1 | //===-- DNBArchImplARM64.cpp ------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Created by Greg Clayton on 6/25/07. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) |
14 | |
15 | #include "MacOSX/arm64/DNBArchImplARM64.h" |
16 | |
17 | #if defined(ARM_THREAD_STATE64_COUNT) |
18 | |
19 | #include "DNB.h" |
20 | #include "DNBBreakpoint.h" |
21 | #include "DNBLog.h" |
22 | #include "DNBRegisterInfo.h" |
23 | #include "MacOSX/MachProcess.h" |
24 | #include "MacOSX/MachThread.h" |
25 | |
26 | #include <cinttypes> |
27 | #include <sys/sysctl.h> |
28 | |
29 | #if __has_feature(ptrauth_calls) |
30 | #include <ptrauth.h> |
31 | #endif |
32 | |
33 | // Break only in privileged or user mode |
34 | // (PAC bits in the DBGWVRn_EL1 watchpoint control register) |
35 | #define S_USER ((uint32_t)(2u << 1)) |
36 | |
37 | #define BCR_ENABLE ((uint32_t)(1u)) |
38 | #define WCR_ENABLE ((uint32_t)(1u)) |
39 | |
40 | // Watchpoint load/store |
41 | // (LSC bits in the DBGWVRn_EL1 watchpoint control register) |
42 | #define WCR_LOAD ((uint32_t)(1u << 3)) |
43 | #define WCR_STORE ((uint32_t)(1u << 4)) |
44 | |
45 | // Single instruction step |
46 | // (SS bit in the MDSCR_EL1 register) |
47 | #define SS_ENABLE ((uint32_t)(1u)) |
48 | |
49 | static const uint8_t g_arm64_breakpoint_opcode[] = { |
50 | 0x00, 0x00, 0x20, 0xD4}; // "brk #0", 0xd4200000 in BE byte order |
51 | |
52 | // If we need to set one logical watchpoint by using |
53 | // two hardware watchpoint registers, the watchpoint |
54 | // will be split into a "high" and "low" watchpoint. |
55 | // Record both of them in the LoHi array. |
56 | |
57 | // It's safe to initialize to all 0's since |
58 | // hi > lo and therefore LoHi[i] cannot be 0. |
59 | static uint32_t LoHi[16] = {0}; |
60 | |
61 | void DNBArchMachARM64::Initialize() { |
62 | DNBArchPluginInfo arch_plugin_info = { |
63 | CPU_TYPE_ARM64, DNBArchMachARM64::Create, |
64 | DNBArchMachARM64::GetRegisterSetInfo, |
65 | DNBArchMachARM64::SoftwareBreakpointOpcode}; |
66 | |
67 | // Register this arch plug-in with the main protocol class |
68 | DNBArchProtocol::RegisterArchPlugin(arch_plugin_info); |
69 | |
70 | DNBArchPluginInfo arch_plugin_info_32 = { |
71 | CPU_TYPE_ARM64_32, DNBArchMachARM64::Create, |
72 | DNBArchMachARM64::GetRegisterSetInfo, |
73 | DNBArchMachARM64::SoftwareBreakpointOpcode}; |
74 | |
75 | // Register this arch plug-in with the main protocol class |
76 | DNBArchProtocol::RegisterArchPlugin(arch_plugin_info_32); |
77 | } |
78 | |
79 | DNBArchProtocol *DNBArchMachARM64::Create(MachThread *thread) { |
80 | DNBArchMachARM64 *obj = new DNBArchMachARM64(thread); |
81 | |
82 | return obj; |
83 | } |
84 | |
85 | const uint8_t * |
86 | DNBArchMachARM64::SoftwareBreakpointOpcode(nub_size_t byte_size) { |
87 | return g_arm64_breakpoint_opcode; |
88 | } |
89 | |
90 | uint32_t DNBArchMachARM64::GetCPUType() { return CPU_TYPE_ARM64; } |
91 | |
92 | static uint64_t clear_pac_bits(uint64_t value) { |
93 | uint32_t addressing_bits = 0; |
94 | if (!DNBGetAddressingBits(addressing_bits)) |
95 | return value; |
96 | |
97 | // On arm64_32, no ptrauth bits to clear |
98 | #if !defined(__LP64__) |
99 | return value; |
100 | #endif |
101 | |
102 | uint64_t mask = ((1ULL << addressing_bits) - 1); |
103 | |
104 | // Normally PAC bit clearing needs to check b55 and either set the |
105 | // non-addressing bits, or clear them. But the register values we |
106 | // get from thread_get_state on an arm64e process don't follow this |
107 | // convention?, at least when there's been a PAC auth failure in |
108 | // the inferior. |
109 | // Userland processes are always in low memory, so this |
110 | // hardcoding b55 == 0 PAC stripping behavior here. |
111 | |
112 | return value & mask; // high bits cleared to 0 |
113 | } |
114 | |
115 | uint64_t DNBArchMachARM64::GetPC(uint64_t failValue) { |
116 | // Get program counter |
117 | if (GetGPRState(false) == KERN_SUCCESS) |
118 | #if __has_feature(ptrauth_calls) && defined(__LP64__) |
119 | return clear_pac_bits( |
120 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
121 | #else |
122 | return m_state.context.gpr.__pc; |
123 | #endif |
124 | return failValue; |
125 | } |
126 | |
127 | kern_return_t DNBArchMachARM64::SetPC(uint64_t value) { |
128 | // Get program counter |
129 | kern_return_t err = GetGPRState(false); |
130 | if (err == KERN_SUCCESS) { |
131 | #if defined(__LP64__) |
132 | #if __has_feature(ptrauth_calls) |
133 | // The incoming value could be garbage. Strip it to avoid |
134 | // trapping when it gets resigned in the thread state. |
135 | value = (uint64_t) ptrauth_strip((void*) value, ptrauth_key_function_pointer); |
136 | value = (uint64_t) ptrauth_sign_unauthenticated((void*) value, ptrauth_key_function_pointer, 0); |
137 | #endif |
138 | arm_thread_state64_set_pc_fptr (m_state.context.gpr, (void*) value); |
139 | #else |
140 | m_state.context.gpr.__pc = value; |
141 | #endif |
142 | err = SetGPRState(); |
143 | } |
144 | return err == KERN_SUCCESS; |
145 | } |
146 | |
147 | uint64_t DNBArchMachARM64::GetSP(uint64_t failValue) { |
148 | // Get stack pointer |
149 | if (GetGPRState(false) == KERN_SUCCESS) |
150 | #if __has_feature(ptrauth_calls) && defined(__LP64__) |
151 | return clear_pac_bits( |
152 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp)); |
153 | #else |
154 | return m_state.context.gpr.__sp; |
155 | #endif |
156 | return failValue; |
157 | } |
158 | |
159 | kern_return_t DNBArchMachARM64::GetGPRState(bool force) { |
160 | int set = e_regSetGPR; |
161 | // Check if we have valid cached registers |
162 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
163 | return KERN_SUCCESS; |
164 | |
165 | // Read the registers from our thread |
166 | mach_msg_type_number_t count = e_regSetGPRCount; |
167 | kern_return_t kret = |
168 | ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE64, |
169 | (thread_state_t)&m_state.context.gpr, &count); |
170 | if (DNBLogEnabledForAny(LOG_THREAD)) { |
171 | uint64_t *x = &m_state.context.gpr.__x[0]; |
172 | DNBLogThreaded("thread_get_state signed regs " |
173 | "\n fp=%16.16llx" |
174 | "\n lr=%16.16llx" |
175 | "\n sp=%16.16llx" |
176 | "\n pc=%16.16llx" , |
177 | #if __has_feature(ptrauth_calls) && defined(__LP64__) |
178 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_fp), |
179 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_lr), |
180 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp), |
181 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc) |
182 | #else |
183 | m_state.context.gpr.__fp, |
184 | m_state.context.gpr.__lr, |
185 | m_state.context.gpr.__sp, |
186 | m_state.context.gpr.__pc |
187 | #endif |
188 | ); |
189 | |
190 | #if __has_feature(ptrauth_calls) && defined(__LP64__) |
191 | uint64_t log_fp = clear_pac_bits( |
192 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_fp)); |
193 | uint64_t log_lr = clear_pac_bits( |
194 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_lr)); |
195 | uint64_t log_sp = clear_pac_bits( |
196 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp)); |
197 | uint64_t log_pc = clear_pac_bits( |
198 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
199 | #else |
200 | uint64_t log_fp = m_state.context.gpr.__fp; |
201 | uint64_t log_lr = m_state.context.gpr.__lr; |
202 | uint64_t log_sp = m_state.context.gpr.__sp; |
203 | uint64_t log_pc = m_state.context.gpr.__pc; |
204 | #endif |
205 | DNBLogThreaded( |
206 | "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs" |
207 | "\n x0=%16.16llx" |
208 | "\n x1=%16.16llx" |
209 | "\n x2=%16.16llx" |
210 | "\n x3=%16.16llx" |
211 | "\n x4=%16.16llx" |
212 | "\n x5=%16.16llx" |
213 | "\n x6=%16.16llx" |
214 | "\n x7=%16.16llx" |
215 | "\n x8=%16.16llx" |
216 | "\n x9=%16.16llx" |
217 | "\n x10=%16.16llx" |
218 | "\n x11=%16.16llx" |
219 | "\n x12=%16.16llx" |
220 | "\n x13=%16.16llx" |
221 | "\n x14=%16.16llx" |
222 | "\n x15=%16.16llx" |
223 | "\n x16=%16.16llx" |
224 | "\n x17=%16.16llx" |
225 | "\n x18=%16.16llx" |
226 | "\n x19=%16.16llx" |
227 | "\n x20=%16.16llx" |
228 | "\n x21=%16.16llx" |
229 | "\n x22=%16.16llx" |
230 | "\n x23=%16.16llx" |
231 | "\n x24=%16.16llx" |
232 | "\n x25=%16.16llx" |
233 | "\n x26=%16.16llx" |
234 | "\n x27=%16.16llx" |
235 | "\n x28=%16.16llx" |
236 | "\n fp=%16.16llx" |
237 | "\n lr=%16.16llx" |
238 | "\n sp=%16.16llx" |
239 | "\n pc=%16.16llx" |
240 | "\n cpsr=%8.8x" , |
241 | m_thread->MachPortNumber(), e_regSetGPR, e_regSetGPRCount, kret, count, |
242 | x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[0], x[11], |
243 | x[12], x[13], x[14], x[15], x[16], x[17], x[18], x[19], x[20], x[21], |
244 | x[22], x[23], x[24], x[25], x[26], x[27], x[28], |
245 | log_fp, log_lr, log_sp, log_pc, m_state.context.gpr.__cpsr); |
246 | } |
247 | m_state.SetError(set, Read, kret); |
248 | return kret; |
249 | } |
250 | |
251 | kern_return_t DNBArchMachARM64::GetVFPState(bool force) { |
252 | int set = e_regSetVFP; |
253 | // Check if we have valid cached registers |
254 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
255 | return KERN_SUCCESS; |
256 | |
257 | // Read the registers from our thread |
258 | mach_msg_type_number_t count = e_regSetVFPCount; |
259 | kern_return_t kret = |
260 | ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE64, |
261 | (thread_state_t)&m_state.context.vfp, &count); |
262 | if (DNBLogEnabledForAny(LOG_THREAD)) { |
263 | #if defined(__arm64__) || defined(__aarch64__) |
264 | DNBLogThreaded( |
265 | "thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs" |
266 | "\n q0 = 0x%16.16llx%16.16llx" |
267 | "\n q1 = 0x%16.16llx%16.16llx" |
268 | "\n q2 = 0x%16.16llx%16.16llx" |
269 | "\n q3 = 0x%16.16llx%16.16llx" |
270 | "\n q4 = 0x%16.16llx%16.16llx" |
271 | "\n q5 = 0x%16.16llx%16.16llx" |
272 | "\n q6 = 0x%16.16llx%16.16llx" |
273 | "\n q7 = 0x%16.16llx%16.16llx" |
274 | "\n q8 = 0x%16.16llx%16.16llx" |
275 | "\n q9 = 0x%16.16llx%16.16llx" |
276 | "\n q10 = 0x%16.16llx%16.16llx" |
277 | "\n q11 = 0x%16.16llx%16.16llx" |
278 | "\n q12 = 0x%16.16llx%16.16llx" |
279 | "\n q13 = 0x%16.16llx%16.16llx" |
280 | "\n q14 = 0x%16.16llx%16.16llx" |
281 | "\n q15 = 0x%16.16llx%16.16llx" |
282 | "\n q16 = 0x%16.16llx%16.16llx" |
283 | "\n q17 = 0x%16.16llx%16.16llx" |
284 | "\n q18 = 0x%16.16llx%16.16llx" |
285 | "\n q19 = 0x%16.16llx%16.16llx" |
286 | "\n q20 = 0x%16.16llx%16.16llx" |
287 | "\n q21 = 0x%16.16llx%16.16llx" |
288 | "\n q22 = 0x%16.16llx%16.16llx" |
289 | "\n q23 = 0x%16.16llx%16.16llx" |
290 | "\n q24 = 0x%16.16llx%16.16llx" |
291 | "\n q25 = 0x%16.16llx%16.16llx" |
292 | "\n q26 = 0x%16.16llx%16.16llx" |
293 | "\n q27 = 0x%16.16llx%16.16llx" |
294 | "\n q28 = 0x%16.16llx%16.16llx" |
295 | "\n q29 = 0x%16.16llx%16.16llx" |
296 | "\n q30 = 0x%16.16llx%16.16llx" |
297 | "\n q31 = 0x%16.16llx%16.16llx" |
298 | "\n fpsr = 0x%8.8x" |
299 | "\n fpcr = 0x%8.8x\n\n" , |
300 | m_thread->MachPortNumber(), e_regSetVFP, e_regSetVFPCount, kret, count, |
301 | ((uint64_t *)&m_state.context.vfp.__v[0])[0], |
302 | ((uint64_t *)&m_state.context.vfp.__v[0])[1], |
303 | ((uint64_t *)&m_state.context.vfp.__v[1])[0], |
304 | ((uint64_t *)&m_state.context.vfp.__v[1])[1], |
305 | ((uint64_t *)&m_state.context.vfp.__v[2])[0], |
306 | ((uint64_t *)&m_state.context.vfp.__v[2])[1], |
307 | ((uint64_t *)&m_state.context.vfp.__v[3])[0], |
308 | ((uint64_t *)&m_state.context.vfp.__v[3])[1], |
309 | ((uint64_t *)&m_state.context.vfp.__v[4])[0], |
310 | ((uint64_t *)&m_state.context.vfp.__v[4])[1], |
311 | ((uint64_t *)&m_state.context.vfp.__v[5])[0], |
312 | ((uint64_t *)&m_state.context.vfp.__v[5])[1], |
313 | ((uint64_t *)&m_state.context.vfp.__v[6])[0], |
314 | ((uint64_t *)&m_state.context.vfp.__v[6])[1], |
315 | ((uint64_t *)&m_state.context.vfp.__v[7])[0], |
316 | ((uint64_t *)&m_state.context.vfp.__v[7])[1], |
317 | ((uint64_t *)&m_state.context.vfp.__v[8])[0], |
318 | ((uint64_t *)&m_state.context.vfp.__v[8])[1], |
319 | ((uint64_t *)&m_state.context.vfp.__v[9])[0], |
320 | ((uint64_t *)&m_state.context.vfp.__v[9])[1], |
321 | ((uint64_t *)&m_state.context.vfp.__v[10])[0], |
322 | ((uint64_t *)&m_state.context.vfp.__v[10])[1], |
323 | ((uint64_t *)&m_state.context.vfp.__v[11])[0], |
324 | ((uint64_t *)&m_state.context.vfp.__v[11])[1], |
325 | ((uint64_t *)&m_state.context.vfp.__v[12])[0], |
