| 1 | //===-- DNBArchImplARM64.cpp ------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Created by Greg Clayton on 6/25/07. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) |
| 14 | |
| 15 | #include "MacOSX/arm64/DNBArchImplARM64.h" |
| 16 | |
| 17 | #if defined(ARM_THREAD_STATE64_COUNT) |
| 18 | |
| 19 | #include "DNB.h" |
| 20 | #include "DNBBreakpoint.h" |
| 21 | #include "DNBLog.h" |
| 22 | #include "DNBRegisterInfo.h" |
| 23 | #include "MacOSX/MachProcess.h" |
| 24 | #include "MacOSX/MachThread.h" |
| 25 | |
| 26 | #include <cinttypes> |
| 27 | #include <sys/sysctl.h> |
| 28 | |
| 29 | #undef DEBUGSERVER_IS_ARM64E |
| 30 | #if __has_feature(ptrauth_calls) |
| 31 | #include <ptrauth.h> |
| 32 | #if defined(__LP64__) |
| 33 | #define DEBUGSERVER_IS_ARM64E 1 |
| 34 | #endif |
| 35 | #endif |
| 36 | |
| 37 | // Break only in privileged or user mode |
| 38 | // (PAC bits in the DBGWVRn_EL1 watchpoint control register) |
| 39 | #define S_USER ((uint32_t)(2u << 1)) |
| 40 | |
| 41 | #define BCR_ENABLE ((uint32_t)(1u)) |
| 42 | #define WCR_ENABLE ((uint32_t)(1u)) |
| 43 | |
| 44 | // Watchpoint load/store |
| 45 | // (LSC bits in the DBGWVRn_EL1 watchpoint control register) |
| 46 | #define WCR_LOAD ((uint32_t)(1u << 3)) |
| 47 | #define WCR_STORE ((uint32_t)(1u << 4)) |
| 48 | |
| 49 | // Single instruction step |
| 50 | // (SS bit in the MDSCR_EL1 register) |
| 51 | #define SS_ENABLE ((uint32_t)(1u)) |
| 52 | |
| 53 | static const uint8_t g_arm64_breakpoint_opcode[] = { |
| 54 | 0x00, 0x00, 0x20, 0xD4}; // "brk #0", 0xd4200000 in BE byte order |
| 55 | |
| 56 | // If we need to set one logical watchpoint by using |
| 57 | // two hardware watchpoint registers, the watchpoint |
| 58 | // will be split into a "high" and "low" watchpoint. |
| 59 | // Record both of them in the LoHi array. |
| 60 | |
| 61 | // It's safe to initialize to all 0's since |
| 62 | // hi > lo and therefore LoHi[i] cannot be 0. |
| 63 | static uint32_t LoHi[16] = {0}; |
| 64 | |
| 65 | void DNBArchMachARM64::Initialize() { |
| 66 | DNBArchPluginInfo arch_plugin_info = { |
| 67 | CPU_TYPE_ARM64, DNBArchMachARM64::Create, |
| 68 | DNBArchMachARM64::GetRegisterSetInfo, |
| 69 | DNBArchMachARM64::SoftwareBreakpointOpcode}; |
| 70 | |
| 71 | // Register this arch plug-in with the main protocol class |
| 72 | DNBArchProtocol::RegisterArchPlugin(arch_plugin_info); |
| 73 | |
| 74 | DNBArchPluginInfo arch_plugin_info_32 = { |
| 75 | CPU_TYPE_ARM64_32, DNBArchMachARM64::Create, |
| 76 | DNBArchMachARM64::GetRegisterSetInfo, |
| 77 | DNBArchMachARM64::SoftwareBreakpointOpcode}; |
| 78 | |
| 79 | // Register this arch plug-in with the main protocol class |
| 80 | DNBArchProtocol::RegisterArchPlugin(arch_plugin_info_32); |
| 81 | } |
| 82 | |
| 83 | DNBArchProtocol *DNBArchMachARM64::Create(MachThread *thread) { |
| 84 | DNBArchMachARM64 *obj = new DNBArchMachARM64(thread); |
| 85 | |
| 86 | return obj; |
| 87 | } |
| 88 | |
| 89 | const uint8_t * |
| 90 | DNBArchMachARM64::SoftwareBreakpointOpcode(nub_size_t byte_size) { |
| 91 | return g_arm64_breakpoint_opcode; |
| 92 | } |
| 93 | |
| 94 | uint32_t DNBArchMachARM64::GetCPUType() { return CPU_TYPE_ARM64; } |
| 95 | |
| 96 | static std::once_flag g_cpu_has_sme_once; |
| 97 | bool DNBArchMachARM64::CPUHasSME() { |
| 98 | static bool g_has_sme = false; |
| 99 | std::call_once(g_cpu_has_sme_once, []() { |
| 100 | int ret = 0; |
| 101 | size_t size = sizeof(ret); |
| 102 | if (sysctlbyname("hw.optional.arm.FEAT_SME" , &ret, &size, NULL, 0) != -1) |
| 103 | g_has_sme = ret == 1; |
| 104 | }); |
| 105 | return g_has_sme; |
| 106 | } |
| 107 | |
| 108 | static std::once_flag g_cpu_has_sme2_once; |
| 109 | bool DNBArchMachARM64::CPUHasSME2() { |
| 110 | static bool g_has_sme2 = false; |
| 111 | std::call_once(g_cpu_has_sme2_once, []() { |
| 112 | int ret = 0; |
| 113 | size_t size = sizeof(ret); |
| 114 | if (sysctlbyname("hw.optional.arm.FEAT_SME2" , &ret, &size, NULL, 0) != -1) |
| 115 | g_has_sme2 = ret == 1; |
| 116 | }); |
| 117 | return g_has_sme2; |
| 118 | } |
| 119 | |
| 120 | static std::once_flag g_sme_max_svl_once; |
| 121 | unsigned int DNBArchMachARM64::GetSMEMaxSVL() { |
| 122 | static unsigned int g_sme_max_svl = 0; |
| 123 | std::call_once(g_sme_max_svl_once, []() { |
| 124 | if (CPUHasSME()) { |
| 125 | unsigned int ret = 0; |
| 126 | size_t size = sizeof(ret); |
| 127 | if (sysctlbyname("hw.optional.arm.sme_max_svl_b" , &ret, &size, NULL, 0) != |
| 128 | -1) |
| 129 | g_sme_max_svl = ret; |
| 130 | } |
| 131 | }); |
| 132 | return g_sme_max_svl; |
| 133 | } |
| 134 | |
| 135 | static uint64_t clear_pac_bits(uint64_t value) { |
| 136 | uint32_t addressing_bits = 0; |
| 137 | if (!DNBGetAddressingBits(addressing_bits)) |
| 138 | return value; |
| 139 | |
| 140 | // On arm64_32, no ptrauth bits to clear |
| 141 | #if !defined(__LP64__) |
| 142 | return value; |
| 143 | #endif |
| 144 | |
| 145 | uint64_t mask = ((1ULL << addressing_bits) - 1); |
| 146 | |
| 147 | // Normally PAC bit clearing needs to check b55 and either set the |
| 148 | // non-addressing bits, or clear them. But the register values we |
| 149 | // get from thread_get_state on an arm64e process don't follow this |
| 150 | // convention?, at least when there's been a PAC auth failure in |
| 151 | // the inferior. |
| 152 | // Userland processes are always in low memory, so this |
| 153 | // hardcoding b55 == 0 PAC stripping behavior here. |
| 154 | |
| 155 | return value & mask; // high bits cleared to 0 |
| 156 | } |
| 157 | |
| 158 | uint64_t DNBArchMachARM64::GetPC(uint64_t failValue) { |
| 159 | // Get program counter |
| 160 | if (GetGPRState(false) == KERN_SUCCESS) |
| 161 | #if defined(DEBUGSERVER_IS_ARM64E) |
| 162 | return clear_pac_bits( |
| 163 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
| 164 | #else |
| 165 | return m_state.context.gpr.__pc; |
| 166 | #endif |
| 167 | return failValue; |
| 168 | } |
| 169 | |
| 170 | kern_return_t DNBArchMachARM64::SetPC(uint64_t value) { |
| 171 | // Get program counter |
| 172 | kern_return_t err = GetGPRState(false); |
| 173 | if (err == KERN_SUCCESS) { |
| 174 | #if defined(__LP64__) |
| 175 | #if __has_feature(ptrauth_calls) |
| 176 | // The incoming value could be garbage. Strip it to avoid |
| 177 | // trapping when it gets resigned in the thread state. |
| 178 | value = (uint64_t) ptrauth_strip((void*) value, ptrauth_key_function_pointer); |
| 179 | value = (uint64_t) ptrauth_sign_unauthenticated((void*) value, ptrauth_key_function_pointer, 0); |
| 180 | #endif |
| 181 | arm_thread_state64_set_pc_fptr (m_state.context.gpr, (void*) value); |
| 182 | #else |
| 183 | m_state.context.gpr.__pc = value; |
| 184 | #endif |
| 185 | err = SetGPRState(); |
| 186 | } |
| 187 | return err == KERN_SUCCESS; |
| 188 | } |
| 189 | |
| 190 | uint64_t DNBArchMachARM64::GetSP(uint64_t failValue) { |
| 191 | // Get stack pointer |
| 192 | if (GetGPRState(false) == KERN_SUCCESS) |
| 193 | #if defined(DEBUGSERVER_IS_ARM64E) |
| 194 | return clear_pac_bits( |
| 195 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp)); |
| 196 | #else |
| 197 | return m_state.context.gpr.__sp; |
| 198 | #endif |
| 199 | return failValue; |
| 200 | } |
| 201 | |
| 202 | kern_return_t DNBArchMachARM64::GetGPRState(bool force) { |
| 203 | int set = e_regSetGPR; |
| 204 | // Check if we have valid cached registers |
| 205 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| 206 | return KERN_SUCCESS; |
| 207 | |
| 208 | // Read the registers from our thread |
| 209 | mach_msg_type_number_t count = e_regSetGPRCount; |
| 210 | kern_return_t kret = |
| 211 | ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE64, |
| 212 | (thread_state_t)&m_state.context.gpr, &count); |
| 213 | if (DNBLogEnabledForAny(LOG_THREAD)) { |
| 214 | uint64_t *x = &m_state.context.gpr.__x[0]; |
| 215 | |
| 216 | const char *log_str = "thread_get_state signed regs " |
| 217 | "\n fp=%16.16llx" |
| 218 | "\n lr=%16.16llx" |
| 219 | "\n sp=%16.16llx" |
| 220 | "\n pc=%16.16llx" ; |
| 221 | #if defined(DEBUGSERVER_IS_ARM64E) |
| 222 | DNBLogThreaded(log_str, |
| 223 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_fp), |
| 224 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_lr), |
| 225 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp), |
| 226 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
| 227 | #else |
| 228 | DNBLogThreaded(log_str, m_state.context.gpr.__fp, m_state.context.gpr.__lr, |
| 229 | m_state.context.gpr.__sp, m_state.context.gpr.__pc); |
| 230 | #endif |
| 231 | |
| 232 | #if defined(DEBUGSERVER_IS_ARM64E) |
| 233 | uint64_t log_fp = clear_pac_bits( |
| 234 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_fp)); |
| 235 | uint64_t log_lr = clear_pac_bits( |
| 236 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_lr)); |
| 237 | uint64_t log_sp = clear_pac_bits( |
| 238 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp)); |
| 239 | uint64_t log_pc = clear_pac_bits( |
| 240 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
| 241 | #else |
| 242 | uint64_t log_fp = m_state.context.gpr.__fp; |
| 243 | uint64_t log_lr = m_state.context.gpr.__lr; |
| 244 | uint64_t log_sp = m_state.context.gpr.__sp; |
| 245 | uint64_t log_pc = m_state.context.gpr.__pc; |
| 246 | #endif |
| 247 | DNBLogThreaded( |
| 248 | "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs" |
| 249 | "\n x0=%16.16llx" |
| 250 | "\n x1=%16.16llx" |
| 251 | "\n x2=%16.16llx" |
| 252 | "\n x3=%16.16llx" |
| 253 | "\n x4=%16.16llx" |
| 254 | "\n x5=%16.16llx" |
| 255 | "\n x6=%16.16llx" |
| 256 | "\n x7=%16.16llx" |
| 257 | "\n x8=%16.16llx" |
| 258 | "\n x9=%16.16llx" |
| 259 | "\n x10=%16.16llx" |
| 260 | "\n x11=%16.16llx" |
| 261 | "\n x12=%16.16llx" |
| 262 | "\n x13=%16.16llx" |
| 263 | "\n x14=%16.16llx" |
| 264 | "\n x15=%16.16llx" |
| 265 | "\n x16=%16.16llx" |
| 266 | "\n x17=%16.16llx" |
| 267 | "\n x18=%16.16llx" |
| 268 | "\n x19=%16.16llx" |
| 269 | "\n x20=%16.16llx" |
| 270 | "\n x21=%16.16llx" |
| 271 | "\n x22=%16.16llx" |
| 272 | "\n x23=%16.16llx" |
| 273 | "\n x24=%16.16llx" |
| 274 | "\n x25=%16.16llx" |
| 275 | "\n x26=%16.16llx" |
| 276 | "\n x27=%16.16llx" |
| 277 | "\n x28=%16.16llx" |
| 278 | "\n fp=%16.16llx" |
| 279 | "\n lr=%16.16llx" |
| 280 | "\n sp=%16.16llx" |
| 281 | "\n pc=%16.16llx" |
| 282 | "\n cpsr=%8.8x" , |
| 283 | m_thread->MachPortNumber(), e_regSetGPR, e_regSetGPRCount, kret, count, |
| 284 | x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[0], x[11], |
| 285 | x[12], x[13], x[14], x[15], x[16], x[17], x[18], x[19], x[20], x[21], |
| 286 | x[22], x[23], x[24], x[25], x[26], x[27], x[28], |
| 287 | log_fp, log_lr, log_sp, log_pc, m_state.context.gpr.__cpsr); |
| 288 | } |
| 289 | m_state.SetError(set, Read, kret); |
| 290 | return kret; |
| 291 | } |
| 292 | |
| 293 | kern_return_t DNBArchMachARM64::GetVFPState(bool force) { |
| 294 | int set = e_regSetVFP; |
| 295 | // Check if we have valid cached registers |
| 296 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| 297 | return KERN_SUCCESS; |
| 298 | |
| 299 | // Read the registers from our thread |
| 300 | mach_msg_type_number_t count = e_regSetVFPCount; |
| 301 | kern_return_t kret = |
| 302 | ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE64, |
| 303 | (thread_state_t)&m_state.context.vfp, &count); |
| 304 | if (DNBLogEnabledForAny(LOG_THREAD)) { |
| 305 | #if defined(__arm64__) || defined(__aarch64__) |
| 306 | DNBLogThreaded( |
| 307 | "thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs" |
| 308 | "\n q0 = 0x%16.16llx%16.16llx" |
| 309 | "\n q1 = 0x%16.16llx%16.16llx" |
| 310 | "\n q2 = 0x%16.16llx%16.16llx" |
| 311 | "\n q3 = 0x%16.16llx%16.16llx" |
| 312 | "\n q4 = 0x%16.16llx%16.16llx" |
| 313 | "\n q5 = 0x%16.16llx%16.16llx" |
| 314 | "\n q6 = 0x%16.16llx%16.16llx" |
| 315 | "\n q7 = 0x%16.16llx%16.16llx" |
| 316 | "\n q8 = 0x%16.16llx%16.16llx" |
| 317 | "\n q9 = 0x%16.16llx%16.16llx" |
| 318 | "\n q10 = 0x%16.16llx%16.16llx" |
| 319 | "\n q11 = 0x%16.16llx%16.16llx" |
| 320 | "\n q12 = 0x%16.16llx%16.16llx" |
| 321 | "\n q13 = 0x%16.16llx%16.16llx" |
| 322 | "\n q14 = 0x%16.16llx%16.16llx" |
| 323 | "\n q15 = 0x%16.16llx%16.16llx" |
| 324 | "\n q16 = 0x%16.16llx%16.16llx" |
| 325 | "\n q17 = 0x%16.16llx%16.16llx" |
| 326 | "\n q18 = 0x%16.16llx%16.16llx" |
| 327 | "\n q19 = 0x%16.16llx%16.16llx" |
| 328 | "\n q20 = 0x%16.16llx%16.16llx" |
| 329 | "\n q21 = 0x%16.16llx%16.16llx" |
| 330 | "\n q22 = 0x%16.16llx%16.16llx" |
| 331 | "\n q23 = 0x%16.16llx%16.16llx" |
| 332 | "\n q24 = 0x%16.16llx%16.16llx" |
| 333 | "\n q25 = 0x%16.16llx%16.16llx" |
| 334 | "\n q26 = 0x%16.16llx%16.16llx" |
| 335 | "\n q27 = 0x%16.16llx%16.16llx" |
| 336 | "\n q28 = 0x%16.16llx%16.16llx" |
| 337 | "\n q29 = 0x%16.16llx%16.16llx" |
| 338 | "\n q30 = 0x%16.16llx%16.16llx" |
| 339 | "\n q31 = 0x%16.16llx%16.16llx" |
| 340 | "\n fpsr = 0x%8.8x" |
| 341 | "\n fpcr = 0x%8.8x\n\n" , |
| 342 | m_thread->MachPortNumber(), e_regSetVFP, e_regSetVFPCount, kret, count, |
| 343 | ((uint64_t *)&m_state.context.vfp.__v[0])[0], |
| 344 | ((uint64_t *)&m_state.context.vfp.__v[0])[1], |
| 345 | ((uint64_t *)&m_state.context.vfp.__v[1])[0], |
| 346 | ((uint64_t *)&m_state.context.vfp.__v[1])[1], |
| 347 | ((uint64_t *)&m_state.context.vfp.__v[2])[0], |
| 348 | ((uint64_t *)&m_state.context.vfp.__v[2])[1], |
| 349 | ((uint64_t *)&m_state.context.vfp.__v[3])[0], |
| 350 | ((uint64_t *)&m_state.context.vfp.__v[3])[1], |
| 351 | ((uint64_t *)&m_state.context.vfp.__v[4])[0], |
| 352 | ((uint64_t *)&m_state.context.vfp.__v[4])[1], |
| 353 | ((uint64_t *)&m_state.context.vfp.__v[5])[0], |
| 354 | ((uint64_t *)&m_state.context.vfp.__v[5])[1], |
