
| 751 | permutation -= (permunreg[2] * 6); |
| 752 | permunreg[3] = permutation / 2; |
| 753 | permutation -= (permunreg[3] * 2); |
| 754 | permunreg[4] = permutation; |
| 755 | break; |
| 756 | case 4: |
| 757 | permunreg[0] = permutation / 60; |
| 758 | permutation -= (permunreg[0] * 60); |
| 759 | permunreg[1] = permutation / 12; |
| 760 | permutation -= (permunreg[1] * 12); |
| 761 | permunreg[2] = permutation / 3; |
| 762 | permutation -= (permunreg[2] * 3); |
| 763 | permunreg[3] = permutation; |
| 764 | break; |
| 765 | case 3: |
| 766 | permunreg[0] = permutation / 20; |
| 767 | permutation -= (permunreg[0] * 20); |
| 768 | permunreg[1] = permutation / 4; |
| 769 | permutation -= (permunreg[1] * 4); |
| 770 | permunreg[2] = permutation; |
| 771 | break; |
| 772 | case 2: |
| 773 | permunreg[0] = permutation / 5; |
| 774 | permutation -= (permunreg[0] * 5); |
| 775 | permunreg[1] = permutation; |
| 776 | break; |
| 777 | case 1: |
| 778 | permunreg[0] = permutation; |
| 779 | break; |
| 780 | } |
| 781 | |
| 782 | // Decode the Lehmer code for this permutation of |
| 783 | // the registers v. http://en.wikipedia.org/wiki/Lehmer_code |
| 784 | |
| 785 | int registers[6]; |
| 786 | bool used[7] = {false, false, false, false, false, false, false}; |
| 787 | for (int i = 0; i < register_count; i++) { |
| 788 | int renum = 0; |
| 789 | for (int j = 1; j < 7; j++) { |
| 790 | if (used[j] == false) { |
| 791 | if (renum == permunreg[i]) { |
| 792 | registers[i] = j; |
| 793 | used[j] = true; |
| 794 | break; |
| 795 | } |
| 796 | renum++; |
| 797 | } |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | if (mode == UNWIND_X86_MODE_STACK_IND) { |
| 802 | printf(format: " CFA is esp+%d " , stack_size); |
| 803 | } else { |
| 804 | printf(format: " CFA is esp+%d " , stack_size * 4); |
| 805 | } |
| 806 | |
| 807 | uint32_t saved_registers_offset = 1; |
| 808 | printf(format: " eip=[CFA-%d]" , saved_registers_offset * 4); |
| 809 | saved_registers_offset++; |
| 810 | |
| 811 | for (int i = (sizeof(registers) / sizeof(int)) - 1; i >= 0; i--) { |
| 812 | switch (registers[i]) { |
| 813 | case UNWIND_X86_REG_NONE: |
| 814 | break; |
| 815 | case UNWIND_X86_REG_EBX: |
| 816 | printf(format: " ebx=[CFA-%d]" , saved_registers_offset * 4); |
| 817 | saved_registers_offset++; |
| 818 | break; |
| 819 | case UNWIND_X86_REG_ECX: |
| 820 | printf(format: " ecx=[CFA-%d]" , saved_registers_offset * 4); |
| 821 | saved_registers_offset++; |
| 822 | break; |
| 823 | case UNWIND_X86_REG_EDX: |
| 824 | printf(format: " edx=[CFA-%d]" , saved_registers_offset * 4); |
| 825 | saved_registers_offset++; |
| 826 | break; |
| 827 | case UNWIND_X86_REG_EDI: |
| 828 | printf(format: " edi=[CFA-%d]" , saved_registers_offset * 4); |
| 829 | saved_registers_offset++; |
| 830 | break; |
| 831 | case UNWIND_X86_REG_ESI: |
| 832 | printf(format: " esi=[CFA-%d]" , saved_registers_offset * 4); |
| 833 | saved_registers_offset++; |
| 834 | break; |
| 835 | case UNWIND_X86_REG_EBP: |
| 836 | printf(format: " ebp=[CFA-%d]" , saved_registers_offset * 4); |
| 837 | saved_registers_offset++; |
| 838 | break; |
| 839 | } |
| 840 | } |
| 841 | } |
| 842 | |
| 843 | } break; |
| 844 | |
| 845 | case UNWIND_X86_MODE_DWARF: { |
| 846 | uint32_t dwarf_offset = encoding & UNWIND_X86_DWARF_SECTION_OFFSET; |
| 847 | printf( |
| 848 | format: "DWARF unwind instructions: FDE at offset %d (file address 0x%" PRIx64 |
| 849 | ")" , |
| 850 | dwarf_offset, dwarf_offset + baton.eh_section_file_address); |
| 851 | } break; |
| 852 | |
| 853 | case 0: { |
| 854 | printf(format: " no unwind information" ); |