326 | ((uint64_t *)&m_state.context.vfp.__v[12])[1], |
327 | ((uint64_t *)&m_state.context.vfp.__v[13])[0], |
328 | ((uint64_t *)&m_state.context.vfp.__v[13])[1], |
329 | ((uint64_t *)&m_state.context.vfp.__v[14])[0], |
330 | ((uint64_t *)&m_state.context.vfp.__v[14])[1], |
331 | ((uint64_t *)&m_state.context.vfp.__v[15])[0], |
332 | ((uint64_t *)&m_state.context.vfp.__v[15])[1], |
333 | ((uint64_t *)&m_state.context.vfp.__v[16])[0], |
334 | ((uint64_t *)&m_state.context.vfp.__v[16])[1], |
335 | ((uint64_t *)&m_state.context.vfp.__v[17])[0], |
336 | ((uint64_t *)&m_state.context.vfp.__v[17])[1], |
337 | ((uint64_t *)&m_state.context.vfp.__v[18])[0], |
338 | ((uint64_t *)&m_state.context.vfp.__v[18])[1], |
339 | ((uint64_t *)&m_state.context.vfp.__v[19])[0], |
340 | ((uint64_t *)&m_state.context.vfp.__v[19])[1], |
341 | ((uint64_t *)&m_state.context.vfp.__v[20])[0], |
342 | ((uint64_t *)&m_state.context.vfp.__v[20])[1], |
343 | ((uint64_t *)&m_state.context.vfp.__v[21])[0], |
344 | ((uint64_t *)&m_state.context.vfp.__v[21])[1], |
345 | ((uint64_t *)&m_state.context.vfp.__v[22])[0], |
346 | ((uint64_t *)&m_state.context.vfp.__v[22])[1], |
347 | ((uint64_t *)&m_state.context.vfp.__v[23])[0], |
348 | ((uint64_t *)&m_state.context.vfp.__v[23])[1], |
349 | ((uint64_t *)&m_state.context.vfp.__v[24])[0], |
350 | ((uint64_t *)&m_state.context.vfp.__v[24])[1], |
351 | ((uint64_t *)&m_state.context.vfp.__v[25])[0], |
352 | ((uint64_t *)&m_state.context.vfp.__v[25])[1], |
353 | ((uint64_t *)&m_state.context.vfp.__v[26])[0], |
354 | ((uint64_t *)&m_state.context.vfp.__v[26])[1], |
355 | ((uint64_t *)&m_state.context.vfp.__v[27])[0], |
356 | ((uint64_t *)&m_state.context.vfp.__v[27])[1], |
357 | ((uint64_t *)&m_state.context.vfp.__v[28])[0], |
358 | ((uint64_t *)&m_state.context.vfp.__v[28])[1], |
359 | ((uint64_t *)&m_state.context.vfp.__v[29])[0], |
360 | ((uint64_t *)&m_state.context.vfp.__v[29])[1], |
361 | ((uint64_t *)&m_state.context.vfp.__v[30])[0], |
362 | ((uint64_t *)&m_state.context.vfp.__v[30])[1], |
363 | ((uint64_t *)&m_state.context.vfp.__v[31])[0], |
364 | ((uint64_t *)&m_state.context.vfp.__v[31])[1], |
365 | m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr); |
366 | #endif |
367 | } |
368 | m_state.SetError(set, Read, kret); |
369 | return kret; |
370 | } |
371 | |
372 | kern_return_t DNBArchMachARM64::GetEXCState(bool force) { |
373 | int set = e_regSetEXC; |
374 | // Check if we have valid cached registers |
375 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
376 | return KERN_SUCCESS; |
377 | |
378 | // Read the registers from our thread |
379 | mach_msg_type_number_t count = e_regSetEXCCount; |
380 | kern_return_t kret = |
381 | ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64, |
382 | (thread_state_t)&m_state.context.exc, &count); |
383 | m_state.SetError(set, Read, kret); |
384 | return kret; |
385 | } |
386 | |
387 | #if 0 |
388 | static void DumpDBGState(const arm_debug_state_t &dbg) { |
389 | uint32_t i = 0; |
390 | for (i = 0; i < 16; i++) |
391 | DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } " |
392 | "WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }" , |
393 | i, i, dbg.__bvr[i], dbg.__bcr[i], i, i, dbg.__wvr[i], |
394 | dbg.__wcr[i]); |
395 | } |
396 | #endif |
397 | |
398 | kern_return_t DNBArchMachARM64::GetDBGState(bool force) { |
399 | int set = e_regSetDBG; |
400 | |
401 | // Check if we have valid cached registers |
402 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
403 | return KERN_SUCCESS; |
404 | |
405 | // Read the registers from our thread |
406 | mach_msg_type_number_t count = e_regSetDBGCount; |
407 | kern_return_t kret = |
408 | ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64, |
409 | (thread_state_t)&m_state.dbg, &count); |
410 | m_state.SetError(set, Read, kret); |
411 | |
412 | return kret; |
413 | } |
414 | |
415 | kern_return_t DNBArchMachARM64::SetGPRState() { |
416 | int set = e_regSetGPR; |
417 | kern_return_t kret = ::thread_set_state( |
418 | m_thread->MachPortNumber(), ARM_THREAD_STATE64, |
419 | (thread_state_t)&m_state.context.gpr, e_regSetGPRCount); |
420 | m_state.SetError(set, Write, |
421 | kret); // Set the current write error for this register set |
422 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
423 | // state in case registers are read |
424 | // back differently |
425 | return kret; // Return the error code |
426 | } |
427 | |
428 | kern_return_t DNBArchMachARM64::SetVFPState() { |
429 | int set = e_regSetVFP; |
430 | kern_return_t kret = ::thread_set_state( |
431 | m_thread->MachPortNumber(), ARM_NEON_STATE64, |
432 | (thread_state_t)&m_state.context.vfp, e_regSetVFPCount); |
433 | m_state.SetError(set, Write, |
434 | kret); // Set the current write error for this register set |
435 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
436 | // state in case registers are read |
437 | // back differently |
438 | return kret; // Return the error code |
439 | } |
440 | |
441 | kern_return_t DNBArchMachARM64::SetEXCState() { |
442 | int set = e_regSetEXC; |
443 | kern_return_t kret = ::thread_set_state( |
444 | m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64, |
445 | (thread_state_t)&m_state.context.exc, e_regSetEXCCount); |
446 | m_state.SetError(set, Write, |
447 | kret); // Set the current write error for this register set |
448 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
449 | // state in case registers are read |
450 | // back differently |
451 | return kret; // Return the error code |
452 | } |
453 | |
454 | kern_return_t DNBArchMachARM64::SetDBGState(bool also_set_on_task) { |
455 | int set = e_regSetDBG; |
456 | kern_return_t kret = |
457 | ::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64, |
458 | (thread_state_t)&m_state.dbg, e_regSetDBGCount); |
459 | if (also_set_on_task) { |
460 | kern_return_t task_kret = task_set_state( |
461 | m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE64, |
462 | (thread_state_t)&m_state.dbg, e_regSetDBGCount); |
463 | if (task_kret != KERN_SUCCESS) |
464 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::SetDBGState failed " |
465 | "to set debug control register state: " |
466 | "0x%8.8x." , |
467 | task_kret); |
468 | } |
469 | m_state.SetError(set, Write, |
470 | kret); // Set the current write error for this register set |
471 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
472 | // state in case registers are read |
473 | // back differently |
474 | |
475 | return kret; // Return the error code |
476 | } |
477 | |
478 | void DNBArchMachARM64::ThreadWillResume() { |
479 | // Do we need to step this thread? If so, let the mach thread tell us so. |
480 | if (m_thread->IsStepping()) { |
481 | EnableHardwareSingleStep(true); |
482 | } |
483 | |
484 | // Disable the triggered watchpoint temporarily before we resume. |
485 | // Plus, we try to enable hardware single step to execute past the instruction |
486 | // which triggered our watchpoint. |
487 | if (m_watchpoint_did_occur) { |
488 | if (m_watchpoint_hw_index >= 0) { |
489 | kern_return_t kret = GetDBGState(false); |
490 | if (kret == KERN_SUCCESS && |
491 | !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) { |
492 | // The watchpoint might have been disabled by the user. We don't need |
493 | // to do anything at all |
494 | // to enable hardware single stepping. |
495 | m_watchpoint_did_occur = false; |
496 | m_watchpoint_hw_index = -1; |
497 | return; |
498 | } |
499 | |
500 | DisableHardwareWatchpoint(m_watchpoint_hw_index, false); |
501 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
502 | "DNBArchMachARM64::ThreadWillResume() " |
503 | "DisableHardwareWatchpoint(%d) called" , |
504 | m_watchpoint_hw_index); |
505 | |
506 | // Enable hardware single step to move past the watchpoint-triggering |
507 | // instruction. |
508 | m_watchpoint_resume_single_step_enabled = |
509 | (EnableHardwareSingleStep(true) == KERN_SUCCESS); |
510 | |
511 | // If we are not able to enable single step to move past the |
512 | // watchpoint-triggering instruction, |
513 | // at least we should reset the two watchpoint member variables so that |
514 | // the next time around |
515 | // this callback function is invoked, the enclosing logical branch is |
516 | // skipped. |
517 | if (!m_watchpoint_resume_single_step_enabled) { |
518 | // Reset the two watchpoint member variables. |
519 | m_watchpoint_did_occur = false; |
520 | m_watchpoint_hw_index = -1; |
521 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::ThreadWillResume()" |
522 | " failed to enable single step" ); |
523 | } else |
524 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
525 | "DNBArchMachARM64::ThreadWillResume() " |
526 | "succeeded to enable single step" ); |
527 | } |
528 | } |
529 | } |
530 | |
531 | bool DNBArchMachARM64::NotifyException(MachException::Data &exc) { |
532 | |
533 | switch (exc.exc_type) { |
534 | default: |
535 | break; |
536 | case EXC_BREAKPOINT: |
537 | if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG) { |
538 | // The data break address is passed as exc_data[1]. |
539 | nub_addr_t addr = exc.exc_data[1]; |
540 | // Find the hardware index with the side effect of possibly massaging the |
541 | // addr to return the starting address as seen from the debugger side. |
542 | uint32_t hw_index = GetHardwareWatchpointHit(addr); |
543 | |
544 | // One logical watchpoint was split into two watchpoint locations because |
545 | // it was too big. If the watchpoint exception is indicating the 2nd half |
546 | // of the two-parter, find the address of the 1st half and report that -- |
547 | // that's what lldb is going to expect to see. |
548 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
549 | "DNBArchMachARM64::NotifyException " |
550 | "watchpoint %d was hit on address " |
551 | "0x%llx" , |
552 | hw_index, (uint64_t)addr); |
553 | const uint32_t num_watchpoints = NumSupportedHardwareWatchpoints(); |
554 | for (uint32_t i = 0; i < num_watchpoints; i++) { |
555 | if (LoHi[i] != 0 && LoHi[i] == hw_index && LoHi[i] != i && |
556 | GetWatchpointAddressByIndex(i) != INVALID_NUB_ADDRESS) { |
557 | addr = GetWatchpointAddressByIndex(i); |
558 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
559 | "DNBArchMachARM64::NotifyException " |
560 | "It is a linked watchpoint; " |
561 | "rewritten to index %d addr 0x%llx" , |
562 | LoHi[i], (uint64_t)addr); |
563 | } |
564 | } |
565 | |
566 | if (hw_index != INVALID_NUB_HW_INDEX) { |
567 | m_watchpoint_did_occur = true; |
568 | m_watchpoint_hw_index = hw_index; |
569 | exc.exc_data[1] = addr; |
570 | // Piggyback the hw_index in the exc.data. |
571 | exc.exc_data.push_back(hw_index); |
572 | } |
573 | |
574 | return true; |
575 | } |
576 | // detect a __builtin_debugtrap instruction pattern ("brk #0xf000") |
577 | // and advance the $pc past it, so that the user can continue execution. |
578 | // Generally speaking, this knowledge should be centralized in lldb, |
579 | // recognizing the builtin_trap instruction and knowing how to advance |
580 | // the pc past it, so that continue etc work. |
581 | if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_BREAKPOINT) { |
582 | nub_addr_t pc = GetPC(INVALID_NUB_ADDRESS); |
583 | if (pc != INVALID_NUB_ADDRESS && pc > 0) { |
584 | DNBBreakpoint *bp = |
585 | m_thread->Process()->Breakpoints().FindByAddress(pc); |
586 | if (bp == nullptr) { |
587 | uint8_t insnbuf[4]; |
588 | if (m_thread->Process()->ReadMemory(pc, 4, insnbuf) == 4) { |
589 | uint8_t builtin_debugtrap_insn[4] = {0x00, 0x00, 0x3e, |
590 | 0xd4}; // brk #0xf000 |
591 | if (memcmp(insnbuf, builtin_debugtrap_insn, 4) == 0) { |
592 | SetPC(pc + 4); |
593 | } |
594 | } |
595 | } |
596 | } |
597 | } |
598 | break; |
599 | } |
600 | return false; |
601 | } |
602 | |
603 | bool DNBArchMachARM64::ThreadDidStop() { |
604 | bool success = true; |
605 | |
606 | m_state.InvalidateAllRegisterStates(); |
607 | |
608 | if (m_watchpoint_resume_single_step_enabled) { |
609 | // Great! We now disable the hardware single step as well as re-enable the |
610 | // hardware watchpoint. |
611 | // See also ThreadWillResume(). |
612 | if (EnableHardwareSingleStep(false) == KERN_SUCCESS) { |
613 | if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) { |
