1 | //===-- DNBArchImplARM64.cpp ------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Created by Greg Clayton on 6/25/07. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) |
14 | |
15 | #include "MacOSX/arm64/DNBArchImplARM64.h" |
16 | |
17 | #if defined(ARM_THREAD_STATE64_COUNT) |
18 | |
19 | #include "DNB.h" |
20 | #include "DNBBreakpoint.h" |
21 | #include "DNBLog.h" |
22 | #include "DNBRegisterInfo.h" |
23 | #include "MacOSX/MachProcess.h" |
24 | #include "MacOSX/MachThread.h" |
25 | |
26 | #include <cinttypes> |
27 | #include <sys/sysctl.h> |
28 | |
29 | #undef DEBUGSERVER_IS_ARM64E |
30 | #if __has_feature(ptrauth_calls) |
31 | #include <ptrauth.h> |
32 | #if defined(__LP64__) |
33 | #define DEBUGSERVER_IS_ARM64E 1 |
34 | #endif |
35 | #endif |
36 | |
37 | // Break only in privileged or user mode |
38 | // (PAC bits in the DBGWVRn_EL1 watchpoint control register) |
39 | #define S_USER ((uint32_t)(2u << 1)) |
40 | |
41 | #define BCR_ENABLE ((uint32_t)(1u)) |
42 | #define WCR_ENABLE ((uint32_t)(1u)) |
43 | |
44 | // Watchpoint load/store |
45 | // (LSC bits in the DBGWVRn_EL1 watchpoint control register) |
46 | #define WCR_LOAD ((uint32_t)(1u << 3)) |
47 | #define WCR_STORE ((uint32_t)(1u << 4)) |
48 | |
49 | // Single instruction step |
50 | // (SS bit in the MDSCR_EL1 register) |
51 | #define SS_ENABLE ((uint32_t)(1u)) |
52 | |
53 | static const uint8_t g_arm64_breakpoint_opcode[] = { |
54 | 0x00, 0x00, 0x20, 0xD4}; // "brk #0", 0xd4200000 in BE byte order |
55 | |
56 | // If we need to set one logical watchpoint by using |
57 | // two hardware watchpoint registers, the watchpoint |
58 | // will be split into a "high" and "low" watchpoint. |
59 | // Record both of them in the LoHi array. |
60 | |
61 | // It's safe to initialize to all 0's since |
62 | // hi > lo and therefore LoHi[i] cannot be 0. |
63 | static uint32_t LoHi[16] = {0}; |
64 | |
65 | void DNBArchMachARM64::Initialize() { |
66 | DNBArchPluginInfo arch_plugin_info = { |
67 | CPU_TYPE_ARM64, DNBArchMachARM64::Create, |
68 | DNBArchMachARM64::GetRegisterSetInfo, |
69 | DNBArchMachARM64::SoftwareBreakpointOpcode}; |
70 | |
71 | // Register this arch plug-in with the main protocol class |
72 | DNBArchProtocol::RegisterArchPlugin(arch_plugin_info); |
73 | |
74 | DNBArchPluginInfo arch_plugin_info_32 = { |
75 | CPU_TYPE_ARM64_32, DNBArchMachARM64::Create, |
76 | DNBArchMachARM64::GetRegisterSetInfo, |
77 | DNBArchMachARM64::SoftwareBreakpointOpcode}; |
78 | |
79 | // Register this arch plug-in with the main protocol class |
80 | DNBArchProtocol::RegisterArchPlugin(arch_plugin_info_32); |
81 | } |
82 | |
83 | DNBArchProtocol *DNBArchMachARM64::Create(MachThread *thread) { |
84 | DNBArchMachARM64 *obj = new DNBArchMachARM64(thread); |
85 | |
86 | return obj; |
87 | } |
88 | |
89 | const uint8_t * |
90 | DNBArchMachARM64::SoftwareBreakpointOpcode(nub_size_t byte_size) { |
91 | return g_arm64_breakpoint_opcode; |
92 | } |
93 | |
94 | uint32_t DNBArchMachARM64::GetCPUType() { return CPU_TYPE_ARM64; } |
95 | |
96 | static std::once_flag g_cpu_has_sme_once; |
97 | bool DNBArchMachARM64::CPUHasSME() { |
98 | static bool g_has_sme = false; |
99 | std::call_once(g_cpu_has_sme_once, []() { |
100 | int ret = 0; |
101 | size_t size = sizeof(ret); |
102 | if (sysctlbyname("hw.optional.arm.FEAT_SME" , &ret, &size, NULL, 0) != -1) |
103 | g_has_sme = ret == 1; |
104 | }); |
105 | return g_has_sme; |
106 | } |
107 | |
108 | static std::once_flag g_cpu_has_sme2_once; |
109 | bool DNBArchMachARM64::CPUHasSME2() { |
110 | static bool g_has_sme2 = false; |
111 | std::call_once(g_cpu_has_sme2_once, []() { |
112 | int ret = 0; |
113 | size_t size = sizeof(ret); |
114 | if (sysctlbyname("hw.optional.arm.FEAT_SME2" , &ret, &size, NULL, 0) != -1) |
115 | g_has_sme2 = ret == 1; |
116 | }); |
117 | return g_has_sme2; |
118 | } |
119 | |
120 | static std::once_flag g_sme_max_svl_once; |
121 | unsigned int DNBArchMachARM64::GetSMEMaxSVL() { |
122 | static unsigned int g_sme_max_svl = 0; |
123 | std::call_once(g_sme_max_svl_once, []() { |
124 | if (CPUHasSME()) { |
125 | unsigned int ret = 0; |
126 | size_t size = sizeof(ret); |
127 | if (sysctlbyname("hw.optional.arm.sme_max_svl_b" , &ret, &size, NULL, 0) != |
128 | -1) |
129 | g_sme_max_svl = ret; |
130 | } |
131 | }); |
132 | return g_sme_max_svl; |
133 | } |
134 | |
135 | static uint64_t clear_pac_bits(uint64_t value) { |
136 | uint32_t addressing_bits = 0; |
137 | if (!DNBGetAddressingBits(addressing_bits)) |
138 | return value; |
139 | |
140 | // On arm64_32, no ptrauth bits to clear |
141 | #if !defined(__LP64__) |
142 | return value; |
143 | #endif |
144 | |
145 | uint64_t mask = ((1ULL << addressing_bits) - 1); |
146 | |
147 | // Normally PAC bit clearing needs to check b55 and either set the |
148 | // non-addressing bits, or clear them. But the register values we |
149 | // get from thread_get_state on an arm64e process don't follow this |
150 | // convention?, at least when there's been a PAC auth failure in |
151 | // the inferior. |
152 | // Userland processes are always in low memory, so this |
153 | // hardcoding b55 == 0 PAC stripping behavior here. |
154 | |
155 | return value & mask; // high bits cleared to 0 |
156 | } |
157 | |
158 | uint64_t DNBArchMachARM64::GetPC(uint64_t failValue) { |
159 | // Get program counter |
160 | if (GetGPRState(false) == KERN_SUCCESS) |
161 | #if defined(DEBUGSERVER_IS_ARM64E) |
162 | return clear_pac_bits( |
163 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
164 | #else |
165 | return m_state.context.gpr.__pc; |
166 | #endif |
167 | return failValue; |
168 | } |
169 | |
170 | kern_return_t DNBArchMachARM64::SetPC(uint64_t value) { |
171 | // Get program counter |
172 | kern_return_t err = GetGPRState(false); |
173 | if (err == KERN_SUCCESS) { |
174 | #if defined(__LP64__) |
175 | #if __has_feature(ptrauth_calls) |
176 | // The incoming value could be garbage. Strip it to avoid |
177 | // trapping when it gets resigned in the thread state. |
178 | value = (uint64_t) ptrauth_strip((void*) value, ptrauth_key_function_pointer); |
179 | value = (uint64_t) ptrauth_sign_unauthenticated((void*) value, ptrauth_key_function_pointer, 0); |
180 | #endif |
181 | arm_thread_state64_set_pc_fptr (m_state.context.gpr, (void*) value); |
182 | #else |
183 | m_state.context.gpr.__pc = value; |
184 | #endif |
185 | err = SetGPRState(); |
186 | } |
187 | return err == KERN_SUCCESS; |
188 | } |
189 | |
190 | uint64_t DNBArchMachARM64::GetSP(uint64_t failValue) { |
191 | // Get stack pointer |
192 | if (GetGPRState(false) == KERN_SUCCESS) |
193 | #if defined(DEBUGSERVER_IS_ARM64E) |
194 | return clear_pac_bits( |
195 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp)); |
196 | #else |
197 | return m_state.context.gpr.__sp; |
198 | #endif |
199 | return failValue; |
200 | } |
201 | |
202 | kern_return_t DNBArchMachARM64::GetGPRState(bool force) { |
203 | int set = e_regSetGPR; |
204 | // Check if we have valid cached registers |
205 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
206 | return KERN_SUCCESS; |
207 | |
208 | // Read the registers from our thread |
209 | mach_msg_type_number_t count = e_regSetGPRCount; |
210 | kern_return_t kret = |
211 | ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE64, |
212 | (thread_state_t)&m_state.context.gpr, &count); |
213 | if (DNBLogEnabledForAny(LOG_THREAD)) { |
214 | uint64_t *x = &m_state.context.gpr.__x[0]; |
215 | |
216 | const char *log_str = "thread_get_state signed regs " |
217 | "\n fp=%16.16llx" |
218 | "\n lr=%16.16llx" |
219 | "\n sp=%16.16llx" |
220 | "\n pc=%16.16llx" ; |
221 | #if defined(DEBUGSERVER_IS_ARM64E) |
222 | DNBLogThreaded(log_str, |
223 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_fp), |
224 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_lr), |
225 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp), |
226 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
227 | #else |
228 | DNBLogThreaded(log_str, m_state.context.gpr.__fp, m_state.context.gpr.__lr, |
229 | m_state.context.gpr.__sp, m_state.context.gpr.__pc); |
230 | #endif |
231 | |
232 | #if defined(DEBUGSERVER_IS_ARM64E) |
233 | uint64_t log_fp = clear_pac_bits( |
234 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_fp)); |
235 | uint64_t log_lr = clear_pac_bits( |
236 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_lr)); |
237 | uint64_t log_sp = clear_pac_bits( |
238 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp)); |
239 | uint64_t log_pc = clear_pac_bits( |
240 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
241 | #else |
242 | uint64_t log_fp = m_state.context.gpr.__fp; |
243 | uint64_t log_lr = m_state.context.gpr.__lr; |
244 | uint64_t log_sp = m_state.context.gpr.__sp; |
245 | uint64_t log_pc = m_state.context.gpr.__pc; |
246 | #endif |
247 | DNBLogThreaded( |
248 | "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs" |
249 | "\n x0=%16.16llx" |
250 | "\n x1=%16.16llx" |
251 | "\n x2=%16.16llx" |
252 | "\n x3=%16.16llx" |
253 | "\n x4=%16.16llx" |
254 | "\n x5=%16.16llx" |
255 | "\n x6=%16.16llx" |
256 | "\n x7=%16.16llx" |
257 | "\n x8=%16.16llx" |
258 | "\n x9=%16.16llx" |
259 | "\n x10=%16.16llx" |
260 | "\n x11=%16.16llx" |
261 | "\n x12=%16.16llx" |
262 | "\n x13=%16.16llx" |
263 | "\n x14=%16.16llx" |
264 | "\n x15=%16.16llx" |
265 | "\n x16=%16.16llx" |
266 | "\n x17=%16.16llx" |
267 | "\n x18=%16.16llx" |
268 | "\n x19=%16.16llx" |
269 | "\n x20=%16.16llx" |
270 | "\n x21=%16.16llx" |
271 | "\n x22=%16.16llx" |
272 | "\n x23=%16.16llx" |
273 | "\n x24=%16.16llx" |
274 | "\n x25=%16.16llx" |
275 | "\n x26=%16.16llx" |
276 | "\n x27=%16.16llx" |
277 | "\n x28=%16.16llx" |
278 | "\n fp=%16.16llx" |
279 | "\n lr=%16.16llx" |
280 | "\n sp=%16.16llx" |
281 | "\n pc=%16.16llx" |
282 | "\n cpsr=%8.8x" , |
283 | m_thread->MachPortNumber(), e_regSetGPR, e_regSetGPRCount, kret, count, |
284 | x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[0], x[11], |
285 | x[12], x[13], x[14], x[15], x[16], x[17], x[18], x[19], x[20], x[21], |
286 | x[22], x[23], x[24], x[25], x[26], x[27], x[28], |
287 | log_fp, log_lr, log_sp, log_pc, m_state.context.gpr.__cpsr); |
288 | } |
289 | m_state.SetError(set, Read, kret); |
290 | return kret; |
291 | } |
292 | |
293 | kern_return_t DNBArchMachARM64::GetVFPState(bool force) { |
294 | int set = e_regSetVFP; |
295 | // Check if we have valid cached registers |
296 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
297 | return KERN_SUCCESS; |
298 | |
299 | // Read the registers from our thread |
300 | mach_msg_type_number_t count = e_regSetVFPCount; |
301 | kern_return_t kret = |
302 | ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE64, |
303 | (thread_state_t)&m_state.context.vfp, &count); |
304 | if (DNBLogEnabledForAny(LOG_THREAD)) { |
305 | #if defined(__arm64__) || defined(__aarch64__) |
306 | DNBLogThreaded( |
307 | "thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs" |
308 | "\n q0 = 0x%16.16llx%16.16llx" |
309 | "\n q1 = 0x%16.16llx%16.16llx" |
310 | "\n q2 = 0x%16.16llx%16.16llx" |
311 | "\n q3 = 0x%16.16llx%16.16llx" |
312 | "\n q4 = 0x%16.16llx%16.16llx" |
313 | "\n q5 = 0x%16.16llx%16.16llx" |
314 | "\n q6 = 0x%16.16llx%16.16llx" |
315 | "\n q7 = 0x%16.16llx%16.16llx" |
316 | "\n q8 = 0x%16.16llx%16.16llx" |
317 | "\n q9 = 0x%16.16llx%16.16llx" |
318 | "\n q10 = 0x%16.16llx%16.16llx" |
319 | "\n q11 = 0x%16.16llx%16.16llx" |
320 | "\n q12 = 0x%16.16llx%16.16llx" |
321 | "\n q13 = 0x%16.16llx%16.16llx" |
322 | "\n q14 = 0x%16.16llx%16.16llx" |
323 | "\n q15 = 0x%16.16llx%16.16llx" |
324 | "\n q16 = 0x%16.16llx%16.16llx" |
325 | "\n q17 = 0x%16.16llx%16.16llx" |
326 | "\n q18 = 0x%16.16llx%16.16llx" |
327 | "\n q19 = 0x%16.16llx%16.16llx" |
328 | "\n q20 = 0x%16.16llx%16.16llx" |
329 | "\n q21 = 0x%16.16llx%16.16llx" |
330 | "\n q22 = 0x%16.16llx%16.16llx" |
331 | "\n q23 = 0x%16.16llx%16.16llx" |
332 | "\n q24 = 0x%16.16llx%16.16llx" |
333 | "\n q25 = 0x%16.16llx%16.16llx" |
334 | "\n q26 = 0x%16.16llx%16.16llx" |
335 | "\n q27 = 0x%16.16llx%16.16llx" |
336 | "\n q28 = 0x%16.16llx%16.16llx" |
337 | "\n q29 = 0x%16.16llx%16.16llx" |
338 | "\n q30 = 0x%16.16llx%16.16llx" |
339 | "\n q31 = 0x%16.16llx%16.16llx" |
340 | "\n fpsr = 0x%8.8x" |
341 | "\n fpcr = 0x%8.8x\n\n" , |
342 | m_thread->MachPortNumber(), e_regSetVFP, e_regSetVFPCount, kret, count, |
343 | ((uint64_t *)&m_state.context.vfp.__v[0])[0], |
344 | ((uint64_t *)&m_state.context.vfp.__v[0])[1], |
345 | ((uint64_t *)&m_state.context.vfp.__v[1])[0], |
346 | ((uint64_t *)&m_state.context.vfp.__v[1])[1], |
347 | ((uint64_t *)&m_state.context.vfp.__v[2])[0], |
348 | ((uint64_t *)&m_state.context.vfp.__v[2])[1], |
349 | ((uint64_t *)&m_state.context.vfp.__v[3])[0], |
350 | ((uint64_t *)&m_state.context.vfp.__v[3])[1], |
351 | ((uint64_t *)&m_state.context.vfp.__v[4])[0], |
352 | ((uint64_t *)&m_state.context.vfp.__v[4])[1], |
353 | ((uint64_t *)&m_state.context.vfp.__v[5])[0], |
354 | ((uint64_t *)&m_state.context.vfp.__v[5])[1], |
355 | ((uint64_t *)&m_state.context.vfp.__v[6])[0], |
356 | ((uint64_t *)&m_state.context.vfp.__v[6])[1], |
357 | ((uint64_t *)&m_state.context.vfp.__v[7])[0], |
358 | ((uint64_t *)&m_state.context.vfp.__v[7])[1], |
359 | ((uint64_t *)&m_state.context.vfp.__v[8])[0], |
360 | ((uint64_t *)&m_state.context.vfp.__v[8])[1], |
361 | ((uint64_t *)&m_state.context.vfp.__v[9])[0], |
362 | ((uint64_t *)&m_state.context.vfp.__v[9])[1], |
363 | ((uint64_t *)&m_state.context.vfp.__v[10])[0], |
364 | ((uint64_t *)&m_state.context.vfp.__v[10])[1], |
365 | ((uint64_t *)&m_state.context.vfp.__v[11])[0], |
366 | ((uint64_t *)&m_state.context.vfp.__v[11])[1], |
367 | ((uint64_t *)&m_state.context.vfp.__v[12])[0], |
368 | ((uint64_t *)&m_state.context.vfp.__v[12])[1], |
369 | ((uint64_t *)&m_state.context.vfp.__v[13])[0], |
370 | ((uint64_t *)&m_state.context.vfp.__v[13])[1], |
371 | ((uint64_t *)&m_state.context.vfp.__v[14])[0], |
372 | ((uint64_t *)&m_state.context.vfp.__v[14])[1], |
373 | ((uint64_t *)&m_state.context.vfp.__v[15])[0], |
374 | ((uint64_t *)&m_state.context.vfp.__v[15])[1], |
375 | ((uint64_t *)&m_state.context.vfp.__v[16])[0], |
376 | ((uint64_t *)&m_state.context.vfp.__v[16])[1], |
377 | ((uint64_t *)&m_state.context.vfp.__v[17])[0], |
378 | ((uint64_t *)&m_state.context.vfp.__v[17])[1], |
379 | ((uint64_t *)&m_state.context.vfp.__v[18])[0], |
380 | ((uint64_t *)&m_state.context.vfp.__v[18])[1], |
381 | ((uint64_t *)&m_state.context.vfp.__v[19])[0], |
382 | ((uint64_t *)&m_state.context.vfp.__v[19])[1], |
383 | ((uint64_t *)&m_state.context.vfp.__v[20])[0], |
384 | ((uint64_t *)&m_state.context.vfp.__v[20])[1], |
385 | ((uint64_t *)&m_state.context.vfp.__v[21])[0], |
386 | ((uint64_t *)&m_state.context.vfp.__v[21])[1], |
387 | ((uint64_t *)&m_state.context.vfp.__v[22])[0], |
388 | ((uint64_t *)&m_state.context.vfp.__v[22])[1], |
389 | ((uint64_t *)&m_state.context.vfp.__v[23])[0], |
390 | ((uint64_t *)&m_state.context.vfp.__v[23])[1], |
391 | ((uint64_t *)&m_state.context.vfp.__v[24])[0], |
392 | ((uint64_t *)&m_state.context.vfp.__v[24])[1], |
393 | ((uint64_t *)&m_state.context.vfp.__v[25])[0], |
394 | ((uint64_t *)&m_state.context.vfp.__v[25])[1], |
395 | ((uint64_t *)&m_state.context.vfp.__v[26])[0], |
396 | ((uint64_t *)&m_state.context.vfp.__v[26])[1], |
397 | ((uint64_t *)&m_state.context.vfp.__v[27])[0], |