| 855 | } break; |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | void print_encoding_arm64(struct baton baton, uint8_t *function_start, |
| 860 | uint32_t encoding) { |
| 861 | const int wordsize = 8; |
| 862 | int mode = encoding & UNWIND_ARM64_MODE_MASK; |
| 863 | switch (mode) { |
| 864 | case UNWIND_ARM64_MODE_FRAME: { |
| 865 | printf(format: "frame func: CFA is fp+%d " , 16); |
| 866 | printf(format: " pc=[CFA-8] fp=[CFA-16]" ); |
| 867 | int reg_pairs_saved_count = 1; |
| 868 | uint32_t saved_register_bits = encoding & 0xfff; |
| 869 | if (saved_register_bits & UNWIND_ARM64_FRAME_X19_X20_PAIR) { |
| 870 | int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| 871 | cfa_offset -= wordsize; |
| 872 | printf(format: " x19=[CFA%d]" , cfa_offset); |
| 873 | cfa_offset -= wordsize; |
| 874 | printf(format: " x20=[CFA%d]" , cfa_offset); |
| 875 | reg_pairs_saved_count++; |
| 876 | } |
| 877 | if (saved_register_bits & UNWIND_ARM64_FRAME_X21_X22_PAIR) { |
| 878 | int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| 879 | cfa_offset -= wordsize; |
| 880 | printf(format: " x21=[CFA%d]" , cfa_offset); |
| 881 | cfa_offset -= wordsize; |
| 882 | printf(format: " x22=[CFA%d]" , cfa_offset); |
| 883 | reg_pairs_saved_count++; |
| 884 | } |
| 885 | if (saved_register_bits & UNWIND_ARM64_FRAME_X23_X24_PAIR) { |
| 886 | int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| 887 | cfa_offset -= wordsize; |
| 888 | printf(format: " x23=[CFA%d]" , cfa_offset); |
| 889 | cfa_offset -= wordsize; |
| 890 | printf(format: " x24=[CFA%d]" , cfa_offset); |
| 891 | reg_pairs_saved_count++; |
| 892 | } |
| 893 | if (saved_register_bits & UNWIND_ARM64_FRAME_X25_X26_PAIR) { |
| 894 | int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| 895 | cfa_offset -= wordsize; |
| 896 | printf(format: " x25=[CFA%d]" , cfa_offset); |
| 897 | cfa_offset -= wordsize; |
| 898 | printf(format: " x26=[CFA%d]" , cfa_offset); |
| 899 | reg_pairs_saved_count++; |
| 900 | } |
| 901 | if (saved_register_bits & UNWIND_ARM64_FRAME_X27_X28_PAIR) { |
| 902 | int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| 903 | cfa_offset -= wordsize; |
| 904 | printf(format: " x27=[CFA%d]" , cfa_offset); |
| 905 | cfa_offset -= wordsize; |
| 906 | printf(format: " x28=[CFA%d]" , cfa_offset); |
| 907 | reg_pairs_saved_count++; |
| 908 | } |
| 909 | if (saved_register_bits & UNWIND_ARM64_FRAME_D8_D9_PAIR) { |
| 910 | int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| 911 | cfa_offset -= wordsize; |
| 912 | printf(format: " d8=[CFA%d]" , cfa_offset); |
| 913 | cfa_offset -= wordsize; |
| 914 | printf(format: " d9=[CFA%d]" , cfa_offset); |
| 915 | reg_pairs_saved_count++; |
| 916 | } |
| 917 | if (saved_register_bits & UNWIND_ARM64_FRAME_D10_D11_PAIR) { |
| 918 | int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| 919 | cfa_offset -= wordsize; |
| 920 | printf(format: " d10=[CFA%d]" , cfa_offset); |
| 921 | cfa_offset -= wordsize; |
| 922 | printf(format: " d11=[CFA%d]" , cfa_offset); |
| 923 | reg_pairs_saved_count++; |
| 924 | } |
| 925 | if (saved_register_bits & UNWIND_ARM64_FRAME_D12_D13_PAIR) { |
| 926 | int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| 927 | cfa_offset -= wordsize; |
| 928 | printf(format: " d12=[CFA%d]" , cfa_offset); |
| 929 | cfa_offset -= wordsize; |
| 930 | printf(format: " d13=[CFA%d]" , cfa_offset); |
| 931 | reg_pairs_saved_count++; |
| 932 | } |
| 933 | if (saved_register_bits & UNWIND_ARM64_FRAME_D14_D15_PAIR) { |
| 934 | int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| 935 | cfa_offset -= wordsize; |
| 936 | printf(format: " d14=[CFA%d]" , cfa_offset); |
| 937 | cfa_offset -= wordsize; |
| 938 | printf(format: " d15=[CFA%d]" , cfa_offset); |
| 939 | reg_pairs_saved_count++; |