| 355 | ((uint64_t *)&m_state.context.vfp.__v[6])[0], |
| 356 | ((uint64_t *)&m_state.context.vfp.__v[6])[1], |
| 357 | ((uint64_t *)&m_state.context.vfp.__v[7])[0], |
| 358 | ((uint64_t *)&m_state.context.vfp.__v[7])[1], |
| 359 | ((uint64_t *)&m_state.context.vfp.__v[8])[0], |
| 360 | ((uint64_t *)&m_state.context.vfp.__v[8])[1], |
| 361 | ((uint64_t *)&m_state.context.vfp.__v[9])[0], |
| 362 | ((uint64_t *)&m_state.context.vfp.__v[9])[1], |
| 363 | ((uint64_t *)&m_state.context.vfp.__v[10])[0], |
| 364 | ((uint64_t *)&m_state.context.vfp.__v[10])[1], |
| 365 | ((uint64_t *)&m_state.context.vfp.__v[11])[0], |
| 366 | ((uint64_t *)&m_state.context.vfp.__v[11])[1], |
| 367 | ((uint64_t *)&m_state.context.vfp.__v[12])[0], |
| 368 | ((uint64_t *)&m_state.context.vfp.__v[12])[1], |
| 369 | ((uint64_t *)&m_state.context.vfp.__v[13])[0], |
| 370 | ((uint64_t *)&m_state.context.vfp.__v[13])[1], |
| 371 | ((uint64_t *)&m_state.context.vfp.__v[14])[0], |
| 372 | ((uint64_t *)&m_state.context.vfp.__v[14])[1], |
| 373 | ((uint64_t *)&m_state.context.vfp.__v[15])[0], |
| 374 | ((uint64_t *)&m_state.context.vfp.__v[15])[1], |
| 375 | ((uint64_t *)&m_state.context.vfp.__v[16])[0], |
| 376 | ((uint64_t *)&m_state.context.vfp.__v[16])[1], |
| 377 | ((uint64_t *)&m_state.context.vfp.__v[17])[0], |
| 378 | ((uint64_t *)&m_state.context.vfp.__v[17])[1], |
| 379 | ((uint64_t *)&m_state.context.vfp.__v[18])[0], |
| 380 | ((uint64_t *)&m_state.context.vfp.__v[18])[1], |
| 381 | ((uint64_t *)&m_state.context.vfp.__v[19])[0], |
| 382 | ((uint64_t *)&m_state.context.vfp.__v[19])[1], |
| 383 | ((uint64_t *)&m_state.context.vfp.__v[20])[0], |
| 384 | ((uint64_t *)&m_state.context.vfp.__v[20])[1], |
| 385 | ((uint64_t *)&m_state.context.vfp.__v[21])[0], |
| 386 | ((uint64_t *)&m_state.context.vfp.__v[21])[1], |
| 387 | ((uint64_t *)&m_state.context.vfp.__v[22])[0], |
| 388 | ((uint64_t *)&m_state.context.vfp.__v[22])[1], |
| 389 | ((uint64_t *)&m_state.context.vfp.__v[23])[0], |
| 390 | ((uint64_t *)&m_state.context.vfp.__v[23])[1], |
| 391 | ((uint64_t *)&m_state.context.vfp.__v[24])[0], |
| 392 | ((uint64_t *)&m_state.context.vfp.__v[24])[1], |
| 393 | ((uint64_t *)&m_state.context.vfp.__v[25])[0], |
| 394 | ((uint64_t *)&m_state.context.vfp.__v[25])[1], |
| 395 | ((uint64_t *)&m_state.context.vfp.__v[26])[0], |
| 396 | ((uint64_t *)&m_state.context.vfp.__v[26])[1], |
| 397 | ((uint64_t *)&m_state.context.vfp.__v[27])[0], |
| 398 | ((uint64_t *)&m_state.context.vfp.__v[27])[1], |
| 399 | ((uint64_t *)&m_state.context.vfp.__v[28])[0], |
| 400 | ((uint64_t *)&m_state.context.vfp.__v[28])[1], |
| 401 | ((uint64_t *)&m_state.context.vfp.__v[29])[0], |
| 402 | ((uint64_t *)&m_state.context.vfp.__v[29])[1], |
| 403 | ((uint64_t *)&m_state.context.vfp.__v[30])[0], |
| 404 | ((uint64_t *)&m_state.context.vfp.__v[30])[1], |
| 405 | ((uint64_t *)&m_state.context.vfp.__v[31])[0], |
| 406 | ((uint64_t *)&m_state.context.vfp.__v[31])[1], |
| 407 | m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr); |
| 408 | #endif |
| 409 | } |
| 410 | m_state.SetError(set, Read, kret); |
| 411 | return kret; |
| 412 | } |
| 413 | |
| 414 | kern_return_t DNBArchMachARM64::GetEXCState(bool force) { |
| 415 | int set = e_regSetEXC; |
| 416 | // Check if we have valid cached registers |
| 417 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| 418 | return KERN_SUCCESS; |
| 419 | |
| 420 | // Read the registers from our thread |
| 421 | mach_msg_type_number_t count = e_regSetEXCCount; |
| 422 | kern_return_t kret = |
| 423 | ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64, |
| 424 | (thread_state_t)&m_state.context.exc, &count); |
| 425 | m_state.SetError(set, Read, kret); |
| 426 | return kret; |
| 427 | } |
| 428 | |
| 429 | #if 0 |
| 430 | static void DumpDBGState(const arm_debug_state_t &dbg) { |
| 431 | uint32_t i = 0; |
| 432 | for (i = 0; i < 16; i++) |
| 433 | DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } " |
| 434 | "WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }" , |
| 435 | i, i, dbg.__bvr[i], dbg.__bcr[i], i, i, dbg.__wvr[i], |
| 436 | dbg.__wcr[i]); |
| 437 | } |
| 438 | #endif |
| 439 | |
| 440 | kern_return_t DNBArchMachARM64::GetDBGState(bool force) { |
| 441 | int set = e_regSetDBG; |
| 442 | |
| 443 | // Check if we have valid cached registers |
| 444 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| 445 | return KERN_SUCCESS; |
| 446 | |
| 447 | // Read the registers from our thread |
| 448 | mach_msg_type_number_t count = e_regSetDBGCount; |
| 449 | kern_return_t kret = |
| 450 | ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64, |
| 451 | (thread_state_t)&m_state.dbg, &count); |
| 452 | m_state.SetError(set, Read, kret); |
| 453 | |
| 454 | return kret; |
| 455 | } |
| 456 | |
| 457 | kern_return_t DNBArchMachARM64::GetSVEState(bool force) { |
| 458 | int set = e_regSetSVE; |
| 459 | // Check if we have valid cached registers |
| 460 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| 461 | return KERN_SUCCESS; |
| 462 | |
| 463 | if (!CPUHasSME()) |
| 464 | return KERN_INVALID_ARGUMENT; |
| 465 | |
| 466 | // If the processor is not in Streaming SVE Mode, these thread_get_states |
| 467 | // will fail, and we may return uninitialized data in the register context. |
| 468 | memset(&m_state.context.sve.z[0], 0, |
| 469 | ARM_SVE_Z_STATE_COUNT * sizeof(uint32_t)); |
| 470 | memset(&m_state.context.sve.z[16], 0, |
| 471 | ARM_SVE_Z_STATE_COUNT * sizeof(uint32_t)); |
| 472 | memset(&m_state.context.sve.p[0], 0, |
| 473 | ARM_SVE_P_STATE_COUNT * sizeof(uint32_t)); |
| 474 | |
| 475 | // Read the registers from our thread |
| 476 | mach_msg_type_number_t count = ARM_SVE_Z_STATE_COUNT; |
| 477 | kern_return_t kret = |
| 478 | ::thread_get_state(m_thread->MachPortNumber(), ARM_SVE_Z_STATE1, |
| 479 | (thread_state_t)&m_state.context.sve.z[0], &count); |
| 480 | m_state.SetError(set, Read, kret); |
| 481 | DNBLogThreadedIf(LOG_THREAD, "Read SVE registers z0..z15 return value %d" , |
| 482 | kret); |
| 483 | if (kret != KERN_SUCCESS) |
| 484 | return kret; |
| 485 | |
| 486 | count = ARM_SVE_Z_STATE_COUNT; |
| 487 | kret = thread_get_state(m_thread->MachPortNumber(), ARM_SVE_Z_STATE2, |
| 488 | (thread_state_t)&m_state.context.sve.z[16], &count); |
| 489 | m_state.SetError(set, Read, kret); |
| 490 | DNBLogThreadedIf(LOG_THREAD, "Read SVE registers z16..z31 return value %d" , |
| 491 | kret); |
| 492 | if (kret != KERN_SUCCESS) |
| 493 | return kret; |
| 494 | |
| 495 | count = ARM_SVE_P_STATE_COUNT; |
| 496 | kret = thread_get_state(m_thread->MachPortNumber(), ARM_SVE_P_STATE, |
| 497 | (thread_state_t)&m_state.context.sve.p[0], &count); |
| 498 | m_state.SetError(set, Read, kret); |
| 499 | DNBLogThreadedIf(LOG_THREAD, "Read SVE registers p0..p15 return value %d" , |
| 500 | kret); |
| 501 | |
| 502 | return kret; |
| 503 | } |
| 504 | |
| 505 | kern_return_t DNBArchMachARM64::GetSMEState(bool force) { |
| 506 | int set = e_regSetSME; |
| 507 | // Check if we have valid cached registers |
| 508 | if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| 509 | return KERN_SUCCESS; |
| 510 | |
| 511 | if (!CPUHasSME()) |
| 512 | return KERN_INVALID_ARGUMENT; |
| 513 | |
| 514 | // If the processor is not in Streaming SVE Mode, these thread_get_states |
| 515 | // will fail, and we may return uninitialized data in the register context. |
| 516 | memset(&m_state.context.sme.svcr, 0, ARM_SME_STATE_COUNT * sizeof(uint32_t)); |
| 517 | memset(m_state.context.sme.za.data(), 0, m_state.context.sme.za.size()); |
| 518 | if (CPUHasSME2()) |
| 519 | memset(&m_state.context.sme.zt0, 0, |
| 520 | ARM_SME2_STATE_COUNT * sizeof(uint32_t)); |
| 521 | |
| 522 | // Read the registers from our thread |
| 523 | mach_msg_type_number_t count = ARM_SME_STATE_COUNT; |
| 524 | kern_return_t kret = |
| 525 | ::thread_get_state(m_thread->MachPortNumber(), ARM_SME_STATE, |
| 526 | (thread_state_t)&m_state.context.sme.svcr, &count); |
| 527 | m_state.SetError(set, Read, kret); |
| 528 | DNBLogThreadedIf(LOG_THREAD, "Read ARM_SME_STATE return value %d" , kret); |
| 529 | if (kret != KERN_SUCCESS) |
| 530 | return kret; |
| 531 | |
| 532 | size_t za_size = m_state.context.sme.svl_b * m_state.context.sme.svl_b; |
| 533 | const size_t max_chunk_size = 4096; |
| 534 | int n_chunks; |
| 535 | size_t chunk_size; |
| 536 | if (za_size <= max_chunk_size) { |
| 537 | n_chunks = 1; |
| 538 | chunk_size = za_size; |
| 539 | } else { |
| 540 | n_chunks = za_size / max_chunk_size; |
| 541 | chunk_size = max_chunk_size; |
| 542 | } |
| 543 | for (int i = 0; i < n_chunks; i++) { |
| 544 | count = ARM_SME_ZA_STATE_COUNT; |
| 545 | arm_sme_za_state_t za_state; |
| 546 | kret = thread_get_state(m_thread->MachPortNumber(), ARM_SME_ZA_STATE1 + i, |
| 547 | (thread_state_t)&za_state, &count); |
| 548 | m_state.SetError(set, Read, kret); |
| 549 | DNBLogThreadedIf(LOG_THREAD, "Read ARM_SME_STATE return value %d" , kret); |
| 550 | if (kret != KERN_SUCCESS) |
| 551 | return kret; |
| 552 | memcpy(m_state.context.sme.za.data() + (i * chunk_size), &za_state, |
| 553 | chunk_size); |
| 554 | } |
| 555 | |
| 556 | if (CPUHasSME2()) { |
| 557 | count = ARM_SME2_STATE_COUNT; |
| 558 | kret = thread_get_state(m_thread->MachPortNumber(), ARM_SME2_STATE, |
| 559 | (thread_state_t)&m_state.context.sme.zt0, &count); |
| 560 | m_state.SetError(set, Read, kret); |
| 561 | DNBLogThreadedIf(LOG_THREAD, "Read ARM_SME2_STATE return value %d" , kret); |
| 562 | if (kret != KERN_SUCCESS) |
| 563 | return kret; |
| 564 | } |
| 565 | |
| 566 | return kret; |
| 567 | } |
| 568 | |
| 569 | kern_return_t DNBArchMachARM64::SetGPRState() { |
| 570 | int set = e_regSetGPR; |
| 571 | kern_return_t kret = ::thread_set_state( |
| 572 | m_thread->MachPortNumber(), ARM_THREAD_STATE64, |
| 573 | (thread_state_t)&m_state.context.gpr, e_regSetGPRCount); |
| 574 | m_state.SetError(set, Write, |
| 575 | kret); // Set the current write error for this register set |
| 576 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
| 577 | // state in case registers are read |
| 578 | // back differently |
| 579 | return kret; // Return the error code |
| 580 | } |
| 581 | |
| 582 | kern_return_t DNBArchMachARM64::SetVFPState() { |
| 583 | int set = e_regSetVFP; |
| 584 | kern_return_t kret = ::thread_set_state( |
| 585 | m_thread->MachPortNumber(), ARM_NEON_STATE64, |
| 586 | (thread_state_t)&m_state.context.vfp, e_regSetVFPCount); |
| 587 | m_state.SetError(set, Write, |
| 588 | kret); // Set the current write error for this register set |
| 589 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
| 590 | // state in case registers are read |
| 591 | // back differently |
| 592 | return kret; // Return the error code |
| 593 | } |
| 594 | |
| 595 | kern_return_t DNBArchMachARM64::SetSVEState() { |
| 596 | if (!CPUHasSME()) |
| 597 | return KERN_INVALID_ARGUMENT; |
| 598 | |
| 599 | int set = e_regSetSVE; |
| 600 | kern_return_t kret = thread_set_state( |
| 601 | m_thread->MachPortNumber(), ARM_SVE_Z_STATE1, |
| 602 | (thread_state_t)&m_state.context.sve.z[0], ARM_SVE_Z_STATE_COUNT); |
| 603 | m_state.SetError(set, Write, kret); |
| 604 | DNBLogThreadedIf(LOG_THREAD, "Write ARM_SVE_Z_STATE1 return value %d" , kret); |
| 605 | if (kret != KERN_SUCCESS) |
| 606 | return kret; |
| 607 | |
| 608 | kret = thread_set_state(m_thread->MachPortNumber(), ARM_SVE_Z_STATE2, |
| 609 | (thread_state_t)&m_state.context.sve.z[16], |
| 610 | ARM_SVE_Z_STATE_COUNT); |
| 611 | m_state.SetError(set, Write, kret); |
| 612 | DNBLogThreadedIf(LOG_THREAD, "Write ARM_SVE_Z_STATE2 return value %d" , kret); |
| 613 | if (kret != KERN_SUCCESS) |
| 614 | return kret; |
| 615 | |
| 616 | kret = thread_set_state(m_thread->MachPortNumber(), ARM_SVE_P_STATE, |
| 617 | (thread_state_t)&m_state.context.sve.p[0], |
| 618 | ARM_SVE_P_STATE_COUNT); |
| 619 | m_state.SetError(set, Write, kret); |
| 620 | DNBLogThreadedIf(LOG_THREAD, "Write ARM_SVE_P_STATE return value %d" , kret); |
| 621 | if (kret != KERN_SUCCESS) |
| 622 | return kret; |
| 623 | |
| 624 | return kret; |
| 625 | } |
| 626 | |
| 627 | kern_return_t DNBArchMachARM64::SetSMEState() { |
| 628 | if (!CPUHasSME()) |
| 629 | return KERN_INVALID_ARGUMENT; |
| 630 | kern_return_t kret; |
| 631 | |
| 632 | int set = e_regSetSME; |
| 633 | size_t za_size = m_state.context.sme.svl_b * m_state.context.sme.svl_b; |
| 634 | const size_t max_chunk_size = 4096; |
| 635 | int n_chunks; |
| 636 | size_t chunk_size; |
| 637 | if (za_size <= max_chunk_size) { |
| 638 | n_chunks = 1; |
| 639 | chunk_size = za_size; |
| 640 | } else { |
| 641 | n_chunks = za_size / max_chunk_size; |
| 642 | chunk_size = max_chunk_size; |
| 643 | } |
| 644 | for (int i = 0; i < n_chunks; i++) { |
| 645 | arm_sme_za_state_t za_state; |
| 646 | memcpy(&za_state, m_state.context.sme.za.data() + (i * chunk_size), |
| 647 | chunk_size); |
| 648 | kret = thread_set_state(m_thread->MachPortNumber(), ARM_SME_ZA_STATE1 + i, |
| 649 | (thread_state_t)&za_state, ARM_SME_ZA_STATE_COUNT); |
| 650 | m_state.SetError(set, Write, kret); |
| 651 | DNBLogThreadedIf(LOG_THREAD, "Write ARM_SME_STATE return value %d" , kret); |
| 652 | if (kret != KERN_SUCCESS) |
| 653 | return kret; |
| 654 | } |
| 655 | |
| 656 | if (CPUHasSME2()) { |
| 657 | kret = thread_set_state(m_thread->MachPortNumber(), ARM_SME2_STATE, |
| 658 | (thread_state_t)&m_state.context.sme.zt0, |
| 659 | ARM_SME2_STATE); |
| 660 | m_state.SetError(set, Write, kret); |
| 661 | DNBLogThreadedIf(LOG_THREAD, "Write ARM_SME2_STATE return value %d" , kret); |
| 662 | if (kret != KERN_SUCCESS) |
| 663 | return kret; |
| 664 | } |
| 665 | |
| 666 | return kret; |
| 667 | } |