398 | ((uint64_t *)&m_state.context.vfp.__v[27])[1], |
399 | ((uint64_t *)&m_state.context.vfp.__v[28])[0], |
400 | ((uint64_t *)&m_state.context.vfp.__v[28])[1], |
401 | ((uint64_t *)&m_state.context.vfp.__v[29])[0], |
402 | ((uint64_t *)&m_state.context.vfp.__v[29])[1], |
403 | ((uint64_t *)&m_state.context.vfp.__v[30])[0], |
404 | ((uint64_t *)&m_state.context.vfp.__v[30])[1], |
405 | ((uint64_t *)&m_state.context.vfp.__v[31])[0], |
406 | ((uint64_t *)&m_state.context.vfp.__v[31])[1], |
407 | m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr); |
408 | #endif |
409 | } |
410 | m_state.SetError(set, Read, kret); |
411 | return kret; |
412 | } |
413 | |
414 | kern_return_t DNBArchMachARM64::GetEXCState(bool force) { |
415 | int set = e_regSetEXC; |
416 | // Check if we have valid cached registers |
417 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
418 | return KERN_SUCCESS; |
419 | |
420 | // Read the registers from our thread |
421 | mach_msg_type_number_t count = e_regSetEXCCount; |
422 | kern_return_t kret = |
423 | ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64, |
424 | (thread_state_t)&m_state.context.exc, &count); |
425 | m_state.SetError(set, Read, kret); |
426 | return kret; |
427 | } |
428 | |
429 | #if 0 |
430 | static void DumpDBGState(const arm_debug_state_t &dbg) { |
431 | uint32_t i = 0; |
432 | for (i = 0; i < 16; i++) |
433 | DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } " |
434 | "WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }" , |
435 | i, i, dbg.__bvr[i], dbg.__bcr[i], i, i, dbg.__wvr[i], |
436 | dbg.__wcr[i]); |
437 | } |
438 | #endif |
439 | |
440 | kern_return_t DNBArchMachARM64::GetDBGState(bool force) { |
441 | int set = e_regSetDBG; |
442 | |
443 | // Check if we have valid cached registers |
444 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
445 | return KERN_SUCCESS; |
446 | |
447 | // Read the registers from our thread |
448 | mach_msg_type_number_t count = e_regSetDBGCount; |
449 | kern_return_t kret = |
450 | ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64, |
451 | (thread_state_t)&m_state.dbg, &count); |
452 | m_state.SetError(set, Read, kret); |
453 | |
454 | return kret; |
455 | } |
456 | |
457 | kern_return_t DNBArchMachARM64::GetSVEState(bool force) { |
458 | int set = e_regSetSVE; |
459 | // Check if we have valid cached registers |
460 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
461 | return KERN_SUCCESS; |
462 | |
463 | if (!CPUHasSME()) |
464 | return KERN_INVALID_ARGUMENT; |
465 | |
466 | // If the processor is not in Streaming SVE Mode, these thread_get_states |
467 | // will fail, and we may return uninitialized data in the register context. |
468 | memset(&m_state.context.sve.z[0], 0, |
469 | ARM_SVE_Z_STATE_COUNT * sizeof(uint32_t)); |
470 | memset(&m_state.context.sve.z[16], 0, |
471 | ARM_SVE_Z_STATE_COUNT * sizeof(uint32_t)); |
472 | memset(&m_state.context.sve.p[0], 0, |
473 | ARM_SVE_P_STATE_COUNT * sizeof(uint32_t)); |
474 | |
475 | // Read the registers from our thread |
476 | mach_msg_type_number_t count = ARM_SVE_Z_STATE_COUNT; |
477 | kern_return_t kret = |
478 | ::thread_get_state(m_thread->MachPortNumber(), ARM_SVE_Z_STATE1, |
479 | (thread_state_t)&m_state.context.sve.z[0], &count); |
480 | m_state.SetError(set, Read, kret); |
481 | DNBLogThreadedIf(LOG_THREAD, "Read SVE registers z0..z15 return value %d" , |
482 | kret); |
483 | if (kret != KERN_SUCCESS) |
484 | return kret; |
485 | |
486 | count = ARM_SVE_Z_STATE_COUNT; |
487 | kret = thread_get_state(m_thread->MachPortNumber(), ARM_SVE_Z_STATE2, |
488 | (thread_state_t)&m_state.context.sve.z[16], &count); |
489 | m_state.SetError(set, Read, kret); |
490 | DNBLogThreadedIf(LOG_THREAD, "Read SVE registers z16..z31 return value %d" , |
491 | kret); |
492 | if (kret != KERN_SUCCESS) |
493 | return kret; |
494 | |
495 | count = ARM_SVE_P_STATE_COUNT; |
496 | kret = thread_get_state(m_thread->MachPortNumber(), ARM_SVE_P_STATE, |
497 | (thread_state_t)&m_state.context.sve.p[0], &count); |
498 | m_state.SetError(set, Read, kret); |
499 | DNBLogThreadedIf(LOG_THREAD, "Read SVE registers p0..p15 return value %d" , |
500 | kret); |
501 | |
502 | return kret; |
503 | } |
504 | |
505 | kern_return_t DNBArchMachARM64::GetSMEState(bool force) { |
506 | int set = e_regSetSME; |
507 | // Check if we have valid cached registers |
508 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
509 | return KERN_SUCCESS; |
510 | |
511 | if (!CPUHasSME()) |
512 | return KERN_INVALID_ARGUMENT; |
513 | |
514 | // If the processor is not in Streaming SVE Mode, these thread_get_states |
515 | // will fail, and we may return uninitialized data in the register context. |
516 | memset(&m_state.context.sme.svcr, 0, ARM_SME_STATE_COUNT * sizeof(uint32_t)); |
517 | memset(m_state.context.sme.za.data(), 0, m_state.context.sme.za.size()); |
518 | if (CPUHasSME2()) |
519 | memset(&m_state.context.sme.zt0, 0, |
520 | ARM_SME2_STATE_COUNT * sizeof(uint32_t)); |
521 | |
522 | // Read the registers from our thread |
523 | mach_msg_type_number_t count = ARM_SME_STATE_COUNT; |
524 | kern_return_t kret = |
525 | ::thread_get_state(m_thread->MachPortNumber(), ARM_SME_STATE, |
526 | (thread_state_t)&m_state.context.sme.svcr, &count); |
527 | m_state.SetError(set, Read, kret); |
528 | DNBLogThreadedIf(LOG_THREAD, "Read ARM_SME_STATE return value %d" , kret); |
529 | if (kret != KERN_SUCCESS) |
530 | return kret; |
531 | |
532 | size_t za_size = m_state.context.sme.svl_b * m_state.context.sme.svl_b; |
533 | const size_t max_chunk_size = 4096; |
534 | int n_chunks; |
535 | size_t chunk_size; |
536 | if (za_size <= max_chunk_size) { |
537 | n_chunks = 1; |
538 | chunk_size = za_size; |
539 | } else { |
540 | n_chunks = za_size / max_chunk_size; |
541 | chunk_size = max_chunk_size; |
542 | } |
543 | for (int i = 0; i < n_chunks; i++) { |
544 | count = ARM_SME_ZA_STATE_COUNT; |
545 | arm_sme_za_state_t za_state; |
546 | kret = thread_get_state(m_thread->MachPortNumber(), ARM_SME_ZA_STATE1 + i, |
547 | (thread_state_t)&za_state, &count); |
548 | m_state.SetError(set, Read, kret); |
549 | DNBLogThreadedIf(LOG_THREAD, "Read ARM_SME_STATE return value %d" , kret); |
550 | if (kret != KERN_SUCCESS) |
551 | return kret; |
552 | memcpy(m_state.context.sme.za.data() + (i * chunk_size), &za_state, |
553 | chunk_size); |
554 | } |
555 | |
556 | if (CPUHasSME2()) { |
557 | count = ARM_SME2_STATE_COUNT; |
558 | kret = thread_get_state(m_thread->MachPortNumber(), ARM_SME2_STATE, |
559 | (thread_state_t)&m_state.context.sme.zt0, &count); |
560 | m_state.SetError(set, Read, kret); |
561 | DNBLogThreadedIf(LOG_THREAD, "Read ARM_SME2_STATE return value %d" , kret); |
562 | if (kret != KERN_SUCCESS) |
563 | return kret; |
564 | } |
565 | |
566 | return kret; |
567 | } |
568 | |
569 | kern_return_t DNBArchMachARM64::SetGPRState() { |
570 | int set = e_regSetGPR; |
571 | kern_return_t kret = ::thread_set_state( |
572 | m_thread->MachPortNumber(), ARM_THREAD_STATE64, |
573 | (thread_state_t)&m_state.context.gpr, e_regSetGPRCount); |
574 | m_state.SetError(set, Write, |
575 | kret); // Set the current write error for this register set |
576 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
577 | // state in case registers are read |
578 | // back differently |
579 | return kret; // Return the error code |
580 | } |
581 | |
582 | kern_return_t DNBArchMachARM64::SetVFPState() { |
583 | int set = e_regSetVFP; |
584 | kern_return_t kret = ::thread_set_state( |
585 | m_thread->MachPortNumber(), ARM_NEON_STATE64, |
586 | (thread_state_t)&m_state.context.vfp, e_regSetVFPCount); |
587 | m_state.SetError(set, Write, |
588 | kret); // Set the current write error for this register set |
589 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
590 | // state in case registers are read |
591 | // back differently |
592 | return kret; // Return the error code |
593 | } |
594 | |
595 | kern_return_t DNBArchMachARM64::SetSVEState() { |
596 | if (!CPUHasSME()) |
597 | return KERN_INVALID_ARGUMENT; |
598 | |
599 | int set = e_regSetSVE; |
600 | kern_return_t kret = thread_set_state( |
601 | m_thread->MachPortNumber(), ARM_SVE_Z_STATE1, |
602 | (thread_state_t)&m_state.context.sve.z[0], ARM_SVE_Z_STATE_COUNT); |
603 | m_state.SetError(set, Write, kret); |
604 | DNBLogThreadedIf(LOG_THREAD, "Write ARM_SVE_Z_STATE1 return value %d" , kret); |
605 | if (kret != KERN_SUCCESS) |
606 | return kret; |
607 | |
608 | kret = thread_set_state(m_thread->MachPortNumber(), ARM_SVE_Z_STATE2, |
609 | (thread_state_t)&m_state.context.sve.z[16], |
610 | ARM_SVE_Z_STATE_COUNT); |
611 | m_state.SetError(set, Write, kret); |
612 | DNBLogThreadedIf(LOG_THREAD, "Write ARM_SVE_Z_STATE2 return value %d" , kret); |
613 | if (kret != KERN_SUCCESS) |
614 | return kret; |
615 | |
616 | kret = thread_set_state(m_thread->MachPortNumber(), ARM_SVE_P_STATE, |
617 | (thread_state_t)&m_state.context.sve.p[0], |
618 | ARM_SVE_P_STATE_COUNT); |
619 | m_state.SetError(set, Write, kret); |
620 | DNBLogThreadedIf(LOG_THREAD, "Write ARM_SVE_P_STATE return value %d" , kret); |
621 | if (kret != KERN_SUCCESS) |
622 | return kret; |
623 | |
624 | return kret; |
625 | } |
626 | |
627 | kern_return_t DNBArchMachARM64::SetSMEState() { |
628 | if (!CPUHasSME()) |
629 | return KERN_INVALID_ARGUMENT; |
630 | kern_return_t kret; |
631 | |
632 | int set = e_regSetSME; |
633 | size_t za_size = m_state.context.sme.svl_b * m_state.context.sme.svl_b; |
634 | const size_t max_chunk_size = 4096; |
635 | int n_chunks; |
636 | size_t chunk_size; |
637 | if (za_size <= max_chunk_size) { |
638 | n_chunks = 1; |
639 | chunk_size = za_size; |
640 | } else { |
641 | n_chunks = za_size / max_chunk_size; |
642 | chunk_size = max_chunk_size; |
643 | } |
644 | for (int i = 0; i < n_chunks; i++) { |
645 | arm_sme_za_state_t za_state; |
646 | memcpy(&za_state, m_state.context.sme.za.data() + (i * chunk_size), |
647 | chunk_size); |
648 | kret = thread_set_state(m_thread->MachPortNumber(), ARM_SME_ZA_STATE1 + i, |
649 | (thread_state_t)&za_state, ARM_SME_ZA_STATE_COUNT); |
650 | m_state.SetError(set, Write, kret); |
651 | DNBLogThreadedIf(LOG_THREAD, "Write ARM_SME_STATE return value %d" , kret); |
652 | if (kret != KERN_SUCCESS) |
653 | return kret; |
654 | } |
655 | |
656 | if (CPUHasSME2()) { |
657 | kret = thread_set_state(m_thread->MachPortNumber(), ARM_SME2_STATE, |
658 | (thread_state_t)&m_state.context.sme.zt0, |
659 | ARM_SME2_STATE); |
660 | m_state.SetError(set, Write, kret); |
661 | DNBLogThreadedIf(LOG_THREAD, "Write ARM_SME2_STATE return value %d" , kret); |
662 | if (kret != KERN_SUCCESS) |
663 | return kret; |
664 | } |
665 | |
666 | return kret; |
667 | } |
668 | |
669 | kern_return_t DNBArchMachARM64::SetEXCState() { |
670 | int set = e_regSetEXC; |
671 | kern_return_t kret = ::thread_set_state( |
672 | m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64, |
673 | (thread_state_t)&m_state.context.exc, e_regSetEXCCount); |
674 | m_state.SetError(set, Write, |
675 | kret); // Set the current write error for this register set |
676 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
677 | // state in case registers are read |
678 | // back differently |
679 | return kret; // Return the error code |
680 | } |
681 | |
682 | kern_return_t DNBArchMachARM64::SetDBGState(bool also_set_on_task) { |
683 | int set = e_regSetDBG; |
684 | kern_return_t kret = |
685 | ::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64, |
686 | (thread_state_t)&m_state.dbg, e_regSetDBGCount); |
687 | if (also_set_on_task) { |
688 | kern_return_t task_kret = task_set_state( |
689 | m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE64, |
690 | (thread_state_t)&m_state.dbg, e_regSetDBGCount); |
691 | if (task_kret != KERN_SUCCESS) |
692 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::SetDBGState failed " |
693 | "to set debug control register state: " |
694 | "0x%8.8x." , |
695 | task_kret); |
696 | } |
697 | m_state.SetError(set, Write, |
698 | kret); // Set the current write error for this register set |
699 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
700 | // state in case registers are read |
701 | // back differently |
702 | |
703 | return kret; // Return the error code |
704 | } |
705 | |
706 | void DNBArchMachARM64::ThreadWillResume() { |
707 | // Do we need to step this thread? If so, let the mach thread tell us so. |
708 | if (m_thread->IsStepping()) { |
709 | EnableHardwareSingleStep(true); |
710 | } |
711 | |
712 | // Disable the triggered watchpoint temporarily before we resume. |
713 | // Plus, we try to enable hardware single step to execute past the instruction |
714 | // which triggered our watchpoint. |
715 | if (m_watchpoint_did_occur) { |
716 | if (m_watchpoint_hw_index >= 0) { |
717 | kern_return_t kret = GetDBGState(false); |
718 | if (kret == KERN_SUCCESS && |
719 | !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) { |
720 | // The watchpoint might have been disabled by the user. We don't need |
721 | // to do anything at all |
722 | // to enable hardware single stepping. |
723 | m_watchpoint_did_occur = false; |
724 | m_watchpoint_hw_index = -1; |
725 | return; |
726 | } |
727 | |
728 | DisableHardwareWatchpoint(m_watchpoint_hw_index, false); |
729 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
730 | "DNBArchMachARM64::ThreadWillResume() " |
731 | "DisableHardwareWatchpoint(%d) called" , |
732 | m_watchpoint_hw_index); |
733 | |
734 | // Enable hardware single step to move past the watchpoint-triggering |
735 | // instruction. |
736 | m_watchpoint_resume_single_step_enabled = |
737 | (EnableHardwareSingleStep(true) == KERN_SUCCESS); |
738 | |
739 | // If we are not able to enable single step to move past the |
740 | // watchpoint-triggering instruction, |
741 | // at least we should reset the two watchpoint member variables so that |
742 | // the next time around |
743 | // this callback function is invoked, the enclosing logical branch is |
744 | // skipped. |
745 | if (!m_watchpoint_resume_single_step_enabled) { |
746 | // Reset the two watchpoint member variables. |
747 | m_watchpoint_did_occur = false; |
748 | m_watchpoint_hw_index = -1; |
749 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::ThreadWillResume()" |
750 | " failed to enable single step" ); |
751 | } else |
752 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
753 | "DNBArchMachARM64::ThreadWillResume() " |
754 | "succeeded to enable single step" ); |
755 | } |
756 | } |
757 | } |
758 | |
759 | bool DNBArchMachARM64::NotifyException(MachException::Data &exc) { |
760 | |
761 | switch (exc.exc_type) { |
762 | default: |
763 | break; |
764 | case EXC_BREAKPOINT: |
765 | if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG) { |
766 | // The data break address is passed as exc_data[1]. |
767 | nub_addr_t addr = exc.exc_data[1]; |
768 | // Find the hardware index with the side effect of possibly massaging the |
769 | // addr to return the starting address as seen from the debugger side. |
770 | uint32_t hw_index = GetHardwareWatchpointHit(addr); |
771 | |
772 | // One logical watchpoint was split into two watchpoint locations because |
773 | // it was too big. If the watchpoint exception is indicating the 2nd half |
774 | // of the two-parter, find the address of the 1st half and report that -- |
775 | // that's what lldb is going to expect to see. |