| 940 | } |
| 941 | |
| 942 | } break; |
| 943 | |
| 944 | case UNWIND_ARM64_MODE_FRAMELESS: { |
| 945 | uint32_t stack_size = encoding & UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK; |
| 946 | printf(format: "frameless function: stack size %d " , stack_size * 16); |
| 947 | |
| 948 | } break; |
| 949 | |
| 950 | case UNWIND_ARM64_MODE_DWARF: { |
| 951 | uint32_t dwarf_offset = encoding & UNWIND_ARM64_DWARF_SECTION_OFFSET; |
| 952 | printf( |
| 953 | format: "DWARF unwind instructions: FDE at offset %d (file address 0x%" PRIx64 |
| 954 | ")" , |
| 955 | dwarf_offset, dwarf_offset + baton.eh_section_file_address); |
| 956 | } break; |
| 957 | |
| 958 | case 0: { |
| 959 | printf(format: " no unwind information" ); |
| 960 | } break; |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | void print_encoding_armv7(struct baton baton, uint8_t *function_start, |
| 965 | uint32_t encoding) { |
| 966 | const int wordsize = 4; |
| 967 | int mode = encoding & UNWIND_ARM_MODE_MASK; |
| 968 | switch (mode) { |
| 969 | case UNWIND_ARM_MODE_FRAME_D: |
| 970 | case UNWIND_ARM_MODE_FRAME: { |
| 971 | int stack_adjust = |
| 972 | EXTRACT_BITS(encoding, UNWIND_ARM_FRAME_STACK_ADJUST_MASK) * wordsize; |
| 973 | |
| 974 | printf(format: "frame func: CFA is fp+%d " , (2 * wordsize) + stack_adjust); |
| 975 | int cfa_offset = -stack_adjust; |
| 976 | |
| 977 | cfa_offset -= wordsize; |
| 978 | printf(format: " pc=[CFA%d]" , cfa_offset); |
| 979 | cfa_offset -= wordsize; |
| 980 | printf(format: " fp=[CFA%d]" , cfa_offset); |
| 981 | |
| 982 | uint32_t saved_register_bits = encoding & 0xff; |
| 983 | if (saved_register_bits & UNWIND_ARM_FRAME_FIRST_PUSH_R6) { |
| 984 | cfa_offset -= wordsize; |
| 985 | printf(format: " r6=[CFA%d]" , cfa_offset); |
| 986 | } |
| 987 | if (saved_register_bits & UNWIND_ARM_FRAME_FIRST_PUSH_R5) { |
| 988 | cfa_offset -= wordsize; |
| 989 | printf(format: " r5=[CFA%d]" , cfa_offset); |
| 990 | } |
| 991 | if (saved_register_bits & UNWIND_ARM_FRAME_FIRST_PUSH_R4) { |
| 992 | cfa_offset -= wordsize; |
| 993 | printf(format: " r4=[CFA%d]" , cfa_offset); |
| 994 | } |
| 995 | if (saved_register_bits & UNWIND_ARM_FRAME_SECOND_PUSH_R12) { |
| 996 | cfa_offset -= wordsize; |
| 997 | printf(format: " r12=[CFA%d]" , cfa_offset); |
| 998 | } |
| 999 | if (saved_register_bits & UNWIND_ARM_FRAME_SECOND_PUSH_R11) { |
| 1000 | cfa_offset -= wordsize; |
| 1001 | printf(format: " r11=[CFA%d]" , cfa_offset); |
| 1002 | } |
| 1003 | if (saved_register_bits & UNWIND_ARM_FRAME_SECOND_PUSH_R10) { |
| 1004 | cfa_offset -= wordsize; |
| 1005 | printf(format: " r10=[CFA%d]" , cfa_offset); |
| 1006 | } |
| 1007 | if (saved_register_bits & UNWIND_ARM_FRAME_SECOND_PUSH_R9) { |
| 1008 | cfa_offset -= wordsize; |
| 1009 | printf(format: " r9=[CFA%d]" , cfa_offset); |
| 1010 | } |
| 1011 | if (saved_register_bits & UNWIND_ARM_FRAME_SECOND_PUSH_R8) { |
| 1012 | cfa_offset -= wordsize; |
| 1013 | printf(format: " r8=[CFA%d]" , cfa_offset); |
| 1014 | } |
| 1015 | |
| 1016 | if (mode == UNWIND_ARM_MODE_FRAME_D) { |
| 1017 | uint32_t d_reg_bits = |
| 1018 | EXTRACT_BITS(encoding, UNWIND_ARM_FRAME_D_REG_COUNT_MASK); |
| 1019 | switch (d_reg_bits) { |
| 1020 | case 0: |
| 1021 | // vpush {d8} |
| 1022 | cfa_offset -= 8; |
| 1023 | printf(format: " d8=[CFA%d]" , cfa_offset); |
| 1024 | break; |
| 1025 | case 1: |
| 1026 | // vpush {d10} |
| 1027 | // vpush {d8} |
| 1028 | cfa_offset -= 8; |
| 1029 | printf(format: " d10=[CFA%d]" , cfa_offset); |
| 1030 | cfa_offset -= 8; |
| 1031 | printf(format: " d8=[CFA%d]" , cfa_offset); |
| 1032 | break; |
| 1033 | case 2: |
| 1034 | // vpush {d12} |
| 1035 | // vpush {d10} |