| 668 | |
| 669 | kern_return_t DNBArchMachARM64::SetEXCState() { |
| 670 | int set = e_regSetEXC; |
| 671 | kern_return_t kret = ::thread_set_state( |
| 672 | m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64, |
| 673 | (thread_state_t)&m_state.context.exc, e_regSetEXCCount); |
| 674 | m_state.SetError(set, Write, |
| 675 | kret); // Set the current write error for this register set |
| 676 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
| 677 | // state in case registers are read |
| 678 | // back differently |
| 679 | return kret; // Return the error code |
| 680 | } |
| 681 | |
| 682 | kern_return_t DNBArchMachARM64::SetDBGState(bool also_set_on_task) { |
| 683 | int set = e_regSetDBG; |
| 684 | kern_return_t kret = |
| 685 | ::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64, |
| 686 | (thread_state_t)&m_state.dbg, e_regSetDBGCount); |
| 687 | if (also_set_on_task) { |
| 688 | kern_return_t task_kret = task_set_state( |
| 689 | m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE64, |
| 690 | (thread_state_t)&m_state.dbg, e_regSetDBGCount); |
| 691 | if (task_kret != KERN_SUCCESS) |
| 692 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::SetDBGState failed " |
| 693 | "to set debug control register state: " |
| 694 | "0x%8.8x." , |
| 695 | task_kret); |
| 696 | } |
| 697 | m_state.SetError(set, Write, |
| 698 | kret); // Set the current write error for this register set |
| 699 | m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
| 700 | // state in case registers are read |
| 701 | // back differently |
| 702 | |
| 703 | return kret; // Return the error code |
| 704 | } |
| 705 | |
| 706 | void DNBArchMachARM64::ThreadWillResume() { |
| 707 | // Do we need to step this thread? If so, let the mach thread tell us so. |
| 708 | if (m_thread->IsStepping()) { |
| 709 | EnableHardwareSingleStep(true); |
| 710 | } |
| 711 | |
| 712 | // Disable the triggered watchpoint temporarily before we resume. |
| 713 | // Plus, we try to enable hardware single step to execute past the instruction |
| 714 | // which triggered our watchpoint. |
| 715 | if (m_watchpoint_did_occur) { |
| 716 | if (m_watchpoint_hw_index >= 0) { |
| 717 | kern_return_t kret = GetDBGState(false); |
| 718 | if (kret == KERN_SUCCESS && |
| 719 | !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) { |
| 720 | // The watchpoint might have been disabled by the user. We don't need |
| 721 | // to do anything at all |
| 722 | // to enable hardware single stepping. |
| 723 | m_watchpoint_did_occur = false; |
| 724 | m_watchpoint_hw_index = -1; |
| 725 | return; |
| 726 | } |
| 727 | |
| 728 | DisableHardwareWatchpoint(m_watchpoint_hw_index, false); |
| 729 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 730 | "DNBArchMachARM64::ThreadWillResume() " |
| 731 | "DisableHardwareWatchpoint(%d) called" , |
| 732 | m_watchpoint_hw_index); |
| 733 | |
| 734 | // Enable hardware single step to move past the watchpoint-triggering |
| 735 | // instruction. |
| 736 | m_watchpoint_resume_single_step_enabled = |
| 737 | (EnableHardwareSingleStep(true) == KERN_SUCCESS); |
| 738 | |
| 739 | // If we are not able to enable single step to move past the |
| 740 | // watchpoint-triggering instruction, |
| 741 | // at least we should reset the two watchpoint member variables so that |
| 742 | // the next time around |
| 743 | // this callback function is invoked, the enclosing logical branch is |
| 744 | // skipped. |
| 745 | if (!m_watchpoint_resume_single_step_enabled) { |
| 746 | // Reset the two watchpoint member variables. |
| 747 | m_watchpoint_did_occur = false; |
| 748 | m_watchpoint_hw_index = -1; |
| 749 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::ThreadWillResume()" |
| 750 | " failed to enable single step" ); |
| 751 | } else |
| 752 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 753 | "DNBArchMachARM64::ThreadWillResume() " |
| 754 | "succeeded to enable single step" ); |
| 755 | } |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | bool DNBArchMachARM64::NotifyException(MachException::Data &exc) { |
| 760 | |
| 761 | switch (exc.exc_type) { |
| 762 | default: |
| 763 | break; |
| 764 | case EXC_BREAKPOINT: |
| 765 | if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG) { |
| 766 | // The data break address is passed as exc_data[1]. |
| 767 | nub_addr_t addr = exc.exc_data[1]; |
| 768 | // Find the hardware index with the side effect of possibly massaging the |
| 769 | // addr to return the starting address as seen from the debugger side. |
| 770 | uint32_t hw_index = GetHardwareWatchpointHit(addr); |
| 771 | |
| 772 | // One logical watchpoint was split into two watchpoint locations because |
| 773 | // it was too big. If the watchpoint exception is indicating the 2nd half |
| 774 | // of the two-parter, find the address of the 1st half and report that -- |
| 775 | // that's what lldb is going to expect to see. |
| 776 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 777 | "DNBArchMachARM64::NotifyException " |
| 778 | "watchpoint %d was hit on address " |
| 779 | "0x%llx" , |
| 780 | hw_index, (uint64_t)addr); |
| 781 | const uint32_t num_watchpoints = NumSupportedHardwareWatchpoints(); |
| 782 | for (uint32_t i = 0; i < num_watchpoints; i++) { |
| 783 | if (LoHi[i] != 0 && LoHi[i] == hw_index && LoHi[i] != i && |
| 784 | GetWatchpointAddressByIndex(i) != INVALID_NUB_ADDRESS) { |
| 785 | addr = GetWatchpointAddressByIndex(i); |
| 786 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 787 | "DNBArchMachARM64::NotifyException " |
| 788 | "It is a linked watchpoint; " |
| 789 | "rewritten to index %d addr 0x%llx" , |
| 790 | LoHi[i], (uint64_t)addr); |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | if (hw_index != INVALID_NUB_HW_INDEX) { |
| 795 | m_watchpoint_did_occur = true; |
| 796 | m_watchpoint_hw_index = hw_index; |
| 797 | exc.exc_data[1] = addr; |
| 798 | // Piggyback the hw_index in the exc.data. |
| 799 | exc.exc_data.push_back(hw_index); |
| 800 | } |
| 801 | |
| 802 | return true; |
| 803 | } |
| 804 | // detect a __builtin_debugtrap instruction pattern ("brk #0xf000") |
| 805 | // and advance the $pc past it, so that the user can continue execution. |
| 806 | // Generally speaking, this knowledge should be centralized in lldb, |
| 807 | // recognizing the builtin_trap instruction and knowing how to advance |
| 808 | // the pc past it, so that continue etc work. |
| 809 | if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_BREAKPOINT) { |
| 810 | nub_addr_t pc = GetPC(INVALID_NUB_ADDRESS); |
| 811 | if (pc != INVALID_NUB_ADDRESS && pc > 0) { |
| 812 | DNBBreakpoint *bp = |
| 813 | m_thread->Process()->Breakpoints().FindByAddress(pc); |
| 814 | if (bp == nullptr) { |
| 815 | uint8_t insnbuf[4]; |
| 816 | if (m_thread->Process()->ReadMemory(pc, 4, insnbuf) == 4) { |
| 817 | uint8_t builtin_debugtrap_insn[4] = {0x00, 0x00, 0x3e, |
| 818 | 0xd4}; // brk #0xf000 |
| 819 | if (memcmp(insnbuf, builtin_debugtrap_insn, 4) == 0) { |
| 820 | SetPC(pc + 4); |
| 821 | } |
| 822 | } |
| 823 | } |
| 824 | } |
| 825 | } |
| 826 | break; |
| 827 | } |
| 828 | return false; |
| 829 | } |
| 830 | |
| 831 | bool DNBArchMachARM64::ThreadDidStop() { |
| 832 | bool success = true; |
| 833 | |
| 834 | m_state.InvalidateAllRegisterStates(); |
| 835 | |
| 836 | if (m_watchpoint_resume_single_step_enabled) { |
| 837 | // Great! We now disable the hardware single step as well as re-enable the |
| 838 | // hardware watchpoint. |
| 839 | // See also ThreadWillResume(). |
| 840 | if (EnableHardwareSingleStep(false) == KERN_SUCCESS) { |
| 841 | if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) { |
| 842 | ReenableHardwareWatchpoint(m_watchpoint_hw_index); |
| 843 | m_watchpoint_resume_single_step_enabled = false; |
| 844 | m_watchpoint_did_occur = false; |
| 845 | m_watchpoint_hw_index = -1; |
| 846 | } else { |
| 847 | DNBLogError("internal error detected: m_watchpoint_resume_step_enabled " |
| 848 | "is true but (m_watchpoint_did_occur && " |
| 849 | "m_watchpoint_hw_index >= 0) does not hold!" ); |
| 850 | } |
| 851 | } else { |
| 852 | DNBLogError("internal error detected: m_watchpoint_resume_step_enabled " |
| 853 | "is true but unable to disable single step!" ); |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | // Are we stepping a single instruction? |
| 858 | if (GetGPRState(true) == KERN_SUCCESS) { |
| 859 | // We are single stepping, was this the primary thread? |
| 860 | if (m_thread->IsStepping()) { |
| 861 | // This was the primary thread, we need to clear the trace |
| 862 | // bit if so. |
| 863 | success = EnableHardwareSingleStep(false) == KERN_SUCCESS; |
| 864 | } else { |
| 865 | // The MachThread will automatically restore the suspend count |
| 866 | // in ThreadDidStop(), so we don't need to do anything here if |
| 867 | // we weren't the primary thread the last time |
| 868 | } |
| 869 | } |
| 870 | return success; |
| 871 | } |
| 872 | |
| 873 | // Set the single step bit in the processor status register. |
| 874 | kern_return_t DNBArchMachARM64::EnableHardwareSingleStep(bool enable) { |
| 875 | DNBError err; |
| 876 | DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )" , __FUNCTION__, enable); |
| 877 | |
| 878 | err = GetGPRState(false); |
| 879 | |
| 880 | if (err.Fail()) { |
| 881 | err.LogThreaded("%s: failed to read the GPR registers" , __FUNCTION__); |
| 882 | return err.Status(); |
| 883 | } |
| 884 | |
| 885 | err = GetDBGState(false); |
| 886 | |
| 887 | if (err.Fail()) { |
| 888 | err.LogThreaded("%s: failed to read the DBG registers" , __FUNCTION__); |
| 889 | return err.Status(); |
| 890 | } |
| 891 | |
| 892 | #if defined(DEBUGSERVER_IS_ARM64E) |
| 893 | uint64_t pc = clear_pac_bits( |
| 894 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
| 895 | #else |
| 896 | uint64_t pc = m_state.context.gpr.__pc; |
| 897 | #endif |
| 898 | |
| 899 | if (enable) { |
| 900 | DNBLogThreadedIf(LOG_STEP, |
| 901 | "%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx" , |
| 902 | __FUNCTION__, pc); |
| 903 | m_state.dbg.__mdscr_el1 |= SS_ENABLE; |
| 904 | } else { |
| 905 | DNBLogThreadedIf(LOG_STEP, |
| 906 | "%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx" , |
| 907 | __FUNCTION__, pc); |
| 908 | m_state.dbg.__mdscr_el1 &= ~(SS_ENABLE); |
| 909 | } |
| 910 | |
| 911 | return SetDBGState(false); |
| 912 | } |
| 913 | |
| 914 | // return 1 if bit "BIT" is set in "value" |
| 915 | static inline uint32_t bit(uint32_t value, uint32_t bit) { |
| 916 | return (value >> bit) & 1u; |
| 917 | } |
| 918 | |
| 919 | // return the bitfield "value[msbit:lsbit]". |
| 920 | static inline uint64_t bits(uint64_t value, uint32_t msbit, uint32_t lsbit) { |
| 921 | assert(msbit >= lsbit); |
| 922 | uint64_t shift_left = sizeof(value) * 8 - 1 - msbit; |
| 923 | value <<= |
| 924 | shift_left; // shift anything above the msbit off of the unsigned edge |
| 925 | value >>= shift_left + lsbit; // shift it back again down to the lsbit |
| 926 | // (including undoing any shift from above) |
| 927 | return value; // return our result |
| 928 | } |
| 929 | |
| 930 | uint32_t DNBArchMachARM64::NumSupportedHardwareWatchpoints() { |
| 931 | // Set the init value to something that will let us know that we need to |
| 932 | // autodetect how many watchpoints are supported dynamically... |
| 933 | static uint32_t g_num_supported_hw_watchpoints = UINT_MAX; |
| 934 | if (g_num_supported_hw_watchpoints == UINT_MAX) { |
| 935 | // Set this to zero in case we can't tell if there are any HW breakpoints |
| 936 | g_num_supported_hw_watchpoints = 0; |
| 937 | |
| 938 | size_t len; |
| 939 | uint32_t n = 0; |
| 940 | len = sizeof(n); |
| 941 | if (::sysctlbyname("hw.optional.watchpoint" , &n, &len, NULL, 0) == 0) { |
| 942 | g_num_supported_hw_watchpoints = n; |
| 943 | DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u" , n); |
| 944 | } else { |
| 945 | // For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in |
| 946 | // EL0 so it can't |
| 947 | // access that reg. The kernel should have filled in the sysctls based on it |
| 948 | // though. |
| 949 | #if defined(__arm__) |
| 950 | uint32_t register_DBGDIDR; |
| 951 | |
| 952 | asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR)); |
| 953 | uint32_t numWRPs = bits(register_DBGDIDR, 31, 28); |
| 954 | // Zero is reserved for the WRP count, so don't increment it if it is zero |
| 955 | if (numWRPs > 0) |
| 956 | numWRPs++; |
| 957 | g_num_supported_hw_watchpoints = numWRPs; |
| 958 | DNBLogThreadedIf(LOG_THREAD, |
| 959 | "Number of supported hw watchpoints via asm(): %d" , |
| 960 | g_num_supported_hw_watchpoints); |
| 961 | #endif |
| 962 | } |
| 963 | } |
| 964 | return g_num_supported_hw_watchpoints; |
| 965 | } |
| 966 | |
| 967 | uint32_t DNBArchMachARM64::NumSupportedHardwareBreakpoints() { |
| 968 | // Set the init value to something that will let us know that we need to |
| 969 | // autodetect how many breakpoints are supported dynamically... |
| 970 | static uint32_t g_num_supported_hw_breakpoints = UINT_MAX; |
| 971 | if (g_num_supported_hw_breakpoints == UINT_MAX) { |
| 972 | // Set this to zero in case we can't tell if there are any HW breakpoints |
| 973 | g_num_supported_hw_breakpoints = 0; |
| 974 | |
| 975 | size_t len; |
| 976 | uint32_t n = 0; |
| 977 | len = sizeof(n); |
| 978 | if (::sysctlbyname("hw.optional.breakpoint" , &n, &len, NULL, 0) == 0) { |
| 979 | g_num_supported_hw_breakpoints = n; |
| 980 | DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u" , n); |
| 981 | } else { |
| 982 | // For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in |
| 983 | // EL0 so it can't access that reg. The kernel should have filled in the |