776 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
777 | "DNBArchMachARM64::NotifyException " |
778 | "watchpoint %d was hit on address " |
779 | "0x%llx" , |
780 | hw_index, (uint64_t)addr); |
781 | const uint32_t num_watchpoints = NumSupportedHardwareWatchpoints(); |
782 | for (uint32_t i = 0; i < num_watchpoints; i++) { |
783 | if (LoHi[i] != 0 && LoHi[i] == hw_index && LoHi[i] != i && |
784 | GetWatchpointAddressByIndex(i) != INVALID_NUB_ADDRESS) { |
785 | addr = GetWatchpointAddressByIndex(i); |
786 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
787 | "DNBArchMachARM64::NotifyException " |
788 | "It is a linked watchpoint; " |
789 | "rewritten to index %d addr 0x%llx" , |
790 | LoHi[i], (uint64_t)addr); |
791 | } |
792 | } |
793 | |
794 | if (hw_index != INVALID_NUB_HW_INDEX) { |
795 | m_watchpoint_did_occur = true; |
796 | m_watchpoint_hw_index = hw_index; |
797 | exc.exc_data[1] = addr; |
798 | // Piggyback the hw_index in the exc.data. |
799 | exc.exc_data.push_back(hw_index); |
800 | } |
801 | |
802 | return true; |
803 | } |
804 | // detect a __builtin_debugtrap instruction pattern ("brk #0xf000") |
805 | // and advance the $pc past it, so that the user can continue execution. |
806 | // Generally speaking, this knowledge should be centralized in lldb, |
807 | // recognizing the builtin_trap instruction and knowing how to advance |
808 | // the pc past it, so that continue etc work. |
809 | if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_BREAKPOINT) { |
810 | nub_addr_t pc = GetPC(INVALID_NUB_ADDRESS); |
811 | if (pc != INVALID_NUB_ADDRESS && pc > 0) { |
812 | DNBBreakpoint *bp = |
813 | m_thread->Process()->Breakpoints().FindByAddress(pc); |
814 | if (bp == nullptr) { |
815 | uint8_t insnbuf[4]; |
816 | if (m_thread->Process()->ReadMemory(pc, 4, insnbuf) == 4) { |
817 | uint8_t builtin_debugtrap_insn[4] = {0x00, 0x00, 0x3e, |
818 | 0xd4}; // brk #0xf000 |
819 | if (memcmp(insnbuf, builtin_debugtrap_insn, 4) == 0) { |
820 | SetPC(pc + 4); |
821 | } |
822 | } |
823 | } |
824 | } |
825 | } |
826 | break; |
827 | } |
828 | return false; |
829 | } |
830 | |
831 | bool DNBArchMachARM64::ThreadDidStop() { |
832 | bool success = true; |
833 | |
834 | m_state.InvalidateAllRegisterStates(); |
835 | |
836 | if (m_watchpoint_resume_single_step_enabled) { |
837 | // Great! We now disable the hardware single step as well as re-enable the |
838 | // hardware watchpoint. |
839 | // See also ThreadWillResume(). |
840 | if (EnableHardwareSingleStep(false) == KERN_SUCCESS) { |
841 | if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) { |
842 | ReenableHardwareWatchpoint(m_watchpoint_hw_index); |
843 | m_watchpoint_resume_single_step_enabled = false; |
844 | m_watchpoint_did_occur = false; |
845 | m_watchpoint_hw_index = -1; |
846 | } else { |
847 | DNBLogError("internal error detected: m_watchpoint_resume_step_enabled " |
848 | "is true but (m_watchpoint_did_occur && " |
849 | "m_watchpoint_hw_index >= 0) does not hold!" ); |
850 | } |
851 | } else { |
852 | DNBLogError("internal error detected: m_watchpoint_resume_step_enabled " |
853 | "is true but unable to disable single step!" ); |
854 | } |
855 | } |
856 | |
857 | // Are we stepping a single instruction? |
858 | if (GetGPRState(true) == KERN_SUCCESS) { |
859 | // We are single stepping, was this the primary thread? |
860 | if (m_thread->IsStepping()) { |
861 | // This was the primary thread, we need to clear the trace |
862 | // bit if so. |
863 | success = EnableHardwareSingleStep(false) == KERN_SUCCESS; |
864 | } else { |
865 | // The MachThread will automatically restore the suspend count |
866 | // in ThreadDidStop(), so we don't need to do anything here if |
867 | // we weren't the primary thread the last time |
868 | } |
869 | } |
870 | return success; |
871 | } |
872 | |
873 | // Set the single step bit in the processor status register. |
874 | kern_return_t DNBArchMachARM64::EnableHardwareSingleStep(bool enable) { |
875 | DNBError err; |
876 | DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )" , __FUNCTION__, enable); |
877 | |
878 | err = GetGPRState(false); |
879 | |
880 | if (err.Fail()) { |
881 | err.LogThreaded("%s: failed to read the GPR registers" , __FUNCTION__); |
882 | return err.Status(); |
883 | } |
884 | |
885 | err = GetDBGState(false); |
886 | |
887 | if (err.Fail()) { |
888 | err.LogThreaded("%s: failed to read the DBG registers" , __FUNCTION__); |
889 | return err.Status(); |
890 | } |
891 | |
892 | #if defined(DEBUGSERVER_IS_ARM64E) |
893 | uint64_t pc = clear_pac_bits( |
894 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
895 | #else |
896 | uint64_t pc = m_state.context.gpr.__pc; |
897 | #endif |
898 | |
899 | if (enable) { |
900 | DNBLogThreadedIf(LOG_STEP, |
901 | "%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx" , |
902 | __FUNCTION__, pc); |
903 | m_state.dbg.__mdscr_el1 |= SS_ENABLE; |
904 | } else { |
905 | DNBLogThreadedIf(LOG_STEP, |
906 | "%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx" , |
907 | __FUNCTION__, pc); |
908 | m_state.dbg.__mdscr_el1 &= ~(SS_ENABLE); |
909 | } |
910 | |
911 | return SetDBGState(false); |
912 | } |
913 | |
914 | // return 1 if bit "BIT" is set in "value" |
915 | static inline uint32_t bit(uint32_t value, uint32_t bit) { |
916 | return (value >> bit) & 1u; |
917 | } |
918 | |
919 | // return the bitfield "value[msbit:lsbit]". |
920 | static inline uint64_t bits(uint64_t value, uint32_t msbit, uint32_t lsbit) { |
921 | assert(msbit >= lsbit); |
922 | uint64_t shift_left = sizeof(value) * 8 - 1 - msbit; |
923 | value <<= |
924 | shift_left; // shift anything above the msbit off of the unsigned edge |
925 | value >>= shift_left + lsbit; // shift it back again down to the lsbit |
926 | // (including undoing any shift from above) |
927 | return value; // return our result |
928 | } |
929 | |
930 | uint32_t DNBArchMachARM64::NumSupportedHardwareWatchpoints() { |
931 | // Set the init value to something that will let us know that we need to |
932 | // autodetect how many watchpoints are supported dynamically... |
933 | static uint32_t g_num_supported_hw_watchpoints = UINT_MAX; |
934 | if (g_num_supported_hw_watchpoints == UINT_MAX) { |
935 | // Set this to zero in case we can't tell if there are any HW breakpoints |
936 | g_num_supported_hw_watchpoints = 0; |
937 | |
938 | size_t len; |
939 | uint32_t n = 0; |
940 | len = sizeof(n); |
941 | if (::sysctlbyname("hw.optional.watchpoint" , &n, &len, NULL, 0) == 0) { |
942 | g_num_supported_hw_watchpoints = n; |
943 | DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u" , n); |
944 | } else { |
945 | // For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in |
946 | // EL0 so it can't |
947 | // access that reg. The kernel should have filled in the sysctls based on it |
948 | // though. |
949 | #if defined(__arm__) |
950 | uint32_t register_DBGDIDR; |
951 | |
952 | asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR)); |
953 | uint32_t numWRPs = bits(register_DBGDIDR, 31, 28); |
954 | // Zero is reserved for the WRP count, so don't increment it if it is zero |
955 | if (numWRPs > 0) |
956 | numWRPs++; |
957 | g_num_supported_hw_watchpoints = numWRPs; |
958 | DNBLogThreadedIf(LOG_THREAD, |
959 | "Number of supported hw watchpoints via asm(): %d" , |
960 | g_num_supported_hw_watchpoints); |
961 | #endif |
962 | } |
963 | } |
964 | return g_num_supported_hw_watchpoints; |
965 | } |
966 | |
967 | uint32_t DNBArchMachARM64::NumSupportedHardwareBreakpoints() { |
968 | // Set the init value to something that will let us know that we need to |
969 | // autodetect how many breakpoints are supported dynamically... |
970 | static uint32_t g_num_supported_hw_breakpoints = UINT_MAX; |
971 | if (g_num_supported_hw_breakpoints == UINT_MAX) { |
972 | // Set this to zero in case we can't tell if there are any HW breakpoints |
973 | g_num_supported_hw_breakpoints = 0; |
974 | |
975 | size_t len; |
976 | uint32_t n = 0; |
977 | len = sizeof(n); |
978 | if (::sysctlbyname("hw.optional.breakpoint" , &n, &len, NULL, 0) == 0) { |
979 | g_num_supported_hw_breakpoints = n; |
980 | DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u" , n); |
981 | } else { |
982 | // For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in |
983 | // EL0 so it can't access that reg. The kernel should have filled in the |
984 | // sysctls based on it though. |
985 | #if defined(__arm__) |
986 | uint32_t register_DBGDIDR; |
987 | |
988 | asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR)); |
989 | uint32_t numWRPs = bits(register_DBGDIDR, 31, 28); |
990 | // Zero is reserved for the WRP count, so don't increment it if it is zero |
991 | if (numWRPs > 0) |
992 | numWRPs++; |
993 | g_num_supported_hw_breakpoints = numWRPs; |
994 | DNBLogThreadedIf(LOG_THREAD, |
995 | "Number of supported hw breakpoint via asm(): %d" , |
996 | g_num_supported_hw_breakpoints); |
997 | #endif |
998 | } |
999 | } |
1000 | return g_num_supported_hw_breakpoints; |
1001 | } |
1002 | |
1003 | uint32_t DNBArchMachARM64::EnableHardwareBreakpoint(nub_addr_t addr, |
1004 | nub_size_t size, |
1005 | bool also_set_on_task) { |
1006 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1007 | "DNBArchMachARM64::EnableHardwareBreakpoint(addr = " |
1008 | "0x%8.8llx, size = %zu)" , |
1009 | (uint64_t)addr, size); |
1010 | |
1011 | const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints(); |
1012 | |
1013 | nub_addr_t aligned_bp_address = addr; |
1014 | uint32_t control_value = 0; |
1015 | |
1016 | switch (size) { |
1017 | case 2: |
1018 | control_value = (0x3 << 5) | 7; |
1019 | aligned_bp_address &= ~1; |
1020 | break; |
1021 | case 4: |
1022 | control_value = (0xfu << 5) | 7; |
1023 | aligned_bp_address &= ~3; |
1024 | break; |
1025 | }; |
1026 | |
1027 | // Read the debug state |
1028 | kern_return_t kret = GetDBGState(false); |
1029 | if (kret == KERN_SUCCESS) { |
1030 | // Check to make sure we have the needed hardware support |
1031 | uint32_t i = 0; |
1032 | |
1033 | for (i = 0; i < num_hw_breakpoints; ++i) { |
1034 | if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0) |
1035 | break; // We found an available hw breakpoint slot (in i) |
1036 | } |
1037 | |
1038 | // See if we found an available hw breakpoint slot above |
1039 | if (i < num_hw_breakpoints) { |
1040 | m_state.dbg.__bvr[i] = aligned_bp_address; |
1041 | m_state.dbg.__bcr[i] = control_value; |
1042 | |
1043 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1044 | "DNBArchMachARM64::EnableHardwareBreakpoint() " |
1045 | "adding breakpoint on address 0x%llx with control " |
1046 | "register value 0x%x" , |
1047 | (uint64_t)m_state.dbg.__bvr[i], |
1048 | (uint32_t)m_state.dbg.__bcr[i]); |
1049 | |
1050 | kret = SetDBGState(also_set_on_task); |
1051 | |
1052 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1053 | "DNBArchMachARM64::" |
1054 | "EnableHardwareBreakpoint() " |
1055 | "SetDBGState() => 0x%8.8x." , |
1056 | kret); |
1057 | |
1058 | if (kret == KERN_SUCCESS) |
1059 | return i; |
1060 | } else { |
1061 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1062 | "DNBArchMachARM64::" |
1063 | "EnableHardwareBreakpoint(): All " |
1064 | "hardware resources (%u) are in use." , |
1065 | num_hw_breakpoints); |
1066 | } |
1067 | } |
1068 | return INVALID_NUB_HW_INDEX; |
1069 | } |
1070 | |
1071 | // This should be `std::bit_ceil(aligned_size)` but |
1072 | // that requires C++20. |
1073 | // Calculates the smallest integral power of two that is not smaller than x. |
1074 | static uint64_t bit_ceil(uint64_t input) { |
1075 | if (input <= 1 || __builtin_popcount(input) == 1) |
1076 | return input; |
1077 | |
1078 | return 1ULL << (64 - __builtin_clzll(input)); |
1079 | } |
1080 | |
1081 | std::vector<DNBArchMachARM64::WatchpointSpec> |
1082 | DNBArchMachARM64::AlignRequestedWatchpoint(nub_addr_t requested_addr, |
1083 | nub_size_t requested_size) { |
1084 | |
1085 | // Can't watch zero bytes |
1086 | if (requested_size == 0) |
1087 | return {}; |
1088 | |
1089 | // Smallest size we can watch on AArch64 is 8 bytes |
1090 | constexpr nub_size_t min_watchpoint_alignment = 8; |
1091 | nub_size_t aligned_size = std::max(requested_size, min_watchpoint_alignment); |
1092 | |
1093 | /// Round up \a requested_size to the next power-of-2 size, at least 8 |
1094 | /// bytes |
1095 | /// requested_size == 8 -> aligned_size == 8 |
1096 | /// requested_size == 9 -> aligned_size == 16 |
1097 | aligned_size = aligned_size = bit_ceil(aligned_size); |
1098 | |
1099 | nub_addr_t aligned_start = requested_addr & ~(aligned_size - 1); |
1100 | // Does this power-of-2 memory range, aligned to power-of-2, completely |
1101 | // encompass the requested watch region. |
1102 | if (aligned_start + aligned_size >= requested_addr + requested_size) { |
1103 | WatchpointSpec wp; |
1104 | wp.aligned_start = aligned_start; |
1105 | wp.requested_start = requested_addr; |
1106 | wp.aligned_size = aligned_size; |
1107 | wp.requested_size = requested_size; |
1108 | return {{wp}}; |
1109 | } |
1110 | |
1111 | // We need to split this into two watchpoints, split on the aligned_size |
1112 | // boundary and re-evaluate the alignment of each half. |
1113 | // |
1114 | // requested_addr 48 requested_size 20 -> aligned_size 32 |
1115 | // aligned_start 32 |
1116 | // split_addr 64 |
1117 | // first_requested_addr 48 |
1118 | // first_requested_size 16 |
1119 | // second_requested_addr 64 |
1120 | // second_requested_size 4 |
1121 | nub_addr_t split_addr = aligned_start + aligned_size; |
1122 | |
1123 | nub_addr_t first_requested_addr = requested_addr; |
1124 | nub_size_t first_requested_size = split_addr - requested_addr; |
1125 | nub_addr_t second_requested_addr = split_addr; |
1126 | nub_size_t second_requested_size = requested_size - first_requested_size; |
1127 | |
1128 | std::vector<WatchpointSpec> first_wp = |
1129 | AlignRequestedWatchpoint(first_requested_addr, first_requested_size); |
1130 | std::vector<WatchpointSpec> second_wp = |
1131 | AlignRequestedWatchpoint(second_requested_addr, second_requested_size); |
1132 | if (first_wp.size() != 1 || second_wp.size() != 1) |
1133 | return {}; |
1134 | |
1135 | return {{first_wp[0], second_wp[0]}}; |
1136 | } |
1137 | |
1138 | uint32_t DNBArchMachARM64::EnableHardwareWatchpoint(nub_addr_t addr, |
1139 | nub_size_t size, bool read, |
1140 | bool write, |
1141 | bool also_set_on_task) { |
1142 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1143 | "DNBArchMachARM64::EnableHardwareWatchpoint(addr = " |
1144 | "0x%8.8llx, size = %zu, read = %u, write = %u)" , |
1145 | (uint64_t)addr, size, read, write); |
1146 | |
1147 | std::vector<DNBArchMachARM64::WatchpointSpec> wps = |
1148 | AlignRequestedWatchpoint(addr, size); |
1149 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1150 | "DNBArchMachARM64::EnableHardwareWatchpoint() using %zu " |
1151 | "hardware watchpoints" , |
1152 | wps.size()); |
1153 | |
1154 | if (wps.size() == 0) |
1155 | return INVALID_NUB_HW_INDEX; |
1156 | |
1157 | // We must watch for either read or write |
1158 | if (read == false && write == false) |
1159 | return INVALID_NUB_HW_INDEX; |
1160 | |
1161 | // Only one hardware watchpoint needed |
1162 | // to implement the user's request. |
1163 | if (wps.size() == 1) { |
1164 | if (wps[0].aligned_size <= 8) |
1165 | return SetBASWatchpoint(wps[0], read, write, also_set_on_task); |
1166 | else |