| 1036 | // vpush {d8} |
| 1037 | cfa_offset -= 8; |
| 1038 | printf(format: " d12=[CFA%d]" , cfa_offset); |
| 1039 | cfa_offset -= 8; |
| 1040 | printf(format: " d10=[CFA%d]" , cfa_offset); |
| 1041 | cfa_offset -= 8; |
| 1042 | printf(format: " d8=[CFA%d]" , cfa_offset); |
| 1043 | break; |
| 1044 | case 3: |
| 1045 | // vpush {d14} |
| 1046 | // vpush {d12} |
| 1047 | // vpush {d10} |
| 1048 | // vpush {d8} |
| 1049 | cfa_offset -= 8; |
| 1050 | printf(format: " d14=[CFA%d]" , cfa_offset); |
| 1051 | cfa_offset -= 8; |
| 1052 | printf(format: " d12=[CFA%d]" , cfa_offset); |
| 1053 | cfa_offset -= 8; |
| 1054 | printf(format: " d10=[CFA%d]" , cfa_offset); |
| 1055 | cfa_offset -= 8; |
| 1056 | printf(format: " d8=[CFA%d]" , cfa_offset); |
| 1057 | break; |
| 1058 | case 4: |
| 1059 | // vpush {d14} |
| 1060 | // vpush {d12} |
| 1061 | // sp = (sp - 24) & (-16); |
| 1062 | // vst {d8, d9, d10} |
| 1063 | printf(format: " d14, d12, d10, d9, d8" ); |
| 1064 | break; |
| 1065 | case 5: |
| 1066 | // vpush {d14} |
| 1067 | // sp = (sp - 40) & (-16); |
| 1068 | // vst {d8, d9, d10, d11} |
| 1069 | // vst {d12} |
| 1070 | printf(format: " d14, d11, d10, d9, d8, d12" ); |
| 1071 | break; |
| 1072 | case 6: |
| 1073 | // sp = (sp - 56) & (-16); |
| 1074 | // vst {d8, d9, d10, d11} |
| 1075 | // vst {d12, d13, d14} |
| 1076 | printf(format: " d11, d10, d9, d8, d14, d13, d12" ); |
| 1077 | break; |
| 1078 | case 7: |
| 1079 | // sp = (sp - 64) & (-16); |
| 1080 | // vst {d8, d9, d10, d11} |
| 1081 | // vst {d12, d13, d14, d15} |
| 1082 | printf(format: " d11, d10, d9, d8, d15, d14, d13, d12" ); |
| 1083 | break; |
| 1084 | } |
| 1085 | } |
| 1086 | } break; |
| 1087 | |
| 1088 | case UNWIND_ARM_MODE_DWARF: { |
| 1089 | uint32_t dwarf_offset = encoding & UNWIND_ARM_DWARF_SECTION_OFFSET; |
| 1090 | printf( |
| 1091 | format: "DWARF unwind instructions: FDE at offset %d (file address 0x%" PRIx64 |
| 1092 | ")" , |
| 1093 | dwarf_offset, dwarf_offset + baton.eh_section_file_address); |
| 1094 | } break; |
| 1095 | |
| 1096 | case 0: { |
| 1097 | printf(format: " no unwind information" ); |
| 1098 | } break; |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | void print_encoding(struct baton baton, uint8_t *function_start, |
| 1103 | uint32_t encoding) { |
| 1104 | |
| 1105 | if (baton.cputype == CPU_TYPE_X86_64) { |
| 1106 | print_encoding_x86_64(baton, function_start, encoding); |
| 1107 | } else if (baton.cputype == CPU_TYPE_I386) { |
| 1108 | print_encoding_i386(baton, function_start, encoding); |
| 1109 | } else if (baton.cputype == CPU_TYPE_ARM64 || baton.cputype == CPU_TYPE_ARM64_32) { |
| 1110 | print_encoding_arm64(baton, function_start, encoding); |
| 1111 | } else if (baton.cputype == CPU_TYPE_ARM) { |
| 1112 | print_encoding_armv7(baton, function_start, encoding); |
| 1113 | } else { |
| 1114 | printf(format: " -- unsupported encoding arch -- " ); |
| 1115 | } |
| 1116 | } |
| 1117 | |
| 1118 | void print_function_encoding(struct baton baton, uint32_t idx, |
| 1119 | uint32_t encoding, uint32_t entry_encoding_index, |
| 1120 | uint32_t entry_func_offset) { |
| 1121 | |
| 1122 | char *entry_encoding_index_str = "" ; |
| 1123 | if (entry_encoding_index != (uint32_t)-1) { |
| 1124 | asprintf(ptr: &entry_encoding_index_str, fmt: ", encoding #%d" , entry_encoding_index); |
| 1125 | } else { |
| 1126 | asprintf(ptr: &entry_encoding_index_str, fmt: "" ); |
| 1127 | } |
| 1128 | |
| 1129 | uint64_t file_address = baton.first_level_index_entry.functionOffset + |
| 1130 | entry_func_offset + baton.text_segment_vmaddr; |
| 1131 | |
| 1132 | if (baton.cputype == CPU_TYPE_ARM) |
| 1133 | file_address = file_address & ~1; |
| 1134 | |