614 | ReenableHardwareWatchpoint(m_watchpoint_hw_index); |
615 | m_watchpoint_resume_single_step_enabled = false; |
616 | m_watchpoint_did_occur = false; |
617 | m_watchpoint_hw_index = -1; |
618 | } else { |
619 | DNBLogError("internal error detected: m_watchpoint_resume_step_enabled " |
620 | "is true but (m_watchpoint_did_occur && " |
621 | "m_watchpoint_hw_index >= 0) does not hold!" ); |
622 | } |
623 | } else { |
624 | DNBLogError("internal error detected: m_watchpoint_resume_step_enabled " |
625 | "is true but unable to disable single step!" ); |
626 | } |
627 | } |
628 | |
629 | // Are we stepping a single instruction? |
630 | if (GetGPRState(true) == KERN_SUCCESS) { |
631 | // We are single stepping, was this the primary thread? |
632 | if (m_thread->IsStepping()) { |
633 | // This was the primary thread, we need to clear the trace |
634 | // bit if so. |
635 | success = EnableHardwareSingleStep(false) == KERN_SUCCESS; |
636 | } else { |
637 | // The MachThread will automatically restore the suspend count |
638 | // in ThreadDidStop(), so we don't need to do anything here if |
639 | // we weren't the primary thread the last time |
640 | } |
641 | } |
642 | return success; |
643 | } |
644 | |
645 | // Set the single step bit in the processor status register. |
646 | kern_return_t DNBArchMachARM64::EnableHardwareSingleStep(bool enable) { |
647 | DNBError err; |
648 | DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )" , __FUNCTION__, enable); |
649 | |
650 | err = GetGPRState(false); |
651 | |
652 | if (err.Fail()) { |
653 | err.LogThreaded("%s: failed to read the GPR registers" , __FUNCTION__); |
654 | return err.Status(); |
655 | } |
656 | |
657 | err = GetDBGState(false); |
658 | |
659 | if (err.Fail()) { |
660 | err.LogThreaded("%s: failed to read the DBG registers" , __FUNCTION__); |
661 | return err.Status(); |
662 | } |
663 | |
664 | #if __has_feature(ptrauth_calls) && defined(__LP64__) |
665 | uint64_t pc = clear_pac_bits( |
666 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
667 | #else |
668 | uint64_t pc = m_state.context.gpr.__pc; |
669 | #endif |
670 | |
671 | if (enable) { |
672 | DNBLogThreadedIf(LOG_STEP, |
673 | "%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx" , |
674 | __FUNCTION__, pc); |
675 | m_state.dbg.__mdscr_el1 |= SS_ENABLE; |
676 | } else { |
677 | DNBLogThreadedIf(LOG_STEP, |
678 | "%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx" , |
679 | __FUNCTION__, pc); |
680 | m_state.dbg.__mdscr_el1 &= ~(SS_ENABLE); |
681 | } |
682 | |
683 | return SetDBGState(false); |
684 | } |
685 | |
686 | // return 1 if bit "BIT" is set in "value" |
687 | static inline uint32_t bit(uint32_t value, uint32_t bit) { |
688 | return (value >> bit) & 1u; |
689 | } |
690 | |
691 | // return the bitfield "value[msbit:lsbit]". |
692 | static inline uint64_t bits(uint64_t value, uint32_t msbit, uint32_t lsbit) { |
693 | assert(msbit >= lsbit); |
694 | uint64_t shift_left = sizeof(value) * 8 - 1 - msbit; |
695 | value <<= |
696 | shift_left; // shift anything above the msbit off of the unsigned edge |
697 | value >>= shift_left + lsbit; // shift it back again down to the lsbit |
698 | // (including undoing any shift from above) |
699 | return value; // return our result |
700 | } |
701 | |
702 | uint32_t DNBArchMachARM64::NumSupportedHardwareWatchpoints() { |
703 | // Set the init value to something that will let us know that we need to |
704 | // autodetect how many watchpoints are supported dynamically... |
705 | static uint32_t g_num_supported_hw_watchpoints = UINT_MAX; |
706 | if (g_num_supported_hw_watchpoints == UINT_MAX) { |
707 | // Set this to zero in case we can't tell if there are any HW breakpoints |
708 | g_num_supported_hw_watchpoints = 0; |
709 | |
710 | size_t len; |
711 | uint32_t n = 0; |
712 | len = sizeof(n); |
713 | if (::sysctlbyname("hw.optional.watchpoint" , &n, &len, NULL, 0) == 0) { |
714 | g_num_supported_hw_watchpoints = n; |
715 | DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u" , n); |
716 | } else { |
717 | // For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in |
718 | // EL0 so it can't |
719 | // access that reg. The kernel should have filled in the sysctls based on it |
720 | // though. |
721 | #if defined(__arm__) |
722 | uint32_t register_DBGDIDR; |
723 | |
724 | asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR)); |
725 | uint32_t numWRPs = bits(register_DBGDIDR, 31, 28); |
726 | // Zero is reserved for the WRP count, so don't increment it if it is zero |
727 | if (numWRPs > 0) |
728 | numWRPs++; |
729 | g_num_supported_hw_watchpoints = numWRPs; |
730 | DNBLogThreadedIf(LOG_THREAD, |
731 | "Number of supported hw watchpoints via asm(): %d" , |
732 | g_num_supported_hw_watchpoints); |
733 | #endif |
734 | } |
735 | } |
736 | return g_num_supported_hw_watchpoints; |
737 | } |
738 | |
739 | uint32_t DNBArchMachARM64::NumSupportedHardwareBreakpoints() { |
740 | // Set the init value to something that will let us know that we need to |
741 | // autodetect how many breakpoints are supported dynamically... |
742 | static uint32_t g_num_supported_hw_breakpoints = UINT_MAX; |
743 | if (g_num_supported_hw_breakpoints == UINT_MAX) { |
744 | // Set this to zero in case we can't tell if there are any HW breakpoints |
745 | g_num_supported_hw_breakpoints = 0; |
746 | |
747 | size_t len; |
748 | uint32_t n = 0; |
749 | len = sizeof(n); |
750 | if (::sysctlbyname("hw.optional.breakpoint" , &n, &len, NULL, 0) == 0) { |
751 | g_num_supported_hw_breakpoints = n; |
752 | DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u" , n); |
753 | } else { |
754 | // For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in |
755 | // EL0 so it can't access that reg. The kernel should have filled in the |
756 | // sysctls based on it though. |
757 | #if defined(__arm__) |
758 | uint32_t register_DBGDIDR; |
759 | |
760 | asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR)); |
761 | uint32_t numWRPs = bits(register_DBGDIDR, 31, 28); |
762 | // Zero is reserved for the WRP count, so don't increment it if it is zero |
763 | if (numWRPs > 0) |
764 | numWRPs++; |
765 | g_num_supported_hw_breakpoints = numWRPs; |
766 | DNBLogThreadedIf(LOG_THREAD, |
767 | "Number of supported hw breakpoint via asm(): %d" , |
768 | g_num_supported_hw_breakpoints); |
769 | #endif |
770 | } |
771 | } |
772 | return g_num_supported_hw_breakpoints; |
773 | } |
774 | |
775 | uint32_t DNBArchMachARM64::EnableHardwareBreakpoint(nub_addr_t addr, |
776 | nub_size_t size, |
777 | bool also_set_on_task) { |
778 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
779 | "DNBArchMachARM64::EnableHardwareBreakpoint(addr = " |
780 | "0x%8.8llx, size = %zu)" , |
781 | (uint64_t)addr, size); |
782 | |
783 | const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints(); |
784 | |
785 | nub_addr_t aligned_bp_address = addr; |
786 | uint32_t control_value = 0; |
787 | |
788 | switch (size) { |
789 | case 2: |
790 | control_value = (0x3 << 5) | 7; |
791 | aligned_bp_address &= ~1; |
792 | break; |
793 | case 4: |
794 | control_value = (0xfu << 5) | 7; |
795 | aligned_bp_address &= ~3; |
796 | break; |
797 | }; |
798 | |
799 | // Read the debug state |
800 | kern_return_t kret = GetDBGState(false); |
801 | if (kret == KERN_SUCCESS) { |
802 | // Check to make sure we have the needed hardware support |
803 | uint32_t i = 0; |
804 | |
805 | for (i = 0; i < num_hw_breakpoints; ++i) { |
806 | if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0) |
807 | break; // We found an available hw breakpoint slot (in i) |
808 | } |
809 | |
810 | // See if we found an available hw breakpoint slot above |
811 | if (i < num_hw_breakpoints) { |
812 | m_state.dbg.__bvr[i] = aligned_bp_address; |
813 | m_state.dbg.__bcr[i] = control_value; |
814 | |
815 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
816 | "DNBArchMachARM64::EnableHardwareBreakpoint() " |
817 | "adding breakpoint on address 0x%llx with control " |
818 | "register value 0x%x" , |
819 | (uint64_t)m_state.dbg.__bvr[i], |
820 | (uint32_t)m_state.dbg.__bcr[i]); |
821 | |
822 | kret = SetDBGState(also_set_on_task); |
823 | |
824 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
825 | "DNBArchMachARM64::" |
826 | "EnableHardwareBreakpoint() " |
827 | "SetDBGState() => 0x%8.8x." , |
828 | kret); |
829 | |
830 | if (kret == KERN_SUCCESS) |
831 | return i; |
832 | } else { |
833 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
834 | "DNBArchMachARM64::" |
835 | "EnableHardwareBreakpoint(): All " |
836 | "hardware resources (%u) are in use." , |
837 | num_hw_breakpoints); |
838 | } |
839 | } |
840 | return INVALID_NUB_HW_INDEX; |
841 | } |
842 | |
843 | // This should be `std::bit_ceil(aligned_size)` but |
844 | // that requires C++20. |
845 | // Calculates the smallest integral power of two that is not smaller than x. |
846 | static uint64_t bit_ceil(uint64_t input) { |
847 | if (input <= 1 || __builtin_popcount(input) == 1) |
848 | return input; |
849 | |
850 | return 1ULL << (64 - __builtin_clzll(input)); |
851 | } |
852 | |
853 | std::vector<DNBArchMachARM64::WatchpointSpec> |
854 | DNBArchMachARM64::AlignRequestedWatchpoint(nub_addr_t requested_addr, |
855 | nub_size_t requested_size) { |
856 | |
857 | // Can't watch zero bytes |
858 | if (requested_size == 0) |
859 | return {}; |
860 | |
861 | // Smallest size we can watch on AArch64 is 8 bytes |
862 | constexpr nub_size_t min_watchpoint_alignment = 8; |
863 | nub_size_t aligned_size = std::max(requested_size, min_watchpoint_alignment); |
864 | |
865 | /// Round up \a requested_size to the next power-of-2 size, at least 8 |
866 | /// bytes |
867 | /// requested_size == 8 -> aligned_size == 8 |
868 | /// requested_size == 9 -> aligned_size == 16 |
869 | aligned_size = aligned_size = bit_ceil(aligned_size); |
870 | |
871 | nub_addr_t aligned_start = requested_addr & ~(aligned_size - 1); |
872 | // Does this power-of-2 memory range, aligned to power-of-2, completely |
873 | // encompass the requested watch region. |
874 | if (aligned_start + aligned_size >= requested_addr + requested_size) { |
875 | WatchpointSpec wp; |
876 | wp.aligned_start = aligned_start; |
877 | wp.requested_start = requested_addr; |
878 | wp.aligned_size = aligned_size; |
879 | wp.requested_size = requested_size; |
880 | return {{wp}}; |
881 | } |
882 | |
883 | // We need to split this into two watchpoints, split on the aligned_size |
884 | // boundary and re-evaluate the alignment of each half. |
885 | // |
886 | // requested_addr 48 requested_size 20 -> aligned_size 32 |
887 | // aligned_start 32 |
888 | // split_addr 64 |
889 | // first_requested_addr 48 |
890 | // first_requested_size 16 |
891 | // second_requested_addr 64 |
892 | // second_requested_size 4 |
893 | nub_addr_t split_addr = aligned_start + aligned_size; |
894 | |
895 | nub_addr_t first_requested_addr = requested_addr; |
896 | nub_size_t first_requested_size = split_addr - requested_addr; |
897 | nub_addr_t second_requested_addr = split_addr; |
898 | nub_size_t second_requested_size = requested_size - first_requested_size; |
899 | |
900 | std::vector<WatchpointSpec> first_wp = |
901 | AlignRequestedWatchpoint(first_requested_addr, first_requested_size); |
902 | std::vector<WatchpointSpec> second_wp = |
903 | AlignRequestedWatchpoint(second_requested_addr, second_requested_size); |
904 | if (first_wp.size() != 1 || second_wp.size() != 1) |
905 | return {}; |
906 | |
907 | return {{first_wp[0], second_wp[0]}}; |
908 | } |
909 | |
910 | uint32_t DNBArchMachARM64::EnableHardwareWatchpoint(nub_addr_t addr, |
911 | nub_size_t size, bool read, |
912 | bool write, |
913 | bool also_set_on_task) { |
914 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
915 | "DNBArchMachARM64::EnableHardwareWatchpoint(addr = " |
916 | "0x%8.8llx, size = %zu, read = %u, write = %u)" , |
917 | (uint64_t)addr, size, read, write); |
918 | |
919 | std::vector<DNBArchMachARM64::WatchpointSpec> wps = |
920 | AlignRequestedWatchpoint(addr, size); |
921 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
922 | "DNBArchMachARM64::EnableHardwareWatchpoint() using %zu " |
923 | "hardware watchpoints" , |
924 | wps.size()); |
925 | |
926 | if (wps.size() == 0) |
927 | return INVALID_NUB_HW_INDEX; |
928 | |
929 | // We must watch for either read or write |