1167 | return SetMASKWatchpoint(wps[0], read, write, also_set_on_task); |
1168 | } |
1169 | |
1170 | // We have multiple WatchpointSpecs |
1171 | |
1172 | std::vector<uint32_t> wp_slots_used; |
1173 | for (size_t i = 0; i < wps.size(); i++) { |
1174 | uint32_t idx = |
1175 | EnableHardwareWatchpoint(wps[i].requested_start, wps[i].requested_size, |
1176 | read, write, also_set_on_task); |
1177 | if (idx != INVALID_NUB_HW_INDEX) |
1178 | wp_slots_used.push_back(idx); |
1179 | } |
1180 | |
1181 | // Did we fail to set all of the WatchpointSpecs needed |
1182 | // for this user's request? |
1183 | if (wps.size() != wp_slots_used.size()) { |
1184 | for (int wp_slot : wp_slots_used) |
1185 | DisableHardwareWatchpoint(wp_slot, also_set_on_task); |
1186 | return INVALID_NUB_HW_INDEX; |
1187 | } |
1188 | |
1189 | LoHi[wp_slots_used[0]] = wp_slots_used[1]; |
1190 | return wp_slots_used[0]; |
1191 | } |
1192 | |
1193 | uint32_t DNBArchMachARM64::SetBASWatchpoint(DNBArchMachARM64::WatchpointSpec wp, |
1194 | bool read, bool write, |
1195 | bool also_set_on_task) { |
1196 | const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints(); |
1197 | |
1198 | nub_addr_t aligned_dword_addr = wp.aligned_start; |
1199 | nub_addr_t watching_offset = wp.requested_start - wp.aligned_start; |
1200 | nub_size_t watching_size = wp.requested_size; |
1201 | |
1202 | // If user asks to watch 3 bytes at 0x1005, |
1203 | // aligned_dword_addr 0x1000 |
1204 | // watching_offset 5 |
1205 | // watching_size 3 |
1206 | |
1207 | // Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the |
1208 | // above. |
1209 | // The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4, |
1210 | // etc, up to 0b11111111 for 8. |
1211 | // then we shift those bits left by the offset into this dword that we are |
1212 | // interested in. |
1213 | // e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of |
1214 | // 0b11110000. |
1215 | uint32_t byte_address_select = ((1 << watching_size) - 1) << watching_offset; |
1216 | |
1217 | // Read the debug state |
1218 | kern_return_t kret = GetDBGState(false); |
1219 | if (kret != KERN_SUCCESS) |
1220 | return INVALID_NUB_HW_INDEX; |
1221 | |
1222 | // Check to make sure we have the needed hardware support |
1223 | uint32_t i = 0; |
1224 | |
1225 | for (i = 0; i < num_hw_watchpoints; ++i) { |
1226 | if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0) |
1227 | break; // We found an available hw watchpoint slot |
1228 | } |
1229 | if (i == num_hw_watchpoints) { |
1230 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1231 | "DNBArchMachARM64::" |
1232 | "SetBASWatchpoint(): All " |
1233 | "hardware resources (%u) are in use." , |
1234 | num_hw_watchpoints); |
1235 | return INVALID_NUB_HW_INDEX; |
1236 | } |
1237 | |
1238 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1239 | "DNBArchMachARM64::" |
1240 | "SetBASWatchpoint() " |
1241 | "set hardware register %d to BAS watchpoint " |
1242 | "aligned start address 0x%llx, watch region start " |
1243 | "offset %lld, number of bytes %zu" , |
1244 | i, aligned_dword_addr, watching_offset, watching_size); |
1245 | |
1246 | // Clear any previous LoHi joined-watchpoint that may have been in use |
1247 | LoHi[i] = 0; |
1248 | |
1249 | // shift our Byte Address Select bits up to the correct bit range for the |
1250 | // DBGWCRn_EL1 |
1251 | byte_address_select = byte_address_select << 5; |
1252 | |
1253 | // Make sure bits 1:0 are clear in our address |
1254 | m_state.dbg.__wvr[i] = aligned_dword_addr; // DVA (Data Virtual Address) |
1255 | m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow |
1256 | // the DVA that we will watch |
1257 | S_USER | // Stop only in user mode |
1258 | (read ? WCR_LOAD : 0) | // Stop on read access? |
1259 | (write ? WCR_STORE : 0) | // Stop on write access? |
1260 | WCR_ENABLE; // Enable this watchpoint; |
1261 | |
1262 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1263 | "DNBArchMachARM64::SetBASWatchpoint() " |
1264 | "adding watchpoint on address 0x%llx with control " |
1265 | "register value 0x%x" , |
1266 | (uint64_t)m_state.dbg.__wvr[i], |
1267 | (uint32_t)m_state.dbg.__wcr[i]); |
1268 | |
1269 | kret = SetDBGState(also_set_on_task); |
1270 | // DumpDBGState(m_state.dbg); |
1271 | |
1272 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1273 | "DNBArchMachARM64::" |
1274 | "SetBASWatchpoint() " |
1275 | "SetDBGState() => 0x%8.8x." , |
1276 | kret); |
1277 | |
1278 | if (kret == KERN_SUCCESS) |
1279 | return i; |
1280 | |
1281 | return INVALID_NUB_HW_INDEX; |
1282 | } |
1283 | |
1284 | uint32_t |
1285 | DNBArchMachARM64::SetMASKWatchpoint(DNBArchMachARM64::WatchpointSpec wp, |
1286 | bool read, bool write, |
1287 | bool also_set_on_task) { |
1288 | const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints(); |
1289 | |
1290 | // Read the debug state |
1291 | kern_return_t kret = GetDBGState(false); |
1292 | if (kret != KERN_SUCCESS) |
1293 | return INVALID_NUB_HW_INDEX; |
1294 | |
1295 | // Check to make sure we have the needed hardware support |
1296 | uint32_t i = 0; |
1297 | |
1298 | for (i = 0; i < num_hw_watchpoints; ++i) { |
1299 | if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0) |
1300 | break; // We found an available hw watchpoint slot |
1301 | } |
1302 | if (i == num_hw_watchpoints) { |
1303 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1304 | "DNBArchMachARM64::" |
1305 | "SetMASKWatchpoint(): All " |
1306 | "hardware resources (%u) are in use." , |
1307 | num_hw_watchpoints); |
1308 | return INVALID_NUB_HW_INDEX; |
1309 | } |
1310 | |
1311 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1312 | "DNBArchMachARM64::" |
1313 | "SetMASKWatchpoint() " |
1314 | "set hardware register %d to MASK watchpoint " |
1315 | "aligned start address 0x%llx, aligned size %zu" , |
1316 | i, wp.aligned_start, wp.aligned_size); |
1317 | |
1318 | // Clear any previous LoHi joined-watchpoint that may have been in use |
1319 | LoHi[i] = 0; |
1320 | |
1321 | // MASK field is the number of low bits that are masked off |
1322 | // when comparing the address with the DBGWVR<n>_EL1 values. |
1323 | // If aligned size is 16, that means we ignore low 4 bits, 0b1111. |
1324 | // popcount(16 - 1) give us the correct value of 4. |
1325 | // 2GB is max watchable region, which is 31 bits (low bits 0x7fffffff |
1326 | // masked off) -- a MASK value of 31. |
1327 | const uint64_t mask = __builtin_popcountl(wp.aligned_size - 1) << 24; |
1328 | // A '0b11111111' BAS value needed for mask watchpoints plus a |
1329 | // nonzero mask value. |
1330 | const uint64_t not_bas_wp = 0xff << 5; |
1331 | |
1332 | m_state.dbg.__wvr[i] = wp.aligned_start; |
1333 | m_state.dbg.__wcr[i] = mask | not_bas_wp | S_USER | // Stop only in user mode |
1334 | (read ? WCR_LOAD : 0) | // Stop on read access? |
1335 | (write ? WCR_STORE : 0) | // Stop on write access? |
1336 | WCR_ENABLE; // Enable this watchpoint; |
1337 | |
1338 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1339 | "DNBArchMachARM64::SetMASKWatchpoint() " |
1340 | "adding watchpoint on address 0x%llx with control " |
1341 | "register value 0x%llx" , |
1342 | (uint64_t)m_state.dbg.__wvr[i], |
1343 | (uint64_t)m_state.dbg.__wcr[i]); |
1344 | |
1345 | kret = SetDBGState(also_set_on_task); |
1346 | |
1347 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1348 | "DNBArchMachARM64::" |
1349 | "SetMASKWatchpoint() " |
1350 | "SetDBGState() => 0x%8.8x." , |
1351 | kret); |
1352 | |
1353 | if (kret == KERN_SUCCESS) |
1354 | return i; |
1355 | |
1356 | return INVALID_NUB_HW_INDEX; |
1357 | } |
1358 | |
1359 | bool DNBArchMachARM64::ReenableHardwareWatchpoint(uint32_t hw_index) { |
1360 | // If this logical watchpoint # is actually implemented using |
1361 | // two hardware watchpoint registers, re-enable both of them. |
1362 | |
1363 | if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) { |
1364 | return ReenableHardwareWatchpoint_helper(hw_index) && |
1365 | ReenableHardwareWatchpoint_helper(LoHi[hw_index]); |
1366 | } else { |
1367 | return ReenableHardwareWatchpoint_helper(hw_index); |
1368 | } |
1369 | } |
1370 | |
1371 | bool DNBArchMachARM64::ReenableHardwareWatchpoint_helper(uint32_t hw_index) { |
1372 | kern_return_t kret = GetDBGState(false); |
1373 | if (kret != KERN_SUCCESS) |
1374 | return false; |
1375 | |
1376 | const uint32_t num_hw_points = NumSupportedHardwareWatchpoints(); |
1377 | if (hw_index >= num_hw_points) |
1378 | return false; |
1379 | |
1380 | m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr; |
1381 | m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control; |
1382 | |
1383 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1384 | "DNBArchMachARM64::" |
1385 | "ReenableHardwareWatchpoint_helper( %u ) - WVR%u = " |
1386 | "0x%8.8llx WCR%u = 0x%8.8llx" , |
1387 | hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index], |
1388 | hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]); |
1389 | |
1390 | kret = SetDBGState(false); |
1391 | |
1392 | return (kret == KERN_SUCCESS); |
1393 | } |
1394 | |
1395 | bool DNBArchMachARM64::DisableHardwareWatchpoint(uint32_t hw_index, |
1396 | bool also_set_on_task) { |
1397 | if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) { |
1398 | return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task) && |
1399 | DisableHardwareWatchpoint_helper(LoHi[hw_index], also_set_on_task); |
1400 | } else { |
1401 | return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task); |
1402 | } |
1403 | } |
1404 | |
1405 | bool DNBArchMachARM64::DisableHardwareWatchpoint_helper(uint32_t hw_index, |
1406 | bool also_set_on_task) { |
1407 | kern_return_t kret = GetDBGState(false); |
1408 | if (kret != KERN_SUCCESS) |
1409 | return false; |
1410 | |
1411 | const uint32_t num_hw_points = NumSupportedHardwareWatchpoints(); |
1412 | if (hw_index >= num_hw_points) |
1413 | return false; |
1414 | |
1415 | m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index]; |
1416 | m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index]; |
1417 | |
1418 | m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE); |
1419 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::" |
1420 | "DisableHardwareWatchpoint( %u ) - WVR%u = " |
1421 | "0x%8.8llx WCR%u = 0x%8.8llx" , |
1422 | hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index], |
1423 | hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]); |
1424 | |
1425 | kret = SetDBGState(also_set_on_task); |
1426 | |
1427 | return (kret == KERN_SUCCESS); |
1428 | } |
1429 | |
1430 | bool DNBArchMachARM64::DisableHardwareBreakpoint(uint32_t hw_index, |
1431 | bool also_set_on_task) { |
1432 | kern_return_t kret = GetDBGState(false); |
1433 | if (kret != KERN_SUCCESS) |
1434 | return false; |
1435 | |
1436 | const uint32_t num_hw_points = NumSupportedHardwareBreakpoints(); |
1437 | if (hw_index >= num_hw_points) |
1438 | return false; |
1439 | |
1440 | m_disabled_breakpoints[hw_index].addr = m_state.dbg.__bvr[hw_index]; |
1441 | m_disabled_breakpoints[hw_index].control = m_state.dbg.__bcr[hw_index]; |
1442 | |
1443 | m_state.dbg.__bcr[hw_index] = 0; |
1444 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1445 | "DNBArchMachARM64::" |
1446 | "DisableHardwareBreakpoint( %u ) - WVR%u = " |
1447 | "0x%8.8llx BCR%u = 0x%8.8llx" , |
1448 | hw_index, hw_index, (uint64_t)m_state.dbg.__bvr[hw_index], |
1449 | hw_index, (uint64_t)m_state.dbg.__bcr[hw_index]); |
1450 | |
1451 | kret = SetDBGState(also_set_on_task); |
1452 | |
1453 | return (kret == KERN_SUCCESS); |
1454 | } |
1455 | |
1456 | // This is for checking the Byte Address Select bits in the DBRWCRn_EL1 control |
1457 | // register. |
1458 | // Returns -1 if the trailing bit patterns are not one of: |
1459 | // { 0b???????1, 0b??????10, 0b?????100, 0b????1000, 0b???10000, 0b??100000, |
1460 | // 0b?1000000, 0b10000000 }. |
1461 | static inline int32_t LowestBitSet(uint32_t val) { |
1462 | for (unsigned i = 0; i < 8; ++i) { |
1463 | if (bit(val, i)) |
1464 | return i; |
1465 | } |
1466 | return -1; |
1467 | } |
1468 | |
1469 | // Iterate through the debug registers; return the index of the first watchpoint |
1470 | // whose address matches. |
1471 | // As a side effect, the starting address as understood by the debugger is |
1472 | // returned which could be |
1473 | // different from 'addr' passed as an in/out argument. |
1474 | uint32_t DNBArchMachARM64::GetHardwareWatchpointHit(nub_addr_t &addr) { |
1475 | // Read the debug state |
1476 | kern_return_t kret = GetDBGState(true); |
1477 | // DumpDBGState(m_state.dbg); |
1478 | DNBLogThreadedIf( |
1479 | LOG_WATCHPOINTS, |
1480 | "DNBArchMachARM64::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x." , |
1481 | kret); |
1482 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1483 | "DNBArchMachARM64::GetHardwareWatchpointHit() addr = 0x%llx" , |
1484 | (uint64_t)addr); |
1485 | |
1486 | if (kret == KERN_SUCCESS) { |
1487 | DBG &debug_state = m_state.dbg; |
1488 | uint32_t i, num = NumSupportedHardwareWatchpoints(); |
1489 | for (i = 0; i < num; ++i) { |
1490 | nub_addr_t wp_addr = GetWatchAddress(debug_state, i); |
1491 | |
1492 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1493 | "DNBArchImplARM64::" |
1494 | "GetHardwareWatchpointHit() slot: %u " |
1495 | "(addr = 0x%llx, WCR = 0x%llx)" , |
1496 | i, wp_addr, debug_state.__wcr[i]); |
1497 | |
1498 | if (!IsWatchpointEnabled(debug_state, i)) |
1499 | continue; |
1500 | |
1501 | // DBGWCR<n>EL1.BAS are the bits of the doubleword that are watched |
1502 | // with a BAS watchpoint. |
1503 | uint32_t bas_bits = bits(debug_state.__wcr[i], 12, 5); |
1504 | // DBGWCR<n>EL1.MASK is the number of bits that are masked off the |
1505 | // virtual address when comparing to DBGWVR<n>_EL1. |
1506 | uint32_t mask = bits(debug_state.__wcr[i], 28, 24); |
1507 | |
1508 | const bool is_bas_watchpoint = mask == 0; |
1509 | |
1510 | DNBLogThreadedIf( |
1511 | LOG_WATCHPOINTS, |
1512 | "DNBArchImplARM64::" |
1513 | "GetHardwareWatchpointHit() slot: %u %s" , |
1514 | i, is_bas_watchpoint ? "is BAS watchpoint" : "is MASK watchpoint" ); |
1515 | |
1516 | if (is_bas_watchpoint) { |
1517 | if (bits(wp_addr, 48, 3) != bits(addr, 48, 3)) |
1518 | continue; |
1519 | } else { |
1520 | if (bits(wp_addr, 48, mask) == bits(addr, 48, mask)) { |
1521 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1522 | "DNBArchImplARM64::" |
1523 | "GetHardwareWatchpointHit() slot: %u matched MASK " |
1524 | "ignoring %u low bits" , |
1525 | i, mask); |
1526 | return i; |
1527 | } |
1528 | } |
1529 | |
1530 | if (is_bas_watchpoint) { |
1531 | // Sanity check the bas_bits |
1532 | uint32_t lsb = LowestBitSet(bas_bits); |
1533 | if (lsb < 0) |
1534 | continue; |
1535 | |
1536 | uint64_t byte_to_match = bits(addr, 2, 0); |
1537 | |
1538 | if (bas_bits & (1 << byte_to_match)) { |
1539 | addr = wp_addr + lsb; |
1540 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
1541 | "DNBArchImplARM64::" |
1542 | "GetHardwareWatchpointHit() slot: %u matched BAS" , |
1543 | i); |
1544 | return i; |
1545 | } |
1546 | } |
1547 | } |
1548 | } |
1549 | return INVALID_NUB_HW_INDEX; |
1550 | } |
1551 | |
1552 | nub_addr_t DNBArchMachARM64::GetWatchpointAddressByIndex(uint32_t hw_index) { |
1553 | kern_return_t kret = GetDBGState(true); |
1554 | if (kret != KERN_SUCCESS) |
1555 | return INVALID_NUB_ADDRESS; |