| 1135 | printf( |
| 1136 | format: " func [%d] offset %d (file addr 0x%" PRIx64 ")%s, encoding is 0x%x" , |
| 1137 | idx, entry_func_offset, file_address, entry_encoding_index_str, encoding); |
| 1138 | |
| 1139 | struct symbol *symbol = NULL; |
| 1140 | for (int i = 0; i < baton.symbols_count; i++) { |
| 1141 | if (i == baton.symbols_count - 1 && |
| 1142 | baton.symbols[i].file_address <= file_address) { |
| 1143 | symbol = &(baton.symbols[i]); |
| 1144 | break; |
| 1145 | } else { |
| 1146 | if (baton.symbols[i].file_address <= file_address && |
| 1147 | baton.symbols[i + 1].file_address > file_address) { |
| 1148 | symbol = &(baton.symbols[i]); |
| 1149 | break; |
| 1150 | } |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | printf(format: "\n " ); |
| 1155 | if (symbol) { |
| 1156 | int offset = file_address - symbol->file_address; |
| 1157 | |
| 1158 | // FIXME this is a poor heuristic - if we're greater than 16 bytes past the |
| 1159 | // start of the function, this is the unwind info for a stripped function. |
| 1160 | // In reality the compact unwind entry may not line up exactly with the |
| 1161 | // function bounds. |
| 1162 | if (offset >= 0) { |
| 1163 | printf(format: "name: %s" , symbol->name); |
| 1164 | if (offset > 0) { |
| 1165 | printf(format: " + %d" , offset); |
| 1166 | } |
| 1167 | } |
| 1168 | printf(format: "\n " ); |
| 1169 | } |
| 1170 | |
| 1171 | print_encoding(baton, function_start: baton.mach_header_start + |
| 1172 | baton.first_level_index_entry.functionOffset + |
| 1173 | baton.text_section_file_offset + entry_func_offset, |
| 1174 | encoding); |
| 1175 | |
| 1176 | bool has_lsda = encoding & UNWIND_HAS_LSDA; |
| 1177 | |
| 1178 | if (has_lsda) { |
| 1179 | uint32_t func_offset = |
| 1180 | entry_func_offset + baton.first_level_index_entry.functionOffset; |
| 1181 | |
| 1182 | int lsda_entry_number = -1; |
| 1183 | |
| 1184 | uint32_t low = 0; |
| 1185 | uint32_t high = (baton.lsda_array_end - baton.lsda_array_start) / |
| 1186 | sizeof(struct unwind_info_section_header_lsda_index_entry); |
| 1187 | |
| 1188 | while (low < high) { |
| 1189 | uint32_t mid = (low + high) / 2; |
| 1190 | |
| 1191 | uint8_t *mid_lsda_entry_addr = |
| 1192 | (baton.lsda_array_start + |
| 1193 | (mid * sizeof(struct unwind_info_section_header_lsda_index_entry))); |
| 1194 | struct unwind_info_section_header_lsda_index_entry mid_lsda_entry; |
| 1195 | memcpy(&mid_lsda_entry, mid_lsda_entry_addr, |
| 1196 | sizeof(struct unwind_info_section_header_lsda_index_entry)); |
| 1197 | if (mid_lsda_entry.functionOffset == func_offset) { |
| 1198 | lsda_entry_number = |
| 1199 | (mid_lsda_entry_addr - baton.lsda_array_start) / |
| 1200 | sizeof(struct unwind_info_section_header_lsda_index_entry); |
| 1201 | break; |
| 1202 | } else if (mid_lsda_entry.functionOffset < func_offset) { |
| 1203 | low = mid + 1; |
| 1204 | } else { |
| 1205 | high = mid; |
| 1206 | } |
| 1207 | } |
| 1208 | |
| 1209 | if (lsda_entry_number != -1) { |
| 1210 | printf(format: ", LSDA entry #%d" , lsda_entry_number); |
| 1211 | } else { |
| 1212 | printf(format: ", LSDA entry not found" ); |
| 1213 | } |
| 1214 | } |
| 1215 | |
| 1216 | uint32_t pers_idx = EXTRACT_BITS(encoding, UNWIND_PERSONALITY_MASK); |
| 1217 | if (pers_idx != 0) { |
| 1218 | pers_idx--; // Change 1-based to 0-based index |
| 1219 | printf(format: ", personality entry #%d" , pers_idx); |
| 1220 | } |
| 1221 | |
| 1222 | printf(format: "\n" ); |
| 1223 | } |
| 1224 | |
| 1225 | void print_second_level_index_regular(struct baton baton) { |
| 1226 | uint8_t *page_entries = |
| 1227 | baton.compact_unwind_start + |
| 1228 | baton.first_level_index_entry.secondLevelPagesSectionOffset + |