930 | if (read == false && write == false) |
931 | return INVALID_NUB_HW_INDEX; |
932 | |
933 | // Only one hardware watchpoint needed |
934 | // to implement the user's request. |
935 | if (wps.size() == 1) { |
936 | if (wps[0].aligned_size <= 8) |
937 | return SetBASWatchpoint(wps[0], read, write, also_set_on_task); |
938 | else |
939 | return SetMASKWatchpoint(wps[0], read, write, also_set_on_task); |
940 | } |
941 | |
942 | // We have multiple WatchpointSpecs |
943 | |
944 | std::vector<uint32_t> wp_slots_used; |
945 | for (size_t i = 0; i < wps.size(); i++) { |
946 | uint32_t idx = |
947 | EnableHardwareWatchpoint(wps[i].requested_start, wps[i].requested_size, |
948 | read, write, also_set_on_task); |
949 | if (idx != INVALID_NUB_HW_INDEX) |
950 | wp_slots_used.push_back(idx); |
951 | } |
952 | |
953 | // Did we fail to set all of the WatchpointSpecs needed |
954 | // for this user's request? |
955 | if (wps.size() != wp_slots_used.size()) { |
956 | for (int wp_slot : wp_slots_used) |
957 | DisableHardwareWatchpoint(wp_slot, also_set_on_task); |
958 | return INVALID_NUB_HW_INDEX; |
959 | } |
960 | |
961 | LoHi[wp_slots_used[0]] = wp_slots_used[1]; |
962 | return wp_slots_used[0]; |
963 | } |
964 | |
965 | uint32_t DNBArchMachARM64::SetBASWatchpoint(DNBArchMachARM64::WatchpointSpec wp, |
966 | bool read, bool write, |
967 | bool also_set_on_task) { |
968 | const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints(); |
969 | |
970 | nub_addr_t aligned_dword_addr = wp.aligned_start; |
971 | nub_addr_t watching_offset = wp.requested_start - wp.aligned_start; |
972 | nub_size_t watching_size = wp.requested_size; |
973 | |
974 | // If user asks to watch 3 bytes at 0x1005, |
975 | // aligned_dword_addr 0x1000 |
976 | // watching_offset 5 |
977 | // watching_size 3 |
978 | |
979 | // Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the |
980 | // above. |
981 | // The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4, |
982 | // etc, up to 0b11111111 for 8. |
983 | // then we shift those bits left by the offset into this dword that we are |
984 | // interested in. |
985 | // e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of |
986 | // 0b11110000. |
987 | uint32_t byte_address_select = ((1 << watching_size) - 1) << watching_offset; |
988 | |
989 | // Read the debug state |
990 | kern_return_t kret = GetDBGState(false); |
991 | if (kret != KERN_SUCCESS) |
992 | return INVALID_NUB_HW_INDEX; |
993 | |
994 | // Check to make sure we have the needed hardware support |
995 | uint32_t i = 0; |
996 | |
997 | for (i = 0; i < num_hw_watchpoints; ++i) { |
998 | if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0) |
999 | break; // We found an available hw watchpoint slot |
1000 | } |
1001 | if (i == num_hw_watchpoints) { |
1002 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1003 | "DNBArchMachARM64::" |
1004 | "SetBASWatchpoint(): All " |
1005 | "hardware resources (%u) are in use." , |
1006 | num_hw_watchpoints); |
1007 | return INVALID_NUB_HW_INDEX; |
1008 | } |
1009 | |
1010 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1011 | "DNBArchMachARM64::" |
1012 | "SetBASWatchpoint() " |
1013 | "set hardware register %d to BAS watchpoint " |
1014 | "aligned start address 0x%llx, watch region start " |
1015 | "offset %lld, number of bytes %zu" , |
1016 | i, aligned_dword_addr, watching_offset, watching_size); |
1017 | |
1018 | // Clear any previous LoHi joined-watchpoint that may have been in use |
1019 | LoHi[i] = 0; |
1020 | |
1021 | // shift our Byte Address Select bits up to the correct bit range for the |
1022 | // DBGWCRn_EL1 |
1023 | byte_address_select = byte_address_select << 5; |
1024 | |
1025 | // Make sure bits 1:0 are clear in our address |
1026 | m_state.dbg.__wvr[i] = aligned_dword_addr; // DVA (Data Virtual Address) |
1027 | m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow |
1028 | // the DVA that we will watch |
1029 | S_USER | // Stop only in user mode |
1030 | (read ? WCR_LOAD : 0) | // Stop on read access? |
1031 | (write ? WCR_STORE : 0) | // Stop on write access? |
1032 | WCR_ENABLE; // Enable this watchpoint; |
1033 | |
1034 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1035 | "DNBArchMachARM64::SetBASWatchpoint() " |
1036 | "adding watchpoint on address 0x%llx with control " |
1037 | "register value 0x%x" , |
1038 | (uint64_t)m_state.dbg.__wvr[i], |
1039 | (uint32_t)m_state.dbg.__wcr[i]); |
1040 | |
1041 | kret = SetDBGState(also_set_on_task); |
1042 | // DumpDBGState(m_state.dbg); |
1043 | |
1044 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1045 | "DNBArchMachARM64::" |
1046 | "SetBASWatchpoint() " |
1047 | "SetDBGState() => 0x%8.8x." , |
1048 | kret); |
1049 | |
1050 | if (kret == KERN_SUCCESS) |
1051 | return i; |
1052 | |
1053 | return INVALID_NUB_HW_INDEX; |
1054 | } |
1055 | |
1056 | uint32_t |
1057 | DNBArchMachARM64::SetMASKWatchpoint(DNBArchMachARM64::WatchpointSpec wp, |
1058 | bool read, bool write, |
1059 | bool also_set_on_task) { |
1060 | const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints(); |
1061 | |
1062 | // Read the debug state |
1063 | kern_return_t kret = GetDBGState(false); |
1064 | if (kret != KERN_SUCCESS) |
1065 | return INVALID_NUB_HW_INDEX; |
1066 | |
1067 | // Check to make sure we have the needed hardware support |
1068 | uint32_t i = 0; |
1069 | |
1070 | for (i = 0; i < num_hw_watchpoints; ++i) { |
1071 | if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0) |
1072 | break; // We found an available hw watchpoint slot |
1073 | } |
1074 | if (i == num_hw_watchpoints) { |
1075 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1076 | "DNBArchMachARM64::" |
1077 | "SetMASKWatchpoint(): All " |
1078 | "hardware resources (%u) are in use." , |
1079 | num_hw_watchpoints); |
1080 | return INVALID_NUB_HW_INDEX; |
1081 | } |
1082 | |
1083 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1084 | "DNBArchMachARM64::" |
1085 | "SetMASKWatchpoint() " |
1086 | "set hardware register %d to MASK watchpoint " |
1087 | "aligned start address 0x%llx, aligned size %zu" , |
1088 | i, wp.aligned_start, wp.aligned_size); |
1089 | |
1090 | // Clear any previous LoHi joined-watchpoint that may have been in use |
1091 | LoHi[i] = 0; |
1092 | |
1093 | // MASK field is the number of low bits that are masked off |
1094 | // when comparing the address with the DBGWVR<n>_EL1 values. |
1095 | // If aligned size is 16, that means we ignore low 4 bits, 0b1111. |
1096 | // popcount(16 - 1) give us the correct value of 4. |
1097 | // 2GB is max watchable region, which is 31 bits (low bits 0x7fffffff |
1098 | // masked off) -- a MASK value of 31. |
1099 | const uint64_t mask = __builtin_popcountl(wp.aligned_size - 1) << 24; |
1100 | // A '0b11111111' BAS value needed for mask watchpoints plus a |
1101 | // nonzero mask value. |
1102 | const uint64_t not_bas_wp = 0xff << 5; |
1103 | |
1104 | m_state.dbg.__wvr[i] = wp.aligned_start; |
1105 | m_state.dbg.__wcr[i] = mask | not_bas_wp | S_USER | // Stop only in user mode |
1106 | (read ? WCR_LOAD : 0) | // Stop on read access? |
1107 | (write ? WCR_STORE : 0) | // Stop on write access? |
1108 | WCR_ENABLE; // Enable this watchpoint; |
1109 | |
1110 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1111 | "DNBArchMachARM64::SetMASKWatchpoint() " |
1112 | "adding watchpoint on address 0x%llx with control " |
1113 | "register value 0x%llx" , |
1114 | (uint64_t)m_state.dbg.__wvr[i], |
1115 | (uint64_t)m_state.dbg.__wcr[i]); |
1116 | |
1117 | kret = SetDBGState(also_set_on_task); |
1118 | |
1119 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1120 | "DNBArchMachARM64::" |
1121 | "SetMASKWatchpoint() " |
1122 | "SetDBGState() => 0x%8.8x." , |
1123 | kret); |
1124 | |
1125 | if (kret == KERN_SUCCESS) |
1126 | return i; |
1127 | |
1128 | return INVALID_NUB_HW_INDEX; |
1129 | } |
1130 | |
1131 | bool DNBArchMachARM64::ReenableHardwareWatchpoint(uint32_t hw_index) { |
1132 | // If this logical watchpoint # is actually implemented using |
1133 | // two hardware watchpoint registers, re-enable both of them. |
1134 | |
1135 | if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) { |
1136 | return ReenableHardwareWatchpoint_helper(hw_index) && |
1137 | ReenableHardwareWatchpoint_helper(LoHi[hw_index]); |
1138 | } else { |
1139 | return ReenableHardwareWatchpoint_helper(hw_index); |
1140 | } |
1141 | } |
1142 | |
1143 | bool DNBArchMachARM64::ReenableHardwareWatchpoint_helper(uint32_t hw_index) { |
1144 | kern_return_t kret = GetDBGState(false); |
1145 | if (kret != KERN_SUCCESS) |
1146 | return false; |
1147 | |
1148 | const uint32_t num_hw_points = NumSupportedHardwareWatchpoints(); |
1149 | if (hw_index >= num_hw_points) |
1150 | return false; |
1151 | |
1152 | m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr; |
1153 | m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control; |
1154 | |
1155 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1156 | "DNBArchMachARM64::" |
1157 | "ReenableHardwareWatchpoint_helper( %u ) - WVR%u = " |
1158 | "0x%8.8llx WCR%u = 0x%8.8llx" , |
1159 | hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index], |
1160 | hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]); |
1161 | |
1162 | kret = SetDBGState(false); |
1163 | |
1164 | return (kret == KERN_SUCCESS); |
1165 | } |
1166 | |
1167 | bool DNBArchMachARM64::DisableHardwareWatchpoint(uint32_t hw_index, |
1168 | bool also_set_on_task) { |
1169 | if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) { |
1170 | return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task) && |
1171 | DisableHardwareWatchpoint_helper(LoHi[hw_index], also_set_on_task); |
1172 | } else { |
1173 | return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task); |
1174 | } |
1175 | } |
1176 | |
1177 | bool DNBArchMachARM64::DisableHardwareWatchpoint_helper(uint32_t hw_index, |
1178 | bool also_set_on_task) { |
1179 | kern_return_t kret = GetDBGState(false); |
1180 | if (kret != KERN_SUCCESS) |
1181 | return false; |
1182 | |
1183 | const uint32_t num_hw_points = NumSupportedHardwareWatchpoints(); |
1184 | if (hw_index >= num_hw_points) |
1185 | return false; |
1186 | |
1187 | m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index]; |
1188 | m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index]; |
1189 | |
1190 | m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE); |
1191 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::" |
1192 | "DisableHardwareWatchpoint( %u ) - WVR%u = " |
1193 | "0x%8.8llx WCR%u = 0x%8.8llx" , |
1194 | hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index], |
1195 | hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]); |
1196 | |
1197 | kret = SetDBGState(also_set_on_task); |
1198 | |
1199 | return (kret == KERN_SUCCESS); |
1200 | } |
1201 | |
1202 | bool DNBArchMachARM64::DisableHardwareBreakpoint(uint32_t hw_index, |
1203 | bool also_set_on_task) { |
1204 | kern_return_t kret = GetDBGState(false); |
1205 | if (kret != KERN_SUCCESS) |
1206 | return false; |
1207 | |
1208 | const uint32_t num_hw_points = NumSupportedHardwareBreakpoints(); |
1209 | if (hw_index >= num_hw_points) |
1210 | return false; |
1211 | |
1212 | m_disabled_breakpoints[hw_index].addr = m_state.dbg.__bvr[hw_index]; |
1213 | m_disabled_breakpoints[hw_index].control = m_state.dbg.__bcr[hw_index]; |
1214 | |
1215 | m_state.dbg.__bcr[hw_index] = 0; |
1216 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1217 | "DNBArchMachARM64::" |
1218 | "DisableHardwareBreakpoint( %u ) - WVR%u = " |
1219 | "0x%8.8llx BCR%u = 0x%8.8llx" , |
1220 | hw_index, hw_index, (uint64_t)m_state.dbg.__bvr[hw_index], |
1221 | hw_index, (uint64_t)m_state.dbg.__bcr[hw_index]); |
1222 | |
1223 | kret = SetDBGState(also_set_on_task); |
1224 | |
1225 | return (kret == KERN_SUCCESS); |
1226 | } |
1227 | |
1228 | // This is for checking the Byte Address Select bits in the DBRWCRn_EL1 control |
1229 | // register. |
1230 | // Returns -1 if the trailing bit patterns are not one of: |
1231 | // { 0b???????1, 0b??????10, 0b?????100, 0b????1000, 0b???10000, 0b??100000, |
1232 | // 0b?1000000, 0b10000000 }. |
1233 | static inline int32_t LowestBitSet(uint32_t val) { |
1234 | for (unsigned i = 0; i < 8; ++i) { |
1235 | if (bit(val, i)) |
1236 | return i; |
1237 | } |