1556 | const uint32_t num = NumSupportedHardwareWatchpoints(); |
1557 | if (hw_index >= num) |
1558 | return INVALID_NUB_ADDRESS; |
1559 | if (IsWatchpointEnabled(m_state.dbg, hw_index)) |
1560 | return GetWatchAddress(m_state.dbg, hw_index); |
1561 | return INVALID_NUB_ADDRESS; |
1562 | } |
1563 | |
1564 | bool DNBArchMachARM64::IsWatchpointEnabled(const DBG &debug_state, |
1565 | uint32_t hw_index) { |
1566 | // Watchpoint Control Registers, bitfield definitions |
1567 | // ... |
1568 | // Bits Value Description |
1569 | // [0] 0 Watchpoint disabled |
1570 | // 1 Watchpoint enabled. |
1571 | return (debug_state.__wcr[hw_index] & 1u); |
1572 | } |
1573 | |
1574 | nub_addr_t DNBArchMachARM64::GetWatchAddress(const DBG &debug_state, |
1575 | uint32_t hw_index) { |
1576 | // Watchpoint Value Registers, bitfield definitions |
1577 | // Bits Description |
1578 | // [31:2] Watchpoint value (word address, i.e., 4-byte aligned) |
1579 | // [1:0] RAZ/SBZP |
1580 | return bits(debug_state.__wvr[hw_index], 63, 0); |
1581 | } |
1582 | |
1583 | // Register information definitions for 64 bit ARMv8. |
1584 | enum gpr_regnums { |
1585 | gpr_x0 = 0, |
1586 | gpr_x1, |
1587 | gpr_x2, |
1588 | gpr_x3, |
1589 | gpr_x4, |
1590 | gpr_x5, |
1591 | gpr_x6, |
1592 | gpr_x7, |
1593 | gpr_x8, |
1594 | gpr_x9, |
1595 | gpr_x10, |
1596 | gpr_x11, |
1597 | gpr_x12, |
1598 | gpr_x13, |
1599 | gpr_x14, |
1600 | gpr_x15, |
1601 | gpr_x16, |
1602 | gpr_x17, |
1603 | gpr_x18, |
1604 | gpr_x19, |
1605 | gpr_x20, |
1606 | gpr_x21, |
1607 | gpr_x22, |
1608 | gpr_x23, |
1609 | gpr_x24, |
1610 | gpr_x25, |
1611 | gpr_x26, |
1612 | gpr_x27, |
1613 | gpr_x28, |
1614 | gpr_fp, |
1615 | gpr_x29 = gpr_fp, |
1616 | gpr_lr, |
1617 | gpr_x30 = gpr_lr, |
1618 | gpr_sp, |
1619 | gpr_x31 = gpr_sp, |
1620 | gpr_pc, |
1621 | gpr_cpsr, |
1622 | gpr_w0, |
1623 | gpr_w1, |
1624 | gpr_w2, |
1625 | gpr_w3, |
1626 | gpr_w4, |
1627 | gpr_w5, |
1628 | gpr_w6, |
1629 | gpr_w7, |
1630 | gpr_w8, |
1631 | gpr_w9, |
1632 | gpr_w10, |
1633 | gpr_w11, |
1634 | gpr_w12, |
1635 | gpr_w13, |
1636 | gpr_w14, |
1637 | gpr_w15, |
1638 | gpr_w16, |
1639 | gpr_w17, |
1640 | gpr_w18, |
1641 | gpr_w19, |
1642 | gpr_w20, |
1643 | gpr_w21, |
1644 | gpr_w22, |
1645 | gpr_w23, |
1646 | gpr_w24, |
1647 | gpr_w25, |
1648 | gpr_w26, |
1649 | gpr_w27, |
1650 | gpr_w28 |
1651 | |
1652 | }; |
1653 | |
1654 | enum { |
1655 | vfp_v0 = 0, |
1656 | vfp_v1, |
1657 | vfp_v2, |
1658 | vfp_v3, |
1659 | vfp_v4, |
1660 | vfp_v5, |
1661 | vfp_v6, |
1662 | vfp_v7, |
1663 | vfp_v8, |
1664 | vfp_v9, |
1665 | vfp_v10, |
1666 | vfp_v11, |
1667 | vfp_v12, |
1668 | vfp_v13, |
1669 | vfp_v14, |
1670 | vfp_v15, |
1671 | vfp_v16, |
1672 | vfp_v17, |
1673 | vfp_v18, |
1674 | vfp_v19, |
1675 | vfp_v20, |
1676 | vfp_v21, |
1677 | vfp_v22, |
1678 | vfp_v23, |
1679 | vfp_v24, |
1680 | vfp_v25, |
1681 | vfp_v26, |
1682 | vfp_v27, |
1683 | vfp_v28, |
1684 | vfp_v29, |
1685 | vfp_v30, |
1686 | vfp_v31, |
1687 | vfp_fpsr, |
1688 | vfp_fpcr, |
1689 | |
1690 | // lower 32 bits of the corresponding vfp_v<n> reg. |
1691 | vfp_s0, |
1692 | vfp_s1, |
1693 | vfp_s2, |
1694 | vfp_s3, |
1695 | vfp_s4, |
1696 | vfp_s5, |
1697 | vfp_s6, |
1698 | vfp_s7, |
1699 | vfp_s8, |
1700 | vfp_s9, |
1701 | vfp_s10, |
1702 | vfp_s11, |
1703 | vfp_s12, |
1704 | vfp_s13, |
1705 | vfp_s14, |
1706 | vfp_s15, |
1707 | vfp_s16, |
1708 | vfp_s17, |
1709 | vfp_s18, |
1710 | vfp_s19, |
1711 | vfp_s20, |
1712 | vfp_s21, |
1713 | vfp_s22, |
1714 | vfp_s23, |
1715 | vfp_s24, |
1716 | vfp_s25, |
1717 | vfp_s26, |
1718 | vfp_s27, |
1719 | vfp_s28, |
1720 | vfp_s29, |
1721 | vfp_s30, |
1722 | vfp_s31, |
1723 | |
1724 | // lower 64 bits of the corresponding vfp_v<n> reg. |
1725 | vfp_d0, |
1726 | vfp_d1, |
1727 | vfp_d2, |
1728 | vfp_d3, |
1729 | vfp_d4, |
1730 | vfp_d5, |
1731 | vfp_d6, |
1732 | vfp_d7, |
1733 | vfp_d8, |
1734 | vfp_d9, |
1735 | vfp_d10, |
1736 | vfp_d11, |
1737 | vfp_d12, |
1738 | vfp_d13, |
1739 | vfp_d14, |
1740 | vfp_d15, |
1741 | vfp_d16, |
1742 | vfp_d17, |
1743 | vfp_d18, |
1744 | vfp_d19, |
1745 | vfp_d20, |
1746 | vfp_d21, |
1747 | vfp_d22, |
1748 | vfp_d23, |
1749 | vfp_d24, |
1750 | vfp_d25, |
1751 | vfp_d26, |
1752 | vfp_d27, |
1753 | vfp_d28, |
1754 | vfp_d29, |
1755 | vfp_d30, |
1756 | vfp_d31 |
1757 | }; |
1758 | |
1759 | enum { |
1760 | sve_z0, |
1761 | sve_z1, |
1762 | sve_z2, |
1763 | sve_z3, |
1764 | sve_z4, |
1765 | sve_z5, |
1766 | sve_z6, |
1767 | sve_z7, |
1768 | sve_z8, |
1769 | sve_z9, |
1770 | sve_z10, |
1771 | sve_z11, |
1772 | sve_z12, |
1773 | sve_z13, |
1774 | sve_z14, |
1775 | sve_z15, |
1776 | sve_z16, |
1777 | sve_z17, |
1778 | sve_z18, |
1779 | sve_z19, |
1780 | sve_z20, |
1781 | sve_z21, |
1782 | sve_z22, |
1783 | sve_z23, |
1784 | sve_z24, |
1785 | sve_z25, |
1786 | sve_z26, |
1787 | sve_z27, |
1788 | sve_z28, |
1789 | sve_z29, |
1790 | sve_z30, |
1791 | sve_z31, |
1792 | sve_p0, |
1793 | sve_p1, |
1794 | sve_p2, |
1795 | sve_p3, |
1796 | sve_p4, |
1797 | sve_p5, |
1798 | sve_p6, |
1799 | sve_p7, |
1800 | sve_p8, |
1801 | sve_p9, |
1802 | sve_p10, |
1803 | sve_p11, |
1804 | sve_p12, |
1805 | sve_p13, |
1806 | sve_p14, |
1807 | sve_p15 |
1808 | }; |
1809 | |
1810 | enum { sme_svcr, sme_tpidr2, sme_svl_b, sme_za, sme_zt0 }; |
1811 | |
1812 | enum { exc_far = 0, exc_esr, exc_exception }; |
1813 | |
1814 | // These numbers from the "DWARF for the ARM 64-bit Architecture (AArch64)" |
1815 | // document. |
1816 | |
1817 | enum { |
1818 | dwarf_x0 = 0, |
1819 | dwarf_x1, |
1820 | dwarf_x2, |
1821 | dwarf_x3, |
1822 | dwarf_x4, |
1823 | dwarf_x5, |
1824 | dwarf_x6, |
1825 | dwarf_x7, |
1826 | dwarf_x8, |
1827 | dwarf_x9, |
1828 | dwarf_x10, |
1829 | dwarf_x11, |
1830 | dwarf_x12, |
1831 | dwarf_x13, |
1832 | dwarf_x14, |
1833 | dwarf_x15, |
1834 | dwarf_x16, |
1835 | dwarf_x17, |
1836 | dwarf_x18, |
1837 | dwarf_x19, |
1838 | dwarf_x20, |
1839 | dwarf_x21, |
1840 | dwarf_x22, |
1841 | dwarf_x23, |
1842 | dwarf_x24, |
1843 | dwarf_x25, |
1844 | dwarf_x26, |
1845 | dwarf_x27, |
1846 | dwarf_x28, |
1847 | dwarf_x29, |
1848 | dwarf_x30, |
1849 | dwarf_x31, |
1850 | dwarf_pc = 32, |
1851 | dwarf_elr_mode = 33, |
1852 | dwarf_fp = dwarf_x29, |
1853 | dwarf_lr = dwarf_x30, |
1854 | dwarf_sp = dwarf_x31, |
1855 | // 34-63 reserved |
1856 | |
1857 | // V0-V31 (128 bit vector registers) |
1858 | dwarf_v0 = 64, |
1859 | dwarf_v1, |
1860 | dwarf_v2, |
1861 | dwarf_v3, |
1862 | dwarf_v4, |
1863 | dwarf_v5, |
1864 | dwarf_v6, |
1865 | dwarf_v7, |
1866 | dwarf_v8, |
1867 | dwarf_v9, |
1868 | dwarf_v10, |
1869 | dwarf_v11, |
1870 | dwarf_v12, |
1871 | dwarf_v13, |
1872 | dwarf_v14, |
1873 | dwarf_v15, |
1874 | dwarf_v16, |
1875 | dwarf_v17, |
1876 | dwarf_v18, |
1877 | dwarf_v19, |
1878 | dwarf_v20, |
1879 | dwarf_v21, |
1880 | dwarf_v22, |
1881 | dwarf_v23, |
1882 | dwarf_v24, |
1883 | dwarf_v25, |
1884 | dwarf_v26, |
1885 | dwarf_v27, |
1886 | dwarf_v28, |
1887 | dwarf_v29, |
1888 | dwarf_v30, |
1889 | dwarf_v31 |
1890 | |
1891 | // 96-127 reserved |
1892 | }; |
1893 | |
1894 | enum { |
1895 | debugserver_gpr_x0 = 0, |
1896 | debugserver_gpr_x1, |
1897 | debugserver_gpr_x2, |
1898 | debugserver_gpr_x3, |
1899 | debugserver_gpr_x4, |
1900 | debugserver_gpr_x5, |
1901 | debugserver_gpr_x6, |
1902 | debugserver_gpr_x7, |
1903 | debugserver_gpr_x8, |
1904 | debugserver_gpr_x9, |
1905 | debugserver_gpr_x10, |
1906 | debugserver_gpr_x11, |
1907 | debugserver_gpr_x12, |
1908 | debugserver_gpr_x13, |
1909 | debugserver_gpr_x14, |
1910 | debugserver_gpr_x15, |
1911 | debugserver_gpr_x16, |
1912 | debugserver_gpr_x17, |
1913 | debugserver_gpr_x18, |
1914 | debugserver_gpr_x19, |
1915 | debugserver_gpr_x20, |
1916 | debugserver_gpr_x21, |
1917 | debugserver_gpr_x22, |
1918 | debugserver_gpr_x23, |
1919 | debugserver_gpr_x24, |
1920 | debugserver_gpr_x25, |
1921 | debugserver_gpr_x26, |
1922 | debugserver_gpr_x27, |
1923 | debugserver_gpr_x28, |
1924 | debugserver_gpr_fp, // x29 |
1925 | debugserver_gpr_lr, // x30 |
1926 | debugserver_gpr_sp, // sp aka xsp |
1927 | debugserver_gpr_pc, |
1928 | debugserver_gpr_cpsr, |
1929 | debugserver_vfp_v0, |
1930 | debugserver_vfp_v1, |
1931 | debugserver_vfp_v2, |
1932 | debugserver_vfp_v3, |
1933 | debugserver_vfp_v4, |
1934 | debugserver_vfp_v5, |
1935 | debugserver_vfp_v6, |
1936 | debugserver_vfp_v7, |
1937 | debugserver_vfp_v8, |
1938 | debugserver_vfp_v9, |
1939 | debugserver_vfp_v10, |
1940 | debugserver_vfp_v11, |
1941 | debugserver_vfp_v12, |
1942 | debugserver_vfp_v13, |
1943 | debugserver_vfp_v14, |
1944 | debugserver_vfp_v15, |
1945 | debugserver_vfp_v16, |
1946 | debugserver_vfp_v17, |
1947 | debugserver_vfp_v18, |
1948 | debugserver_vfp_v19, |
1949 | debugserver_vfp_v20, |
1950 | debugserver_vfp_v21, |
1951 | debugserver_vfp_v22, |
1952 | debugserver_vfp_v23, |
1953 | debugserver_vfp_v24, |
1954 | debugserver_vfp_v25, |
1955 | debugserver_vfp_v26, |
1956 | debugserver_vfp_v27, |
1957 | debugserver_vfp_v28, |
1958 | debugserver_vfp_v29, |
1959 | debugserver_vfp_v30, |
1960 | debugserver_vfp_v31, |
1961 | debugserver_vfp_fpsr, |
1962 | debugserver_vfp_fpcr, |
1963 | debugserver_sve_z0, |
1964 | debugserver_sve_z1, |
1965 | debugserver_sve_z2, |
1966 | debugserver_sve_z3, |
1967 | debugserver_sve_z4, |
1968 | debugserver_sve_z5, |
1969 | debugserver_sve_z6, |
1970 | debugserver_sve_z7, |
1971 | debugserver_sve_z8, |
1972 | debugserver_sve_z9, |
1973 | debugserver_sve_z10, |
1974 | debugserver_sve_z11, |
1975 | debugserver_sve_z12, |
1976 | debugserver_sve_z13, |
1977 | debugserver_sve_z14, |
1978 | debugserver_sve_z15, |
1979 | debugserver_sve_z16, |
1980 | debugserver_sve_z17, |
1981 | debugserver_sve_z18, |
1982 | debugserver_sve_z19, |
1983 | debugserver_sve_z20, |
1984 | debugserver_sve_z21, |
1985 | debugserver_sve_z22, |
1986 | debugserver_sve_z23, |
1987 | debugserver_sve_z24, |
1988 | debugserver_sve_z25, |
1989 | debugserver_sve_z26, |
1990 | debugserver_sve_z27, |
1991 | debugserver_sve_z28, |
1992 | debugserver_sve_z29, |
1993 | debugserver_sve_z30, |
1994 | debugserver_sve_z31, |
1995 | debugserver_sve_p0, |
1996 | debugserver_sve_p1, |
1997 | debugserver_sve_p2, |
1998 | debugserver_sve_p3, |
1999 | debugserver_sve_p4, |
2000 | debugserver_sve_p5, |
2001 | debugserver_sve_p6, |
2002 | debugserver_sve_p7, |
2003 | debugserver_sve_p8, |
2004 | debugserver_sve_p9, |
2005 | debugserver_sve_p10, |
2006 | debugserver_sve_p11, |
2007 | debugserver_sve_p12, |
2008 | debugserver_sve_p13, |
2009 | debugserver_sve_p14, |
2010 | debugserver_sve_p15, |
2011 | debugserver_sme_svcr, |
2012 | debugserver_sme_tpidr2, |
2013 | debugserver_sme_svl_b, |
2014 | debugserver_sme_za, |
2015 | debugserver_sme_zt0 |
2016 | }; |
2017 | |
2018 | const char *g_contained_x0[]{"x0" , NULL}; |
2019 | const char *g_contained_x1[]{"x1" , NULL}; |
2020 | const char *g_contained_x2[]{"x2" , NULL}; |
2021 | const char *g_contained_x3[]{"x3" , NULL}; |
2022 | const char *g_contained_x4[]{"x4" , NULL}; |
2023 | const char *g_contained_x5[]{"x5" , NULL}; |
2024 | const char *g_contained_x6[]{"x6" , NULL}; |
2025 | const char *g_contained_x7[]{"x7" , NULL}; |
2026 | const char *g_contained_x8[]{"x8" , NULL}; |
2027 | const char *g_contained_x9[]{"x9" , NULL}; |
2028 | const char *g_contained_x10[]{"x10" , NULL}; |
2029 | const char *g_contained_x11[]{"x11" , NULL}; |
2030 | const char *g_contained_x12[]{"x12" , NULL}; |
2031 | const char *g_contained_x13[]{"x13" , NULL}; |
2032 | const char *g_contained_x14[]{"x14" , NULL}; |
2033 | const char *g_contained_x15[]{"x15" , NULL}; |
2034 | const char *g_contained_x16[]{"x16" , NULL}; |
2035 | const char *g_contained_x17[]{"x17" , NULL}; |
2036 | const char *g_contained_x18[]{"x18" , NULL}; |
2037 | const char *g_contained_x19[]{"x19" , NULL}; |
2038 | const char *g_contained_x20[]{"x20" , NULL}; |
2039 | const char *g_contained_x21[]{"x21" , NULL}; |
2040 | const char *g_contained_x22[]{"x22" , NULL}; |
2041 | const char *g_contained_x23[]{"x23" , NULL}; |
2042 | const char *g_contained_x24[]{"x24" , NULL}; |
2043 | const char *g_contained_x25[]{"x25" , NULL}; |
2044 | const char *g_contained_x26[]{"x26" , NULL}; |
2045 | const char *g_contained_x27[]{"x27" , NULL}; |
2046 | const char *g_contained_x28[]{"x28" , NULL}; |
2047 | |
2048 | const char *g_invalidate_x0[]{"x0" , "w0" , NULL}; |
2049 | const char *g_invalidate_x1[]{"x1" , "w1" , NULL}; |
2050 | const char *g_invalidate_x2[]{"x2" , "w2" , NULL}; |
2051 | const char *g_invalidate_x3[]{"x3" , "w3" , NULL}; |
2052 | const char *g_invalidate_x4[]{"x4" , "w4" , NULL}; |
2053 | const char *g_invalidate_x5[]{"x5" , "w5" , NULL}; |
2054 | const char *g_invalidate_x6[]{"x6" , "w6" , NULL}; |
2055 | const char *g_invalidate_x7[]{"x7" , "w7" , NULL}; |
2056 | const char *g_invalidate_x8[]{"x8" , "w8" , NULL}; |
2057 | const char *g_invalidate_x9[]{"x9" , "w9" , NULL}; |
2058 | const char *g_invalidate_x10[]{"x10" , "w10" , NULL}; |
2059 | const char *g_invalidate_x11[]{"x11" , "w11" , NULL}; |
2060 | const char *g_invalidate_x12[]{"x12" , "w12" , NULL}; |
2061 | const char *g_invalidate_x13[]{"x13" , "w13" , NULL}; |
2062 | const char *g_invalidate_x14[]{"x14" , "w14" , NULL}; |
2063 | const char *g_invalidate_x15[]{"x15" , "w15" , NULL}; |
2064 | const char *g_invalidate_x16[]{"x16" , "w16" , NULL}; |
2065 | const char *g_invalidate_x17[]{"x17" , "w17" , NULL}; |
2066 | const char *g_invalidate_x18[]{"x18" , "w18" , NULL}; |
2067 | const char *g_invalidate_x19[]{"x19" , "w19" , NULL}; |
2068 | const char *g_invalidate_x20[]{"x20" , "w20" , NULL}; |
2069 | const char *g_invalidate_x21[]{"x21" , "w21" , NULL}; |
2070 | const char *g_invalidate_x22[]{"x22" , "w22" , NULL}; |
2071 | const char *g_invalidate_x23[]{"x23" , "w23" , NULL}; |
2072 | const char *g_invalidate_x24[]{"x24" , "w24" , NULL}; |
2073 | const char *g_invalidate_x25[]{"x25" , "w25" , NULL}; |
2074 | const char *g_invalidate_x26[]{"x26" , "w26" , NULL}; |
2075 | const char *g_invalidate_x27[]{"x27" , "w27" , NULL}; |
2076 | const char *g_invalidate_x28[]{"x28" , "w28" , NULL}; |
2077 | |
2078 | #define GPR_OFFSET_IDX(idx) (offsetof(DNBArchMachARM64::GPR, __x[idx])) |
2079 | |
2080 | #define GPR_OFFSET_NAME(reg) (offsetof(DNBArchMachARM64::GPR, __##reg)) |
2081 | |
2082 | // These macros will auto define the register name, alt name, register size, |
2083 | // register offset, encoding, format and native register. This ensures that |
2084 | // the register state structures are defined correctly and have the correct |
2085 | // sizes and offsets. |
2086 | #define DEFINE_GPR_IDX(idx, reg, alt, gen) \ |
2087 | { \ |
2088 | e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_IDX(idx), \ |
2089 | dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, \ |
2090 | g_invalidate_x##idx \ |
2091 | } |
2092 | #define DEFINE_GPR_NAME(reg, alt, gen) \ |
2093 | { \ |
2094 | e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_NAME(reg), \ |
2095 | dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, NULL \ |
2096 | } |
2097 | #define DEFINE_PSEUDO_GPR_IDX(idx, reg) \ |
2098 | { \ |
2099 | e_regSetGPR, gpr_##reg, #reg, NULL, Uint, Hex, 4, 0, INVALID_NUB_REGNUM, \ |
2100 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \ |
2101 | g_contained_x##idx, g_invalidate_x##idx \ |
2102 | } |
2103 | |
2104 | //_STRUCT_ARM_THREAD_STATE64 |
2105 | //{ |
2106 | // uint64_t x[29]; /* General purpose registers x0-x28 */ |
2107 | // uint64_t fp; /* Frame pointer x29 */ |