| 1229 | baton.regular_second_level_page_header.entryPageOffset; |
| 1230 | uint32_t entries_count = baton.regular_second_level_page_header.entryCount; |
| 1231 | |
| 1232 | uint8_t *offset = page_entries; |
| 1233 | |
| 1234 | uint32_t idx = 0; |
| 1235 | while (idx < entries_count) { |
| 1236 | uint32_t func_offset = *((uint32_t *)(offset)); |
| 1237 | uint32_t encoding = *((uint32_t *)(offset + 4)); |
| 1238 | |
| 1239 | // UNWIND_SECOND_LEVEL_REGULAR entries have a funcOffset which includes the |
| 1240 | // functionOffset from the containing index table already. |
| 1241 | // UNWIND_SECOND_LEVEL_COMPRESSED |
| 1242 | // entries only have the offset from the containing index table |
| 1243 | // functionOffset. |
| 1244 | // So strip off the containing index table functionOffset value here so they |
| 1245 | // can |
| 1246 | // be treated the same at the lower layers. |
| 1247 | |
| 1248 | print_function_encoding(baton, idx, encoding, entry_encoding_index: (uint32_t)-1, |
| 1249 | entry_func_offset: func_offset - |
| 1250 | baton.first_level_index_entry.functionOffset); |
| 1251 | idx++; |
| 1252 | offset += 8; |
| 1253 | } |
| 1254 | } |
| 1255 | |
| 1256 | void print_second_level_index_compressed(struct baton baton) { |
| 1257 | uint8_t *this_index = |
| 1258 | baton.compact_unwind_start + |
| 1259 | baton.first_level_index_entry.secondLevelPagesSectionOffset; |
| 1260 | uint8_t *start_of_entries = |
| 1261 | this_index + baton.compressed_second_level_page_header.entryPageOffset; |
| 1262 | uint8_t *offset = start_of_entries; |
| 1263 | for (uint16_t idx = 0; |
| 1264 | idx < baton.compressed_second_level_page_header.entryCount; idx++) { |
| 1265 | uint32_t entry = *((uint32_t *)offset); |
| 1266 | offset += 4; |
| 1267 | uint32_t encoding; |
| 1268 | |
| 1269 | uint32_t entry_encoding_index = |
| 1270 | UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry); |
| 1271 | uint32_t entry_func_offset = |
| 1272 | UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry); |
| 1273 | |
| 1274 | if (entry_encoding_index < baton.unwind_header.commonEncodingsArrayCount) { |
| 1275 | // encoding is in common table in section header |
| 1276 | encoding = |
| 1277 | *((uint32_t *)(baton.compact_unwind_start + |
| 1278 | baton.unwind_header.commonEncodingsArraySectionOffset + |
| 1279 | (entry_encoding_index * sizeof(uint32_t)))); |
| 1280 | } else { |
| 1281 | // encoding is in page specific table |
| 1282 | uint32_t page_encoding_index = |
| 1283 | entry_encoding_index - baton.unwind_header.commonEncodingsArrayCount; |
| 1284 | encoding = *((uint32_t *)(this_index + |
| 1285 | baton.compressed_second_level_page_header |
| 1286 | .encodingsPageOffset + |
| 1287 | (page_encoding_index * sizeof(uint32_t)))); |
| 1288 | } |
| 1289 | |
| 1290 | print_function_encoding(baton, idx, encoding, entry_encoding_index, |
| 1291 | entry_func_offset); |
| 1292 | } |
| 1293 | } |
| 1294 | |
| 1295 | void print_second_level_index(struct baton baton) { |
| 1296 | uint8_t *index_start = |
| 1297 | baton.compact_unwind_start + |
| 1298 | baton.first_level_index_entry.secondLevelPagesSectionOffset; |
| 1299 | |
| 1300 | if ((*(uint32_t *)index_start) == UNWIND_SECOND_LEVEL_REGULAR) { |
| 1301 | struct unwind_info_regular_second_level_page_header ; |
| 1302 | memcpy(&header, index_start, |
| 1303 | sizeof(struct unwind_info_regular_second_level_page_header)); |
| 1304 | printf( |
| 1305 | format: " UNWIND_SECOND_LEVEL_REGULAR #%d entryPageOffset %d, entryCount %d\n" , |
| 1306 | baton.current_index_table_number, header.entryPageOffset, |
| 1307 | header.entryCount); |
| 1308 | baton.regular_second_level_page_header = header; |