| 984 | // sysctls based on it though. |
| 985 | #if defined(__arm__) |
| 986 | uint32_t register_DBGDIDR; |
| 987 | |
| 988 | asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR)); |
| 989 | uint32_t numWRPs = bits(register_DBGDIDR, 31, 28); |
| 990 | // Zero is reserved for the WRP count, so don't increment it if it is zero |
| 991 | if (numWRPs > 0) |
| 992 | numWRPs++; |
| 993 | g_num_supported_hw_breakpoints = numWRPs; |
| 994 | DNBLogThreadedIf(LOG_THREAD, |
| 995 | "Number of supported hw breakpoint via asm(): %d" , |
| 996 | g_num_supported_hw_breakpoints); |
| 997 | #endif |
| 998 | } |
| 999 | } |
| 1000 | return g_num_supported_hw_breakpoints; |
| 1001 | } |
| 1002 | |
| 1003 | uint32_t DNBArchMachARM64::EnableHardwareBreakpoint(nub_addr_t addr, |
| 1004 | nub_size_t size, |
| 1005 | bool also_set_on_task) { |
| 1006 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1007 | "DNBArchMachARM64::EnableHardwareBreakpoint(addr = " |
| 1008 | "0x%8.8llx, size = %zu)" , |
| 1009 | (uint64_t)addr, size); |
| 1010 | |
| 1011 | const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints(); |
| 1012 | |
| 1013 | nub_addr_t aligned_bp_address = addr; |
| 1014 | uint32_t control_value = 0; |
| 1015 | |
| 1016 | switch (size) { |
| 1017 | case 2: |
| 1018 | control_value = (0x3 << 5) | 7; |
| 1019 | aligned_bp_address &= ~1; |
| 1020 | break; |
| 1021 | case 4: |
| 1022 | control_value = (0xfu << 5) | 7; |
| 1023 | aligned_bp_address &= ~3; |
| 1024 | break; |
| 1025 | }; |
| 1026 | |
| 1027 | // Read the debug state |
| 1028 | kern_return_t kret = GetDBGState(false); |
| 1029 | if (kret == KERN_SUCCESS) { |
| 1030 | // Check to make sure we have the needed hardware support |
| 1031 | uint32_t i = 0; |
| 1032 | |
| 1033 | for (i = 0; i < num_hw_breakpoints; ++i) { |
| 1034 | if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0) |
| 1035 | break; // We found an available hw breakpoint slot (in i) |
| 1036 | } |
| 1037 | |
| 1038 | // See if we found an available hw breakpoint slot above |
| 1039 | if (i < num_hw_breakpoints) { |
| 1040 | m_state.dbg.__bvr[i] = aligned_bp_address; |
| 1041 | m_state.dbg.__bcr[i] = control_value; |
| 1042 | |
| 1043 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1044 | "DNBArchMachARM64::EnableHardwareBreakpoint() " |
| 1045 | "adding breakpoint on address 0x%llx with control " |
| 1046 | "register value 0x%x" , |
| 1047 | (uint64_t)m_state.dbg.__bvr[i], |
| 1048 | (uint32_t)m_state.dbg.__bcr[i]); |
| 1049 | |
| 1050 | kret = SetDBGState(also_set_on_task); |
| 1051 | |
| 1052 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1053 | "DNBArchMachARM64::" |
| 1054 | "EnableHardwareBreakpoint() " |
| 1055 | "SetDBGState() => 0x%8.8x." , |
| 1056 | kret); |
| 1057 | |
| 1058 | if (kret == KERN_SUCCESS) |
| 1059 | return i; |
| 1060 | } else { |
| 1061 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1062 | "DNBArchMachARM64::" |
| 1063 | "EnableHardwareBreakpoint(): All " |
| 1064 | "hardware resources (%u) are in use." , |
| 1065 | num_hw_breakpoints); |
| 1066 | } |
| 1067 | } |
| 1068 | return INVALID_NUB_HW_INDEX; |
| 1069 | } |
| 1070 | |
| 1071 | // This should be `std::bit_ceil(aligned_size)` but |
| 1072 | // that requires C++20. |
| 1073 | // Calculates the smallest integral power of two that is not smaller than x. |
| 1074 | static uint64_t bit_ceil(uint64_t input) { |
| 1075 | if (input <= 1 || __builtin_popcount(input) == 1) |
| 1076 | return input; |
| 1077 | |
| 1078 | return 1ULL << (64 - __builtin_clzll(input)); |
| 1079 | } |
| 1080 | |
| 1081 | std::vector<DNBArchMachARM64::WatchpointSpec> |
| 1082 | DNBArchMachARM64::AlignRequestedWatchpoint(nub_addr_t requested_addr, |
| 1083 | nub_size_t requested_size) { |
| 1084 | |
| 1085 | // Can't watch zero bytes |
| 1086 | if (requested_size == 0) |
| 1087 | return {}; |
| 1088 | |
| 1089 | // Smallest size we can watch on AArch64 is 8 bytes |
| 1090 | constexpr nub_size_t min_watchpoint_alignment = 8; |
| 1091 | nub_size_t aligned_size = std::max(requested_size, min_watchpoint_alignment); |
| 1092 | |
| 1093 | /// Round up \a requested_size to the next power-of-2 size, at least 8 |
| 1094 | /// bytes |
| 1095 | /// requested_size == 8 -> aligned_size == 8 |
| 1096 | /// requested_size == 9 -> aligned_size == 16 |
| 1097 | aligned_size = aligned_size = bit_ceil(aligned_size); |
| 1098 | |
| 1099 | nub_addr_t aligned_start = requested_addr & ~(aligned_size - 1); |
| 1100 | // Does this power-of-2 memory range, aligned to power-of-2, completely |
| 1101 | // encompass the requested watch region. |
| 1102 | if (aligned_start + aligned_size >= requested_addr + requested_size) { |
| 1103 | WatchpointSpec wp; |
| 1104 | wp.aligned_start = aligned_start; |
| 1105 | wp.requested_start = requested_addr; |
| 1106 | wp.aligned_size = aligned_size; |
| 1107 | wp.requested_size = requested_size; |
| 1108 | return {{wp}}; |
| 1109 | } |
| 1110 | |
| 1111 | // We need to split this into two watchpoints, split on the aligned_size |
| 1112 | // boundary and re-evaluate the alignment of each half. |
| 1113 | // |
| 1114 | // requested_addr 48 requested_size 20 -> aligned_size 32 |
| 1115 | // aligned_start 32 |
| 1116 | // split_addr 64 |
| 1117 | // first_requested_addr 48 |
| 1118 | // first_requested_size 16 |
| 1119 | // second_requested_addr 64 |
| 1120 | // second_requested_size 4 |
| 1121 | nub_addr_t split_addr = aligned_start + aligned_size; |
| 1122 | |
| 1123 | nub_addr_t first_requested_addr = requested_addr; |
| 1124 | nub_size_t first_requested_size = split_addr - requested_addr; |
| 1125 | nub_addr_t second_requested_addr = split_addr; |
| 1126 | nub_size_t second_requested_size = requested_size - first_requested_size; |
| 1127 | |
| 1128 | std::vector<WatchpointSpec> first_wp = |
| 1129 | AlignRequestedWatchpoint(first_requested_addr, first_requested_size); |
| 1130 | std::vector<WatchpointSpec> second_wp = |
| 1131 | AlignRequestedWatchpoint(second_requested_addr, second_requested_size); |
| 1132 | if (first_wp.size() != 1 || second_wp.size() != 1) |
| 1133 | return {}; |
| 1134 | |
| 1135 | return {{first_wp[0], second_wp[0]}}; |
| 1136 | } |
| 1137 | |
| 1138 | uint32_t DNBArchMachARM64::EnableHardwareWatchpoint(nub_addr_t addr, |
| 1139 | nub_size_t size, bool read, |
| 1140 | bool write, |
| 1141 | bool also_set_on_task) { |
| 1142 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1143 | "DNBArchMachARM64::EnableHardwareWatchpoint(addr = " |
| 1144 | "0x%8.8llx, size = %zu, read = %u, write = %u)" , |
| 1145 | (uint64_t)addr, size, read, write); |
| 1146 | |
| 1147 | std::vector<DNBArchMachARM64::WatchpointSpec> wps = |
| 1148 | AlignRequestedWatchpoint(addr, size); |
| 1149 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1150 | "DNBArchMachARM64::EnableHardwareWatchpoint() using %zu " |
| 1151 | "hardware watchpoints" , |
| 1152 | wps.size()); |
| 1153 | |
| 1154 | if (wps.size() == 0) |
| 1155 | return INVALID_NUB_HW_INDEX; |
| 1156 | |
| 1157 | // We must watch for either read or write |
| 1158 | if (read == false && write == false) |
| 1159 | return INVALID_NUB_HW_INDEX; |
| 1160 | |
| 1161 | // Only one hardware watchpoint needed |
| 1162 | // to implement the user's request. |
| 1163 | if (wps.size() == 1) { |
| 1164 | if (wps[0].aligned_size <= 8) |
| 1165 | return SetBASWatchpoint(wps[0], read, write, also_set_on_task); |
| 1166 | else |
| 1167 | return SetMASKWatchpoint(wps[0], read, write, also_set_on_task); |
| 1168 | } |
| 1169 | |
| 1170 | // We have multiple WatchpointSpecs |
| 1171 | |
| 1172 | std::vector<uint32_t> wp_slots_used; |
| 1173 | for (size_t i = 0; i < wps.size(); i++) { |
| 1174 | uint32_t idx = |
| 1175 | EnableHardwareWatchpoint(wps[i].requested_start, wps[i].requested_size, |
| 1176 | read, write, also_set_on_task); |
| 1177 | if (idx != INVALID_NUB_HW_INDEX) |
| 1178 | wp_slots_used.push_back(idx); |
| 1179 | } |
| 1180 | |
| 1181 | // Did we fail to set all of the WatchpointSpecs needed |
| 1182 | // for this user's request? |
| 1183 | if (wps.size() != wp_slots_used.size()) { |
| 1184 | for (int wp_slot : wp_slots_used) |
| 1185 | DisableHardwareWatchpoint(wp_slot, also_set_on_task); |
| 1186 | return INVALID_NUB_HW_INDEX; |
| 1187 | } |
| 1188 | |
| 1189 | LoHi[wp_slots_used[0]] = wp_slots_used[1]; |
| 1190 | return wp_slots_used[0]; |
| 1191 | } |
| 1192 | |
| 1193 | uint32_t DNBArchMachARM64::SetBASWatchpoint(DNBArchMachARM64::WatchpointSpec wp, |
| 1194 | bool read, bool write, |
| 1195 | bool also_set_on_task) { |
| 1196 | const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints(); |
| 1197 | |
| 1198 | nub_addr_t aligned_dword_addr = wp.aligned_start; |
| 1199 | nub_addr_t watching_offset = wp.requested_start - wp.aligned_start; |
| 1200 | nub_size_t watching_size = wp.requested_size; |
| 1201 | |
| 1202 | // If user asks to watch 3 bytes at 0x1005, |
| 1203 | // aligned_dword_addr 0x1000 |
| 1204 | // watching_offset 5 |
| 1205 | // watching_size 3 |
| 1206 | |
| 1207 | // Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the |
| 1208 | // above. |
| 1209 | // The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4, |
| 1210 | // etc, up to 0b11111111 for 8. |
| 1211 | // then we shift those bits left by the offset into this dword that we are |
| 1212 | // interested in. |
| 1213 | // e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of |
| 1214 | // 0b11110000. |
| 1215 | uint32_t byte_address_select = ((1 << watching_size) - 1) << watching_offset; |
| 1216 | |
| 1217 | // Read the debug state |
| 1218 | kern_return_t kret = GetDBGState(false); |
| 1219 | if (kret != KERN_SUCCESS) |
| 1220 | return INVALID_NUB_HW_INDEX; |
| 1221 | |
| 1222 | // Check to make sure we have the needed hardware support |
| 1223 | uint32_t i = 0; |
| 1224 | |
| 1225 | for (i = 0; i < num_hw_watchpoints; ++i) { |
| 1226 | if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0) |
| 1227 | break; // We found an available hw watchpoint slot |
| 1228 | } |
| 1229 | if (i == num_hw_watchpoints) { |
| 1230 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1231 | "DNBArchMachARM64::" |
| 1232 | "SetBASWatchpoint(): All " |
| 1233 | "hardware resources (%u) are in use." , |
| 1234 | num_hw_watchpoints); |
| 1235 | return INVALID_NUB_HW_INDEX; |
| 1236 | } |
| 1237 | |
| 1238 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1239 | "DNBArchMachARM64::" |
| 1240 | "SetBASWatchpoint() " |
| 1241 | "set hardware register %d to BAS watchpoint " |
| 1242 | "aligned start address 0x%llx, watch region start " |
| 1243 | "offset %lld, number of bytes %zu" , |
| 1244 | i, aligned_dword_addr, watching_offset, watching_size); |
| 1245 | |
| 1246 | // Clear any previous LoHi joined-watchpoint that may have been in use |
| 1247 | LoHi[i] = 0; |
| 1248 | |
| 1249 | // shift our Byte Address Select bits up to the correct bit range for the |
| 1250 | // DBGWCRn_EL1 |
| 1251 | byte_address_select = byte_address_select << 5; |
| 1252 | |
| 1253 | // Make sure bits 1:0 are clear in our address |
| 1254 | m_state.dbg.__wvr[i] = aligned_dword_addr; // DVA (Data Virtual Address) |
| 1255 | m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow |
| 1256 | // the DVA that we will watch |
| 1257 | S_USER | // Stop only in user mode |
| 1258 | (read ? WCR_LOAD : 0) | // Stop on read access? |
| 1259 | (write ? WCR_STORE : 0) | // Stop on write access? |
| 1260 | WCR_ENABLE; // Enable this watchpoint; |
| 1261 | |
| 1262 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1263 | "DNBArchMachARM64::SetBASWatchpoint() " |
| 1264 | "adding watchpoint on address 0x%llx with control " |
| 1265 | "register value 0x%x" , |
| 1266 | (uint64_t)m_state.dbg.__wvr[i], |
| 1267 | (uint32_t)m_state.dbg.__wcr[i]); |
| 1268 | |
| 1269 | kret = SetDBGState(also_set_on_task); |
| 1270 | // DumpDBGState(m_state.dbg); |
| 1271 | |
| 1272 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1273 | "DNBArchMachARM64::" |
| 1274 | "SetBASWatchpoint() " |
| 1275 | "SetDBGState() => 0x%8.8x." , |
| 1276 | kret); |
| 1277 | |
| 1278 | if (kret == KERN_SUCCESS) |
| 1279 | return i; |
| 1280 | |
| 1281 | return INVALID_NUB_HW_INDEX; |
| 1282 | } |
| 1283 | |
| 1284 | uint32_t |
| 1285 | DNBArchMachARM64::SetMASKWatchpoint(DNBArchMachARM64::WatchpointSpec wp, |
| 1286 | bool read, bool write, |
| 1287 | bool also_set_on_task) { |
| 1288 | const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints(); |
| 1289 | |
| 1290 | // Read the debug state |
| 1291 | kern_return_t kret = GetDBGState(false); |
| 1292 | if (kret != KERN_SUCCESS) |
| 1293 | return INVALID_NUB_HW_INDEX; |
| 1294 | |
| 1295 | // Check to make sure we have the needed hardware support |
| 1296 | uint32_t i = 0; |
| 1297 | |
| 1298 | for (i = 0; i < num_hw_watchpoints; ++i) { |
| 1299 | if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0) |
| 1300 | break; // We found an available hw watchpoint slot |
| 1301 | } |
| 1302 | if (i == num_hw_watchpoints) { |
| 1303 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1304 | "DNBArchMachARM64::" |
| 1305 | "SetMASKWatchpoint(): All " |
| 1306 | "hardware resources (%u) are in use." , |
| 1307 | num_hw_watchpoints); |
| 1308 | return INVALID_NUB_HW_INDEX; |
| 1309 | } |
| 1310 | |
| 1311 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1312 | "DNBArchMachARM64::" |
| 1313 | "SetMASKWatchpoint() " |
| 1314 | "set hardware register %d to MASK watchpoint " |
| 1315 | "aligned start address 0x%llx, aligned size %zu" , |
| 1316 | i, wp.aligned_start, wp.aligned_size); |
| 1317 | |
| 1318 | // Clear any previous LoHi joined-watchpoint that may have been in use |