1238 | return -1; |
1239 | } |
1240 | |
1241 | // Iterate through the debug registers; return the index of the first watchpoint |
1242 | // whose address matches. |
1243 | // As a side effect, the starting address as understood by the debugger is |
1244 | // returned which could be |
1245 | // different from 'addr' passed as an in/out argument. |
1246 | uint32_t DNBArchMachARM64::GetHardwareWatchpointHit(nub_addr_t &addr) { |
1247 | // Read the debug state |
1248 | kern_return_t kret = GetDBGState(true); |
1249 | // DumpDBGState(m_state.dbg); |
1250 | DNBLogThreadedIf( |
1251 | LOG_WATCHPOINTS, |
1252 | "DNBArchMachARM64::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x." , |
1253 | kret); |
1254 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1255 | "DNBArchMachARM64::GetHardwareWatchpointHit() addr = 0x%llx" , |
1256 | (uint64_t)addr); |
1257 | |
1258 | if (kret == KERN_SUCCESS) { |
1259 | DBG &debug_state = m_state.dbg; |
1260 | uint32_t i, num = NumSupportedHardwareWatchpoints(); |
1261 | for (i = 0; i < num; ++i) { |
1262 | nub_addr_t wp_addr = GetWatchAddress(debug_state, i); |
1263 | |
1264 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1265 | "DNBArchImplARM64::" |
1266 | "GetHardwareWatchpointHit() slot: %u " |
1267 | "(addr = 0x%llx, WCR = 0x%llx)" , |
1268 | i, wp_addr, debug_state.__wcr[i]); |
1269 | |
1270 | if (!IsWatchpointEnabled(debug_state, i)) |
1271 | continue; |
1272 | |
1273 | // DBGWCR<n>EL1.BAS are the bits of the doubleword that are watched |
1274 | // with a BAS watchpoint. |
1275 | uint32_t bas_bits = bits(debug_state.__wcr[i], 12, 5); |
1276 | // DBGWCR<n>EL1.MASK is the number of bits that are masked off the |
1277 | // virtual address when comparing to DBGWVR<n>_EL1. |
1278 | uint32_t mask = bits(debug_state.__wcr[i], 28, 24); |
1279 | |
1280 | const bool is_bas_watchpoint = mask == 0; |
1281 | |
1282 | DNBLogThreadedIf( |
1283 | LOG_WATCHPOINTS, |
1284 | "DNBArchImplARM64::" |
1285 | "GetHardwareWatchpointHit() slot: %u %s" , |
1286 | i, is_bas_watchpoint ? "is BAS watchpoint" : "is MASK watchpoint" ); |
1287 | |
1288 | if (is_bas_watchpoint) { |
1289 | if (bits(wp_addr, 48, 3) != bits(addr, 48, 3)) |
1290 | continue; |
1291 | } else { |
1292 | if (bits(wp_addr, 48, mask) == bits(addr, 48, mask)) { |
1293 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1294 | "DNBArchImplARM64::" |
1295 | "GetHardwareWatchpointHit() slot: %u matched MASK " |
1296 | "ignoring %u low bits" , |
1297 | i, mask); |
1298 | return i; |
1299 | } |
1300 | } |
1301 | |
1302 | if (is_bas_watchpoint) { |
1303 | // Sanity check the bas_bits |
1304 | uint32_t lsb = LowestBitSet(bas_bits); |
1305 | if (lsb < 0) |
1306 | continue; |
1307 | |
1308 | uint64_t byte_to_match = bits(addr, 2, 0); |
1309 | |
1310 | if (bas_bits & (1 << byte_to_match)) { |
1311 | addr = wp_addr + lsb; |
1312 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1313 | "DNBArchImplARM64::" |
1314 | "GetHardwareWatchpointHit() slot: %u matched BAS" , |
1315 | i); |
1316 | return i; |
1317 | } |
1318 | } |
1319 | } |
1320 | } |
1321 | return INVALID_NUB_HW_INDEX; |
1322 | } |
1323 | |
1324 | nub_addr_t DNBArchMachARM64::GetWatchpointAddressByIndex(uint32_t hw_index) { |
1325 | kern_return_t kret = GetDBGState(true); |
1326 | if (kret != KERN_SUCCESS) |
1327 | return INVALID_NUB_ADDRESS; |
1328 | const uint32_t num = NumSupportedHardwareWatchpoints(); |
1329 | if (hw_index >= num) |
1330 | return INVALID_NUB_ADDRESS; |
1331 | if (IsWatchpointEnabled(m_state.dbg, hw_index)) |
1332 | return GetWatchAddress(m_state.dbg, hw_index); |
1333 | return INVALID_NUB_ADDRESS; |
1334 | } |
1335 | |
1336 | bool DNBArchMachARM64::IsWatchpointEnabled(const DBG &debug_state, |
1337 | uint32_t hw_index) { |
1338 | // Watchpoint Control Registers, bitfield definitions |
1339 | // ... |
1340 | // Bits Value Description |
1341 | // [0] 0 Watchpoint disabled |
1342 | // 1 Watchpoint enabled. |
1343 | return (debug_state.__wcr[hw_index] & 1u); |
1344 | } |
1345 | |
1346 | nub_addr_t DNBArchMachARM64::GetWatchAddress(const DBG &debug_state, |
1347 | uint32_t hw_index) { |
1348 | // Watchpoint Value Registers, bitfield definitions |
1349 | // Bits Description |
1350 | // [31:2] Watchpoint value (word address, i.e., 4-byte aligned) |
1351 | // [1:0] RAZ/SBZP |
1352 | return bits(debug_state.__wvr[hw_index], 63, 0); |
1353 | } |
1354 | |
1355 | // Register information definitions for 64 bit ARMv8. |
1356 | enum gpr_regnums { |
1357 | gpr_x0 = 0, |
1358 | gpr_x1, |
1359 | gpr_x2, |
1360 | gpr_x3, |
1361 | gpr_x4, |
1362 | gpr_x5, |
1363 | gpr_x6, |
1364 | gpr_x7, |
1365 | gpr_x8, |
1366 | gpr_x9, |
1367 | gpr_x10, |
1368 | gpr_x11, |
1369 | gpr_x12, |
1370 | gpr_x13, |
1371 | gpr_x14, |
1372 | gpr_x15, |
1373 | gpr_x16, |
1374 | gpr_x17, |
1375 | gpr_x18, |
1376 | gpr_x19, |
1377 | gpr_x20, |
1378 | gpr_x21, |
1379 | gpr_x22, |
1380 | gpr_x23, |
1381 | gpr_x24, |
1382 | gpr_x25, |
1383 | gpr_x26, |
1384 | gpr_x27, |
1385 | gpr_x28, |
1386 | gpr_fp, |
1387 | gpr_x29 = gpr_fp, |
1388 | gpr_lr, |
1389 | gpr_x30 = gpr_lr, |
1390 | gpr_sp, |
1391 | gpr_x31 = gpr_sp, |
1392 | gpr_pc, |
1393 | gpr_cpsr, |
1394 | gpr_w0, |
1395 | gpr_w1, |
1396 | gpr_w2, |
1397 | gpr_w3, |
1398 | gpr_w4, |
1399 | gpr_w5, |
1400 | gpr_w6, |
1401 | gpr_w7, |
1402 | gpr_w8, |
1403 | gpr_w9, |
1404 | gpr_w10, |
1405 | gpr_w11, |
1406 | gpr_w12, |
1407 | gpr_w13, |
1408 | gpr_w14, |
1409 | gpr_w15, |
1410 | gpr_w16, |
1411 | gpr_w17, |
1412 | gpr_w18, |
1413 | gpr_w19, |
1414 | gpr_w20, |
1415 | gpr_w21, |
1416 | gpr_w22, |
1417 | gpr_w23, |
1418 | gpr_w24, |
1419 | gpr_w25, |
1420 | gpr_w26, |
1421 | gpr_w27, |
1422 | gpr_w28 |
1423 | |
1424 | }; |
1425 | |
1426 | enum { |
1427 | vfp_v0 = 0, |
1428 | vfp_v1, |
1429 | vfp_v2, |
1430 | vfp_v3, |
1431 | vfp_v4, |
1432 | vfp_v5, |
1433 | vfp_v6, |
1434 | vfp_v7, |
1435 | vfp_v8, |
1436 | vfp_v9, |
1437 | vfp_v10, |
1438 | vfp_v11, |
1439 | vfp_v12, |
1440 | vfp_v13, |
1441 | vfp_v14, |
1442 | vfp_v15, |
1443 | vfp_v16, |
1444 | vfp_v17, |
1445 | vfp_v18, |
1446 | vfp_v19, |
1447 | vfp_v20, |
1448 | vfp_v21, |
1449 | vfp_v22, |
1450 | vfp_v23, |
1451 | vfp_v24, |
1452 | vfp_v25, |
1453 | vfp_v26, |
1454 | vfp_v27, |
1455 | vfp_v28, |
1456 | vfp_v29, |
1457 | vfp_v30, |
1458 | vfp_v31, |
1459 | vfp_fpsr, |
1460 | vfp_fpcr, |
1461 | |
1462 | // lower 32 bits of the corresponding vfp_v<n> reg. |
1463 | vfp_s0, |
1464 | vfp_s1, |
1465 | vfp_s2, |
1466 | vfp_s3, |
1467 | vfp_s4, |
1468 | vfp_s5, |
1469 | vfp_s6, |
1470 | vfp_s7, |
1471 | vfp_s8, |
1472 | vfp_s9, |
1473 | vfp_s10, |
1474 | vfp_s11, |
1475 | vfp_s12, |
1476 | vfp_s13, |
1477 | vfp_s14, |
1478 | vfp_s15, |
1479 | vfp_s16, |
1480 | vfp_s17, |
1481 | vfp_s18, |
1482 | vfp_s19, |
1483 | vfp_s20, |
1484 | vfp_s21, |
1485 | vfp_s22, |
1486 | vfp_s23, |
1487 | vfp_s24, |
1488 | vfp_s25, |
1489 | vfp_s26, |
1490 | vfp_s27, |
1491 | vfp_s28, |
1492 | vfp_s29, |
1493 | vfp_s30, |
1494 | vfp_s31, |
1495 | |
1496 | // lower 64 bits of the corresponding vfp_v<n> reg. |
1497 | vfp_d0, |
1498 | vfp_d1, |
1499 | vfp_d2, |
1500 | vfp_d3, |
1501 | vfp_d4, |
1502 | vfp_d5, |
1503 | vfp_d6, |
1504 | vfp_d7, |
1505 | vfp_d8, |
1506 | vfp_d9, |
1507 | vfp_d10, |
1508 | vfp_d11, |
1509 | vfp_d12, |
1510 | vfp_d13, |
1511 | vfp_d14, |
1512 | vfp_d15, |
1513 | vfp_d16, |
1514 | vfp_d17, |
1515 | vfp_d18, |
1516 | vfp_d19, |
1517 | vfp_d20, |
1518 | vfp_d21, |
1519 | vfp_d22, |
1520 | vfp_d23, |
1521 | vfp_d24, |
1522 | vfp_d25, |
1523 | vfp_d26, |
1524 | vfp_d27, |
1525 | vfp_d28, |
1526 | vfp_d29, |
1527 | vfp_d30, |
1528 | vfp_d31 |
1529 | }; |
1530 | |
1531 | enum { exc_far = 0, exc_esr, exc_exception }; |
1532 | |
1533 | // These numbers from the "DWARF for the ARM 64-bit Architecture (AArch64)" |
1534 | // document. |
1535 | |
1536 | enum { |
1537 | dwarf_x0 = 0, |
1538 | dwarf_x1, |
1539 | dwarf_x2, |
1540 | dwarf_x3, |
1541 | dwarf_x4, |
1542 | dwarf_x5, |
1543 | dwarf_x6, |
1544 | dwarf_x7, |
1545 | dwarf_x8, |
1546 | dwarf_x9, |
1547 | dwarf_x10, |
1548 | dwarf_x11, |
1549 | dwarf_x12, |
1550 | dwarf_x13, |
1551 | dwarf_x14, |
1552 | dwarf_x15, |
1553 | dwarf_x16, |
1554 | dwarf_x17, |
1555 | dwarf_x18, |
1556 | dwarf_x19, |
1557 | dwarf_x20, |
1558 | dwarf_x21, |
1559 | dwarf_x22, |
1560 | dwarf_x23, |
1561 | dwarf_x24, |
1562 | dwarf_x25, |
1563 | dwarf_x26, |
1564 | dwarf_x27, |
1565 | dwarf_x28, |
1566 | dwarf_x29, |
1567 | dwarf_x30, |
1568 | dwarf_x31, |
1569 | dwarf_pc = 32, |
1570 | dwarf_elr_mode = 33, |
1571 | dwarf_fp = dwarf_x29, |
1572 | dwarf_lr = dwarf_x30, |
1573 | dwarf_sp = dwarf_x31, |
1574 | // 34-63 reserved |
1575 | |
1576 | // V0-V31 (128 bit vector registers) |
1577 | dwarf_v0 = 64, |
1578 | dwarf_v1, |
1579 | dwarf_v2, |
1580 | dwarf_v3, |
1581 | dwarf_v4, |
1582 | dwarf_v5, |
1583 | dwarf_v6, |
1584 | dwarf_v7, |
1585 | dwarf_v8, |
1586 | dwarf_v9, |
1587 | dwarf_v10, |
1588 | dwarf_v11, |
1589 | dwarf_v12, |
1590 | dwarf_v13, |
1591 | dwarf_v14, |
1592 | dwarf_v15, |
1593 | dwarf_v16, |
1594 | dwarf_v17, |
1595 | dwarf_v18, |
1596 | dwarf_v19, |
1597 | dwarf_v20, |
1598 | dwarf_v21, |
1599 | dwarf_v22, |
1600 | dwarf_v23, |
1601 | dwarf_v24, |
1602 | dwarf_v25, |
1603 | dwarf_v26, |
1604 | dwarf_v27, |
1605 | dwarf_v28, |
1606 | dwarf_v29, |
1607 | dwarf_v30, |
1608 | dwarf_v31 |
1609 | |
1610 | // 96-127 reserved |
1611 | }; |
1612 | |
1613 | enum { |
1614 | debugserver_gpr_x0 = 0, |
1615 | debugserver_gpr_x1, |
1616 | debugserver_gpr_x2, |
1617 | debugserver_gpr_x3, |
1618 | debugserver_gpr_x4, |
1619 | debugserver_gpr_x5, |
1620 | debugserver_gpr_x6, |
1621 | debugserver_gpr_x7, |
1622 | debugserver_gpr_x8, |
1623 | debugserver_gpr_x9, |
1624 | debugserver_gpr_x10, |
1625 | debugserver_gpr_x11, |
1626 | debugserver_gpr_x12, |
1627 | debugserver_gpr_x13, |
1628 | debugserver_gpr_x14, |
1629 | debugserver_gpr_x15, |
1630 | debugserver_gpr_x16, |
1631 | debugserver_gpr_x17, |
1632 | debugserver_gpr_x18, |
1633 | debugserver_gpr_x19, |
1634 | debugserver_gpr_x20, |
1635 | debugserver_gpr_x21, |
1636 | debugserver_gpr_x22, |
1637 | debugserver_gpr_x23, |
1638 | debugserver_gpr_x24, |
1639 | debugserver_gpr_x25, |
1640 | debugserver_gpr_x26, |
1641 | debugserver_gpr_x27, |
1642 | debugserver_gpr_x28, |
1643 | debugserver_gpr_fp, // x29 |
1644 | debugserver_gpr_lr, // x30 |
1645 | debugserver_gpr_sp, // sp aka xsp |
1646 | debugserver_gpr_pc, |
1647 | debugserver_gpr_cpsr, |
1648 | debugserver_vfp_v0, |
1649 | debugserver_vfp_v1, |
1650 | debugserver_vfp_v2, |
1651 | debugserver_vfp_v3, |
1652 | debugserver_vfp_v4, |
1653 | debugserver_vfp_v5, |
1654 | debugserver_vfp_v6, |
1655 | debugserver_vfp_v7, |
1656 | debugserver_vfp_v8, |
1657 | debugserver_vfp_v9, |
1658 | debugserver_vfp_v10, |
1659 | debugserver_vfp_v11, |
1660 | debugserver_vfp_v12, |
1661 | debugserver_vfp_v13, |
1662 | debugserver_vfp_v14, |
1663 | debugserver_vfp_v15, |
1664 | debugserver_vfp_v16, |
1665 | debugserver_vfp_v17, |
1666 | debugserver_vfp_v18, |
1667 | debugserver_vfp_v19, |
1668 | debugserver_vfp_v20, |
1669 | debugserver_vfp_v21, |
1670 | debugserver_vfp_v22, |
1671 | debugserver_vfp_v23, |
1672 | debugserver_vfp_v24, |
1673 | debugserver_vfp_v25, |
1674 | debugserver_vfp_v26, |
1675 | debugserver_vfp_v27, |
1676 | debugserver_vfp_v28, |
1677 | debugserver_vfp_v29, |
1678 | debugserver_vfp_v30, |
1679 | debugserver_vfp_v31, |
1680 | debugserver_vfp_fpsr, |
1681 | debugserver_vfp_fpcr |
1682 | }; |
1683 | |
1684 | const char *g_contained_x0[]{"x0" , NULL}; |
1685 | const char *g_contained_x1[]{"x1" , NULL}; |
1686 | const char *g_contained_x2[]{"x2" , NULL}; |
1687 | const char *g_contained_x3[]{"x3" , NULL}; |
1688 | const char *g_contained_x4[]{"x4" , NULL}; |
1689 | const char *g_contained_x5[]{"x5" , NULL}; |
1690 | const char *g_contained_x6[]{"x6" , NULL}; |
1691 | const char *g_contained_x7[]{"x7" , NULL}; |
1692 | const char *g_contained_x8[]{"x8" , NULL}; |
1693 | const char *g_contained_x9[]{"x9" , NULL}; |
1694 | const char *g_contained_x10[]{"x10" , NULL}; |
1695 | const char *g_contained_x11[]{"x11" , NULL}; |
1696 | const char *g_contained_x12[]{"x12" , NULL}; |
1697 | const char *g_contained_x13[]{"x13" , NULL}; |
1698 | const char *g_contained_x14[]{"x14" , NULL}; |
1699 | const char *g_contained_x15[]{"x15" , NULL}; |