| 1309 | print_second_level_index_regular(baton); |
| 1310 | } |
| 1311 | |
| 1312 | if ((*(uint32_t *)index_start) == UNWIND_SECOND_LEVEL_COMPRESSED) { |
| 1313 | struct unwind_info_compressed_second_level_page_header ; |
| 1314 | memcpy(&header, index_start, |
| 1315 | sizeof(struct unwind_info_compressed_second_level_page_header)); |
| 1316 | printf(format: " UNWIND_SECOND_LEVEL_COMPRESSED #%d entryPageOffset %d, " |
| 1317 | "entryCount %d, encodingsPageOffset %d, encodingsCount %d\n" , |
| 1318 | baton.current_index_table_number, header.entryPageOffset, |
| 1319 | header.entryCount, header.encodingsPageOffset, |
| 1320 | header.encodingsCount); |
| 1321 | baton.compressed_second_level_page_header = header; |
| 1322 | print_second_level_index_compressed(baton); |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | void print_index_sections(struct baton baton) { |
| 1327 | uint8_t *index_section_offset = |
| 1328 | baton.compact_unwind_start + baton.unwind_header.indexSectionOffset; |
| 1329 | uint32_t index_count = baton.unwind_header.indexCount; |
| 1330 | |
| 1331 | uint32_t cur_idx = 0; |
| 1332 | |
| 1333 | uint8_t *offset = index_section_offset; |
| 1334 | while (cur_idx < index_count) { |
| 1335 | baton.current_index_table_number = cur_idx; |
| 1336 | struct unwind_info_section_header_index_entry index_entry; |
| 1337 | memcpy(&index_entry, offset, |
| 1338 | sizeof(struct unwind_info_section_header_index_entry)); |
| 1339 | printf(format: "index section #%d: functionOffset %d, " |
| 1340 | "secondLevelPagesSectionOffset %d, lsdaIndexArraySectionOffset %d\n" , |
| 1341 | cur_idx, index_entry.functionOffset, |
| 1342 | index_entry.secondLevelPagesSectionOffset, |
| 1343 | index_entry.lsdaIndexArraySectionOffset); |
| 1344 | |
| 1345 | // secondLevelPagesSectionOffset == 0 means this is a sentinel entry |
| 1346 | if (index_entry.secondLevelPagesSectionOffset != 0) { |
| 1347 | struct unwind_info_section_header_index_entry next_index_entry; |
| 1348 | memcpy(&next_index_entry, |
| 1349 | offset + sizeof(struct unwind_info_section_header_index_entry), |
| 1350 | sizeof(struct unwind_info_section_header_index_entry)); |
| 1351 | |
| 1352 | baton.lsda_array_start = |
| 1353 | baton.compact_unwind_start + index_entry.lsdaIndexArraySectionOffset; |
| 1354 | baton.lsda_array_end = baton.compact_unwind_start + |
| 1355 | next_index_entry.lsdaIndexArraySectionOffset; |
| 1356 | |
| 1357 | uint8_t *lsda_entry_offset = baton.lsda_array_start; |
| 1358 | uint32_t lsda_count = 0; |
| 1359 | while (lsda_entry_offset < baton.lsda_array_end) { |
| 1360 | struct lsda_entry; |
| 1361 | memcpy(&lsda_entry, lsda_entry_offset, |
| 1362 | sizeof(struct unwind_info_section_header_lsda_index_entry)); |
| 1363 | uint64_t function_file_address = |
| 1364 | baton.first_level_index_entry.functionOffset + |
| 1365 | lsda_entry.functionOffset + baton.text_segment_vmaddr; |
| 1366 | uint64_t lsda_file_address = |
| 1367 | lsda_entry.lsdaOffset + baton.text_segment_vmaddr; |
| 1368 | printf(format: " LSDA [%d] functionOffset %d (%d) (file address 0x%" PRIx64 |
| 1369 | "), lsdaOffset %d (file address 0x%" PRIx64 ")\n" , |
| 1370 | lsda_count, lsda_entry.functionOffset, |
| 1371 | lsda_entry.functionOffset - index_entry.functionOffset, |
| 1372 | function_file_address, lsda_entry.lsdaOffset, lsda_file_address); |
| 1373 | lsda_count++; |
| 1374 | lsda_entry_offset += |
| 1375 | sizeof(struct unwind_info_section_header_lsda_index_entry); |
| 1376 | } |
| 1377 | |
| 1378 | printf(format: "\n" ); |
| 1379 | |
| 1380 | baton.first_level_index_entry = index_entry; |
| 1381 | print_second_level_index(baton); |
| 1382 | } |
| 1383 | |