| 1319 | LoHi[i] = 0; |
| 1320 | |
| 1321 | // MASK field is the number of low bits that are masked off |
| 1322 | // when comparing the address with the DBGWVR<n>_EL1 values. |
| 1323 | // If aligned size is 16, that means we ignore low 4 bits, 0b1111. |
| 1324 | // popcount(16 - 1) give us the correct value of 4. |
| 1325 | // 2GB is max watchable region, which is 31 bits (low bits 0x7fffffff |
| 1326 | // masked off) -- a MASK value of 31. |
| 1327 | const uint64_t mask = __builtin_popcountl(wp.aligned_size - 1) << 24; |
| 1328 | // A '0b11111111' BAS value needed for mask watchpoints plus a |
| 1329 | // nonzero mask value. |
| 1330 | const uint64_t not_bas_wp = 0xff << 5; |
| 1331 | |
| 1332 | m_state.dbg.__wvr[i] = wp.aligned_start; |
| 1333 | m_state.dbg.__wcr[i] = mask | not_bas_wp | S_USER | // Stop only in user mode |
| 1334 | (read ? WCR_LOAD : 0) | // Stop on read access? |
| 1335 | (write ? WCR_STORE : 0) | // Stop on write access? |
| 1336 | WCR_ENABLE; // Enable this watchpoint; |
| 1337 | |
| 1338 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1339 | "DNBArchMachARM64::SetMASKWatchpoint() " |
| 1340 | "adding watchpoint on address 0x%llx with control " |
| 1341 | "register value 0x%llx" , |
| 1342 | (uint64_t)m_state.dbg.__wvr[i], |
| 1343 | (uint64_t)m_state.dbg.__wcr[i]); |
| 1344 | |
| 1345 | kret = SetDBGState(also_set_on_task); |
| 1346 | |
| 1347 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1348 | "DNBArchMachARM64::" |
| 1349 | "SetMASKWatchpoint() " |
| 1350 | "SetDBGState() => 0x%8.8x." , |
| 1351 | kret); |
| 1352 | |
| 1353 | if (kret == KERN_SUCCESS) |
| 1354 | return i; |
| 1355 | |
| 1356 | return INVALID_NUB_HW_INDEX; |
| 1357 | } |
| 1358 | |
| 1359 | bool DNBArchMachARM64::ReenableHardwareWatchpoint(uint32_t hw_index) { |
| 1360 | // If this logical watchpoint # is actually implemented using |
| 1361 | // two hardware watchpoint registers, re-enable both of them. |
| 1362 | |
| 1363 | if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) { |
| 1364 | return ReenableHardwareWatchpoint_helper(hw_index) && |
| 1365 | ReenableHardwareWatchpoint_helper(LoHi[hw_index]); |
| 1366 | } else { |
| 1367 | return ReenableHardwareWatchpoint_helper(hw_index); |
| 1368 | } |
| 1369 | } |
| 1370 | |
| 1371 | bool DNBArchMachARM64::ReenableHardwareWatchpoint_helper(uint32_t hw_index) { |
| 1372 | kern_return_t kret = GetDBGState(false); |
| 1373 | if (kret != KERN_SUCCESS) |
| 1374 | return false; |
| 1375 | |
| 1376 | const uint32_t num_hw_points = NumSupportedHardwareWatchpoints(); |
| 1377 | if (hw_index >= num_hw_points) |
| 1378 | return false; |
| 1379 | |
| 1380 | m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr; |
| 1381 | m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control; |
| 1382 | |
| 1383 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1384 | "DNBArchMachARM64::" |
| 1385 | "ReenableHardwareWatchpoint_helper( %u ) - WVR%u = " |
| 1386 | "0x%8.8llx WCR%u = 0x%8.8llx" , |
| 1387 | hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index], |
| 1388 | hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]); |
| 1389 | |
| 1390 | kret = SetDBGState(false); |
| 1391 | |
| 1392 | return (kret == KERN_SUCCESS); |
| 1393 | } |
| 1394 | |
| 1395 | bool DNBArchMachARM64::DisableHardwareWatchpoint(uint32_t hw_index, |
| 1396 | bool also_set_on_task) { |
| 1397 | if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) { |
| 1398 | return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task) && |
| 1399 | DisableHardwareWatchpoint_helper(LoHi[hw_index], also_set_on_task); |
| 1400 | } else { |
| 1401 | return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task); |
| 1402 | } |
| 1403 | } |
| 1404 | |
| 1405 | bool DNBArchMachARM64::DisableHardwareWatchpoint_helper(uint32_t hw_index, |
| 1406 | bool also_set_on_task) { |
| 1407 | kern_return_t kret = GetDBGState(false); |
| 1408 | if (kret != KERN_SUCCESS) |
| 1409 | return false; |
| 1410 | |
| 1411 | const uint32_t num_hw_points = NumSupportedHardwareWatchpoints(); |
| 1412 | if (hw_index >= num_hw_points) |
| 1413 | return false; |
| 1414 | |
| 1415 | m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index]; |
| 1416 | m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index]; |
| 1417 | |
| 1418 | m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE); |
| 1419 | DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::" |
| 1420 | "DisableHardwareWatchpoint( %u ) - WVR%u = " |
| 1421 | "0x%8.8llx WCR%u = 0x%8.8llx" , |
| 1422 | hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index], |
| 1423 | hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]); |
| 1424 | |
| 1425 | kret = SetDBGState(also_set_on_task); |
| 1426 | |
| 1427 | return (kret == KERN_SUCCESS); |
| 1428 | } |
| 1429 | |
| 1430 | bool DNBArchMachARM64::DisableHardwareBreakpoint(uint32_t hw_index, |
| 1431 | bool also_set_on_task) { |
| 1432 | kern_return_t kret = GetDBGState(false); |
| 1433 | if (kret != KERN_SUCCESS) |
| 1434 | return false; |
| 1435 | |
| 1436 | const uint32_t num_hw_points = NumSupportedHardwareBreakpoints(); |
| 1437 | if (hw_index >= num_hw_points) |
| 1438 | return false; |
| 1439 | |
| 1440 | m_disabled_breakpoints[hw_index].addr = m_state.dbg.__bvr[hw_index]; |
| 1441 | m_disabled_breakpoints[hw_index].control = m_state.dbg.__bcr[hw_index]; |
| 1442 | |
| 1443 | m_state.dbg.__bcr[hw_index] = 0; |
| 1444 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1445 | "DNBArchMachARM64::" |
| 1446 | "DisableHardwareBreakpoint( %u ) - WVR%u = " |
| 1447 | "0x%8.8llx BCR%u = 0x%8.8llx" , |
| 1448 | hw_index, hw_index, (uint64_t)m_state.dbg.__bvr[hw_index], |
| 1449 | hw_index, (uint64_t)m_state.dbg.__bcr[hw_index]); |
| 1450 | |
| 1451 | kret = SetDBGState(also_set_on_task); |
| 1452 | |
| 1453 | return (kret == KERN_SUCCESS); |
| 1454 | } |
| 1455 | |
| 1456 | // This is for checking the Byte Address Select bits in the DBRWCRn_EL1 control |
| 1457 | // register. |
| 1458 | // Returns -1 if the trailing bit patterns are not one of: |
| 1459 | // { 0b???????1, 0b??????10, 0b?????100, 0b????1000, 0b???10000, 0b??100000, |
| 1460 | // 0b?1000000, 0b10000000 }. |
| 1461 | static inline int32_t LowestBitSet(uint32_t val) { |
| 1462 | for (unsigned i = 0; i < 8; ++i) { |
| 1463 | if (bit(val, i)) |
| 1464 | return i; |
| 1465 | } |
| 1466 | return -1; |
| 1467 | } |
| 1468 | |
| 1469 | // Iterate through the debug registers; return the index of the first watchpoint |
| 1470 | // whose address matches. |
| 1471 | // As a side effect, the starting address as understood by the debugger is |
| 1472 | // returned which could be |
| 1473 | // different from 'addr' passed as an in/out argument. |
| 1474 | uint32_t DNBArchMachARM64::GetHardwareWatchpointHit(nub_addr_t &addr) { |
| 1475 | // Read the debug state |
| 1476 | kern_return_t kret = GetDBGState(true); |
| 1477 | // DumpDBGState(m_state.dbg); |
| 1478 | DNBLogThreadedIf( |
| 1479 | LOG_WATCHPOINTS, |
| 1480 | "DNBArchMachARM64::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x." , |
| 1481 | kret); |
| 1482 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1483 | "DNBArchMachARM64::GetHardwareWatchpointHit() addr = 0x%llx" , |
| 1484 | (uint64_t)addr); |
| 1485 | |
| 1486 | if (kret == KERN_SUCCESS) { |
| 1487 | DBG &debug_state = m_state.dbg; |
| 1488 | uint32_t i, num = NumSupportedHardwareWatchpoints(); |
| 1489 | for (i = 0; i < num; ++i) { |
| 1490 | nub_addr_t wp_addr = GetWatchAddress(debug_state, i); |
| 1491 | |
| 1492 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1493 | "DNBArchImplARM64::" |
| 1494 | "GetHardwareWatchpointHit() slot: %u " |
| 1495 | "(addr = 0x%llx, WCR = 0x%llx)" , |
| 1496 | i, wp_addr, debug_state.__wcr[i]); |
| 1497 | |
| 1498 | if (!IsWatchpointEnabled(debug_state, i)) |
| 1499 | continue; |
| 1500 | |
| 1501 | // DBGWCR<n>EL1.BAS are the bits of the doubleword that are watched |
| 1502 | // with a BAS watchpoint. |
| 1503 | uint32_t bas_bits = bits(debug_state.__wcr[i], 12, 5); |
| 1504 | // DBGWCR<n>EL1.MASK is the number of bits that are masked off the |
| 1505 | // virtual address when comparing to DBGWVR<n>_EL1. |
| 1506 | uint32_t mask = bits(debug_state.__wcr[i], 28, 24); |
| 1507 | |
| 1508 | const bool is_bas_watchpoint = mask == 0; |
| 1509 | |
| 1510 | DNBLogThreadedIf( |
| 1511 | LOG_WATCHPOINTS, |
| 1512 | "DNBArchImplARM64::" |
| 1513 | "GetHardwareWatchpointHit() slot: %u %s" , |
| 1514 | i, is_bas_watchpoint ? "is BAS watchpoint" : "is MASK watchpoint" ); |
| 1515 | |
| 1516 | if (is_bas_watchpoint) { |
| 1517 | if (bits(wp_addr, 48, 3) != bits(addr, 48, 3)) |
| 1518 | continue; |
| 1519 | } else { |
| 1520 | if (bits(wp_addr, 48, mask) == bits(addr, 48, mask)) { |
| 1521 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1522 | "DNBArchImplARM64::" |
| 1523 | "GetHardwareWatchpointHit() slot: %u matched MASK " |
| 1524 | "ignoring %u low bits" , |
| 1525 | i, mask); |
| 1526 | return i; |
| 1527 | } |
| 1528 | } |
| 1529 | |
| 1530 | if (is_bas_watchpoint) { |
| 1531 | // Sanity check the bas_bits |
| 1532 | uint32_t lsb = LowestBitSet(bas_bits); |
| 1533 | if (lsb < 0) |
| 1534 | continue; |
| 1535 | |
| 1536 | uint64_t byte_to_match = bits(addr, 2, 0); |
| 1537 | |
| 1538 | if (bas_bits & (1 << byte_to_match)) { |
| 1539 | addr = wp_addr + lsb; |
| 1540 | DNBLogThreadedIf(LOG_WATCHPOINTS, |
| 1541 | "DNBArchImplARM64::" |
| 1542 | "GetHardwareWatchpointHit() slot: %u matched BAS" , |
| 1543 | i); |
| 1544 | return i; |
| 1545 | } |
| 1546 | } |
| 1547 | } |
| 1548 | } |
| 1549 | return INVALID_NUB_HW_INDEX; |
| 1550 | } |
| 1551 | |
| 1552 | nub_addr_t DNBArchMachARM64::GetWatchpointAddressByIndex(uint32_t hw_index) { |
| 1553 | kern_return_t kret = GetDBGState(true); |
| 1554 | if (kret != KERN_SUCCESS) |
| 1555 | return INVALID_NUB_ADDRESS; |
| 1556 | const uint32_t num = NumSupportedHardwareWatchpoints(); |
| 1557 | if (hw_index >= num) |
| 1558 | return INVALID_NUB_ADDRESS; |
| 1559 | if (IsWatchpointEnabled(m_state.dbg, hw_index)) |
| 1560 | return GetWatchAddress(m_state.dbg, hw_index); |
| 1561 | return INVALID_NUB_ADDRESS; |
| 1562 | } |
| 1563 | |
| 1564 | bool DNBArchMachARM64::IsWatchpointEnabled(const DBG &debug_state, |
| 1565 | uint32_t hw_index) { |
| 1566 | // Watchpoint Control Registers, bitfield definitions |
| 1567 | // ... |
| 1568 | // Bits Value Description |
| 1569 | // [0] 0 Watchpoint disabled |
| 1570 | // 1 Watchpoint enabled. |
| 1571 | return (debug_state.__wcr[hw_index] & 1u); |
| 1572 | } |
| 1573 | |
| 1574 | nub_addr_t DNBArchMachARM64::GetWatchAddress(const DBG &debug_state, |
| 1575 | uint32_t hw_index) { |
| 1576 | // Watchpoint Value Registers, bitfield definitions |
| 1577 | // Bits Description |
| 1578 | // [31:2] Watchpoint value (word address, i.e., 4-byte aligned) |
| 1579 | // [1:0] RAZ/SBZP |
| 1580 | return bits(debug_state.__wvr[hw_index], 63, 0); |
| 1581 | } |
| 1582 | |
| 1583 | // Register information definitions for 64 bit ARMv8. |
| 1584 | enum gpr_regnums { |
| 1585 | gpr_x0 = 0, |
| 1586 | gpr_x1, |
| 1587 | gpr_x2, |
| 1588 | gpr_x3, |
| 1589 | gpr_x4, |
| 1590 | gpr_x5, |
| 1591 | gpr_x6, |
| 1592 | gpr_x7, |
| 1593 | gpr_x8, |
| 1594 | gpr_x9, |
| 1595 | gpr_x10, |
| 1596 | gpr_x11, |
| 1597 | gpr_x12, |
| 1598 | gpr_x13, |
| 1599 | gpr_x14, |
| 1600 | gpr_x15, |
| 1601 | gpr_x16, |
| 1602 | gpr_x17, |
| 1603 | gpr_x18, |
| 1604 | gpr_x19, |
| 1605 | gpr_x20, |
| 1606 | gpr_x21, |
| 1607 | gpr_x22, |
| 1608 | gpr_x23, |
| 1609 | gpr_x24, |
| 1610 | gpr_x25, |
| 1611 | gpr_x26, |
| 1612 | gpr_x27, |
| 1613 | gpr_x28, |
| 1614 | gpr_fp, |
| 1615 | gpr_x29 = gpr_fp, |
| 1616 | gpr_lr, |
| 1617 | gpr_x30 = gpr_lr, |
| 1618 | gpr_sp, |
| 1619 | gpr_x31 = gpr_sp, |
| 1620 | gpr_pc, |
| 1621 | gpr_cpsr, |
| 1622 | gpr_w0, |
| 1623 | gpr_w1, |
| 1624 | gpr_w2, |
| 1625 | gpr_w3, |
| 1626 | gpr_w4, |
| 1627 | gpr_w5, |
| 1628 | gpr_w6, |
| 1629 | gpr_w7, |
| 1630 | gpr_w8, |
| 1631 | gpr_w9, |
| 1632 | gpr_w10, |
| 1633 | gpr_w11, |
| 1634 | gpr_w12, |
| 1635 | gpr_w13, |
| 1636 | gpr_w14, |
| 1637 | gpr_w15, |
| 1638 | gpr_w16, |
| 1639 | gpr_w17, |
| 1640 | gpr_w18, |
| 1641 | gpr_w19, |
| 1642 | gpr_w20, |
| 1643 | gpr_w21, |
| 1644 | gpr_w22, |
| 1645 | gpr_w23, |
| 1646 | gpr_w24, |
| 1647 | gpr_w25, |
| 1648 | gpr_w26, |
| 1649 | gpr_w27, |
| 1650 | gpr_w28 |
| 1651 | |
| 1652 | }; |
| 1653 | |
| 1654 | enum { |
| 1655 | vfp_v0 = 0, |
| 1656 | vfp_v1, |
| 1657 | vfp_v2, |
| 1658 | vfp_v3, |
| 1659 | vfp_v4, |
| 1660 | vfp_v5, |
| 1661 | vfp_v6, |
| 1662 | vfp_v7, |
| 1663 | vfp_v8, |
| 1664 | vfp_v9, |
| 1665 | vfp_v10, |
| 1666 | vfp_v11, |
| 1667 | vfp_v12, |
| 1668 | vfp_v13, |
| 1669 | vfp_v14, |
| 1670 | vfp_v15, |
| 1671 | vfp_v16, |
| 1672 | vfp_v17, |
| 1673 | vfp_v18, |
| 1674 | vfp_v19, |
| 1675 | vfp_v20, |
| 1676 | vfp_v21, |
| 1677 | vfp_v22, |
| 1678 | vfp_v23, |
| 1679 | vfp_v24, |
| 1680 | vfp_v25, |
| 1681 | vfp_v26, |
| 1682 | vfp_v27, |
| 1683 | vfp_v28, |
| 1684 | vfp_v29, |
| 1685 | vfp_v30, |
| 1686 | vfp_v31, |
| 1687 | vfp_fpsr, |
| 1688 | vfp_fpcr, |
| 1689 | |
| 1690 | // lower 32 bits of the corresponding vfp_v<n> reg. |
| 1691 | vfp_s0, |
| 1692 | vfp_s1, |
| 1693 | vfp_s2, |
| 1694 | vfp_s3, |
| 1695 | vfp_s4, |
| 1696 | vfp_s5, |
| 1697 | vfp_s6, |
| 1698 | vfp_s7, |
| 1699 | vfp_s8, |
| 1700 | vfp_s9, |
| 1701 | vfp_s10, |
| 1702 | vfp_s11, |
| 1703 | vfp_s12, |
| 1704 | vfp_s13, |
| 1705 | vfp_s14, |
| 1706 | vfp_s15, |
| 1707 | vfp_s16, |
| 1708 | vfp_s17, |
| 1709 | vfp_s18, |
| 1710 | vfp_s19, |
| 1711 | vfp_s20, |
| 1712 | vfp_s21, |
| 1713 | vfp_s22, |
| 1714 | vfp_s23, |
| 1715 | vfp_s24, |
| 1716 | vfp_s25, |