2108 | // uint64_t lr; /* Link register x30 */ |
2109 | // uint64_t sp; /* Stack pointer x31 */ |
2110 | // uint64_t pc; /* Program counter */ |
2111 | // uint32_t cpsr; /* Current program status register */ |
2112 | //}; |
2113 | |
2114 | // General purpose registers |
2115 | const DNBRegisterInfo DNBArchMachARM64::g_gpr_registers[] = { |
2116 | DEFINE_GPR_IDX(0, x0, "arg1" , GENERIC_REGNUM_ARG1), |
2117 | DEFINE_GPR_IDX(1, x1, "arg2" , GENERIC_REGNUM_ARG2), |
2118 | DEFINE_GPR_IDX(2, x2, "arg3" , GENERIC_REGNUM_ARG3), |
2119 | DEFINE_GPR_IDX(3, x3, "arg4" , GENERIC_REGNUM_ARG4), |
2120 | DEFINE_GPR_IDX(4, x4, "arg5" , GENERIC_REGNUM_ARG5), |
2121 | DEFINE_GPR_IDX(5, x5, "arg6" , GENERIC_REGNUM_ARG6), |
2122 | DEFINE_GPR_IDX(6, x6, "arg7" , GENERIC_REGNUM_ARG7), |
2123 | DEFINE_GPR_IDX(7, x7, "arg8" , GENERIC_REGNUM_ARG8), |
2124 | DEFINE_GPR_IDX(8, x8, NULL, INVALID_NUB_REGNUM), |
2125 | DEFINE_GPR_IDX(9, x9, NULL, INVALID_NUB_REGNUM), |
2126 | DEFINE_GPR_IDX(10, x10, NULL, INVALID_NUB_REGNUM), |
2127 | DEFINE_GPR_IDX(11, x11, NULL, INVALID_NUB_REGNUM), |
2128 | DEFINE_GPR_IDX(12, x12, NULL, INVALID_NUB_REGNUM), |
2129 | DEFINE_GPR_IDX(13, x13, NULL, INVALID_NUB_REGNUM), |
2130 | DEFINE_GPR_IDX(14, x14, NULL, INVALID_NUB_REGNUM), |
2131 | DEFINE_GPR_IDX(15, x15, NULL, INVALID_NUB_REGNUM), |
2132 | DEFINE_GPR_IDX(16, x16, NULL, INVALID_NUB_REGNUM), |
2133 | DEFINE_GPR_IDX(17, x17, NULL, INVALID_NUB_REGNUM), |
2134 | DEFINE_GPR_IDX(18, x18, NULL, INVALID_NUB_REGNUM), |
2135 | DEFINE_GPR_IDX(19, x19, NULL, INVALID_NUB_REGNUM), |
2136 | DEFINE_GPR_IDX(20, x20, NULL, INVALID_NUB_REGNUM), |
2137 | DEFINE_GPR_IDX(21, x21, NULL, INVALID_NUB_REGNUM), |
2138 | DEFINE_GPR_IDX(22, x22, NULL, INVALID_NUB_REGNUM), |
2139 | DEFINE_GPR_IDX(23, x23, NULL, INVALID_NUB_REGNUM), |
2140 | DEFINE_GPR_IDX(24, x24, NULL, INVALID_NUB_REGNUM), |
2141 | DEFINE_GPR_IDX(25, x25, NULL, INVALID_NUB_REGNUM), |
2142 | DEFINE_GPR_IDX(26, x26, NULL, INVALID_NUB_REGNUM), |
2143 | DEFINE_GPR_IDX(27, x27, NULL, INVALID_NUB_REGNUM), |
2144 | DEFINE_GPR_IDX(28, x28, NULL, INVALID_NUB_REGNUM), |
2145 | // For the G/g packet we want to show where the offset into the regctx |
2146 | // is for fp/lr/sp/pc, but we cannot directly access them on arm64e |
2147 | // devices (and therefore can't offsetof() them)) - add the offset based |
2148 | // on the last accessible register by hand for advertising the location |
2149 | // in the regctx to lldb. We'll go through the accessor functions when |
2150 | // we read/write them here. |
2151 | { |
2152 | e_regSetGPR, gpr_fp, "fp" , "x29" , Uint, Hex, 8, GPR_OFFSET_IDX(28) + 8, |
2153 | dwarf_fp, dwarf_fp, GENERIC_REGNUM_FP, debugserver_gpr_fp, NULL, NULL |
2154 | }, |
2155 | { |
2156 | e_regSetGPR, gpr_lr, "lr" , "x30" , Uint, Hex, 8, GPR_OFFSET_IDX(28) + 16, |
2157 | dwarf_lr, dwarf_lr, GENERIC_REGNUM_RA, debugserver_gpr_lr, NULL, NULL |
2158 | }, |
2159 | { |
2160 | e_regSetGPR, gpr_sp, "sp" , "xsp" , Uint, Hex, 8, GPR_OFFSET_IDX(28) + 24, |
2161 | dwarf_sp, dwarf_sp, GENERIC_REGNUM_SP, debugserver_gpr_sp, NULL, NULL |
2162 | }, |
2163 | { |
2164 | e_regSetGPR, gpr_pc, "pc" , NULL, Uint, Hex, 8, GPR_OFFSET_IDX(28) + 32, |
2165 | dwarf_pc, dwarf_pc, GENERIC_REGNUM_PC, debugserver_gpr_pc, NULL, NULL |
2166 | }, |
2167 | |
2168 | // in armv7 we specify that writing to the CPSR should invalidate r8-12, sp, |
2169 | // lr. |
2170 | // this should be specified for arm64 too even though debugserver is only |
2171 | // used for |
2172 | // userland debugging. |
2173 | {e_regSetGPR, gpr_cpsr, "cpsr" , "flags" , Uint, Hex, 4, |
2174 | GPR_OFFSET_NAME(cpsr), dwarf_elr_mode, dwarf_elr_mode, GENERIC_REGNUM_FLAGS, |
2175 | debugserver_gpr_cpsr, NULL, NULL}, |
2176 | |
2177 | DEFINE_PSEUDO_GPR_IDX(0, w0), |
2178 | DEFINE_PSEUDO_GPR_IDX(1, w1), |
2179 | DEFINE_PSEUDO_GPR_IDX(2, w2), |
2180 | DEFINE_PSEUDO_GPR_IDX(3, w3), |
2181 | DEFINE_PSEUDO_GPR_IDX(4, w4), |
2182 | DEFINE_PSEUDO_GPR_IDX(5, w5), |
2183 | DEFINE_PSEUDO_GPR_IDX(6, w6), |
2184 | DEFINE_PSEUDO_GPR_IDX(7, w7), |
2185 | DEFINE_PSEUDO_GPR_IDX(8, w8), |
2186 | DEFINE_PSEUDO_GPR_IDX(9, w9), |
2187 | DEFINE_PSEUDO_GPR_IDX(10, w10), |
2188 | DEFINE_PSEUDO_GPR_IDX(11, w11), |
2189 | DEFINE_PSEUDO_GPR_IDX(12, w12), |
2190 | DEFINE_PSEUDO_GPR_IDX(13, w13), |
2191 | DEFINE_PSEUDO_GPR_IDX(14, w14), |
2192 | DEFINE_PSEUDO_GPR_IDX(15, w15), |
2193 | DEFINE_PSEUDO_GPR_IDX(16, w16), |
2194 | DEFINE_PSEUDO_GPR_IDX(17, w17), |
2195 | DEFINE_PSEUDO_GPR_IDX(18, w18), |
2196 | DEFINE_PSEUDO_GPR_IDX(19, w19), |
2197 | DEFINE_PSEUDO_GPR_IDX(20, w20), |
2198 | DEFINE_PSEUDO_GPR_IDX(21, w21), |
2199 | DEFINE_PSEUDO_GPR_IDX(22, w22), |
2200 | DEFINE_PSEUDO_GPR_IDX(23, w23), |
2201 | DEFINE_PSEUDO_GPR_IDX(24, w24), |
2202 | DEFINE_PSEUDO_GPR_IDX(25, w25), |
2203 | DEFINE_PSEUDO_GPR_IDX(26, w26), |
2204 | DEFINE_PSEUDO_GPR_IDX(27, w27), |
2205 | DEFINE_PSEUDO_GPR_IDX(28, w28)}; |
2206 | |
2207 | const char *g_contained_v0[]{"v0" , NULL}; |
2208 | const char *g_contained_v1[]{"v1" , NULL}; |
2209 | const char *g_contained_v2[]{"v2" , NULL}; |
2210 | const char *g_contained_v3[]{"v3" , NULL}; |
2211 | const char *g_contained_v4[]{"v4" , NULL}; |
2212 | const char *g_contained_v5[]{"v5" , NULL}; |
2213 | const char *g_contained_v6[]{"v6" , NULL}; |
2214 | const char *g_contained_v7[]{"v7" , NULL}; |
2215 | const char *g_contained_v8[]{"v8" , NULL}; |
2216 | const char *g_contained_v9[]{"v9" , NULL}; |
2217 | const char *g_contained_v10[]{"v10" , NULL}; |
2218 | const char *g_contained_v11[]{"v11" , NULL}; |
2219 | const char *g_contained_v12[]{"v12" , NULL}; |
2220 | const char *g_contained_v13[]{"v13" , NULL}; |
2221 | const char *g_contained_v14[]{"v14" , NULL}; |
2222 | const char *g_contained_v15[]{"v15" , NULL}; |
2223 | const char *g_contained_v16[]{"v16" , NULL}; |
2224 | const char *g_contained_v17[]{"v17" , NULL}; |
2225 | const char *g_contained_v18[]{"v18" , NULL}; |
2226 | const char *g_contained_v19[]{"v19" , NULL}; |
2227 | const char *g_contained_v20[]{"v20" , NULL}; |
2228 | const char *g_contained_v21[]{"v21" , NULL}; |
2229 | const char *g_contained_v22[]{"v22" , NULL}; |
2230 | const char *g_contained_v23[]{"v23" , NULL}; |
2231 | const char *g_contained_v24[]{"v24" , NULL}; |
2232 | const char *g_contained_v25[]{"v25" , NULL}; |
2233 | const char *g_contained_v26[]{"v26" , NULL}; |
2234 | const char *g_contained_v27[]{"v27" , NULL}; |
2235 | const char *g_contained_v28[]{"v28" , NULL}; |
2236 | const char *g_contained_v29[]{"v29" , NULL}; |
2237 | const char *g_contained_v30[]{"v30" , NULL}; |
2238 | const char *g_contained_v31[]{"v31" , NULL}; |
2239 | |
2240 | const char *g_invalidate_v[32][4]{ |
2241 | {"v0" , "d0" , "s0" , NULL}, {"v1" , "d1" , "s1" , NULL}, |
2242 | {"v2" , "d2" , "s2" , NULL}, {"v3" , "d3" , "s3" , NULL}, |
2243 | {"v4" , "d4" , "s4" , NULL}, {"v5" , "d5" , "s5" , NULL}, |
2244 | {"v6" , "d6" , "s6" , NULL}, {"v7" , "d7" , "s7" , NULL}, |
2245 | {"v8" , "d8" , "s8" , NULL}, {"v9" , "d9" , "s9" , NULL}, |
2246 | {"v10" , "d10" , "s10" , NULL}, {"v11" , "d11" , "s11" , NULL}, |
2247 | {"v12" , "d12" , "s12" , NULL}, {"v13" , "d13" , "s13" , NULL}, |
2248 | {"v14" , "d14" , "s14" , NULL}, {"v15" , "d15" , "s15" , NULL}, |
2249 | {"v16" , "d16" , "s16" , NULL}, {"v17" , "d17" , "s17" , NULL}, |
2250 | {"v18" , "d18" , "s18" , NULL}, {"v19" , "d19" , "s19" , NULL}, |
2251 | {"v20" , "d20" , "s20" , NULL}, {"v21" , "d21" , "s21" , NULL}, |
2252 | {"v22" , "d22" , "s22" , NULL}, {"v23" , "d23" , "s23" , NULL}, |
2253 | {"v24" , "d24" , "s24" , NULL}, {"v25" , "d25" , "s25" , NULL}, |
2254 | {"v26" , "d26" , "s26" , NULL}, {"v27" , "d27" , "s27" , NULL}, |
2255 | {"v28" , "d28" , "s28" , NULL}, {"v29" , "d29" , "s29" , NULL}, |
2256 | {"v30" , "d30" , "s30" , NULL}, {"v31" , "d31" , "s31" , NULL}}; |
2257 | |
2258 | const char *g_invalidate_z[32][5]{ |
2259 | {"z0" , "v0" , "d0" , "s0" , NULL}, {"z1" , "v1" , "d1" , "s1" , NULL}, |
2260 | {"z2" , "v2" , "d2" , "s2" , NULL}, {"z3" , "v3" , "d3" , "s3" , NULL}, |
2261 | {"z4" , "v4" , "d4" , "s4" , NULL}, {"z5" , "v5" , "d5" , "s5" , NULL}, |
2262 | {"z6" , "v6" , "d6" , "s6" , NULL}, {"z7" , "v7" , "d7" , "s7" , NULL}, |
2263 | {"z8" , "v8" , "d8" , "s8" , NULL}, {"z9" , "v9" , "d9" , "s9" , NULL}, |
2264 | {"z10" , "v10" , "d10" , "s10" , NULL}, {"z11" , "v11" , "d11" , "s11" , NULL}, |
2265 | {"z12" , "v12" , "d12" , "s12" , NULL}, {"z13" , "v13" , "d13" , "s13" , NULL}, |
2266 | {"z14" , "v14" , "d14" , "s14" , NULL}, {"z15" , "v15" , "d15" , "s15" , NULL}, |
2267 | {"z16" , "v16" , "d16" , "s16" , NULL}, {"z17" , "v17" , "d17" , "s17" , NULL}, |
2268 | {"z18" , "v18" , "d18" , "s18" , NULL}, {"z19" , "v19" , "d19" , "s19" , NULL}, |
2269 | {"z20" , "v20" , "d20" , "s20" , NULL}, {"z21" , "v21" , "d21" , "s21" , NULL}, |
2270 | {"z22" , "v22" , "d22" , "s22" , NULL}, {"z23" , "v23" , "d23" , "s23" , NULL}, |
2271 | {"z24" , "v24" , "d24" , "s24" , NULL}, {"z25" , "v25" , "d25" , "s25" , NULL}, |
2272 | {"z26" , "v26" , "d26" , "s26" , NULL}, {"z27" , "v27" , "d27" , "s27" , NULL}, |
2273 | {"z28" , "v28" , "d28" , "s28" , NULL}, {"z29" , "v29" , "d29" , "s29" , NULL}, |
2274 | {"z30" , "v30" , "d30" , "s30" , NULL}, {"z31" , "v31" , "d31" , "s31" , NULL}}; |
2275 | |
2276 | const char *g_contained_z0[]{"z0" , NULL}; |
2277 | const char *g_contained_z1[]{"z1" , NULL}; |
2278 | const char *g_contained_z2[]{"z2" , NULL}; |
2279 | const char *g_contained_z3[]{"z3" , NULL}; |
2280 | const char *g_contained_z4[]{"z4" , NULL}; |
2281 | const char *g_contained_z5[]{"z5" , NULL}; |
2282 | const char *g_contained_z6[]{"z6" , NULL}; |
2283 | const char *g_contained_z7[]{"z7" , NULL}; |
2284 | const char *g_contained_z8[]{"z8" , NULL}; |
2285 | const char *g_contained_z9[]{"z9" , NULL}; |
2286 | const char *g_contained_z10[]{"z10" , NULL}; |
2287 | const char *g_contained_z11[]{"z11" , NULL}; |
2288 | const char *g_contained_z12[]{"z12" , NULL}; |
2289 | const char *g_contained_z13[]{"z13" , NULL}; |
2290 | const char *g_contained_z14[]{"z14" , NULL}; |
2291 | const char *g_contained_z15[]{"z15" , NULL}; |
2292 | const char *g_contained_z16[]{"z16" , NULL}; |
2293 | const char *g_contained_z17[]{"z17" , NULL}; |
2294 | const char *g_contained_z18[]{"z18" , NULL}; |
2295 | const char *g_contained_z19[]{"z19" , NULL}; |
2296 | const char *g_contained_z20[]{"z20" , NULL}; |
2297 | const char *g_contained_z21[]{"z21" , NULL}; |
2298 | const char *g_contained_z22[]{"z22" , NULL}; |
2299 | const char *g_contained_z23[]{"z23" , NULL}; |
2300 | const char *g_contained_z24[]{"z24" , NULL}; |
2301 | const char *g_contained_z25[]{"z25" , NULL}; |
2302 | const char *g_contained_z26[]{"z26" , NULL}; |
2303 | const char *g_contained_z27[]{"z27" , NULL}; |
2304 | const char *g_contained_z28[]{"z28" , NULL}; |
2305 | const char *g_contained_z29[]{"z29" , NULL}; |
2306 | const char *g_contained_z30[]{"z30" , NULL}; |
2307 | const char *g_contained_z31[]{"z31" , NULL}; |
2308 | |
2309 | #if defined(__arm64__) || defined(__aarch64__) |
2310 | #define VFP_V_OFFSET_IDX(idx) \ |
2311 | (offsetof(DNBArchMachARM64::FPU, __v) + (idx * 16) + \ |
2312 | offsetof(DNBArchMachARM64::Context, vfp)) |
2313 | #else |
2314 | #define VFP_V_OFFSET_IDX(idx) \ |
2315 | (offsetof(DNBArchMachARM64::FPU, opaque) + (idx * 16) + \ |
2316 | offsetof(DNBArchMachARM64::Context, vfp)) |
2317 | #endif |
2318 | #define EXC_OFFSET(reg) \ |
2319 | (offsetof(DNBArchMachARM64::EXC, reg) + \ |
2320 | offsetof(DNBArchMachARM64::Context, exc)) |
2321 | #define SVE_OFFSET_Z_IDX(idx) \ |
2322 | (offsetof(DNBArchMachARM64::SVE, z[idx]) + \ |
2323 | offsetof(DNBArchMachARM64::Context, sve)) |
2324 | #define SVE_OFFSET_P_IDX(idx) \ |
2325 | (offsetof(DNBArchMachARM64::SVE, p[idx]) + \ |
2326 | offsetof(DNBArchMachARM64::Context, sve)) |
2327 | #define SME_OFFSET(reg) \ |
2328 | (offsetof(DNBArchMachARM64::SME, reg) + \ |
2329 | offsetof(DNBArchMachARM64::Context, sme)) |
2330 | |
2331 | //_STRUCT_ARM_EXCEPTION_STATE64 |
2332 | //{ |
2333 | // uint64_t far; /* Virtual Fault Address */ |
2334 | // uint32_t esr; /* Exception syndrome */ |
2335 | // uint32_t exception; /* number of arm exception taken */ |
2336 | //}; |
2337 | |
2338 | // Exception registers |
2339 | const DNBRegisterInfo DNBArchMachARM64::g_exc_registers[] = { |
2340 | {e_regSetEXC, exc_far, "far" , NULL, Uint, Hex, 8, EXC_OFFSET(__far), |
2341 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2342 | INVALID_NUB_REGNUM, NULL, NULL}, |
2343 | {e_regSetEXC, exc_esr, "esr" , NULL, Uint, Hex, 4, EXC_OFFSET(__esr), |
2344 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2345 | INVALID_NUB_REGNUM, NULL, NULL}, |
2346 | {e_regSetEXC, exc_exception, "exception" , NULL, Uint, Hex, 4, |
2347 | EXC_OFFSET(__exception), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2348 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}}; |
2349 | |
2350 | // Number of registers in each register set |
2351 | const size_t DNBArchMachARM64::k_num_gpr_registers = |
2352 | sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo); |
2353 | const size_t DNBArchMachARM64::k_num_exc_registers = |
2354 | sizeof(g_exc_registers) / sizeof(DNBRegisterInfo); |
2355 | |
2356 | static std::vector<DNBRegisterInfo> g_sve_registers; |
2357 | static void initialize_sve_registers() { |
2358 | static const char *g_z_regnames[32] = { |
2359 | "z0" , "z1" , "z2" , "z3" , "z4" , "z5" , "z6" , "z7" , |
2360 | "z8" , "z9" , "z10" , "z11" , "z12" , "z13" , "z14" , "z15" , |
2361 | "z16" , "z17" , "z18" , "z19" , "z20" , "z21" , "z22" , "z23" , |
2362 | "z24" , "z25" , "z26" , "z27" , "z28" , "z29" , "z30" , "z31" }; |
2363 | static const char *g_p_regnames[16] = { |
2364 | "p0" , "p1" , "p2" , "p3" , "p4" , "p5" , "p6" , "p7" , |
2365 | "p8" , "p9" , "p10" , "p11" , "p12" , "p13" , "p14" , "p15" }; |
2366 | |
2367 | if (DNBArchMachARM64::CPUHasSME()) { |
2368 | uint32_t svl_bytes = DNBArchMachARM64::GetSMEMaxSVL(); |
2369 | for (uint32_t i = 0; i < 32; i++) { |
2370 | g_sve_registers.push_back( |
2371 | {DNBArchMachARM64::e_regSetSVE, (uint32_t)sve_z0 + i, g_z_regnames[i], |
2372 | NULL, Vector, VectorOfUInt8, svl_bytes, |
2373 | static_cast<uint32_t>(SVE_OFFSET_Z_IDX(i)), INVALID_NUB_REGNUM, |
2374 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2375 | (uint32_t)debugserver_sve_z0 + i, NULL, g_invalidate_z[i]}); |
2376 | } |
2377 | for (uint32_t i = 0; i < 16; i++) { |
2378 | g_sve_registers.push_back( |
2379 | {DNBArchMachARM64::e_regSetSVE, (uint32_t)sve_p0 + i, g_p_regnames[i], |
2380 | NULL, Vector, VectorOfUInt8, svl_bytes / 8, |
2381 | (uint32_t)SVE_OFFSET_P_IDX(i), INVALID_NUB_REGNUM, |
2382 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2383 | (uint32_t)debugserver_sve_p0 + i, NULL, NULL}); |
2384 | } |
2385 | } |
2386 | } |
2387 | |
2388 | static std::vector<DNBRegisterInfo> g_vfp_registers; |
2389 | static void initialize_vfp_registers() { |
2390 | static const char *g_v_regnames[32] = { |
2391 | "v0" , "v1" , "v2" , "v3" , "v4" , "v5" , "v6" , "v7" , |
2392 | "v8" , "v9" , "v10" , "v11" , "v12" , "v13" , "v14" , "v15" , |
2393 | "v16" , "v17" , "v18" , "v19" , "v20" , "v21" , "v22" , "v23" , |
2394 | "v24" , "v25" , "v26" , "v27" , "v28" , "v29" , "v30" , "v31" }; |
2395 | static const char *g_q_regnames[32] = { |
2396 | "q0" , "q1" , "q2" , "q3" , "q4" , "q5" , "q6" , "q7" , |
2397 | "q8" , "q9" , "q10" , "q11" , "q12" , "q13" , "q14" , "q15" , |