| 1384 | printf(format: "\n" ); |
| 1385 | |
| 1386 | cur_idx++; |
| 1387 | offset += sizeof(struct unwind_info_section_header_index_entry); |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | int main(int argc, char **argv) { |
| 1392 | struct stat st; |
| 1393 | char *file = argv[0]; |
| 1394 | if (argc > 1) |
| 1395 | file = argv[1]; |
| 1396 | int fd = open(file: file, O_RDONLY); |
| 1397 | if (fd == -1) { |
| 1398 | printf(format: "Failed to open '%s'\n" , file); |
| 1399 | exit(status: 1); |
| 1400 | } |
| 1401 | fstat(fd: fd, buf: &st); |
| 1402 | uint8_t *file_mem = |
| 1403 | (uint8_t *)mmap(addr: 0, len: st.st_size, PROT_READ, MAP_PRIVATE | MAP_FILE, fd: fd, offset: 0); |
| 1404 | if (file_mem == MAP_FAILED) { |
| 1405 | printf(format: "Failed to mmap() '%s'\n" , file); |
| 1406 | } |
| 1407 | |
| 1408 | FILE *f = fopen(filename: "a.out" , modes: "r" ); |
| 1409 | |
| 1410 | struct baton baton; |
| 1411 | baton.mach_header_start = file_mem; |
| 1412 | baton.symbols = NULL; |
| 1413 | baton.symbols_count = 0; |
| 1414 | baton.function_start_addresses = NULL; |
| 1415 | baton.function_start_addresses_count = 0; |
| 1416 | |
| 1417 | scan_macho_load_commands(baton: &baton); |
| 1418 | |
| 1419 | if (baton.compact_unwind_start == NULL) { |
| 1420 | printf(format: "could not find __TEXT,__unwind_info section\n" ); |
| 1421 | exit(status: 1); |
| 1422 | } |
| 1423 | |
| 1424 | struct unwind_info_section_header ; |
| 1425 | memcpy(&header, baton.compact_unwind_start, |
| 1426 | sizeof(struct unwind_info_section_header)); |
| 1427 | printf(format: "Header:\n" ); |
| 1428 | printf(format: " version %u\n" , header.version); |
| 1429 | printf(format: " commonEncodingsArraySectionOffset is %d\n" , |
| 1430 | header.commonEncodingsArraySectionOffset); |
| 1431 | printf(format: " commonEncodingsArrayCount is %d\n" , |
| 1432 | header.commonEncodingsArrayCount); |
| 1433 | printf(format: " personalityArraySectionOffset is %d\n" , |
| 1434 | header.personalityArraySectionOffset); |
| 1435 | printf(format: " personalityArrayCount is %d\n" , header.personalityArrayCount); |
| 1436 | printf(format: " indexSectionOffset is %d\n" , header.indexSectionOffset); |
| 1437 | printf(format: " indexCount is %d\n" , header.indexCount); |
| 1438 | |
| 1439 | uint8_t *common_encodings = |
| 1440 | baton.compact_unwind_start + header.commonEncodingsArraySectionOffset; |
| 1441 | uint32_t encoding_idx = 0; |
| 1442 | while (encoding_idx < header.commonEncodingsArrayCount) { |
| 1443 | uint32_t encoding = *((uint32_t *)common_encodings); |
| 1444 | printf(format: " Common Encoding [%d]: 0x%x " , encoding_idx, encoding); |
| 1445 | print_encoding(baton, NULL, encoding); |
| 1446 | printf(format: "\n" ); |
| 1447 | common_encodings += sizeof(uint32_t); |
| 1448 | encoding_idx++; |
| 1449 | } |
| 1450 | |
| 1451 | uint8_t *pers_arr = |
| 1452 | baton.compact_unwind_start + header.personalityArraySectionOffset; |
| 1453 | uint32_t pers_idx = 0; |
| 1454 | while (pers_idx < header.personalityArrayCount) { |
| 1455 | int32_t pers_delta = *((int32_t *)(baton.compact_unwind_start + |
| 1456 | header.personalityArraySectionOffset + |
| 1457 | (pers_idx * sizeof(uint32_t)))); |
| 1458 | printf(format: " Personality [%d]: personality function ptr @ offset %d (file " |
| 1459 | "address 0x%" PRIx64 ")\n" , |
| 1460 | pers_idx, pers_delta, baton.text_segment_vmaddr + pers_delta); |
| 1461 | pers_idx++; |
| 1462 | pers_arr += sizeof(uint32_t); |
| 1463 | } |
| 1464 | |
| 1465 | printf(format: "\n" ); |
| 1466 | |
| 1467 | baton.unwind_header = header; |
| 1468 | |
| 1469 | print_index_sections(baton); |
| 1470 | |
| 1471 | return 0; |
| 1472 | } |
| 1473 | |