| 1717 | vfp_s26, |
| 1718 | vfp_s27, |
| 1719 | vfp_s28, |
| 1720 | vfp_s29, |
| 1721 | vfp_s30, |
| 1722 | vfp_s31, |
| 1723 | |
| 1724 | // lower 64 bits of the corresponding vfp_v<n> reg. |
| 1725 | vfp_d0, |
| 1726 | vfp_d1, |
| 1727 | vfp_d2, |
| 1728 | vfp_d3, |
| 1729 | vfp_d4, |
| 1730 | vfp_d5, |
| 1731 | vfp_d6, |
| 1732 | vfp_d7, |
| 1733 | vfp_d8, |
| 1734 | vfp_d9, |
| 1735 | vfp_d10, |
| 1736 | vfp_d11, |
| 1737 | vfp_d12, |
| 1738 | vfp_d13, |
| 1739 | vfp_d14, |
| 1740 | vfp_d15, |
| 1741 | vfp_d16, |
| 1742 | vfp_d17, |
| 1743 | vfp_d18, |
| 1744 | vfp_d19, |
| 1745 | vfp_d20, |
| 1746 | vfp_d21, |
| 1747 | vfp_d22, |
| 1748 | vfp_d23, |
| 1749 | vfp_d24, |
| 1750 | vfp_d25, |
| 1751 | vfp_d26, |
| 1752 | vfp_d27, |
| 1753 | vfp_d28, |
| 1754 | vfp_d29, |
| 1755 | vfp_d30, |
| 1756 | vfp_d31 |
| 1757 | }; |
| 1758 | |
| 1759 | enum { |
| 1760 | sve_z0, |
| 1761 | sve_z1, |
| 1762 | sve_z2, |
| 1763 | sve_z3, |
| 1764 | sve_z4, |
| 1765 | sve_z5, |
| 1766 | sve_z6, |
| 1767 | sve_z7, |
| 1768 | sve_z8, |
| 1769 | sve_z9, |
| 1770 | sve_z10, |
| 1771 | sve_z11, |
| 1772 | sve_z12, |
| 1773 | sve_z13, |
| 1774 | sve_z14, |
| 1775 | sve_z15, |
| 1776 | sve_z16, |
| 1777 | sve_z17, |
| 1778 | sve_z18, |
| 1779 | sve_z19, |
| 1780 | sve_z20, |
| 1781 | sve_z21, |
| 1782 | sve_z22, |
| 1783 | sve_z23, |
| 1784 | sve_z24, |
| 1785 | sve_z25, |
| 1786 | sve_z26, |
| 1787 | sve_z27, |
| 1788 | sve_z28, |
| 1789 | sve_z29, |
| 1790 | sve_z30, |
| 1791 | sve_z31, |
| 1792 | sve_p0, |
| 1793 | sve_p1, |
| 1794 | sve_p2, |
| 1795 | sve_p3, |
| 1796 | sve_p4, |
| 1797 | sve_p5, |
| 1798 | sve_p6, |
| 1799 | sve_p7, |
| 1800 | sve_p8, |
| 1801 | sve_p9, |
| 1802 | sve_p10, |
| 1803 | sve_p11, |
| 1804 | sve_p12, |
| 1805 | sve_p13, |
| 1806 | sve_p14, |
| 1807 | sve_p15 |
| 1808 | }; |
| 1809 | |
| 1810 | enum { sme_svcr, sme_tpidr2, sme_svl_b, sme_za, sme_zt0 }; |
| 1811 | |
| 1812 | enum { exc_far = 0, exc_esr, exc_exception }; |
| 1813 | |
| 1814 | // These numbers from the "DWARF for the ARM 64-bit Architecture (AArch64)" |
| 1815 | // document. |
| 1816 | |
| 1817 | enum { |
| 1818 | dwarf_x0 = 0, |
| 1819 | dwarf_x1, |
| 1820 | dwarf_x2, |
| 1821 | dwarf_x3, |
| 1822 | dwarf_x4, |
| 1823 | dwarf_x5, |
| 1824 | dwarf_x6, |
| 1825 | dwarf_x7, |
| 1826 | dwarf_x8, |
| 1827 | dwarf_x9, |
| 1828 | dwarf_x10, |
| 1829 | dwarf_x11, |
| 1830 | dwarf_x12, |
| 1831 | dwarf_x13, |
| 1832 | dwarf_x14, |
| 1833 | dwarf_x15, |
| 1834 | dwarf_x16, |
| 1835 | dwarf_x17, |
| 1836 | dwarf_x18, |
| 1837 | dwarf_x19, |
| 1838 | dwarf_x20, |
| 1839 | dwarf_x21, |
| 1840 | dwarf_x22, |
| 1841 | dwarf_x23, |
| 1842 | dwarf_x24, |
| 1843 | dwarf_x25, |
| 1844 | dwarf_x26, |
| 1845 | dwarf_x27, |
| 1846 | dwarf_x28, |
| 1847 | dwarf_x29, |
| 1848 | dwarf_x30, |
| 1849 | dwarf_x31, |
| 1850 | dwarf_pc = 32, |
| 1851 | dwarf_elr_mode = 33, |
| 1852 | dwarf_fp = dwarf_x29, |
| 1853 | dwarf_lr = dwarf_x30, |
| 1854 | dwarf_sp = dwarf_x31, |
| 1855 | // 34-63 reserved |
| 1856 | |
| 1857 | // V0-V31 (128 bit vector registers) |
| 1858 | dwarf_v0 = 64, |
| 1859 | dwarf_v1, |
| 1860 | dwarf_v2, |
| 1861 | dwarf_v3, |
| 1862 | dwarf_v4, |
| 1863 | dwarf_v5, |
| 1864 | dwarf_v6, |
| 1865 | dwarf_v7, |
| 1866 | dwarf_v8, |
| 1867 | dwarf_v9, |
| 1868 | dwarf_v10, |
| 1869 | dwarf_v11, |
| 1870 | dwarf_v12, |
| 1871 | dwarf_v13, |
| 1872 | dwarf_v14, |
| 1873 | dwarf_v15, |
| 1874 | dwarf_v16, |
| 1875 | dwarf_v17, |
| 1876 | dwarf_v18, |
| 1877 | dwarf_v19, |
| 1878 | dwarf_v20, |
| 1879 | dwarf_v21, |
| 1880 | dwarf_v22, |
| 1881 | dwarf_v23, |
| 1882 | dwarf_v24, |
| 1883 | dwarf_v25, |
| 1884 | dwarf_v26, |
| 1885 | dwarf_v27, |
| 1886 | dwarf_v28, |
| 1887 | dwarf_v29, |
| 1888 | dwarf_v30, |
| 1889 | dwarf_v31 |
| 1890 | |
| 1891 | // 96-127 reserved |
| 1892 | }; |
| 1893 | |
| 1894 | enum { |
| 1895 | debugserver_gpr_x0 = 0, |
| 1896 | debugserver_gpr_x1, |
| 1897 | debugserver_gpr_x2, |
| 1898 | debugserver_gpr_x3, |
| 1899 | debugserver_gpr_x4, |
| 1900 | debugserver_gpr_x5, |
| 1901 | debugserver_gpr_x6, |
| 1902 | debugserver_gpr_x7, |
| 1903 | debugserver_gpr_x8, |
| 1904 | debugserver_gpr_x9, |
| 1905 | debugserver_gpr_x10, |
| 1906 | debugserver_gpr_x11, |
| 1907 | debugserver_gpr_x12, |
| 1908 | debugserver_gpr_x13, |
| 1909 | debugserver_gpr_x14, |
| 1910 | debugserver_gpr_x15, |
| 1911 | debugserver_gpr_x16, |
| 1912 | debugserver_gpr_x17, |
| 1913 | debugserver_gpr_x18, |
| 1914 | debugserver_gpr_x19, |
| 1915 | debugserver_gpr_x20, |
| 1916 | debugserver_gpr_x21, |
| 1917 | debugserver_gpr_x22, |
| 1918 | debugserver_gpr_x23, |
| 1919 | debugserver_gpr_x24, |
| 1920 | debugserver_gpr_x25, |
| 1921 | debugserver_gpr_x26, |
| 1922 | debugserver_gpr_x27, |
| 1923 | debugserver_gpr_x28, |
| 1924 | debugserver_gpr_fp, // x29 |
| 1925 | debugserver_gpr_lr, // x30 |
| 1926 | debugserver_gpr_sp, // sp aka xsp |
| 1927 | debugserver_gpr_pc, |
| 1928 | debugserver_gpr_cpsr, |
| 1929 | debugserver_vfp_v0, |
| 1930 | debugserver_vfp_v1, |
| 1931 | debugserver_vfp_v2, |
| 1932 | debugserver_vfp_v3, |
| 1933 | debugserver_vfp_v4, |
| 1934 | debugserver_vfp_v5, |
| 1935 | debugserver_vfp_v6, |
| 1936 | debugserver_vfp_v7, |
| 1937 | debugserver_vfp_v8, |
| 1938 | debugserver_vfp_v9, |
| 1939 | debugserver_vfp_v10, |
| 1940 | debugserver_vfp_v11, |
| 1941 | debugserver_vfp_v12, |
| 1942 | debugserver_vfp_v13, |
| 1943 | debugserver_vfp_v14, |
| 1944 | debugserver_vfp_v15, |
| 1945 | debugserver_vfp_v16, |
| 1946 | debugserver_vfp_v17, |
| 1947 | debugserver_vfp_v18, |
| 1948 | debugserver_vfp_v19, |
| 1949 | debugserver_vfp_v20, |
| 1950 | debugserver_vfp_v21, |
| 1951 | debugserver_vfp_v22, |
| 1952 | debugserver_vfp_v23, |
| 1953 | debugserver_vfp_v24, |
| 1954 | debugserver_vfp_v25, |
| 1955 | debugserver_vfp_v26, |
| 1956 | debugserver_vfp_v27, |
| 1957 | debugserver_vfp_v28, |
| 1958 | debugserver_vfp_v29, |
| 1959 | debugserver_vfp_v30, |
| 1960 | debugserver_vfp_v31, |
| 1961 | debugserver_vfp_fpsr, |
| 1962 | debugserver_vfp_fpcr, |
| 1963 | debugserver_sve_z0, |
| 1964 | debugserver_sve_z1, |
| 1965 | debugserver_sve_z2, |
| 1966 | debugserver_sve_z3, |
| 1967 | debugserver_sve_z4, |
| 1968 | debugserver_sve_z5, |
| 1969 | debugserver_sve_z6, |
| 1970 | debugserver_sve_z7, |
| 1971 | debugserver_sve_z8, |
| 1972 | debugserver_sve_z9, |
| 1973 | debugserver_sve_z10, |
| 1974 | debugserver_sve_z11, |
| 1975 | debugserver_sve_z12, |
| 1976 | debugserver_sve_z13, |
| 1977 | debugserver_sve_z14, |
| 1978 | debugserver_sve_z15, |
| 1979 | debugserver_sve_z16, |
| 1980 | debugserver_sve_z17, |
| 1981 | debugserver_sve_z18, |
| 1982 | debugserver_sve_z19, |
| 1983 | debugserver_sve_z20, |
| 1984 | debugserver_sve_z21, |
| 1985 | debugserver_sve_z22, |
| 1986 | debugserver_sve_z23, |
| 1987 | debugserver_sve_z24, |
| 1988 | debugserver_sve_z25, |
| 1989 | debugserver_sve_z26, |
| 1990 | debugserver_sve_z27, |
| 1991 | debugserver_sve_z28, |
| 1992 | debugserver_sve_z29, |
| 1993 | debugserver_sve_z30, |
| 1994 | debugserver_sve_z31, |
| 1995 | debugserver_sve_p0, |
| 1996 | debugserver_sve_p1, |
| 1997 | debugserver_sve_p2, |
| 1998 | debugserver_sve_p3, |
| 1999 | debugserver_sve_p4, |
| 2000 | debugserver_sve_p5, |
| 2001 | debugserver_sve_p6, |
| 2002 | debugserver_sve_p7, |
| 2003 | debugserver_sve_p8, |
| 2004 | debugserver_sve_p9, |
| 2005 | debugserver_sve_p10, |
| 2006 | debugserver_sve_p11, |
| 2007 | debugserver_sve_p12, |
| 2008 | debugserver_sve_p13, |
| 2009 | debugserver_sve_p14, |
| 2010 | debugserver_sve_p15, |
| 2011 | debugserver_sme_svcr, |
| 2012 | debugserver_sme_tpidr2, |
| 2013 | debugserver_sme_svl_b, |
| 2014 | debugserver_sme_za, |
| 2015 | debugserver_sme_zt0 |
| 2016 | }; |
| 2017 | |
| 2018 | const char *g_contained_x0[]{"x0" , NULL}; |
| 2019 | const char *g_contained_x1[]{"x1" , NULL}; |
| 2020 | const char *g_contained_x2[]{"x2" , NULL}; |
| 2021 | const char *g_contained_x3[]{"x3" , NULL}; |
| 2022 | const char *g_contained_x4[]{"x4" , NULL}; |
| 2023 | const char *g_contained_x5[]{"x5" , NULL}; |
| 2024 | const char *g_contained_x6[]{"x6" , NULL}; |
| 2025 | const char *g_contained_x7[]{"x7" , NULL}; |
| 2026 | const char *g_contained_x8[]{"x8" , NULL}; |
| 2027 | const char *g_contained_x9[]{"x9" , NULL}; |
| 2028 | const char *g_contained_x10[]{"x10" , NULL}; |
| 2029 | const char *g_contained_x11[]{"x11" , NULL}; |
| 2030 | const char *g_contained_x12[]{"x12" , NULL}; |
| 2031 | const char *g_contained_x13[]{"x13" , NULL}; |
| 2032 | const char *g_contained_x14[]{"x14" , NULL}; |
| 2033 | const char *g_contained_x15[]{"x15" , NULL}; |
| 2034 | const char *g_contained_x16[]{"x16" , NULL}; |
| 2035 | const char *g_contained_x17[]{"x17" , NULL}; |
| 2036 | const char *g_contained_x18[]{"x18" , NULL}; |
| 2037 | const char *g_contained_x19[]{"x19" , NULL}; |
| 2038 | const char *g_contained_x20[]{"x20" , NULL}; |
| 2039 | const char *g_contained_x21[]{"x21" , NULL}; |
| 2040 | const char *g_contained_x22[]{"x22" , NULL}; |
| 2041 | const char *g_contained_x23[]{"x23" , NULL}; |
| 2042 | const char *g_contained_x24[]{"x24" , NULL}; |
| 2043 | const char *g_contained_x25[]{"x25" , NULL}; |
| 2044 | const char *g_contained_x26[]{"x26" , NULL}; |
| 2045 | const char *g_contained_x27[]{"x27" , NULL}; |
| 2046 | const char *g_contained_x28[]{"x28" , NULL}; |
| 2047 | |
| 2048 | const char *g_invalidate_x0[]{"x0" , "w0" , NULL}; |
| 2049 | const char *g_invalidate_x1[]{"x1" , "w1" , NULL}; |
| 2050 | const char *g_invalidate_x2[]{"x2" , "w2" , NULL}; |
| 2051 | const char *g_invalidate_x3[]{"x3" , "w3" , NULL}; |
| 2052 | const char *g_invalidate_x4[]{"x4" , "w4" , NULL}; |
| 2053 | const char *g_invalidate_x5[]{"x5" , "w5" , NULL}; |
| 2054 | const char *g_invalidate_x6[]{"x6" , "w6" , NULL}; |
| 2055 | const char *g_invalidate_x7[]{"x7" , "w7" , NULL}; |
| 2056 | const char *g_invalidate_x8[]{"x8" , "w8" , NULL}; |
| 2057 | const char *g_invalidate_x9[]{"x9" , "w9" , NULL}; |
| 2058 | const char *g_invalidate_x10[]{"x10" , "w10" , NULL}; |
| 2059 | const char *g_invalidate_x11[]{"x11" , "w11" , NULL}; |
| 2060 | const char *g_invalidate_x12[]{"x12" , "w12" , NULL}; |
| 2061 | const char *g_invalidate_x13[]{"x13" , "w13" , NULL}; |
| 2062 | const char *g_invalidate_x14[]{"x14" , "w14" , NULL}; |
| 2063 | const char *g_invalidate_x15[]{"x15" , "w15" , NULL}; |
| 2064 | const char *g_invalidate_x16[]{"x16" , "w16" , NULL}; |
| 2065 | const char *g_invalidate_x17[]{"x17" , "w17" , NULL}; |
| 2066 | const char *g_invalidate_x18[]{"x18" , "w18" , NULL}; |
| 2067 | const char *g_invalidate_x19[]{"x19" , "w19" , NULL}; |
| 2068 | const char *g_invalidate_x20[]{"x20" , "w20" , NULL}; |
| 2069 | const char *g_invalidate_x21[]{"x21" , "w21" , NULL}; |
| 2070 | const char *g_invalidate_x22[]{"x22" , "w22" , NULL}; |
| 2071 | const char *g_invalidate_x23[]{"x23" , "w23" , NULL}; |
| 2072 | const char *g_invalidate_x24[]{"x24" , "w24" , NULL}; |
| 2073 | const char *g_invalidate_x25[]{"x25" , "w25" , NULL}; |
| 2074 | const char *g_invalidate_x26[]{"x26" , "w26" , NULL}; |
| 2075 | const char *g_invalidate_x27[]{"x27" , "w27" , NULL}; |
| 2076 | const char *g_invalidate_x28[]{"x28" , "w28" , NULL}; |
| 2077 | |
| 2078 | #define GPR_OFFSET_IDX(idx) (offsetof(DNBArchMachARM64::GPR, __x[idx])) |
| 2079 | |
| 2080 | #define GPR_OFFSET_NAME(reg) (offsetof(DNBArchMachARM64::GPR, __##reg)) |
| 2081 | |
| 2082 | // These macros will auto define the register name, alt name, register size, |
| 2083 | // register offset, encoding, format and native register. This ensures that |
| 2084 | // the register state structures are defined correctly and have the correct |
| 2085 | // sizes and offsets. |
| 2086 | #define DEFINE_GPR_IDX(idx, reg, alt, gen) \ |
| 2087 | { \ |
| 2088 | e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_IDX(idx), \ |
| 2089 | dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, \ |
| 2090 | g_invalidate_x##idx \ |
| 2091 | } |
| 2092 | #define DEFINE_GPR_NAME(reg, alt, gen) \ |
| 2093 | { \ |
| 2094 | e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_NAME(reg), \ |
| 2095 | dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, NULL \ |
| 2096 | } |
| 2097 | #define DEFINE_PSEUDO_GPR_IDX(idx, reg) \ |
| 2098 | { \ |
| 2099 | e_regSetGPR, gpr_##reg, #reg, NULL, Uint, Hex, 4, 0, INVALID_NUB_REGNUM, \ |
| 2100 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \ |
| 2101 | g_contained_x##idx, g_invalidate_x##idx \ |
| 2102 | } |
| 2103 | |
| 2104 | //_STRUCT_ARM_THREAD_STATE64 |
| 2105 | //{ |
| 2106 | // uint64_t x[29]; /* General purpose registers x0-x28 */ |
| 2107 | // uint64_t fp; /* Frame pointer x29 */ |
| 2108 | // uint64_t lr; /* Link register x30 */ |
| 2109 | // uint64_t sp; /* Stack pointer x31 */ |
| 2110 | // uint64_t pc; /* Program counter */ |
| 2111 | // uint32_t cpsr; /* Current program status register */ |
| 2112 | //}; |
| 2113 | |
| 2114 | // General purpose registers |
| 2115 | const DNBRegisterInfo DNBArchMachARM64::g_gpr_registers[] = { |
| 2116 | DEFINE_GPR_IDX(0, x0, "arg1" , GENERIC_REGNUM_ARG1), |
| 2117 | DEFINE_GPR_IDX(1, x1, "arg2" , GENERIC_REGNUM_ARG2), |
| 2118 | DEFINE_GPR_IDX(2, x2, "arg3" , GENERIC_REGNUM_ARG3), |
| 2119 | DEFINE_GPR_IDX(3, x3, "arg4" , GENERIC_REGNUM_ARG4), |
| 2120 | DEFINE_GPR_IDX(4, x4, "arg5" , GENERIC_REGNUM_ARG5), |
| 2121 | DEFINE_GPR_IDX(5, x5, "arg6" , GENERIC_REGNUM_ARG6), |
| 2122 | DEFINE_GPR_IDX(6, x6, "arg7" , GENERIC_REGNUM_ARG7), |
| 2123 | DEFINE_GPR_IDX(7, x7, "arg8" , GENERIC_REGNUM_ARG8), |
| 2124 | DEFINE_GPR_IDX(8, x8, NULL, INVALID_NUB_REGNUM), |
| 2125 | DEFINE_GPR_IDX(9, x9, NULL, INVALID_NUB_REGNUM), |