1700 | const char *g_contained_x16[]{"x16" , NULL}; |
1701 | const char *g_contained_x17[]{"x17" , NULL}; |
1702 | const char *g_contained_x18[]{"x18" , NULL}; |
1703 | const char *g_contained_x19[]{"x19" , NULL}; |
1704 | const char *g_contained_x20[]{"x20" , NULL}; |
1705 | const char *g_contained_x21[]{"x21" , NULL}; |
1706 | const char *g_contained_x22[]{"x22" , NULL}; |
1707 | const char *g_contained_x23[]{"x23" , NULL}; |
1708 | const char *g_contained_x24[]{"x24" , NULL}; |
1709 | const char *g_contained_x25[]{"x25" , NULL}; |
1710 | const char *g_contained_x26[]{"x26" , NULL}; |
1711 | const char *g_contained_x27[]{"x27" , NULL}; |
1712 | const char *g_contained_x28[]{"x28" , NULL}; |
1713 | |
1714 | const char *g_invalidate_x0[]{"x0" , "w0" , NULL}; |
1715 | const char *g_invalidate_x1[]{"x1" , "w1" , NULL}; |
1716 | const char *g_invalidate_x2[]{"x2" , "w2" , NULL}; |
1717 | const char *g_invalidate_x3[]{"x3" , "w3" , NULL}; |
1718 | const char *g_invalidate_x4[]{"x4" , "w4" , NULL}; |
1719 | const char *g_invalidate_x5[]{"x5" , "w5" , NULL}; |
1720 | const char *g_invalidate_x6[]{"x6" , "w6" , NULL}; |
1721 | const char *g_invalidate_x7[]{"x7" , "w7" , NULL}; |
1722 | const char *g_invalidate_x8[]{"x8" , "w8" , NULL}; |
1723 | const char *g_invalidate_x9[]{"x9" , "w9" , NULL}; |
1724 | const char *g_invalidate_x10[]{"x10" , "w10" , NULL}; |
1725 | const char *g_invalidate_x11[]{"x11" , "w11" , NULL}; |
1726 | const char *g_invalidate_x12[]{"x12" , "w12" , NULL}; |
1727 | const char *g_invalidate_x13[]{"x13" , "w13" , NULL}; |
1728 | const char *g_invalidate_x14[]{"x14" , "w14" , NULL}; |
1729 | const char *g_invalidate_x15[]{"x15" , "w15" , NULL}; |
1730 | const char *g_invalidate_x16[]{"x16" , "w16" , NULL}; |
1731 | const char *g_invalidate_x17[]{"x17" , "w17" , NULL}; |
1732 | const char *g_invalidate_x18[]{"x18" , "w18" , NULL}; |
1733 | const char *g_invalidate_x19[]{"x19" , "w19" , NULL}; |
1734 | const char *g_invalidate_x20[]{"x20" , "w20" , NULL}; |
1735 | const char *g_invalidate_x21[]{"x21" , "w21" , NULL}; |
1736 | const char *g_invalidate_x22[]{"x22" , "w22" , NULL}; |
1737 | const char *g_invalidate_x23[]{"x23" , "w23" , NULL}; |
1738 | const char *g_invalidate_x24[]{"x24" , "w24" , NULL}; |
1739 | const char *g_invalidate_x25[]{"x25" , "w25" , NULL}; |
1740 | const char *g_invalidate_x26[]{"x26" , "w26" , NULL}; |
1741 | const char *g_invalidate_x27[]{"x27" , "w27" , NULL}; |
1742 | const char *g_invalidate_x28[]{"x28" , "w28" , NULL}; |
1743 | |
1744 | #define GPR_OFFSET_IDX(idx) (offsetof(DNBArchMachARM64::GPR, __x[idx])) |
1745 | |
1746 | #define GPR_OFFSET_NAME(reg) (offsetof(DNBArchMachARM64::GPR, __##reg)) |
1747 | |
1748 | // These macros will auto define the register name, alt name, register size, |
1749 | // register offset, encoding, format and native register. This ensures that |
1750 | // the register state structures are defined correctly and have the correct |
1751 | // sizes and offsets. |
1752 | #define DEFINE_GPR_IDX(idx, reg, alt, gen) \ |
1753 | { \ |
1754 | e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_IDX(idx), \ |
1755 | dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, \ |
1756 | g_invalidate_x##idx \ |
1757 | } |
1758 | #define DEFINE_GPR_NAME(reg, alt, gen) \ |
1759 | { \ |
1760 | e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_NAME(reg), \ |
1761 | dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, NULL \ |
1762 | } |
1763 | #define DEFINE_PSEUDO_GPR_IDX(idx, reg) \ |
1764 | { \ |
1765 | e_regSetGPR, gpr_##reg, #reg, NULL, Uint, Hex, 4, 0, INVALID_NUB_REGNUM, \ |
1766 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \ |
1767 | g_contained_x##idx, g_invalidate_x##idx \ |
1768 | } |
1769 | |
1770 | //_STRUCT_ARM_THREAD_STATE64 |
1771 | //{ |
1772 | // uint64_t x[29]; /* General purpose registers x0-x28 */ |
1773 | // uint64_t fp; /* Frame pointer x29 */ |
1774 | // uint64_t lr; /* Link register x30 */ |
1775 | // uint64_t sp; /* Stack pointer x31 */ |
1776 | // uint64_t pc; /* Program counter */ |
1777 | // uint32_t cpsr; /* Current program status register */ |
1778 | //}; |
1779 | |
1780 | // General purpose registers |
1781 | const DNBRegisterInfo DNBArchMachARM64::g_gpr_registers[] = { |
1782 | DEFINE_GPR_IDX(0, x0, "arg1" , GENERIC_REGNUM_ARG1), |
1783 | DEFINE_GPR_IDX(1, x1, "arg2" , GENERIC_REGNUM_ARG2), |
1784 | DEFINE_GPR_IDX(2, x2, "arg3" , GENERIC_REGNUM_ARG3), |
1785 | DEFINE_GPR_IDX(3, x3, "arg4" , GENERIC_REGNUM_ARG4), |
1786 | DEFINE_GPR_IDX(4, x4, "arg5" , GENERIC_REGNUM_ARG5), |
1787 | DEFINE_GPR_IDX(5, x5, "arg6" , GENERIC_REGNUM_ARG6), |
1788 | DEFINE_GPR_IDX(6, x6, "arg7" , GENERIC_REGNUM_ARG7), |
1789 | DEFINE_GPR_IDX(7, x7, "arg8" , GENERIC_REGNUM_ARG8), |
1790 | DEFINE_GPR_IDX(8, x8, NULL, INVALID_NUB_REGNUM), |
1791 | DEFINE_GPR_IDX(9, x9, NULL, INVALID_NUB_REGNUM), |
1792 | DEFINE_GPR_IDX(10, x10, NULL, INVALID_NUB_REGNUM), |
1793 | DEFINE_GPR_IDX(11, x11, NULL, INVALID_NUB_REGNUM), |
1794 | DEFINE_GPR_IDX(12, x12, NULL, INVALID_NUB_REGNUM), |
1795 | DEFINE_GPR_IDX(13, x13, NULL, INVALID_NUB_REGNUM), |
1796 | DEFINE_GPR_IDX(14, x14, NULL, INVALID_NUB_REGNUM), |
1797 | DEFINE_GPR_IDX(15, x15, NULL, INVALID_NUB_REGNUM), |
1798 | DEFINE_GPR_IDX(16, x16, NULL, INVALID_NUB_REGNUM), |
1799 | DEFINE_GPR_IDX(17, x17, NULL, INVALID_NUB_REGNUM), |
1800 | DEFINE_GPR_IDX(18, x18, NULL, INVALID_NUB_REGNUM), |
1801 | DEFINE_GPR_IDX(19, x19, NULL, INVALID_NUB_REGNUM), |
1802 | DEFINE_GPR_IDX(20, x20, NULL, INVALID_NUB_REGNUM), |
1803 | DEFINE_GPR_IDX(21, x21, NULL, INVALID_NUB_REGNUM), |
1804 | DEFINE_GPR_IDX(22, x22, NULL, INVALID_NUB_REGNUM), |
1805 | DEFINE_GPR_IDX(23, x23, NULL, INVALID_NUB_REGNUM), |
1806 | DEFINE_GPR_IDX(24, x24, NULL, INVALID_NUB_REGNUM), |
1807 | DEFINE_GPR_IDX(25, x25, NULL, INVALID_NUB_REGNUM), |
1808 | DEFINE_GPR_IDX(26, x26, NULL, INVALID_NUB_REGNUM), |
1809 | DEFINE_GPR_IDX(27, x27, NULL, INVALID_NUB_REGNUM), |
1810 | DEFINE_GPR_IDX(28, x28, NULL, INVALID_NUB_REGNUM), |
1811 | // For the G/g packet we want to show where the offset into the regctx |
1812 | // is for fp/lr/sp/pc, but we cannot directly access them on arm64e |
1813 | // devices (and therefore can't offsetof() them)) - add the offset based |
1814 | // on the last accessible register by hand for advertising the location |
1815 | // in the regctx to lldb. We'll go through the accessor functions when |
1816 | // we read/write them here. |
1817 | { |
1818 | e_regSetGPR, gpr_fp, "fp" , "x29" , Uint, Hex, 8, GPR_OFFSET_IDX(28) + 8, |
1819 | dwarf_fp, dwarf_fp, GENERIC_REGNUM_FP, debugserver_gpr_fp, NULL, NULL |
1820 | }, |
1821 | { |
1822 | e_regSetGPR, gpr_lr, "lr" , "x30" , Uint, Hex, 8, GPR_OFFSET_IDX(28) + 16, |
1823 | dwarf_lr, dwarf_lr, GENERIC_REGNUM_RA, debugserver_gpr_lr, NULL, NULL |
1824 | }, |
1825 | { |
1826 | e_regSetGPR, gpr_sp, "sp" , "xsp" , Uint, Hex, 8, GPR_OFFSET_IDX(28) + 24, |
1827 | dwarf_sp, dwarf_sp, GENERIC_REGNUM_SP, debugserver_gpr_sp, NULL, NULL |
1828 | }, |
1829 | { |
1830 | e_regSetGPR, gpr_pc, "pc" , NULL, Uint, Hex, 8, GPR_OFFSET_IDX(28) + 32, |
1831 | dwarf_pc, dwarf_pc, GENERIC_REGNUM_PC, debugserver_gpr_pc, NULL, NULL |
1832 | }, |
1833 | |
1834 | // in armv7 we specify that writing to the CPSR should invalidate r8-12, sp, |
1835 | // lr. |
1836 | // this should be specified for arm64 too even though debugserver is only |
1837 | // used for |
1838 | // userland debugging. |
1839 | {e_regSetGPR, gpr_cpsr, "cpsr" , "flags" , Uint, Hex, 4, |
1840 | GPR_OFFSET_NAME(cpsr), dwarf_elr_mode, dwarf_elr_mode, GENERIC_REGNUM_FLAGS, |
1841 | debugserver_gpr_cpsr, NULL, NULL}, |
1842 | |
1843 | DEFINE_PSEUDO_GPR_IDX(0, w0), |
1844 | DEFINE_PSEUDO_GPR_IDX(1, w1), |
1845 | DEFINE_PSEUDO_GPR_IDX(2, w2), |
1846 | DEFINE_PSEUDO_GPR_IDX(3, w3), |
1847 | DEFINE_PSEUDO_GPR_IDX(4, w4), |
1848 | DEFINE_PSEUDO_GPR_IDX(5, w5), |
1849 | DEFINE_PSEUDO_GPR_IDX(6, w6), |
1850 | DEFINE_PSEUDO_GPR_IDX(7, w7), |
1851 | DEFINE_PSEUDO_GPR_IDX(8, w8), |
1852 | DEFINE_PSEUDO_GPR_IDX(9, w9), |
1853 | DEFINE_PSEUDO_GPR_IDX(10, w10), |
1854 | DEFINE_PSEUDO_GPR_IDX(11, w11), |
1855 | DEFINE_PSEUDO_GPR_IDX(12, w12), |
1856 | DEFINE_PSEUDO_GPR_IDX(13, w13), |
1857 | DEFINE_PSEUDO_GPR_IDX(14, w14), |
1858 | DEFINE_PSEUDO_GPR_IDX(15, w15), |
1859 | DEFINE_PSEUDO_GPR_IDX(16, w16), |
1860 | DEFINE_PSEUDO_GPR_IDX(17, w17), |
1861 | DEFINE_PSEUDO_GPR_IDX(18, w18), |
1862 | DEFINE_PSEUDO_GPR_IDX(19, w19), |
1863 | DEFINE_PSEUDO_GPR_IDX(20, w20), |
1864 | DEFINE_PSEUDO_GPR_IDX(21, w21), |
1865 | DEFINE_PSEUDO_GPR_IDX(22, w22), |
1866 | DEFINE_PSEUDO_GPR_IDX(23, w23), |
1867 | DEFINE_PSEUDO_GPR_IDX(24, w24), |
1868 | DEFINE_PSEUDO_GPR_IDX(25, w25), |
1869 | DEFINE_PSEUDO_GPR_IDX(26, w26), |
1870 | DEFINE_PSEUDO_GPR_IDX(27, w27), |
1871 | DEFINE_PSEUDO_GPR_IDX(28, w28)}; |
1872 | |
1873 | const char *g_contained_v0[]{"v0" , NULL}; |
1874 | const char *g_contained_v1[]{"v1" , NULL}; |
1875 | const char *g_contained_v2[]{"v2" , NULL}; |
1876 | const char *g_contained_v3[]{"v3" , NULL}; |
1877 | const char *g_contained_v4[]{"v4" , NULL}; |
1878 | const char *g_contained_v5[]{"v5" , NULL}; |
1879 | const char *g_contained_v6[]{"v6" , NULL}; |
1880 | const char *g_contained_v7[]{"v7" , NULL}; |
1881 | const char *g_contained_v8[]{"v8" , NULL}; |
1882 | const char *g_contained_v9[]{"v9" , NULL}; |
1883 | const char *g_contained_v10[]{"v10" , NULL}; |
1884 | const char *g_contained_v11[]{"v11" , NULL}; |
1885 | const char *g_contained_v12[]{"v12" , NULL}; |
1886 | const char *g_contained_v13[]{"v13" , NULL}; |
1887 | const char *g_contained_v14[]{"v14" , NULL}; |
1888 | const char *g_contained_v15[]{"v15" , NULL}; |
1889 | const char *g_contained_v16[]{"v16" , NULL}; |
1890 | const char *g_contained_v17[]{"v17" , NULL}; |
1891 | const char *g_contained_v18[]{"v18" , NULL}; |
1892 | const char *g_contained_v19[]{"v19" , NULL}; |
1893 | const char *g_contained_v20[]{"v20" , NULL}; |
1894 | const char *g_contained_v21[]{"v21" , NULL}; |
1895 | const char *g_contained_v22[]{"v22" , NULL}; |
1896 | const char *g_contained_v23[]{"v23" , NULL}; |
1897 | const char *g_contained_v24[]{"v24" , NULL}; |
1898 | const char *g_contained_v25[]{"v25" , NULL}; |
1899 | const char *g_contained_v26[]{"v26" , NULL}; |
1900 | const char *g_contained_v27[]{"v27" , NULL}; |
1901 | const char *g_contained_v28[]{"v28" , NULL}; |
1902 | const char *g_contained_v29[]{"v29" , NULL}; |
1903 | const char *g_contained_v30[]{"v30" , NULL}; |
1904 | const char *g_contained_v31[]{"v31" , NULL}; |
1905 | |
1906 | const char *g_invalidate_v0[]{"v0" , "d0" , "s0" , NULL}; |
1907 | const char *g_invalidate_v1[]{"v1" , "d1" , "s1" , NULL}; |
1908 | const char *g_invalidate_v2[]{"v2" , "d2" , "s2" , NULL}; |
1909 | const char *g_invalidate_v3[]{"v3" , "d3" , "s3" , NULL}; |
1910 | const char *g_invalidate_v4[]{"v4" , "d4" , "s4" , NULL}; |
1911 | const char *g_invalidate_v5[]{"v5" , "d5" , "s5" , NULL}; |
1912 | const char *g_invalidate_v6[]{"v6" , "d6" , "s6" , NULL}; |
1913 | const char *g_invalidate_v7[]{"v7" , "d7" , "s7" , NULL}; |
1914 | const char *g_invalidate_v8[]{"v8" , "d8" , "s8" , NULL}; |
1915 | const char *g_invalidate_v9[]{"v9" , "d9" , "s9" , NULL}; |
1916 | const char *g_invalidate_v10[]{"v10" , "d10" , "s10" , NULL}; |
1917 | const char *g_invalidate_v11[]{"v11" , "d11" , "s11" , NULL}; |
1918 | const char *g_invalidate_v12[]{"v12" , "d12" , "s12" , NULL}; |
1919 | const char *g_invalidate_v13[]{"v13" , "d13" , "s13" , NULL}; |
1920 | const char *g_invalidate_v14[]{"v14" , "d14" , "s14" , NULL}; |
1921 | const char *g_invalidate_v15[]{"v15" , "d15" , "s15" , NULL}; |
1922 | const char *g_invalidate_v16[]{"v16" , "d16" , "s16" , NULL}; |
1923 | const char *g_invalidate_v17[]{"v17" , "d17" , "s17" , NULL}; |
1924 | const char *g_invalidate_v18[]{"v18" , "d18" , "s18" , NULL}; |
1925 | const char *g_invalidate_v19[]{"v19" , "d19" , "s19" , NULL}; |
1926 | const char *g_invalidate_v20[]{"v20" , "d20" , "s20" , NULL}; |
1927 | const char *g_invalidate_v21[]{"v21" , "d21" , "s21" , NULL}; |
1928 | const char *g_invalidate_v22[]{"v22" , "d22" , "s22" , NULL}; |
1929 | const char *g_invalidate_v23[]{"v23" , "d23" , "s23" , NULL}; |
1930 | const char *g_invalidate_v24[]{"v24" , "d24" , "s24" , NULL}; |
1931 | const char *g_invalidate_v25[]{"v25" , "d25" , "s25" , NULL}; |