2398 | "q16" , "q17" , "q18" , "q19" , "q20" , "q21" , "q22" , "q23" , |
2399 | "q24" , "q25" , "q26" , "q27" , "q28" , "q29" , "q30" , "q31" }; |
2400 | |
2401 | static const char *g_d_regnames[32] = { |
2402 | "d0" , "d1" , "d2" , "d3" , "d4" , "d5" , "d6" , "d7" , |
2403 | "d8" , "d9" , "d10" , "d11" , "d12" , "d13" , "d14" , "d15" , |
2404 | "d16" , "d17" , "d18" , "d19" , "d20" , "d21" , "d22" , "d23" , |
2405 | "d24" , "d25" , "d26" , "d27" , "d28" , "d29" , "d30" , "d31" }; |
2406 | |
2407 | static const char *g_s_regnames[32] = { |
2408 | "s0" , "s1" , "s2" , "s3" , "s4" , "s5" , "s6" , "s7" , |
2409 | "s8" , "s9" , "s10" , "s11" , "s12" , "s13" , "s14" , "s15" , |
2410 | "s16" , "s17" , "s18" , "s19" , "s20" , "s21" , "s22" , "s23" , |
2411 | "s24" , "s25" , "s26" , "s27" , "s28" , "s29" , "s30" , "s31" }; |
2412 | |
2413 | for (uint32_t i = 0; i < 32; i++) |
2414 | if (DNBArchMachARM64::CPUHasSME()) |
2415 | g_vfp_registers.push_back( |
2416 | {DNBArchMachARM64::e_regSetVFP, (uint32_t)vfp_v0 + i, g_v_regnames[i], |
2417 | g_q_regnames[i], Vector, VectorOfUInt8, 16, |
2418 | static_cast<uint32_t>(VFP_V_OFFSET_IDX(i)), INVALID_NUB_REGNUM, |
2419 | (uint32_t)dwarf_v0 + i, INVALID_NUB_REGNUM, |
2420 | (uint32_t)debugserver_vfp_v0 + i, NULL, g_invalidate_z[i]}); |
2421 | else |
2422 | g_vfp_registers.push_back( |
2423 | {DNBArchMachARM64::e_regSetVFP, (uint32_t)vfp_v0 + i, g_v_regnames[i], |
2424 | g_q_regnames[i], Vector, VectorOfUInt8, 16, |
2425 | static_cast<uint32_t>(VFP_V_OFFSET_IDX(i)), INVALID_NUB_REGNUM, |
2426 | (uint32_t)dwarf_v0 + i, INVALID_NUB_REGNUM, |
2427 | (uint32_t)debugserver_vfp_v0 + i, NULL, g_invalidate_v[i]}); |
2428 | |
2429 | g_vfp_registers.push_back( |
2430 | {DNBArchMachARM64::e_regSetVFP, vfp_fpsr, "fpsr" , NULL, Uint, Hex, 4, |
2431 | VFP_V_OFFSET_IDX(32) + 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2432 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}); |
2433 | g_vfp_registers.push_back( |
2434 | {DNBArchMachARM64::e_regSetVFP, vfp_fpcr, "fpcr" , NULL, Uint, Hex, 4, |
2435 | VFP_V_OFFSET_IDX(32) + 4, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2436 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}); |
2437 | |
2438 | for (uint32_t i = 0; i < 32; i++) |
2439 | if (DNBArchMachARM64::CPUHasSME()) |
2440 | g_vfp_registers.push_back( |
2441 | {DNBArchMachARM64::e_regSetVFP, (uint32_t)vfp_d0 + i, g_d_regnames[i], |
2442 | NULL, IEEE754, Float, 8, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2443 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, g_invalidate_z[i]}); |
2444 | else |
2445 | g_vfp_registers.push_back( |
2446 | {DNBArchMachARM64::e_regSetVFP, (uint32_t)vfp_d0 + i, g_d_regnames[i], |
2447 | NULL, IEEE754, Float, 8, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2448 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, g_invalidate_v[i]}); |
2449 | |
2450 | for (uint32_t i = 0; i < 32; i++) |
2451 | if (DNBArchMachARM64::CPUHasSME()) |
2452 | g_vfp_registers.push_back( |
2453 | {DNBArchMachARM64::e_regSetVFP, (uint32_t)vfp_s0 + i, g_s_regnames[i], |
2454 | NULL, IEEE754, Float, 4, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2455 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, g_invalidate_z[i]}); |
2456 | else |
2457 | g_vfp_registers.push_back( |
2458 | {DNBArchMachARM64::e_regSetVFP, (uint32_t)vfp_s0 + i, g_s_regnames[i], |
2459 | NULL, IEEE754, Float, 4, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2460 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, g_invalidate_v[i]}); |
2461 | } |
2462 | |
2463 | static std::once_flag g_vfp_once; |
2464 | DNBRegisterInfo * |
2465 | DNBArchMachARM64::get_vfp_registerinfo(size_t &num_vfp_registers) { |
2466 | std::call_once(g_vfp_once, []() { initialize_vfp_registers(); }); |
2467 | num_vfp_registers = g_vfp_registers.size(); |
2468 | if (num_vfp_registers > 0) |
2469 | return g_vfp_registers.data(); |
2470 | else |
2471 | return nullptr; |
2472 | } |
2473 | |
2474 | static std::once_flag g_sve_once; |
2475 | DNBRegisterInfo * |
2476 | DNBArchMachARM64::get_sve_registerinfo(size_t &num_sve_registers) { |
2477 | std::call_once(g_sve_once, []() { initialize_sve_registers(); }); |
2478 | num_sve_registers = g_sve_registers.size(); |
2479 | if (num_sve_registers > 0) |
2480 | return g_sve_registers.data(); |
2481 | else |
2482 | return nullptr; |
2483 | } |
2484 | |
2485 | static std::vector<DNBRegisterInfo> g_sme_registers; |
2486 | static void initialize_sme_registers() { |
2487 | if (DNBArchMachARM64::CPUHasSME()) { |
2488 | uint32_t svl_bytes = DNBArchMachARM64::GetSMEMaxSVL(); |
2489 | g_sme_registers.push_back( |
2490 | {DNBArchMachARM64::e_regSetSME, sme_svcr, "svcr" , NULL, Uint, Hex, 8, |
2491 | SME_OFFSET(svcr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2492 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}); |
2493 | g_sme_registers.push_back( |
2494 | {DNBArchMachARM64::e_regSetSME, sme_tpidr2, "tpidr2" , NULL, Uint, Hex, |
2495 | 8, SME_OFFSET(tpidr2), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2496 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}); |
2497 | g_sme_registers.push_back( |
2498 | {DNBArchMachARM64::e_regSetSME, sme_svl_b, "svl" , NULL, Uint, Hex, 2, |
2499 | SME_OFFSET(svl_b), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2500 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}); |
2501 | uint32_t za_max_size = svl_bytes * svl_bytes; |
2502 | g_sme_registers.push_back({DNBArchMachARM64::e_regSetSME, sme_za, "za" , |
2503 | NULL, Vector, VectorOfUInt8, za_max_size, |
2504 | SME_OFFSET(za), INVALID_NUB_REGNUM, |
2505 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2506 | INVALID_NUB_REGNUM, NULL, NULL}); |
2507 | } |
2508 | if (DNBArchMachARM64::CPUHasSME2()) { |
2509 | g_sme_registers.push_back({DNBArchMachARM64::e_regSetSME, sme_zt0, "zt0" , |
2510 | NULL, Vector, VectorOfUInt8, 64, SME_OFFSET(zt0), |
2511 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
2512 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, |
2513 | NULL}); |
2514 | } |
2515 | } |
2516 | |
2517 | static std::once_flag g_sme_once; |
2518 | DNBRegisterInfo * |
2519 | DNBArchMachARM64::get_sme_registerinfo(size_t &num_sme_registers) { |
2520 | std::call_once(g_sme_once, []() { initialize_sme_registers(); }); |
2521 | num_sme_registers = g_sme_registers.size(); |
2522 | if (num_sme_registers > 0) |
2523 | return g_sme_registers.data(); |
2524 | else |
2525 | return nullptr; |
2526 | } |
2527 | |
2528 | static std::vector<DNBRegisterSetInfo> g_reg_sets; |
2529 | void DNBArchMachARM64::initialize_reg_sets() { |
2530 | nub_size_t num_all_registers = DNBArchMachARM64::k_num_gpr_registers + |
2531 | DNBArchMachARM64::k_num_exc_registers; |
2532 | size_t num_vfp_registers = 0; |
2533 | DNBRegisterInfo *vfp_reginfos = |
2534 | DNBArchMachARM64::get_vfp_registerinfo(num_vfp_registers); |
2535 | size_t num_sve_registers = 0; |
2536 | DNBRegisterInfo *sve_reginfos = |
2537 | DNBArchMachARM64::get_sve_registerinfo(num_sve_registers); |
2538 | size_t num_sme_registers = 0; |
2539 | DNBRegisterInfo *sme_reginfos = |
2540 | DNBArchMachARM64::get_sme_registerinfo(num_sme_registers); |
2541 | num_all_registers += |
2542 | num_vfp_registers + num_sve_registers + num_sme_registers; |
2543 | g_reg_sets.push_back({"ARM64 Registers" , NULL, num_all_registers}); |
2544 | g_reg_sets.push_back({"General Purpose Registers" , |
2545 | DNBArchMachARM64::g_gpr_registers, |
2546 | DNBArchMachARM64::k_num_gpr_registers}); |
2547 | g_reg_sets.push_back( |
2548 | {"Floating Point Registers" , vfp_reginfos, num_vfp_registers}); |
2549 | g_reg_sets.push_back({"Exception State Registers" , |
2550 | DNBArchMachARM64::g_exc_registers, |
2551 | DNBArchMachARM64::k_num_exc_registers}); |
2552 | if (DNBArchMachARM64::CPUHasSME()) { |
2553 | g_reg_sets.push_back({"Scalable Vector Extension Registers" , sve_reginfos, |
2554 | num_sve_registers}); |
2555 | g_reg_sets.push_back({"Scalable Matrix Extension Registers" , sme_reginfos, |
2556 | num_sme_registers}); |
2557 | } |
2558 | } |
2559 | |
2560 | static std::once_flag g_initialize_register_set_info; |
2561 | const DNBRegisterSetInfo * |
2562 | DNBArchMachARM64::GetRegisterSetInfo(nub_size_t *num_reg_sets) { |
2563 | std::call_once(g_initialize_register_set_info, |
2564 | []() { initialize_reg_sets(); }); |
2565 | *num_reg_sets = g_reg_sets.size(); |
2566 | return g_reg_sets.data(); |
2567 | } |
2568 | |
2569 | bool DNBArchMachARM64::FixGenericRegisterNumber(uint32_t &set, uint32_t ®) { |
2570 | if (set == REGISTER_SET_GENERIC) { |
2571 | switch (reg) { |
2572 | case GENERIC_REGNUM_PC: // Program Counter |
2573 | set = e_regSetGPR; |
2574 | reg = gpr_pc; |
2575 | break; |
2576 | |
2577 | case GENERIC_REGNUM_SP: // Stack Pointer |
2578 | set = e_regSetGPR; |
2579 | reg = gpr_sp; |
2580 | break; |
2581 | |
2582 | case GENERIC_REGNUM_FP: // Frame Pointer |
2583 | set = e_regSetGPR; |
2584 | reg = gpr_fp; |
2585 | break; |
2586 | |
2587 | case GENERIC_REGNUM_RA: // Return Address |
2588 | set = e_regSetGPR; |
2589 | reg = gpr_lr; |
2590 | break; |
2591 | |
2592 | case GENERIC_REGNUM_FLAGS: // Processor flags register |
2593 | set = e_regSetGPR; |
2594 | reg = gpr_cpsr; |
2595 | break; |
2596 | |
2597 | case GENERIC_REGNUM_ARG1: |
2598 | case GENERIC_REGNUM_ARG2: |
2599 | case GENERIC_REGNUM_ARG3: |
2600 | case GENERIC_REGNUM_ARG4: |
2601 | case GENERIC_REGNUM_ARG5: |
2602 | case GENERIC_REGNUM_ARG6: |
2603 | set = e_regSetGPR; |
2604 | reg = gpr_x0 + reg - GENERIC_REGNUM_ARG1; |
2605 | break; |
2606 | |
2607 | default: |
2608 | return false; |
2609 | } |
2610 | } |
2611 | return true; |
2612 | } |
2613 | bool DNBArchMachARM64::GetRegisterValue(uint32_t set, uint32_t reg, |
2614 | DNBRegisterValue *value) { |
2615 | if (!FixGenericRegisterNumber(set, reg)) |
2616 | return false; |
2617 | |
2618 | if (GetRegisterState(set, false) != KERN_SUCCESS) |
2619 | return false; |
2620 | |
2621 | const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); |
2622 | if (regInfo) { |
2623 | uint16_t max_svl_bytes = GetSMEMaxSVL(); |
2624 | value->info = *regInfo; |
2625 | switch (set) { |
2626 | case e_regSetGPR: |
2627 | if (reg <= gpr_pc) { |
2628 | switch (reg) { |
2629 | #if defined(DEBUGSERVER_IS_ARM64E) |
2630 | case gpr_pc: |
2631 | value->value.uint64 = clear_pac_bits( |
2632 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
2633 | break; |
2634 | case gpr_lr: |
2635 | value->value.uint64 = arm_thread_state64_get_lr(m_state.context.gpr); |
2636 | break; |
2637 | case gpr_sp: |
2638 | value->value.uint64 = clear_pac_bits( |
2639 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp)); |
2640 | break; |
2641 | case gpr_fp: |
2642 | value->value.uint64 = clear_pac_bits( |
2643 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_fp)); |
2644 | break; |
2645 | #else |
2646 | case gpr_pc: |
2647 | value->value.uint64 = clear_pac_bits(m_state.context.gpr.__pc); |
2648 | break; |
2649 | case gpr_lr: |
2650 | value->value.uint64 = clear_pac_bits(m_state.context.gpr.__lr); |
2651 | break; |
2652 | case gpr_sp: |
2653 | value->value.uint64 = clear_pac_bits(m_state.context.gpr.__sp); |
2654 | break; |
2655 | case gpr_fp: |
2656 | value->value.uint64 = clear_pac_bits(m_state.context.gpr.__fp); |
2657 | break; |
2658 | #endif |
2659 | default: |
2660 | value->value.uint64 = m_state.context.gpr.__x[reg]; |
2661 | } |
2662 | return true; |
2663 | } else if (reg == gpr_cpsr) { |
2664 | value->value.uint32 = m_state.context.gpr.__cpsr; |
2665 | return true; |
2666 | } |
2667 | break; |
2668 | |
2669 | case e_regSetVFP: |
2670 | |
2671 | if (reg >= vfp_v0 && reg <= vfp_v31) { |
2672 | #if defined(__arm64__) || defined(__aarch64__) |
2673 | memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_v0], |
2674 | 16); |
2675 | #else |
2676 | memcpy(&value->value.v_uint8, |
2677 | ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16), |
2678 | 16); |
2679 | #endif |
2680 | return true; |
2681 | } else if (reg == vfp_fpsr) { |
2682 | #if defined(__arm64__) || defined(__aarch64__) |
2683 | memcpy(&value->value.uint32, &m_state.context.vfp.__fpsr, 4); |
2684 | #else |
2685 | memcpy(&value->value.uint32, |
2686 | ((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0, 4); |
2687 | #endif |
2688 | return true; |
2689 | } else if (reg == vfp_fpcr) { |
2690 | #if defined(__arm64__) || defined(__aarch64__) |
2691 | memcpy(&value->value.uint32, &m_state.context.vfp.__fpcr, 4); |
2692 | #else |
2693 | memcpy(&value->value.uint32, |
2694 | ((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 4, 4); |
2695 | #endif |
2696 | return true; |
2697 | } else if (reg >= vfp_s0 && reg <= vfp_s31) { |
2698 | #if defined(__arm64__) || defined(__aarch64__) |
2699 | memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_s0], |
2700 | 4); |
2701 | #else |
2702 | memcpy(&value->value.v_uint8, |
2703 | ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16), |
2704 | 4); |
2705 | #endif |
2706 | return true; |
2707 | } else if (reg >= vfp_d0 && reg <= vfp_d31) { |
2708 | #if defined(__arm64__) || defined(__aarch64__) |
2709 | memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_d0], |
2710 | 8); |
2711 | #else |
2712 | memcpy(&value->value.v_uint8, |
2713 | ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16), |
2714 | 8); |
2715 | #endif |
2716 | return true; |
2717 | } |
2718 | break; |
2719 | |
2720 | case e_regSetSVE: |
2721 | if (GetRegisterState(e_regSetSVE, false) != KERN_SUCCESS) |
2722 | return false; |
2723 | |
2724 | if (reg >= sve_z0 && reg <= sve_z31) { |
2725 | memset(&value->value.v_uint8, 0, max_svl_bytes); |
2726 | memcpy(&value->value.v_uint8, &m_state.context.sve.z[reg - sve_z0], |
2727 | max_svl_bytes); |
2728 | return true; |
2729 | } else if (reg >= sve_p0 && reg <= sve_p15) { |
2730 | memset(&value->value.v_uint8, 0, max_svl_bytes / 8); |
2731 | memcpy(&value->value.v_uint8, &m_state.context.sve.p[reg - sve_p0], |
2732 | max_svl_bytes / 8); |
2733 | return true; |
2734 | } |
2735 | break; |
2736 | |
2737 | case e_regSetSME: |
2738 | if (GetRegisterState(e_regSetSME, false) != KERN_SUCCESS) |
2739 | return false; |
2740 | |
2741 | if (reg == sme_svcr) { |
2742 | value->value.uint64 = m_state.context.sme.svcr; |
2743 | return true; |
2744 | } else if (reg == sme_tpidr2) { |
2745 | value->value.uint64 = m_state.context.sme.tpidr2; |
2746 | return true; |
2747 | } else if (reg == sme_svl_b) { |
2748 | value->value.uint64 = m_state.context.sme.svl_b; |
2749 | return true; |
2750 | } else if (reg == sme_za) { |
2751 | memcpy(&value->value.v_uint8, m_state.context.sme.za.data(), |
2752 | max_svl_bytes * max_svl_bytes); |
2753 | return true; |
2754 | } else if (reg == sme_zt0) { |
2755 | memcpy(&value->value.v_uint8, &m_state.context.sme.zt0, 64); |
2756 | return true; |
2757 | } |
2758 | break; |
2759 | |
2760 | case e_regSetEXC: |
2761 | if (reg == exc_far) { |
2762 | value->value.uint64 = m_state.context.exc.__far; |
2763 | return true; |
2764 | } else if (reg == exc_esr) { |
2765 | value->value.uint32 = m_state.context.exc.__esr; |
2766 | return true; |
2767 | } else if (reg == exc_exception) { |
2768 | value->value.uint32 = m_state.context.exc.__exception; |
2769 | return true; |
2770 | } |
2771 | break; |
2772 | } |
2773 | } |
2774 | return false; |
2775 | } |
2776 | |