| 2126 | DEFINE_GPR_IDX(10, x10, NULL, INVALID_NUB_REGNUM), |
| 2127 | DEFINE_GPR_IDX(11, x11, NULL, INVALID_NUB_REGNUM), |
| 2128 | DEFINE_GPR_IDX(12, x12, NULL, INVALID_NUB_REGNUM), |
| 2129 | DEFINE_GPR_IDX(13, x13, NULL, INVALID_NUB_REGNUM), |
| 2130 | DEFINE_GPR_IDX(14, x14, NULL, INVALID_NUB_REGNUM), |
| 2131 | DEFINE_GPR_IDX(15, x15, NULL, INVALID_NUB_REGNUM), |
| 2132 | DEFINE_GPR_IDX(16, x16, NULL, INVALID_NUB_REGNUM), |
| 2133 | DEFINE_GPR_IDX(17, x17, NULL, INVALID_NUB_REGNUM), |
| 2134 | DEFINE_GPR_IDX(18, x18, NULL, INVALID_NUB_REGNUM), |
| 2135 | DEFINE_GPR_IDX(19, x19, NULL, INVALID_NUB_REGNUM), |
| 2136 | DEFINE_GPR_IDX(20, x20, NULL, INVALID_NUB_REGNUM), |
| 2137 | DEFINE_GPR_IDX(21, x21, NULL, INVALID_NUB_REGNUM), |
| 2138 | DEFINE_GPR_IDX(22, x22, NULL, INVALID_NUB_REGNUM), |
| 2139 | DEFINE_GPR_IDX(23, x23, NULL, INVALID_NUB_REGNUM), |
| 2140 | DEFINE_GPR_IDX(24, x24, NULL, INVALID_NUB_REGNUM), |
| 2141 | DEFINE_GPR_IDX(25, x25, NULL, INVALID_NUB_REGNUM), |
| 2142 | DEFINE_GPR_IDX(26, x26, NULL, INVALID_NUB_REGNUM), |
| 2143 | DEFINE_GPR_IDX(27, x27, NULL, INVALID_NUB_REGNUM), |
| 2144 | DEFINE_GPR_IDX(28, x28, NULL, INVALID_NUB_REGNUM), |
| 2145 | // For the G/g packet we want to show where the offset into the regctx |
| 2146 | // is for fp/lr/sp/pc, but we cannot directly access them on arm64e |
| 2147 | // devices (and therefore can't offsetof() them)) - add the offset based |
| 2148 | // on the last accessible register by hand for advertising the location |
| 2149 | // in the regctx to lldb. We'll go through the accessor functions when |
| 2150 | // we read/write them here. |
| 2151 | { |
| 2152 | e_regSetGPR, gpr_fp, "fp" , "x29" , Uint, Hex, 8, GPR_OFFSET_IDX(28) + 8, |
| 2153 | dwarf_fp, dwarf_fp, GENERIC_REGNUM_FP, debugserver_gpr_fp, NULL, NULL |
| 2154 | }, |
| 2155 | { |
| 2156 | e_regSetGPR, gpr_lr, "lr" , "x30" , Uint, Hex, 8, GPR_OFFSET_IDX(28) + 16, |
| 2157 | dwarf_lr, dwarf_lr, GENERIC_REGNUM_RA, debugserver_gpr_lr, NULL, NULL |
| 2158 | }, |
| 2159 | { |
| 2160 | e_regSetGPR, gpr_sp, "sp" , "xsp" , Uint, Hex, 8, GPR_OFFSET_IDX(28) + 24, |
| 2161 | dwarf_sp, dwarf_sp, GENERIC_REGNUM_SP, debugserver_gpr_sp, NULL, NULL |
| 2162 | }, |
| 2163 | { |
| 2164 | e_regSetGPR, gpr_pc, "pc" , NULL, Uint, Hex, 8, GPR_OFFSET_IDX(28) + 32, |
| 2165 | dwarf_pc, dwarf_pc, GENERIC_REGNUM_PC, debugserver_gpr_pc, NULL, NULL |
| 2166 | }, |
| 2167 | |
| 2168 | // in armv7 we specify that writing to the CPSR should invalidate r8-12, sp, |
| 2169 | // lr. |
| 2170 | // this should be specified for arm64 too even though debugserver is only |
| 2171 | // used for |
| 2172 | // userland debugging. |
| 2173 | {e_regSetGPR, gpr_cpsr, "cpsr" , "flags" , Uint, Hex, 4, |
| 2174 | GPR_OFFSET_NAME(cpsr), dwarf_elr_mode, dwarf_elr_mode, GENERIC_REGNUM_FLAGS, |
| 2175 | debugserver_gpr_cpsr, NULL, NULL}, |
| 2176 | |
| 2177 | DEFINE_PSEUDO_GPR_IDX(0, w0), |
| 2178 | DEFINE_PSEUDO_GPR_IDX(1, w1), |
| 2179 | DEFINE_PSEUDO_GPR_IDX(2, w2), |
| 2180 | DEFINE_PSEUDO_GPR_IDX(3, w3), |
| 2181 | DEFINE_PSEUDO_GPR_IDX(4, w4), |
| 2182 | DEFINE_PSEUDO_GPR_IDX(5, w5), |
| 2183 | DEFINE_PSEUDO_GPR_IDX(6, w6), |
| 2184 | DEFINE_PSEUDO_GPR_IDX(7, w7), |
| 2185 | DEFINE_PSEUDO_GPR_IDX(8, w8), |
| 2186 | DEFINE_PSEUDO_GPR_IDX(9, w9), |
| 2187 | DEFINE_PSEUDO_GPR_IDX(10, w10), |
| 2188 | DEFINE_PSEUDO_GPR_IDX(11, w11), |
| 2189 | DEFINE_PSEUDO_GPR_IDX(12, w12), |
| 2190 | DEFINE_PSEUDO_GPR_IDX(13, w13), |
| 2191 | DEFINE_PSEUDO_GPR_IDX(14, w14), |
| 2192 | DEFINE_PSEUDO_GPR_IDX(15, w15), |
| 2193 | DEFINE_PSEUDO_GPR_IDX(16, w16), |
| 2194 | DEFINE_PSEUDO_GPR_IDX(17, w17), |
| 2195 | DEFINE_PSEUDO_GPR_IDX(18, w18), |
| 2196 | DEFINE_PSEUDO_GPR_IDX(19, w19), |
| 2197 | DEFINE_PSEUDO_GPR_IDX(20, w20), |
| 2198 | DEFINE_PSEUDO_GPR_IDX(21, w21), |
| 2199 | DEFINE_PSEUDO_GPR_IDX(22, w22), |
| 2200 | DEFINE_PSEUDO_GPR_IDX(23, w23), |
| 2201 | DEFINE_PSEUDO_GPR_IDX(24, w24), |
| 2202 | DEFINE_PSEUDO_GPR_IDX(25, w25), |
| 2203 | DEFINE_PSEUDO_GPR_IDX(26, w26), |
| 2204 | DEFINE_PSEUDO_GPR_IDX(27, w27), |
| 2205 | DEFINE_PSEUDO_GPR_IDX(28, w28)}; |
| 2206 | |
| 2207 | const char *g_contained_v0[]{"v0" , NULL}; |
| 2208 | const char *g_contained_v1[]{"v1" , NULL}; |
| 2209 | const char *g_contained_v2[]{"v2" , NULL}; |
| 2210 | const char *g_contained_v3[]{"v3" , NULL}; |
| 2211 | const char *g_contained_v4[]{"v4" , NULL}; |
| 2212 | const char *g_contained_v5[]{"v5" , NULL}; |
| 2213 | const char *g_contained_v6[]{"v6" , NULL}; |
| 2214 | const char *g_contained_v7[]{"v7" , NULL}; |
| 2215 | const char *g_contained_v8[]{"v8" , NULL}; |
| 2216 | const char *g_contained_v9[]{"v9" , NULL}; |
| 2217 | const char *g_contained_v10[]{"v10" , NULL}; |
| 2218 | const char *g_contained_v11[]{"v11" , NULL}; |
| 2219 | const char *g_contained_v12[]{"v12" , NULL}; |
| 2220 | const char *g_contained_v13[]{"v13" , NULL}; |
| 2221 | const char *g_contained_v14[]{"v14" , NULL}; |
| 2222 | const char *g_contained_v15[]{"v15" , NULL}; |
| 2223 | const char *g_contained_v16[]{"v16" , NULL}; |
| 2224 | const char *g_contained_v17[]{"v17" , NULL}; |
| 2225 | const char *g_contained_v18[]{"v18" , NULL}; |
| 2226 | const char *g_contained_v19[]{"v19" , NULL}; |
| 2227 | const char *g_contained_v20[]{"v20" , NULL}; |
| 2228 | const char *g_contained_v21[]{"v21" , NULL}; |
| 2229 | const char *g_contained_v22[]{"v22" , NULL}; |
| 2230 | const char *g_contained_v23[]{"v23" , NULL}; |
| 2231 | const char *g_contained_v24[]{"v24" , NULL}; |
| 2232 | const char *g_contained_v25[]{"v25" , NULL}; |
| 2233 | const char *g_contained_v26[]{"v26" , NULL}; |
| 2234 | const char *g_contained_v27[]{"v27" , NULL}; |
| 2235 | const char *g_contained_v28[]{"v28" , NULL}; |
| 2236 | const char *g_contained_v29[]{"v29" , NULL}; |
| 2237 | const char *g_contained_v30[]{"v30" , NULL}; |
| 2238 | const char *g_contained_v31[]{"v31" , NULL}; |
| 2239 | |
| 2240 | const char *g_invalidate_v[32][4]{ |
| 2241 | {"v0" , "d0" , "s0" , NULL}, {"v1" , "d1" , "s1" , NULL}, |
| 2242 | {"v2" , "d2" , "s2" , NULL}, {"v3" , "d3" , "s3" , NULL}, |
| 2243 | {"v4" , "d4" , "s4" , NULL}, {"v5" , "d5" , "s5" , NULL}, |
| 2244 | {"v6" , "d6" , "s6" , NULL}, {"v7" , "d7" , "s7" , NULL}, |
| 2245 | {"v8" , "d8" , "s8" , NULL}, {"v9" , "d9" , "s9" , NULL}, |
| 2246 | {"v10" , "d10" , "s10" , NULL}, {"v11" , "d11" , "s11" , NULL}, |
| 2247 | {"v12" , "d12" , "s12" , NULL}, {"v13" , "d13" , "s13" , NULL}, |
| 2248 | {"v14" , "d14" , "s14" , NULL}, {"v15" , "d15" , "s15" , NULL}, |
| 2249 | {"v16" , "d16" , "s16" , NULL}, {"v17" , "d17" , "s17" , NULL}, |
| 2250 | {"v18" , "d18" , "s18" , NULL}, {"v19" , "d19" , "s19" , NULL}, |
| 2251 | {"v20" , "d20" , "s20" , NULL}, {"v21" , "d21" , "s21" , NULL}, |
| 2252 | {"v22" , "d22" , "s22" , NULL}, {"v23" , "d23" , "s23" , NULL}, |
| 2253 | {"v24" , "d24" , "s24" , NULL}, {"v25" , "d25" , "s25" , NULL}, |
| 2254 | {"v26" , "d26" , "s26" , NULL}, {"v27" , "d27" , "s27" , NULL}, |
| 2255 | {"v28" , "d28" , "s28" , NULL}, {"v29" , "d29" , "s29" , NULL}, |
| 2256 | {"v30" , "d30" , "s30" , NULL}, {"v31" , "d31" , "s31" , NULL}}; |
| 2257 | |
| 2258 | const char *g_invalidate_z[32][5]{ |
| 2259 | {"z0" , "v0" , "d0" , "s0" , NULL}, {"z1" , "v1" , "d1" , "s1" , NULL}, |
| 2260 | {"z2" , "v2" , "d2" , "s2" , NULL}, {"z3" , "v3" , "d3" , "s3" , NULL}, |
| 2261 | {"z4" , "v4" , "d4" , "s4" , NULL}, {"z5" , "v5" , "d5" , "s5" , NULL}, |
| 2262 | {"z6" , "v6" , "d6" , "s6" , NULL}, {"z7" , "v7" , "d7" , "s7" , NULL}, |
| 2263 | {"z8" , "v8" , "d8" , "s8" , NULL}, {"z9" , "v9" , "d9" , "s9" , NULL}, |
| 2264 | {"z10" , "v10" , "d10" , "s10" , NULL}, {"z11" , "v11" , "d11" , "s11" , NULL}, |
| 2265 | {"z12" , "v12" , "d12" , "s12" , NULL}, {"z13" , "v13" , "d13" , "s13" , NULL}, |
| 2266 | {"z14" , "v14" , "d14" , "s14" , NULL}, {"z15" , "v15" , "d15" , "s15" , NULL}, |
| 2267 | {"z16" , "v16" , "d16" , "s16" , NULL}, {"z17" , "v17" , "d17" , "s17" , NULL}, |
| 2268 | {"z18" , "v18" , "d18" , "s18" , NULL}, {"z19" , "v19" , "d19" , "s19" , NULL}, |
| 2269 | {"z20" , "v20" , "d20" , "s20" , NULL}, {"z21" , "v21" , "d21" , "s21" , NULL}, |
| 2270 | {"z22" , "v22" , "d22" , "s22" , NULL}, {"z23" , "v23" , "d23" , "s23" , NULL}, |
| 2271 | {"z24" , "v24" , "d24" , "s24" , NULL}, {"z25" , "v25" , "d25" , "s25" , NULL}, |
| 2272 | {"z26" , "v26" , "d26" , "s26" , NULL}, {"z27" , "v27" , "d27" , "s27" , NULL}, |
| 2273 | {"z28" , "v28" , "d28" , "s28" , NULL}, {"z29" , "v29" , "d29" , "s29" , NULL}, |
| 2274 | {"z30" , "v30" , "d30" , "s30" , NULL}, {"z31" , "v31" , "d31" , "s31" , NULL}}; |
| 2275 | |
| 2276 | const char *g_contained_z0[]{"z0" , NULL}; |
| 2277 | const char *g_contained_z1[]{"z1" , NULL}; |
| 2278 | const char *g_contained_z2[]{"z2" , NULL}; |
| 2279 | const char *g_contained_z3[]{"z3" , NULL}; |
| 2280 | const char *g_contained_z4[]{"z4" , NULL}; |
| 2281 | const char *g_contained_z5[]{"z5" , NULL}; |
| 2282 | const char *g_contained_z6[]{"z6" , NULL}; |
| 2283 | const char *g_contained_z7[]{"z7" , NULL}; |
| 2284 | const char *g_contained_z8[]{"z8" , NULL}; |
| 2285 | const char *g_contained_z9[]{"z9" , NULL}; |
| 2286 | const char *g_contained_z10[]{"z10" , NULL}; |
| 2287 | const char *g_contained_z11[]{"z11" , NULL}; |
| 2288 | const char *g_contained_z12[]{"z12" , NULL}; |
| 2289 | const char *g_contained_z13[]{"z13" , NULL}; |
| 2290 | const char *g_contained_z14[]{"z14" , NULL}; |
| 2291 | const char *g_contained_z15[]{"z15" , NULL}; |
| 2292 | const char *g_contained_z16[]{"z16" , NULL}; |
| 2293 | const char *g_contained_z17[]{"z17" , NULL}; |
| 2294 | const char *g_contained_z18[]{"z18" , NULL}; |
| 2295 | const char *g_contained_z19[]{"z19" , NULL}; |
| 2296 | const char *g_contained_z20[]{"z20" , NULL}; |
| 2297 | const char *g_contained_z21[]{"z21" , NULL}; |
| 2298 | const char *g_contained_z22[]{"z22" , NULL}; |
| 2299 | const char *g_contained_z23[]{"z23" , NULL}; |
| 2300 | const char *g_contained_z24[]{"z24" , NULL}; |
| 2301 | const char *g_contained_z25[]{"z25" , NULL}; |
| 2302 | const char *g_contained_z26[]{"z26" , NULL}; |
| 2303 | const char *g_contained_z27[]{"z27" , NULL}; |
| 2304 | const char *g_contained_z28[]{"z28" , NULL}; |
| 2305 | const char *g_contained_z29[]{"z29" , NULL}; |
| 2306 | const char *g_contained_z30[]{"z30" , NULL}; |
| 2307 | const char *g_contained_z31[]{"z31" , NULL}; |
| 2308 | |
| 2309 | #if defined(__arm64__) || defined(__aarch64__) |
| 2310 | #define VFP_V_OFFSET_IDX(idx) \ |
| 2311 | (offsetof(DNBArchMachARM64::FPU, __v) + (idx * 16) + \ |
| 2312 | offsetof(DNBArchMachARM64::Context, vfp)) |
| 2313 | #else |
| 2314 | #define VFP_V_OFFSET_IDX(idx) \ |
| 2315 | (offsetof(DNBArchMachARM64::FPU, opaque) + (idx * 16) + \ |
| 2316 | offsetof(DNBArchMachARM64::Context, vfp)) |
| 2317 | #endif |
| 2318 | #define EXC_OFFSET(reg) \ |
| 2319 | (offsetof(DNBArchMachARM64::EXC, reg) + \ |
| 2320 | offsetof(DNBArchMachARM64::Context, exc)) |
| 2321 | #define SVE_OFFSET_Z_IDX(idx) \ |
| 2322 | (offsetof(DNBArchMachARM64::SVE, z[idx]) + \ |
| 2323 | offsetof(DNBArchMachARM64::Context, sve)) |
| 2324 | #define SVE_OFFSET_P_IDX(idx) \ |
| 2325 | (offsetof(DNBArchMachARM64::SVE, p[idx]) + \ |
| 2326 | offsetof(DNBArchMachARM64::Context, sve)) |
| 2327 | #define SME_OFFSET(reg) \ |
| 2328 | (offsetof(DNBArchMachARM64::SME, reg) + \ |
| 2329 | offsetof(DNBArchMachARM64::Context, sme)) |
| 2330 | |
| 2331 | //_STRUCT_ARM_EXCEPTION_STATE64 |
| 2332 | //{ |
| 2333 | // uint64_t far; /* Virtual Fault Address */ |
| 2334 | // uint32_t esr; /* Exception syndrome */ |
| 2335 | // uint32_t exception; /* number of arm exception taken */ |
| 2336 | //}; |
| 2337 | |
| 2338 | // Exception registers |
| 2339 | const DNBRegisterInfo DNBArchMachARM64::g_exc_registers[] = { |
| 2340 | {e_regSetEXC, exc_far, "far" , NULL, Uint, Hex, 8, EXC_OFFSET(__far), |
| 2341 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2342 | INVALID_NUB_REGNUM, NULL, NULL}, |
| 2343 | {e_regSetEXC, exc_esr, "esr" , NULL, Uint, Hex, 4, EXC_OFFSET(__esr), |
| 2344 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2345 | INVALID_NUB_REGNUM, NULL, NULL}, |
| 2346 | {e_regSetEXC, exc_exception, "exception" , NULL, Uint, Hex, 4, |
| 2347 | EXC_OFFSET(__exception), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2348 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}}; |
| 2349 | |
| 2350 | // Number of registers in each register set |
| 2351 | const size_t DNBArchMachARM64::k_num_gpr_registers = |
| 2352 | sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo); |
| 2353 | const size_t DNBArchMachARM64::k_num_exc_registers = |
| 2354 | sizeof(g_exc_registers) / sizeof(DNBRegisterInfo); |
| 2355 | |
| 2356 | static std::vector<DNBRegisterInfo> g_sve_registers; |
| 2357 | static void initialize_sve_registers() { |
| 2358 | static const char *g_z_regnames[32] = { |
| 2359 | "z0" , "z1" , "z2" , "z3" , "z4" , "z5" , "z6" , "z7" , |
| 2360 | "z8" , "z9" , "z10" , "z11" , "z12" , "z13" , "z14" , "z15" , |
| 2361 | "z16" , "z17" , "z18" , "z19" , "z20" , "z21" , "z22" , "z23" , |
| 2362 | "z24" , "z25" , "z26" , "z27" , "z28" , "z29" , "z30" , "z31" }; |
| 2363 | static const char *g_p_regnames[16] = { |
| 2364 | "p0" , "p1" , "p2" , "p3" , "p4" , "p5" , "p6" , "p7" , |
| 2365 | "p8" , "p9" , "p10" , "p11" , "p12" , "p13" , "p14" , "p15" }; |
| 2366 | |
| 2367 | if (DNBArchMachARM64::CPUHasSME()) { |
| 2368 | uint32_t svl_bytes = DNBArchMachARM64::GetSMEMaxSVL(); |
| 2369 | for (uint32_t i = 0; i < 32; i++) { |
| 2370 | g_sve_registers.push_back( |
| 2371 | {DNBArchMachARM64::e_regSetSVE, (uint32_t)sve_z0 + i, g_z_regnames[i], |
| 2372 | NULL, Vector, VectorOfUInt8, svl_bytes, |