1932 | const char *g_invalidate_v26[]{"v26" , "d26" , "s26" , NULL}; |
1933 | const char *g_invalidate_v27[]{"v27" , "d27" , "s27" , NULL}; |
1934 | const char *g_invalidate_v28[]{"v28" , "d28" , "s28" , NULL}; |
1935 | const char *g_invalidate_v29[]{"v29" , "d29" , "s29" , NULL}; |
1936 | const char *g_invalidate_v30[]{"v30" , "d30" , "s30" , NULL}; |
1937 | const char *g_invalidate_v31[]{"v31" , "d31" , "s31" , NULL}; |
1938 | |
1939 | #if defined(__arm64__) || defined(__aarch64__) |
1940 | #define VFP_V_OFFSET_IDX(idx) \ |
1941 | (offsetof(DNBArchMachARM64::FPU, __v) + (idx * 16) + \ |
1942 | offsetof(DNBArchMachARM64::Context, vfp)) |
1943 | #else |
1944 | #define VFP_V_OFFSET_IDX(idx) \ |
1945 | (offsetof(DNBArchMachARM64::FPU, opaque) + (idx * 16) + \ |
1946 | offsetof(DNBArchMachARM64::Context, vfp)) |
1947 | #endif |
1948 | #define VFP_OFFSET_NAME(reg) \ |
1949 | (offsetof(DNBArchMachARM64::FPU, reg) + \ |
1950 | offsetof(DNBArchMachARM64::Context, vfp)) |
1951 | #define EXC_OFFSET(reg) \ |
1952 | (offsetof(DNBArchMachARM64::EXC, reg) + \ |
1953 | offsetof(DNBArchMachARM64::Context, exc)) |
1954 | |
1955 | //#define FLOAT_FORMAT Float |
1956 | #define DEFINE_VFP_V_IDX(idx) \ |
1957 | { \ |
1958 | e_regSetVFP, vfp_v##idx, "v" #idx, "q" #idx, Vector, VectorOfUInt8, 16, \ |
1959 | VFP_V_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_v##idx, \ |
1960 | INVALID_NUB_REGNUM, debugserver_vfp_v##idx, NULL, g_invalidate_v##idx \ |
1961 | } |
1962 | #define DEFINE_PSEUDO_VFP_S_IDX(idx) \ |
1963 | { \ |
1964 | e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, Float, 4, 0, \ |
1965 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \ |
1966 | INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx \ |
1967 | } |
1968 | #define DEFINE_PSEUDO_VFP_D_IDX(idx) \ |
1969 | { \ |
1970 | e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, Float, 8, 0, \ |
1971 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \ |
1972 | INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx \ |
1973 | } |
1974 | |
1975 | // Floating point registers |
1976 | const DNBRegisterInfo DNBArchMachARM64::g_vfp_registers[] = { |
1977 | DEFINE_VFP_V_IDX(0), |
1978 | DEFINE_VFP_V_IDX(1), |
1979 | DEFINE_VFP_V_IDX(2), |
1980 | DEFINE_VFP_V_IDX(3), |
1981 | DEFINE_VFP_V_IDX(4), |
1982 | DEFINE_VFP_V_IDX(5), |
1983 | DEFINE_VFP_V_IDX(6), |
1984 | DEFINE_VFP_V_IDX(7), |
1985 | DEFINE_VFP_V_IDX(8), |
1986 | DEFINE_VFP_V_IDX(9), |
1987 | DEFINE_VFP_V_IDX(10), |
1988 | DEFINE_VFP_V_IDX(11), |
1989 | DEFINE_VFP_V_IDX(12), |
1990 | DEFINE_VFP_V_IDX(13), |
1991 | DEFINE_VFP_V_IDX(14), |
1992 | DEFINE_VFP_V_IDX(15), |
1993 | DEFINE_VFP_V_IDX(16), |
1994 | DEFINE_VFP_V_IDX(17), |
1995 | DEFINE_VFP_V_IDX(18), |
1996 | DEFINE_VFP_V_IDX(19), |
1997 | DEFINE_VFP_V_IDX(20), |
1998 | DEFINE_VFP_V_IDX(21), |
1999 | DEFINE_VFP_V_IDX(22), |
2000 | DEFINE_VFP_V_IDX(23), |
2001 | DEFINE_VFP_V_IDX(24), |
2002 | DEFINE_VFP_V_IDX(25), |
2003 | DEFINE_VFP_V_IDX(26), |
2004 | DEFINE_VFP_V_IDX(27), |
2005 | DEFINE_VFP_V_IDX(28), |
2006 | DEFINE_VFP_V_IDX(29), |
2007 | DEFINE_VFP_V_IDX(30), |
2008 | DEFINE_VFP_V_IDX(31), |
2009 | {e_regSetVFP, vfp_fpsr, "fpsr" , NULL, Uint, Hex, 4, |
2010 | VFP_V_OFFSET_IDX(32) + 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2011 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}, |
2012 | {e_regSetVFP, vfp_fpcr, "fpcr" , NULL, Uint, Hex, 4, |
2013 | VFP_V_OFFSET_IDX(32) + 4, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2014 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}, |
2015 | |
2016 | DEFINE_PSEUDO_VFP_S_IDX(0), |
2017 | DEFINE_PSEUDO_VFP_S_IDX(1), |
2018 | DEFINE_PSEUDO_VFP_S_IDX(2), |
2019 | DEFINE_PSEUDO_VFP_S_IDX(3), |
2020 | DEFINE_PSEUDO_VFP_S_IDX(4), |
2021 | DEFINE_PSEUDO_VFP_S_IDX(5), |
2022 | DEFINE_PSEUDO_VFP_S_IDX(6), |
2023 | DEFINE_PSEUDO_VFP_S_IDX(7), |
2024 | DEFINE_PSEUDO_VFP_S_IDX(8), |
2025 | DEFINE_PSEUDO_VFP_S_IDX(9), |
2026 | DEFINE_PSEUDO_VFP_S_IDX(10), |
2027 | DEFINE_PSEUDO_VFP_S_IDX(11), |
2028 | DEFINE_PSEUDO_VFP_S_IDX(12), |
2029 | DEFINE_PSEUDO_VFP_S_IDX(13), |
2030 | DEFINE_PSEUDO_VFP_S_IDX(14), |
2031 | DEFINE_PSEUDO_VFP_S_IDX(15), |
2032 | DEFINE_PSEUDO_VFP_S_IDX(16), |
2033 | DEFINE_PSEUDO_VFP_S_IDX(17), |
2034 | DEFINE_PSEUDO_VFP_S_IDX(18), |
2035 | DEFINE_PSEUDO_VFP_S_IDX(19), |
2036 | DEFINE_PSEUDO_VFP_S_IDX(20), |
2037 | DEFINE_PSEUDO_VFP_S_IDX(21), |
2038 | DEFINE_PSEUDO_VFP_S_IDX(22), |
2039 | DEFINE_PSEUDO_VFP_S_IDX(23), |
2040 | DEFINE_PSEUDO_VFP_S_IDX(24), |
2041 | DEFINE_PSEUDO_VFP_S_IDX(25), |
2042 | DEFINE_PSEUDO_VFP_S_IDX(26), |
2043 | DEFINE_PSEUDO_VFP_S_IDX(27), |
2044 | DEFINE_PSEUDO_VFP_S_IDX(28), |
2045 | DEFINE_PSEUDO_VFP_S_IDX(29), |
2046 | DEFINE_PSEUDO_VFP_S_IDX(30), |
2047 | DEFINE_PSEUDO_VFP_S_IDX(31), |
2048 | |
2049 | DEFINE_PSEUDO_VFP_D_IDX(0), |
2050 | DEFINE_PSEUDO_VFP_D_IDX(1), |
2051 | DEFINE_PSEUDO_VFP_D_IDX(2), |
2052 | DEFINE_PSEUDO_VFP_D_IDX(3), |
2053 | DEFINE_PSEUDO_VFP_D_IDX(4), |
2054 | DEFINE_PSEUDO_VFP_D_IDX(5), |
2055 | DEFINE_PSEUDO_VFP_D_IDX(6), |
2056 | DEFINE_PSEUDO_VFP_D_IDX(7), |
2057 | DEFINE_PSEUDO_VFP_D_IDX(8), |
2058 | DEFINE_PSEUDO_VFP_D_IDX(9), |
2059 | DEFINE_PSEUDO_VFP_D_IDX(10), |
2060 | DEFINE_PSEUDO_VFP_D_IDX(11), |
2061 | DEFINE_PSEUDO_VFP_D_IDX(12), |
2062 | DEFINE_PSEUDO_VFP_D_IDX(13), |
2063 | DEFINE_PSEUDO_VFP_D_IDX(14), |
2064 | DEFINE_PSEUDO_VFP_D_IDX(15), |
2065 | DEFINE_PSEUDO_VFP_D_IDX(16), |
2066 | DEFINE_PSEUDO_VFP_D_IDX(17), |
2067 | DEFINE_PSEUDO_VFP_D_IDX(18), |
2068 | DEFINE_PSEUDO_VFP_D_IDX(19), |
2069 | DEFINE_PSEUDO_VFP_D_IDX(20), |
2070 | DEFINE_PSEUDO_VFP_D_IDX(21), |
2071 | DEFINE_PSEUDO_VFP_D_IDX(22), |
2072 | DEFINE_PSEUDO_VFP_D_IDX(23), |
2073 | DEFINE_PSEUDO_VFP_D_IDX(24), |
2074 | DEFINE_PSEUDO_VFP_D_IDX(25), |
2075 | DEFINE_PSEUDO_VFP_D_IDX(26), |
2076 | DEFINE_PSEUDO_VFP_D_IDX(27), |
2077 | DEFINE_PSEUDO_VFP_D_IDX(28), |
2078 | DEFINE_PSEUDO_VFP_D_IDX(29), |
2079 | DEFINE_PSEUDO_VFP_D_IDX(30), |
2080 | DEFINE_PSEUDO_VFP_D_IDX(31) |
2081 | |
2082 | }; |
2083 | |
2084 | //_STRUCT_ARM_EXCEPTION_STATE64 |
2085 | //{ |
2086 | // uint64_t far; /* Virtual Fault Address */ |
2087 | // uint32_t esr; /* Exception syndrome */ |
2088 | // uint32_t exception; /* number of arm exception taken */ |
2089 | //}; |
2090 | |
2091 | // Exception registers |
2092 | const DNBRegisterInfo DNBArchMachARM64::g_exc_registers[] = { |
2093 | {e_regSetEXC, exc_far, "far" , NULL, Uint, Hex, 8, EXC_OFFSET(__far), |
2094 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2095 | INVALID_NUB_REGNUM, NULL, NULL}, |
2096 | {e_regSetEXC, exc_esr, "esr" , NULL, Uint, Hex, 4, EXC_OFFSET(__esr), |
2097 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2098 | INVALID_NUB_REGNUM, NULL, NULL}, |
2099 | {e_regSetEXC, exc_exception, "exception" , NULL, Uint, Hex, 4, |
2100 | EXC_OFFSET(__exception), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2101 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}}; |
2102 | |
2103 | // Number of registers in each register set |
2104 | const size_t DNBArchMachARM64::k_num_gpr_registers = |
2105 | sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo); |
2106 | const size_t DNBArchMachARM64::k_num_vfp_registers = |
2107 | sizeof(g_vfp_registers) / sizeof(DNBRegisterInfo); |
2108 | const size_t DNBArchMachARM64::k_num_exc_registers = |
2109 | sizeof(g_exc_registers) / sizeof(DNBRegisterInfo); |
2110 | const size_t DNBArchMachARM64::k_num_all_registers = |
2111 | k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers; |
2112 | |
2113 | // Register set definitions. The first definitions at register set index |
2114 | // of zero is for all registers, followed by other registers sets. The |
2115 | // register information for the all register set need not be filled in. |
2116 | const DNBRegisterSetInfo DNBArchMachARM64::g_reg_sets[] = { |
2117 | {"ARM64 Registers" , NULL, k_num_all_registers}, |
2118 | {"General Purpose Registers" , g_gpr_registers, k_num_gpr_registers}, |
2119 | {"Floating Point Registers" , g_vfp_registers, k_num_vfp_registers}, |
2120 | {"Exception State Registers" , g_exc_registers, k_num_exc_registers}}; |
2121 | // Total number of register sets for this architecture |
2122 | const size_t DNBArchMachARM64::k_num_register_sets = |
2123 | sizeof(g_reg_sets) / sizeof(DNBRegisterSetInfo); |
2124 | |
2125 | const DNBRegisterSetInfo * |
2126 | DNBArchMachARM64::GetRegisterSetInfo(nub_size_t *num_reg_sets) { |
2127 | *num_reg_sets = k_num_register_sets; |
2128 | return g_reg_sets; |
2129 | } |
2130 | |
2131 | bool DNBArchMachARM64::FixGenericRegisterNumber(uint32_t &set, uint32_t ®) { |
2132 | if (set == REGISTER_SET_GENERIC) { |
2133 | switch (reg) { |
2134 | case GENERIC_REGNUM_PC: // Program Counter |
2135 | set = e_regSetGPR; |
2136 | reg = gpr_pc; |
2137 | break; |
2138 | |
2139 | case GENERIC_REGNUM_SP: // Stack Pointer |
2140 | set = e_regSetGPR; |
2141 | reg = gpr_sp; |
2142 | break; |
2143 | |
2144 | case GENERIC_REGNUM_FP: // Frame Pointer |
2145 | set = e_regSetGPR; |
2146 | reg = gpr_fp; |
2147 | break; |
2148 | |
2149 | case GENERIC_REGNUM_RA: // Return Address |
2150 | set = e_regSetGPR; |
2151 | reg = gpr_lr; |
2152 | break; |
2153 | |
2154 | case GENERIC_REGNUM_FLAGS: // Processor flags register |
2155 | set = e_regSetGPR; |
2156 | reg = gpr_cpsr; |
2157 | break; |
2158 | |
2159 | case GENERIC_REGNUM_ARG1: |
2160 | case GENERIC_REGNUM_ARG2: |
2161 | case GENERIC_REGNUM_ARG3: |
2162 | case GENERIC_REGNUM_ARG4: |
2163 | case GENERIC_REGNUM_ARG5: |
2164 | case GENERIC_REGNUM_ARG6: |
2165 | set = e_regSetGPR; |
2166 | reg = gpr_x0 + reg - GENERIC_REGNUM_ARG1; |
2167 | break; |
2168 | |
2169 | default: |
2170 | return false; |
2171 | } |
2172 | } |
2173 | return true; |
2174 | } |
2175 | bool DNBArchMachARM64::GetRegisterValue(uint32_t set, uint32_t reg, |
2176 | DNBRegisterValue *value) { |
2177 | if (!FixGenericRegisterNumber(set, reg)) |
2178 | return false; |
2179 | |
2180 | if (GetRegisterState(set, false) != KERN_SUCCESS) |
2181 | return false; |
2182 | |
2183 | const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); |
2184 | if (regInfo) { |
2185 | value->info = *regInfo; |
2186 | switch (set) { |
2187 | case e_regSetGPR: |
2188 | if (reg <= gpr_pc) { |
2189 | switch (reg) { |
2190 | #if __has_feature(ptrauth_calls) && defined(__LP64__) |
2191 | case gpr_pc: |
2192 | value->value.uint64 = clear_pac_bits( |
2193 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
2194 | break; |
2195 | case gpr_lr: |
2196 | value->value.uint64 = arm_thread_state64_get_lr(m_state.context.gpr); |
2197 | break; |
2198 | case gpr_sp: |
2199 | value->value.uint64 = clear_pac_bits( |
2200 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp)); |
2201 | break; |
2202 | case gpr_fp: |
2203 | value->value.uint64 = clear_pac_bits( |
2204 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_fp)); |
2205 | break; |
2206 | #else |
2207 | case gpr_pc: |
2208 | value->value.uint64 = clear_pac_bits(m_state.context.gpr.__pc); |
2209 | break; |
2210 | case gpr_lr: |
2211 | value->value.uint64 = clear_pac_bits(m_state.context.gpr.__lr); |
2212 | break; |
2213 | case gpr_sp: |
2214 | value->value.uint64 = clear_pac_bits(m_state.context.gpr.__sp); |
2215 | break; |
2216 | case gpr_fp: |
2217 | value->value.uint64 = clear_pac_bits(m_state.context.gpr.__fp); |
2218 | break; |
2219 | #endif |
2220 | default: |
2221 | value->value.uint64 = m_state.context.gpr.__x[reg]; |
2222 | } |
2223 | return true; |
2224 | } else if (reg == gpr_cpsr) { |
2225 | value->value.uint32 = m_state.context.gpr.__cpsr; |
2226 | return true; |
2227 | } |
2228 | break; |
2229 | |
2230 | case e_regSetVFP: |
2231 | |
2232 | if (reg >= vfp_v0 && reg <= vfp_v31) { |
2233 | #if defined(__arm64__) || defined(__aarch64__) |
2234 | memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_v0], |
2235 | 16); |
2236 | #else |
2237 | memcpy(&value->value.v_uint8, |
2238 | ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16), |
2239 | 16); |
2240 | #endif |
2241 | return true; |
2242 | } else if (reg == vfp_fpsr) { |
2243 | #if defined(__arm64__) || defined(__aarch64__) |
2244 | memcpy(&value->value.uint32, &m_state.context.vfp.__fpsr, 4); |
2245 | #else |
2246 | memcpy(&value->value.uint32, |
2247 | ((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0, 4); |