2777 | bool DNBArchMachARM64::SetRegisterValue(uint32_t set, uint32_t reg, |
2778 | const DNBRegisterValue *value) { |
2779 | if (!FixGenericRegisterNumber(set, reg)) |
2780 | return false; |
2781 | |
2782 | if (GetRegisterState(set, false) != KERN_SUCCESS) |
2783 | return false; |
2784 | |
2785 | bool success = false; |
2786 | const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); |
2787 | if (regInfo) { |
2788 | switch (set) { |
2789 | case e_regSetGPR: |
2790 | if (reg <= gpr_pc) { |
2791 | #if defined(__LP64__) |
2792 | uint64_t signed_value = value->value.uint64; |
2793 | #if __has_feature(ptrauth_calls) |
2794 | // The incoming value could be garbage. Strip it to avoid |
2795 | // trapping when it gets resigned in the thread state. |
2796 | signed_value = (uint64_t) ptrauth_strip((void*) signed_value, ptrauth_key_function_pointer); |
2797 | signed_value = (uint64_t) ptrauth_sign_unauthenticated((void*) signed_value, ptrauth_key_function_pointer, 0); |
2798 | #endif |
2799 | if (reg == gpr_pc) |
2800 | arm_thread_state64_set_pc_fptr (m_state.context.gpr, (void*) signed_value); |
2801 | else if (reg == gpr_lr) |
2802 | arm_thread_state64_set_lr_fptr (m_state.context.gpr, (void*) signed_value); |
2803 | else if (reg == gpr_sp) |
2804 | arm_thread_state64_set_sp (m_state.context.gpr, value->value.uint64); |
2805 | else if (reg == gpr_fp) |
2806 | arm_thread_state64_set_fp (m_state.context.gpr, value->value.uint64); |
2807 | else |
2808 | m_state.context.gpr.__x[reg] = value->value.uint64; |
2809 | #else |
2810 | m_state.context.gpr.__x[reg] = value->value.uint64; |
2811 | #endif |
2812 | success = true; |
2813 | } else if (reg == gpr_cpsr) { |
2814 | m_state.context.gpr.__cpsr = value->value.uint32; |
2815 | success = true; |
2816 | } |
2817 | break; |
2818 | |
2819 | case e_regSetVFP: |
2820 | if (reg >= vfp_v0 && reg <= vfp_v31) { |
2821 | #if defined(__arm64__) || defined(__aarch64__) |
2822 | memcpy(&m_state.context.vfp.__v[reg - vfp_v0], &value->value.v_uint8, |
2823 | 16); |
2824 | #else |
2825 | memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16), |
2826 | &value->value.v_uint8, 16); |
2827 | #endif |
2828 | success = true; |
2829 | } else if (reg == vfp_fpsr) { |
2830 | #if defined(__arm64__) || defined(__aarch64__) |
2831 | memcpy(&m_state.context.vfp.__fpsr, &value->value.uint32, 4); |
2832 | #else |
2833 | memcpy(((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0, |
2834 | &value->value.uint32, 4); |
2835 | #endif |
2836 | success = true; |
2837 | } else if (reg == vfp_fpcr) { |
2838 | #if defined(__arm64__) || defined(__aarch64__) |
2839 | memcpy(&m_state.context.vfp.__fpcr, &value->value.uint32, 4); |
2840 | #else |
2841 | memcpy(((uint8_t *)m_state.context.vfp.opaque) + (32 * 16) + 4, |
2842 | &value->value.uint32, 4); |
2843 | #endif |
2844 | success = true; |
2845 | } else if (reg >= vfp_s0 && reg <= vfp_s31) { |
2846 | #if defined(__arm64__) || defined(__aarch64__) |
2847 | memcpy(&m_state.context.vfp.__v[reg - vfp_s0], &value->value.v_uint8, |
2848 | 4); |
2849 | #else |
2850 | memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16), |
2851 | &value->value.v_uint8, 4); |
2852 | #endif |
2853 | success = true; |
2854 | } else if (reg >= vfp_d0 && reg <= vfp_d31) { |
2855 | #if defined(__arm64__) || defined(__aarch64__) |
2856 | memcpy(&m_state.context.vfp.__v[reg - vfp_d0], &value->value.v_uint8, |
2857 | 8); |
2858 | #else |
2859 | memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16), |
2860 | &value->value.v_uint8, 8); |
2861 | #endif |
2862 | success = true; |
2863 | } |
2864 | break; |
2865 | |
2866 | case e_regSetSVE: |
2867 | if (reg >= sve_z0 && reg <= sve_z31) { |
2868 | uint16_t max_svl_bytes = GetSMEMaxSVL(); |
2869 | memcpy(&m_state.context.sve.z[reg - sve_z0], &value->value.v_uint8, |
2870 | max_svl_bytes); |
2871 | success = true; |
2872 | } |
2873 | if (reg >= sve_p0 && reg <= sve_p15) { |
2874 | uint16_t max_svl_bytes = GetSMEMaxSVL(); |
2875 | memcpy(&m_state.context.sve.p[reg - sve_p0], &value->value.v_uint8, |
2876 | max_svl_bytes / 8); |
2877 | success = true; |
2878 | } |
2879 | break; |
2880 | |
2881 | case e_regSetSME: |
2882 | // Cannot change ARM_SME_STATE registers with thread_set_state |
2883 | if (reg == sme_svcr || reg == sme_tpidr2 || reg == sme_svl_b) |
2884 | return false; |
2885 | if (reg == sme_za) { |
2886 | uint16_t max_svl_bytes = GetSMEMaxSVL(); |
2887 | memcpy(m_state.context.sme.za.data(), &value->value.v_uint8, |
2888 | max_svl_bytes * max_svl_bytes); |
2889 | success = true; |
2890 | } |
2891 | if (reg == sme_zt0) { |
2892 | memcpy(&m_state.context.sme.zt0, &value->value.v_uint8, 64); |
2893 | success = true; |
2894 | } |
2895 | break; |
2896 | |
2897 | case e_regSetEXC: |
2898 | if (reg == exc_far) { |
2899 | m_state.context.exc.__far = value->value.uint64; |
2900 | success = true; |
2901 | } else if (reg == exc_esr) { |
2902 | m_state.context.exc.__esr = value->value.uint32; |
2903 | success = true; |
2904 | } else if (reg == exc_exception) { |
2905 | m_state.context.exc.__exception = value->value.uint32; |
2906 | success = true; |
2907 | } |
2908 | break; |
2909 | } |
2910 | } |
2911 | if (success) |
2912 | return SetRegisterState(set) == KERN_SUCCESS; |
2913 | return false; |
2914 | } |
2915 | |
2916 | kern_return_t DNBArchMachARM64::GetRegisterState(int set, bool force) { |
2917 | switch (set) { |
2918 | case e_regSetALL: { |
2919 | kern_return_t retval = GetGPRState(force) | GetVFPState(force) | |
2920 | GetEXCState(force) | GetDBGState(force); |
2921 | // If the processor is not in Streaming SVE Mode currently, these |
2922 | // two will fail to read. Don't return that as an error, it will |
2923 | // be the most common case. |
2924 | if (CPUHasSME()) { |
2925 | GetSVEState(force); |
2926 | GetSMEState(force); |
2927 | } |
2928 | return retval; |
2929 | } |
2930 | case e_regSetGPR: |
2931 | return GetGPRState(force); |
2932 | case e_regSetVFP: |
2933 | return GetVFPState(force); |
2934 | case e_regSetSVE: |
2935 | return GetSVEState(force); |
2936 | case e_regSetSME: |
2937 | return GetSMEState(force); |
2938 | case e_regSetEXC: |
2939 | return GetEXCState(force); |
2940 | case e_regSetDBG: |
2941 | return GetDBGState(force); |
2942 | default: |
2943 | break; |
2944 | } |
2945 | return KERN_INVALID_ARGUMENT; |
2946 | } |
2947 | |
2948 | kern_return_t DNBArchMachARM64::SetRegisterState(int set) { |
2949 | // Make sure we have a valid context to set. |
2950 | kern_return_t err = GetRegisterState(set, false); |
2951 | if (err != KERN_SUCCESS) |
2952 | return err; |
2953 | |
2954 | switch (set) { |
2955 | case e_regSetALL: { |
2956 | kern_return_t ret = |
2957 | SetGPRState() | SetVFPState() | SetEXCState() | SetDBGState(false); |
2958 | if (CPUHasSME()) { |
2959 | SetSVEState(); |
2960 | SetSMEState(); |
2961 | } |
2962 | return ret; |
2963 | } |
2964 | case e_regSetGPR: |
2965 | return SetGPRState(); |
2966 | case e_regSetVFP: |
2967 | return SetVFPState(); |
2968 | case e_regSetSVE: |
2969 | return SetSVEState(); |
2970 | case e_regSetSME: |
2971 | return SetSMEState(); |
2972 | case e_regSetEXC: |
2973 | return SetEXCState(); |
2974 | case e_regSetDBG: |
2975 | return SetDBGState(false); |
2976 | default: |
2977 | break; |
2978 | } |
2979 | return KERN_INVALID_ARGUMENT; |
2980 | } |
2981 | |
2982 | bool DNBArchMachARM64::RegisterSetStateIsValid(int set) const { |
2983 | return m_state.RegsAreValid(set); |
2984 | } |
2985 | |
2986 | nub_size_t DNBArchMachARM64::GetRegisterContext(void *buf, nub_size_t buf_len) { |
2987 | nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) + |
2988 | sizeof(m_state.context.exc); |
2989 | const bool cpu_has_sme = CPUHasSME(); |
2990 | if (cpu_has_sme) { |
2991 | size += sizeof(m_state.context.sve); |
2992 | // ZA register is in a std::vector<uint8_t> so we need to add |
2993 | // the sizes of the SME manually. |
2994 | size += ARM_SME_STATE_COUNT * sizeof(uint32_t); |
2995 | size += m_state.context.sme.za.size(); |
2996 | size += ARM_SME2_STATE_COUNT * sizeof(uint32_t); |
2997 | } |
2998 | |
2999 | if (buf && buf_len) { |
3000 | if (size > buf_len) |
3001 | size = buf_len; |
3002 | |
3003 | bool force = false; |
3004 | if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force)) |
3005 | return 0; |
3006 | // Don't error out if SME/SVE fail to read. These can only be read |
3007 | // when the process is in Streaming SVE Mode, so the failure to read |
3008 | // them will be common. |
3009 | if (cpu_has_sme) { |
3010 | GetSVEState(force); |
3011 | GetSMEState(force); |
3012 | } |
3013 | |
3014 | // Copy each struct individually to avoid any padding that might be between |
3015 | // the structs in m_state.context |
3016 | uint8_t *p = (uint8_t *)buf; |
3017 | ::memcpy(p, &m_state.context.gpr, sizeof(m_state.context.gpr)); |
3018 | p += sizeof(m_state.context.gpr); |
3019 | ::memcpy(p, &m_state.context.vfp, sizeof(m_state.context.vfp)); |
3020 | p += sizeof(m_state.context.vfp); |
3021 | if (cpu_has_sme) { |
3022 | ::memcpy(p, &m_state.context.sve, sizeof(m_state.context.sve)); |
3023 | p += sizeof(m_state.context.sve); |
3024 | |
3025 | memcpy(p, &m_state.context.sme.svcr, |
3026 | ARM_SME_STATE_COUNT * sizeof(uint32_t)); |
3027 | p += ARM_SME_STATE_COUNT * sizeof(uint32_t); |
3028 | memcpy(p, m_state.context.sme.za.data(), m_state.context.sme.za.size()); |
3029 | p += m_state.context.sme.za.size(); |
3030 | if (CPUHasSME2()) { |
3031 | memcpy(p, &m_state.context.sme.zt0, |
3032 | ARM_SME2_STATE_COUNT * sizeof(uint32_t)); |
3033 | p += ARM_SME2_STATE_COUNT * sizeof(uint32_t); |
3034 | } |
3035 | } |
3036 | ::memcpy(p, &m_state.context.exc, sizeof(m_state.context.exc)); |
3037 | p += sizeof(m_state.context.exc); |
3038 | |
3039 | size_t bytes_written = p - (uint8_t *)buf; |
3040 | UNUSED_IF_ASSERT_DISABLED(bytes_written); |
3041 | assert(bytes_written == size); |
3042 | } |
3043 | DNBLogThreadedIf( |
3044 | LOG_THREAD, |
3045 | "DNBArchMachARM64::GetRegisterContext (buf = %p, len = %zu) => %zu" , buf, |
3046 | buf_len, size); |
3047 | // Return the size of the register context even if NULL was passed in |
3048 | return size; |
3049 | } |
3050 | |
3051 | nub_size_t DNBArchMachARM64::SetRegisterContext(const void *buf, |
3052 | nub_size_t buf_len) { |
3053 | nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) + |
3054 | sizeof(m_state.context.exc); |
3055 | if (CPUHasSME()) { |
3056 | // m_state.context.za is three status registers, then a std::vector<uint8_t> |
3057 | // for ZA, then zt0, so the size of the data is not statically knowable. |
3058 | nub_size_t sme_size = ARM_SME_STATE_COUNT * sizeof(uint32_t); |
3059 | sme_size += m_state.context.sme.za.size(); |
3060 | sme_size += ARM_SME2_STATE_COUNT * sizeof(uint32_t); |
3061 | |
3062 | size += sizeof(m_state.context.sve) + sme_size; |
3063 | } |
3064 | |
3065 | if (buf == NULL || buf_len == 0) |
3066 | size = 0; |
3067 | |
3068 | if (size) { |
3069 | if (size > buf_len) |
3070 | size = buf_len; |
3071 | |
3072 | // Copy each struct individually to avoid any padding that might be between |
3073 | // the structs in m_state.context |
3074 | uint8_t *p = const_cast<uint8_t*>(reinterpret_cast<const uint8_t *>(buf)); |
3075 | ::memcpy(&m_state.context.gpr, p, sizeof(m_state.context.gpr)); |
3076 | p += sizeof(m_state.context.gpr); |
3077 | ::memcpy(&m_state.context.vfp, p, sizeof(m_state.context.vfp)); |
3078 | p += sizeof(m_state.context.vfp); |
3079 | if (CPUHasSME()) { |
3080 | memcpy(&m_state.context.sve, p, sizeof(m_state.context.sve)); |
3081 | p += sizeof(m_state.context.sve); |
3082 | memcpy(&m_state.context.sme.svcr, p, |
3083 | ARM_SME_STATE_COUNT * sizeof(uint32_t)); |
3084 | p += ARM_SME_STATE_COUNT * sizeof(uint32_t); |
3085 | memcpy(m_state.context.sme.za.data(), p, m_state.context.sme.za.size()); |
3086 | p += m_state.context.sme.za.size(); |
3087 | if (CPUHasSME2()) { |
3088 | memcpy(&m_state.context.sme.zt0, p, |
3089 | ARM_SME2_STATE_COUNT * sizeof(uint32_t)); |
3090 | p += ARM_SME2_STATE_COUNT * sizeof(uint32_t); |
3091 | } |
3092 | } |
3093 | ::memcpy(&m_state.context.exc, p, sizeof(m_state.context.exc)); |
3094 | p += sizeof(m_state.context.exc); |
3095 | |
3096 | size_t bytes_written = p - reinterpret_cast<const uint8_t *>(buf); |
3097 | UNUSED_IF_ASSERT_DISABLED(bytes_written); |
3098 | assert(bytes_written == size); |
3099 | SetGPRState(); |
3100 | SetVFPState(); |
3101 | if (CPUHasSME()) { |
3102 | SetSVEState(); |
3103 | SetSMEState(); |
3104 | } |
3105 | SetEXCState(); |
3106 | } |
3107 | DNBLogThreadedIf( |
3108 | LOG_THREAD, |
3109 | "DNBArchMachARM64::SetRegisterContext (buf = %p, len = %zu) => %zu" , buf, |
3110 | buf_len, size); |
3111 | return size; |
3112 | } |
3113 | |
3114 | uint32_t DNBArchMachARM64::SaveRegisterState() { |
3115 | kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber()); |
3116 | DNBLogThreadedIf( |
3117 | LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u " |
3118 | "(SetGPRState() for stop_count = %u)" , |
3119 | m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount()); |
3120 | |
3121 | // Always re-read the registers because above we call thread_abort_safely(); |
3122 | bool force = true; |
3123 | |
3124 | if ((kret = GetGPRState(force)) != KERN_SUCCESS) { |
3125 | DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () " |
3126 | "error: GPR regs failed to read: %u " , |
3127 | kret); |
3128 | } else if ((kret = GetVFPState(force)) != KERN_SUCCESS) { |
3129 | DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () " |
3130 | "error: %s regs failed to read: %u" , |
3131 | "VFP" , kret); |
3132 | } else { |
3133 | if (CPUHasSME()) { |
3134 | // These can fail when processor is not in streaming SVE mode, |
3135 | // and that failure should be ignored. |
3136 | GetSVEState(force); |
3137 | GetSMEState(force); |
3138 | } |
3139 | const uint32_t save_id = GetNextRegisterStateSaveID(); |
3140 | m_saved_register_states[save_id] = m_state.context; |
3141 | return save_id; |
3142 | } |
3143 | return UINT32_MAX; |
3144 | } |
3145 | |
3146 | bool DNBArchMachARM64::RestoreRegisterState(uint32_t save_id) { |
3147 | SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id); |
3148 | if (pos != m_saved_register_states.end()) { |
3149 | m_state.context.gpr = pos->second.gpr; |
3150 | m_state.context.vfp = pos->second.vfp; |
3151 | kern_return_t kret; |
3152 | bool success = true; |
3153 | if ((kret = SetGPRState()) != KERN_SUCCESS) { |
3154 | DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState " |
3155 | "(save_id = %u) error: GPR regs failed to " |
3156 | "write: %u" , |
3157 | save_id, kret); |
3158 | success = false; |
3159 | } else if ((kret = SetVFPState()) != KERN_SUCCESS) { |
3160 | DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState " |
3161 | "(save_id = %u) error: %s regs failed to " |
3162 | "write: %u" , |
3163 | save_id, "VFP" , kret); |
3164 | success = false; |
3165 | } |
3166 | if (CPUHasSME()) { |
3167 | // These can fail when processor is not in streaming SVE mode, |
3168 | // and that failure should be ignored. |
3169 | SetSVEState(); |
3170 | SetSMEState(); |
3171 | } |
3172 | m_saved_register_states.erase(pos); |
3173 | return success; |
3174 | } |
3175 | return false; |
3176 | } |
3177 | |
3178 | #endif // #if defined (ARM_THREAD_STATE64_COUNT) |
3179 | #endif // #if defined (__arm__) || defined (__arm64__) || defined (__aarch64__) |
3180 | |