2248 | #endif |
2249 | return true; |
2250 | } else if (reg == vfp_fpcr) { |
2251 | #if defined(__arm64__) || defined(__aarch64__) |
2252 | memcpy(&value->value.uint32, &m_state.context.vfp.__fpcr, 4); |
2253 | #else |
2254 | memcpy(&value->value.uint32, |
2255 | ((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 4, 4); |
2256 | #endif |
2257 | return true; |
2258 | } else if (reg >= vfp_s0 && reg <= vfp_s31) { |
2259 | #if defined(__arm64__) || defined(__aarch64__) |
2260 | memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_s0], |
2261 | 4); |
2262 | #else |
2263 | memcpy(&value->value.v_uint8, |
2264 | ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16), |
2265 | 4); |
2266 | #endif |
2267 | return true; |
2268 | } else if (reg >= vfp_d0 && reg <= vfp_d31) { |
2269 | #if defined(__arm64__) || defined(__aarch64__) |
2270 | memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_d0], |
2271 | 8); |
2272 | #else |
2273 | memcpy(&value->value.v_uint8, |
2274 | ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16), |
2275 | 8); |
2276 | #endif |
2277 | return true; |
2278 | } |
2279 | break; |
2280 | |
2281 | case e_regSetEXC: |
2282 | if (reg == exc_far) { |
2283 | value->value.uint64 = m_state.context.exc.__far; |
2284 | return true; |
2285 | } else if (reg == exc_esr) { |
2286 | value->value.uint32 = m_state.context.exc.__esr; |
2287 | return true; |
2288 | } else if (reg == exc_exception) { |
2289 | value->value.uint32 = m_state.context.exc.__exception; |
2290 | return true; |
2291 | } |
2292 | break; |
2293 | } |
2294 | } |
2295 | return false; |
2296 | } |
2297 | |
2298 | bool DNBArchMachARM64::SetRegisterValue(uint32_t set, uint32_t reg, |
2299 | const DNBRegisterValue *value) { |
2300 | if (!FixGenericRegisterNumber(set, reg)) |
2301 | return false; |
2302 | |
2303 | if (GetRegisterState(set, false) != KERN_SUCCESS) |
2304 | return false; |
2305 | |
2306 | bool success = false; |
2307 | const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); |
2308 | if (regInfo) { |
2309 | switch (set) { |
2310 | case e_regSetGPR: |
2311 | if (reg <= gpr_pc) { |
2312 | #if defined(__LP64__) |
2313 | uint64_t signed_value = value->value.uint64; |
2314 | #if __has_feature(ptrauth_calls) |
2315 | // The incoming value could be garbage. Strip it to avoid |
2316 | // trapping when it gets resigned in the thread state. |
2317 | signed_value = (uint64_t) ptrauth_strip((void*) signed_value, ptrauth_key_function_pointer); |
2318 | signed_value = (uint64_t) ptrauth_sign_unauthenticated((void*) signed_value, ptrauth_key_function_pointer, 0); |
2319 | #endif |
2320 | if (reg == gpr_pc) |
2321 | arm_thread_state64_set_pc_fptr (m_state.context.gpr, (void*) signed_value); |
2322 | else if (reg == gpr_lr) |
2323 | arm_thread_state64_set_lr_fptr (m_state.context.gpr, (void*) signed_value); |
2324 | else if (reg == gpr_sp) |
2325 | arm_thread_state64_set_sp (m_state.context.gpr, value->value.uint64); |
2326 | else if (reg == gpr_fp) |
2327 | arm_thread_state64_set_fp (m_state.context.gpr, value->value.uint64); |
2328 | else |
2329 | m_state.context.gpr.__x[reg] = value->value.uint64; |
2330 | #else |
2331 | m_state.context.gpr.__x[reg] = value->value.uint64; |
2332 | #endif |
2333 | success = true; |
2334 | } else if (reg == gpr_cpsr) { |
2335 | m_state.context.gpr.__cpsr = value->value.uint32; |
2336 | success = true; |
2337 | } |
2338 | break; |
2339 | |
2340 | case e_regSetVFP: |
2341 | if (reg >= vfp_v0 && reg <= vfp_v31) { |
2342 | #if defined(__arm64__) || defined(__aarch64__) |
2343 | memcpy(&m_state.context.vfp.__v[reg - vfp_v0], &value->value.v_uint8, |
2344 | 16); |
2345 | #else |
2346 | memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16), |
2347 | &value->value.v_uint8, 16); |
2348 | #endif |
2349 | success = true; |
2350 | } else if (reg == vfp_fpsr) { |
2351 | #if defined(__arm64__) || defined(__aarch64__) |
2352 | memcpy(&m_state.context.vfp.__fpsr, &value->value.uint32, 4); |
2353 | #else |
2354 | memcpy(((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0, |
2355 | &value->value.uint32, 4); |
2356 | #endif |
2357 | success = true; |
2358 | } else if (reg == vfp_fpcr) { |
2359 | #if defined(__arm64__) || defined(__aarch64__) |
2360 | memcpy(&m_state.context.vfp.__fpcr, &value->value.uint32, 4); |
2361 | #else |
2362 | memcpy(((uint8_t *)m_state.context.vfp.opaque) + (32 * 16) + 4, |
2363 | &value->value.uint32, 4); |
2364 | #endif |
2365 | success = true; |
2366 | } else if (reg >= vfp_s0 && reg <= vfp_s31) { |
2367 | #if defined(__arm64__) || defined(__aarch64__) |
2368 | memcpy(&m_state.context.vfp.__v[reg - vfp_s0], &value->value.v_uint8, |
2369 | 4); |
2370 | #else |
2371 | memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16), |
2372 | &value->value.v_uint8, 4); |
2373 | #endif |
2374 | success = true; |
2375 | } else if (reg >= vfp_d0 && reg <= vfp_d31) { |
2376 | #if defined(__arm64__) || defined(__aarch64__) |
2377 | memcpy(&m_state.context.vfp.__v[reg - vfp_d0], &value->value.v_uint8, |
2378 | 8); |
2379 | #else |
2380 | memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16), |
2381 | &value->value.v_uint8, 8); |
2382 | #endif |
2383 | success = true; |
2384 | } |
2385 | break; |
2386 | |
2387 | case e_regSetEXC: |
2388 | if (reg == exc_far) { |
2389 | m_state.context.exc.__far = value->value.uint64; |
2390 | success = true; |
2391 | } else if (reg == exc_esr) { |
2392 | m_state.context.exc.__esr = value->value.uint32; |
2393 | success = true; |
2394 | } else if (reg == exc_exception) { |
2395 | m_state.context.exc.__exception = value->value.uint32; |
2396 | success = true; |
2397 | } |
2398 | break; |
2399 | } |
2400 | } |
2401 | if (success) |
2402 | return SetRegisterState(set) == KERN_SUCCESS; |
2403 | return false; |
2404 | } |
2405 | |
2406 | kern_return_t DNBArchMachARM64::GetRegisterState(int set, bool force) { |
2407 | switch (set) { |
2408 | case e_regSetALL: |
2409 | return GetGPRState(force) | GetVFPState(force) | GetEXCState(force) | |
2410 | GetDBGState(force); |
2411 | case e_regSetGPR: |
2412 | return GetGPRState(force); |
2413 | case e_regSetVFP: |
2414 | return GetVFPState(force); |
2415 | case e_regSetEXC: |
2416 | return GetEXCState(force); |
2417 | case e_regSetDBG: |
2418 | return GetDBGState(force); |
2419 | default: |
2420 | break; |
2421 | } |
2422 | return KERN_INVALID_ARGUMENT; |
2423 | } |
2424 | |
2425 | kern_return_t DNBArchMachARM64::SetRegisterState(int set) { |
2426 | // Make sure we have a valid context to set. |
2427 | kern_return_t err = GetRegisterState(set, false); |
2428 | if (err != KERN_SUCCESS) |
2429 | return err; |
2430 | |
2431 | switch (set) { |
2432 | case e_regSetALL: |
2433 | return SetGPRState() | SetVFPState() | SetEXCState() | SetDBGState(false); |
2434 | case e_regSetGPR: |
2435 | return SetGPRState(); |
2436 | case e_regSetVFP: |
2437 | return SetVFPState(); |
2438 | case e_regSetEXC: |
2439 | return SetEXCState(); |
2440 | case e_regSetDBG: |
2441 | return SetDBGState(false); |
2442 | default: |
2443 | break; |
2444 | } |
2445 | return KERN_INVALID_ARGUMENT; |
2446 | } |
2447 | |
2448 | bool DNBArchMachARM64::RegisterSetStateIsValid(int set) const { |
2449 | return m_state.RegsAreValid(set); |
2450 | } |
2451 | |
2452 | nub_size_t DNBArchMachARM64::GetRegisterContext(void *buf, nub_size_t buf_len) { |
2453 | nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) + |
2454 | sizeof(m_state.context.exc); |
2455 | |
2456 | if (buf && buf_len) { |
2457 | if (size > buf_len) |
2458 | size = buf_len; |
2459 | |
2460 | bool force = false; |
2461 | if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force)) |
2462 | return 0; |
2463 | |
2464 | // Copy each struct individually to avoid any padding that might be between |
2465 | // the structs in m_state.context |
2466 | uint8_t *p = (uint8_t *)buf; |
2467 | ::memcpy(p, &m_state.context.gpr, sizeof(m_state.context.gpr)); |
2468 | p += sizeof(m_state.context.gpr); |
2469 | ::memcpy(p, &m_state.context.vfp, sizeof(m_state.context.vfp)); |
2470 | p += sizeof(m_state.context.vfp); |
2471 | ::memcpy(p, &m_state.context.exc, sizeof(m_state.context.exc)); |
2472 | p += sizeof(m_state.context.exc); |
2473 | |
2474 | size_t bytes_written = p - (uint8_t *)buf; |
2475 | UNUSED_IF_ASSERT_DISABLED(bytes_written); |
2476 | assert(bytes_written == size); |
2477 | } |
2478 | DNBLogThreadedIf( |
2479 | LOG_THREAD, |
2480 | "DNBArchMachARM64::GetRegisterContext (buf = %p, len = %zu) => %zu" , buf, |
2481 | buf_len, size); |
2482 | // Return the size of the register context even if NULL was passed in |
2483 | return size; |
2484 | } |
2485 | |
2486 | nub_size_t DNBArchMachARM64::SetRegisterContext(const void *buf, |
2487 | nub_size_t buf_len) { |
2488 | nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) + |
2489 | sizeof(m_state.context.exc); |
2490 | |
2491 | if (buf == NULL || buf_len == 0) |
2492 | size = 0; |
2493 | |
2494 | if (size) { |
2495 | if (size > buf_len) |
2496 | size = buf_len; |
2497 | |
2498 | // Copy each struct individually to avoid any padding that might be between |
2499 | // the structs in m_state.context |
2500 | uint8_t *p = const_cast<uint8_t*>(reinterpret_cast<const uint8_t *>(buf)); |
2501 | ::memcpy(&m_state.context.gpr, p, sizeof(m_state.context.gpr)); |
2502 | p += sizeof(m_state.context.gpr); |
2503 | ::memcpy(&m_state.context.vfp, p, sizeof(m_state.context.vfp)); |
2504 | p += sizeof(m_state.context.vfp); |
2505 | ::memcpy(&m_state.context.exc, p, sizeof(m_state.context.exc)); |
2506 | p += sizeof(m_state.context.exc); |
2507 | |
2508 | size_t bytes_written = p - reinterpret_cast<const uint8_t *>(buf); |
2509 | UNUSED_IF_ASSERT_DISABLED(bytes_written); |
2510 | assert(bytes_written == size); |
2511 | SetGPRState(); |
2512 | SetVFPState(); |
2513 | SetEXCState(); |
2514 | } |
2515 | DNBLogThreadedIf( |
2516 | LOG_THREAD, |
2517 | "DNBArchMachARM64::SetRegisterContext (buf = %p, len = %zu) => %zu" , buf, |
2518 | buf_len, size); |
2519 | return size; |
2520 | } |
2521 | |
2522 | uint32_t DNBArchMachARM64::SaveRegisterState() { |
2523 | kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber()); |
2524 | DNBLogThreadedIf( |
2525 | LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u " |
2526 | "(SetGPRState() for stop_count = %u)" , |
2527 | m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount()); |
2528 | |
2529 | // Always re-read the registers because above we call thread_abort_safely(); |
2530 | bool force = true; |
2531 | |
2532 | if ((kret = GetGPRState(force)) != KERN_SUCCESS) { |
2533 | DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () " |
2534 | "error: GPR regs failed to read: %u " , |
2535 | kret); |
2536 | } else if ((kret = GetVFPState(force)) != KERN_SUCCESS) { |
2537 | DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () " |
2538 | "error: %s regs failed to read: %u" , |
2539 | "VFP" , kret); |
2540 | } else { |
2541 | const uint32_t save_id = GetNextRegisterStateSaveID(); |
2542 | m_saved_register_states[save_id] = m_state.context; |
2543 | return save_id; |
2544 | } |
2545 | return UINT32_MAX; |
2546 | } |
2547 | |
2548 | bool DNBArchMachARM64::RestoreRegisterState(uint32_t save_id) { |
2549 | SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id); |
2550 | if (pos != m_saved_register_states.end()) { |
2551 | m_state.context.gpr = pos->second.gpr; |
2552 | m_state.context.vfp = pos->second.vfp; |
2553 | kern_return_t kret; |
2554 | bool success = true; |
2555 | if ((kret = SetGPRState()) != KERN_SUCCESS) { |
2556 | DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState " |
2557 | "(save_id = %u) error: GPR regs failed to " |
2558 | "write: %u" , |
2559 | save_id, kret); |
2560 | success = false; |
2561 | } else if ((kret = SetVFPState()) != KERN_SUCCESS) { |
2562 | DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState " |
2563 | "(save_id = %u) error: %s regs failed to " |
2564 | "write: %u" , |
2565 | save_id, "VFP" , kret); |
2566 | success = false; |
2567 | } |
2568 | m_saved_register_states.erase(pos); |
2569 | return success; |
2570 | } |
2571 | return false; |
2572 | } |
2573 | |
2574 | #endif // #if defined (ARM_THREAD_STATE64_COUNT) |
2575 | #endif // #if defined (__arm__) || defined (__arm64__) || defined (__aarch64__) |
2576 | |