| 2373 | static_cast<uint32_t>(SVE_OFFSET_Z_IDX(i)), INVALID_NUB_REGNUM, |
| 2374 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2375 | (uint32_t)debugserver_sve_z0 + i, NULL, g_invalidate_z[i]}); |
| 2376 | } |
| 2377 | for (uint32_t i = 0; i < 16; i++) { |
| 2378 | g_sve_registers.push_back( |
| 2379 | {DNBArchMachARM64::e_regSetSVE, (uint32_t)sve_p0 + i, g_p_regnames[i], |
| 2380 | NULL, Vector, VectorOfUInt8, svl_bytes / 8, |
| 2381 | (uint32_t)SVE_OFFSET_P_IDX(i), INVALID_NUB_REGNUM, |
| 2382 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2383 | (uint32_t)debugserver_sve_p0 + i, NULL, NULL}); |
| 2384 | } |
| 2385 | } |
| 2386 | } |
| 2387 | |
| 2388 | static std::vector<DNBRegisterInfo> g_vfp_registers; |
| 2389 | static void initialize_vfp_registers() { |
| 2390 | static const char *g_v_regnames[32] = { |
| 2391 | "v0" , "v1" , "v2" , "v3" , "v4" , "v5" , "v6" , "v7" , |
| 2392 | "v8" , "v9" , "v10" , "v11" , "v12" , "v13" , "v14" , "v15" , |
| 2393 | "v16" , "v17" , "v18" , "v19" , "v20" , "v21" , "v22" , "v23" , |
| 2394 | "v24" , "v25" , "v26" , "v27" , "v28" , "v29" , "v30" , "v31" }; |
| 2395 | static const char *g_q_regnames[32] = { |
| 2396 | "q0" , "q1" , "q2" , "q3" , "q4" , "q5" , "q6" , "q7" , |
| 2397 | "q8" , "q9" , "q10" , "q11" , "q12" , "q13" , "q14" , "q15" , |
| 2398 | "q16" , "q17" , "q18" , "q19" , "q20" , "q21" , "q22" , "q23" , |
| 2399 | "q24" , "q25" , "q26" , "q27" , "q28" , "q29" , "q30" , "q31" }; |
| 2400 | |
| 2401 | static const char *g_d_regnames[32] = { |
| 2402 | "d0" , "d1" , "d2" , "d3" , "d4" , "d5" , "d6" , "d7" , |
| 2403 | "d8" , "d9" , "d10" , "d11" , "d12" , "d13" , "d14" , "d15" , |
| 2404 | "d16" , "d17" , "d18" , "d19" , "d20" , "d21" , "d22" , "d23" , |
| 2405 | "d24" , "d25" , "d26" , "d27" , "d28" , "d29" , "d30" , "d31" }; |
| 2406 | |
| 2407 | static const char *g_s_regnames[32] = { |
| 2408 | "s0" , "s1" , "s2" , "s3" , "s4" , "s5" , "s6" , "s7" , |
| 2409 | "s8" , "s9" , "s10" , "s11" , "s12" , "s13" , "s14" , "s15" , |
| 2410 | "s16" , "s17" , "s18" , "s19" , "s20" , "s21" , "s22" , "s23" , |
| 2411 | "s24" , "s25" , "s26" , "s27" , "s28" , "s29" , "s30" , "s31" }; |
| 2412 | |
| 2413 | for (uint32_t i = 0; i < 32; i++) |
| 2414 | if (DNBArchMachARM64::CPUHasSME()) |
| 2415 | g_vfp_registers.push_back( |
| 2416 | {DNBArchMachARM64::e_regSetVFP, (uint32_t)vfp_v0 + i, g_v_regnames[i], |
| 2417 | g_q_regnames[i], Vector, VectorOfUInt8, 16, |
| 2418 | static_cast<uint32_t>(VFP_V_OFFSET_IDX(i)), INVALID_NUB_REGNUM, |
| 2419 | (uint32_t)dwarf_v0 + i, INVALID_NUB_REGNUM, |
| 2420 | (uint32_t)debugserver_vfp_v0 + i, NULL, g_invalidate_z[i]}); |
| 2421 | else |
| 2422 | g_vfp_registers.push_back( |
| 2423 | {DNBArchMachARM64::e_regSetVFP, (uint32_t)vfp_v0 + i, g_v_regnames[i], |
| 2424 | g_q_regnames[i], Vector, VectorOfUInt8, 16, |
| 2425 | static_cast<uint32_t>(VFP_V_OFFSET_IDX(i)), INVALID_NUB_REGNUM, |
| 2426 | (uint32_t)dwarf_v0 + i, INVALID_NUB_REGNUM, |
| 2427 | (uint32_t)debugserver_vfp_v0 + i, NULL, g_invalidate_v[i]}); |
| 2428 | |
| 2429 | g_vfp_registers.push_back( |
| 2430 | {DNBArchMachARM64::e_regSetVFP, vfp_fpsr, "fpsr" , NULL, Uint, Hex, 4, |
| 2431 | VFP_V_OFFSET_IDX(32) + 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2432 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}); |
| 2433 | g_vfp_registers.push_back( |
| 2434 | {DNBArchMachARM64::e_regSetVFP, vfp_fpcr, "fpcr" , NULL, Uint, Hex, 4, |
| 2435 | VFP_V_OFFSET_IDX(32) + 4, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2436 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}); |
| 2437 | |
| 2438 | for (uint32_t i = 0; i < 32; i++) |
| 2439 | if (DNBArchMachARM64::CPUHasSME()) |
| 2440 | g_vfp_registers.push_back( |
| 2441 | {DNBArchMachARM64::e_regSetVFP, (uint32_t)vfp_d0 + i, g_d_regnames[i], |
| 2442 | NULL, IEEE754, Float, 8, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2443 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, g_invalidate_z[i]}); |
| 2444 | else |
| 2445 | g_vfp_registers.push_back( |
| 2446 | {DNBArchMachARM64::e_regSetVFP, (uint32_t)vfp_d0 + i, g_d_regnames[i], |
| 2447 | NULL, IEEE754, Float, 8, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2448 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, g_invalidate_v[i]}); |
| 2449 | |
| 2450 | for (uint32_t i = 0; i < 32; i++) |
| 2451 | if (DNBArchMachARM64::CPUHasSME()) |
| 2452 | g_vfp_registers.push_back( |
| 2453 | {DNBArchMachARM64::e_regSetVFP, (uint32_t)vfp_s0 + i, g_s_regnames[i], |
| 2454 | NULL, IEEE754, Float, 4, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2455 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, g_invalidate_z[i]}); |
| 2456 | else |
| 2457 | g_vfp_registers.push_back( |
| 2458 | {DNBArchMachARM64::e_regSetVFP, (uint32_t)vfp_s0 + i, g_s_regnames[i], |
| 2459 | NULL, IEEE754, Float, 4, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2460 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, g_invalidate_v[i]}); |
| 2461 | } |
| 2462 | |
| 2463 | static std::once_flag g_vfp_once; |
| 2464 | DNBRegisterInfo * |
| 2465 | DNBArchMachARM64::get_vfp_registerinfo(size_t &num_vfp_registers) { |
| 2466 | std::call_once(g_vfp_once, []() { initialize_vfp_registers(); }); |
| 2467 | num_vfp_registers = g_vfp_registers.size(); |
| 2468 | if (num_vfp_registers > 0) |
| 2469 | return g_vfp_registers.data(); |
| 2470 | else |
| 2471 | return nullptr; |
| 2472 | } |
| 2473 | |
| 2474 | static std::once_flag g_sve_once; |
| 2475 | DNBRegisterInfo * |
| 2476 | DNBArchMachARM64::get_sve_registerinfo(size_t &num_sve_registers) { |
| 2477 | std::call_once(g_sve_once, []() { initialize_sve_registers(); }); |
| 2478 | num_sve_registers = g_sve_registers.size(); |
| 2479 | if (num_sve_registers > 0) |
| 2480 | return g_sve_registers.data(); |
| 2481 | else |
| 2482 | return nullptr; |
| 2483 | } |
| 2484 | |
| 2485 | static std::vector<DNBRegisterInfo> g_sme_registers; |
| 2486 | static void initialize_sme_registers() { |
| 2487 | if (DNBArchMachARM64::CPUHasSME()) { |
| 2488 | uint32_t svl_bytes = DNBArchMachARM64::GetSMEMaxSVL(); |
| 2489 | g_sme_registers.push_back( |
| 2490 | {DNBArchMachARM64::e_regSetSME, sme_svcr, "svcr" , NULL, Uint, Hex, 8, |
| 2491 | SME_OFFSET(svcr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2492 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}); |
| 2493 | g_sme_registers.push_back( |
| 2494 | {DNBArchMachARM64::e_regSetSME, sme_tpidr2, "tpidr2" , NULL, Uint, Hex, |
| 2495 | 8, SME_OFFSET(tpidr2), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2496 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}); |
| 2497 | g_sme_registers.push_back( |
| 2498 | {DNBArchMachARM64::e_regSetSME, sme_svl_b, "svl" , NULL, Uint, Hex, 2, |
| 2499 | SME_OFFSET(svl_b), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2500 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}); |
| 2501 | uint32_t za_max_size = svl_bytes * svl_bytes; |
| 2502 | g_sme_registers.push_back({DNBArchMachARM64::e_regSetSME, sme_za, "za" , |
| 2503 | NULL, Vector, VectorOfUInt8, za_max_size, |
| 2504 | SME_OFFSET(za), INVALID_NUB_REGNUM, |
| 2505 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2506 | INVALID_NUB_REGNUM, NULL, NULL}); |
| 2507 | } |
| 2508 | if (DNBArchMachARM64::CPUHasSME2()) { |
| 2509 | g_sme_registers.push_back({DNBArchMachARM64::e_regSetSME, sme_zt0, "zt0" , |
| 2510 | NULL, Vector, VectorOfUInt8, 64, SME_OFFSET(zt0), |
| 2511 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| 2512 | INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, |
| 2513 | NULL}); |
| 2514 | } |
| 2515 | } |
| 2516 | |
| 2517 | static std::once_flag g_sme_once; |
| 2518 | DNBRegisterInfo * |
| 2519 | DNBArchMachARM64::get_sme_registerinfo(size_t &num_sme_registers) { |
| 2520 | std::call_once(g_sme_once, []() { initialize_sme_registers(); }); |
| 2521 | num_sme_registers = g_sme_registers.size(); |
| 2522 | if (num_sme_registers > 0) |
| 2523 | return g_sme_registers.data(); |
| 2524 | else |
| 2525 | return nullptr; |
| 2526 | } |
| 2527 | |
| 2528 | static std::vector<DNBRegisterSetInfo> g_reg_sets; |
| 2529 | void DNBArchMachARM64::initialize_reg_sets() { |
| 2530 | nub_size_t num_all_registers = DNBArchMachARM64::k_num_gpr_registers + |
| 2531 | DNBArchMachARM64::k_num_exc_registers; |
| 2532 | size_t num_vfp_registers = 0; |
| 2533 | DNBRegisterInfo *vfp_reginfos = |
| 2534 | DNBArchMachARM64::get_vfp_registerinfo(num_vfp_registers); |
| 2535 | size_t num_sve_registers = 0; |
| 2536 | DNBRegisterInfo *sve_reginfos = |
| 2537 | DNBArchMachARM64::get_sve_registerinfo(num_sve_registers); |
| 2538 | size_t num_sme_registers = 0; |
| 2539 | DNBRegisterInfo *sme_reginfos = |
| 2540 | DNBArchMachARM64::get_sme_registerinfo(num_sme_registers); |
| 2541 | num_all_registers += |
| 2542 | num_vfp_registers + num_sve_registers + num_sme_registers; |
| 2543 | g_reg_sets.push_back({"ARM64 Registers" , NULL, num_all_registers}); |
| 2544 | g_reg_sets.push_back({"General Purpose Registers" , |
| 2545 | DNBArchMachARM64::g_gpr_registers, |
| 2546 | DNBArchMachARM64::k_num_gpr_registers}); |
| 2547 | g_reg_sets.push_back( |
| 2548 | {"Floating Point Registers" , vfp_reginfos, num_vfp_registers}); |
| 2549 | g_reg_sets.push_back({"Exception State Registers" , |
| 2550 | DNBArchMachARM64::g_exc_registers, |
| 2551 | DNBArchMachARM64::k_num_exc_registers}); |
| 2552 | if (DNBArchMachARM64::CPUHasSME()) { |
| 2553 | g_reg_sets.push_back({"Scalable Vector Extension Registers" , sve_reginfos, |
| 2554 | num_sve_registers}); |
| 2555 | g_reg_sets.push_back({"Scalable Matrix Extension Registers" , sme_reginfos, |
| 2556 | num_sme_registers}); |
| 2557 | } |
| 2558 | } |
| 2559 | |
| 2560 | static std::once_flag g_initialize_register_set_info; |
| 2561 | const DNBRegisterSetInfo * |
| 2562 | DNBArchMachARM64::GetRegisterSetInfo(nub_size_t *num_reg_sets) { |
| 2563 | std::call_once(g_initialize_register_set_info, |
| 2564 | []() { initialize_reg_sets(); }); |
| 2565 | *num_reg_sets = g_reg_sets.size(); |
| 2566 | return g_reg_sets.data(); |
| 2567 | } |
| 2568 | |
| 2569 | bool DNBArchMachARM64::FixGenericRegisterNumber(uint32_t &set, uint32_t ®) { |
| 2570 | if (set == REGISTER_SET_GENERIC) { |
| 2571 | switch (reg) { |
| 2572 | case GENERIC_REGNUM_PC: // Program Counter |
| 2573 | set = e_regSetGPR; |
| 2574 | reg = gpr_pc; |
| 2575 | break; |
| 2576 | |
| 2577 | case GENERIC_REGNUM_SP: // Stack Pointer |
| 2578 | set = e_regSetGPR; |
| 2579 | reg = gpr_sp; |
| 2580 | break; |
| 2581 | |
| 2582 | case GENERIC_REGNUM_FP: // Frame Pointer |
| 2583 | set = e_regSetGPR; |
| 2584 | reg = gpr_fp; |
| 2585 | break; |
| 2586 | |
| 2587 | case GENERIC_REGNUM_RA: // Return Address |
| 2588 | set = e_regSetGPR; |
| 2589 | reg = gpr_lr; |
| 2590 | break; |
| 2591 | |
| 2592 | case GENERIC_REGNUM_FLAGS: // Processor flags register |
| 2593 | set = e_regSetGPR; |
| 2594 | reg = gpr_cpsr; |
| 2595 | break; |
| 2596 | |
| 2597 | case GENERIC_REGNUM_ARG1: |
| 2598 | case GENERIC_REGNUM_ARG2: |
| 2599 | case GENERIC_REGNUM_ARG3: |
| 2600 | case GENERIC_REGNUM_ARG4: |
| 2601 | case GENERIC_REGNUM_ARG5: |
| 2602 | case GENERIC_REGNUM_ARG6: |
| 2603 | set = e_regSetGPR; |
| 2604 | reg = gpr_x0 + reg - GENERIC_REGNUM_ARG1; |
| 2605 | break; |
| 2606 | |
| 2607 | default: |
| 2608 | return false; |
| 2609 | } |
| 2610 | } |
| 2611 | return true; |
| 2612 | } |
| 2613 | bool DNBArchMachARM64::GetRegisterValue(uint32_t set, uint32_t reg, |
| 2614 | DNBRegisterValue *value) { |
| 2615 | if (!FixGenericRegisterNumber(set, reg)) |
| 2616 | return false; |
| 2617 | |
| 2618 | if (GetRegisterState(set, false) != KERN_SUCCESS) |
| 2619 | return false; |
| 2620 | |
| 2621 | const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); |
| 2622 | if (regInfo) { |
| 2623 | uint16_t max_svl_bytes = GetSMEMaxSVL(); |
| 2624 | value->info = *regInfo; |
| 2625 | switch (set) { |
| 2626 | case e_regSetGPR: |
| 2627 | if (reg <= gpr_pc) { |
| 2628 | switch (reg) { |
| 2629 | #if defined(DEBUGSERVER_IS_ARM64E) |
| 2630 | case gpr_pc: |
| 2631 | value->value.uint64 = clear_pac_bits( |
| 2632 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_pc)); |
| 2633 | break; |
| 2634 | case gpr_lr: |
| 2635 | value->value.uint64 = arm_thread_state64_get_lr(m_state.context.gpr); |
| 2636 | break; |
| 2637 | case gpr_sp: |
| 2638 | value->value.uint64 = clear_pac_bits( |
| 2639 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_sp)); |
| 2640 | break; |
| 2641 | case gpr_fp: |
| 2642 | value->value.uint64 = clear_pac_bits( |
| 2643 | reinterpret_cast<uint64_t>(m_state.context.gpr.__opaque_fp)); |
| 2644 | break; |
| 2645 | #else |
| 2646 | case gpr_pc: |
| 2647 | value->value.uint64 = clear_pac_bits(m_state.context.gpr.__pc); |
| 2648 | break; |
| 2649 | case gpr_lr: |
| 2650 | value->value.uint64 = clear_pac_bits(m_state.context.gpr.__lr); |
| 2651 | break; |
| 2652 | case gpr_sp: |
| 2653 | value->value.uint64 = clear_pac_bits(m_state.context.gpr.__sp); |
| 2654 | break; |
| 2655 | case gpr_fp: |
| 2656 | value->value.uint64 = clear_pac_bits(m_state.context.gpr.__fp); |
| 2657 | break; |
| 2658 | #endif |
| 2659 | default: |
| 2660 | value->value.uint64 = m_state.context.gpr.__x[reg]; |
| 2661 | } |
| 2662 | return true; |
| 2663 | } else if (reg == gpr_cpsr) { |
| 2664 | value->value.uint32 = m_state.context.gpr.__cpsr; |
| 2665 | return true; |
| 2666 | } |
| 2667 | break; |
| 2668 | |
| 2669 | case e_regSetVFP: |
| 2670 | |
| 2671 | if (reg >= vfp_v0 && reg <= vfp_v31) { |
| 2672 | #if defined(__arm64__) || defined(__aarch64__) |
| 2673 | memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_v0], |
| 2674 | 16); |
| 2675 | #else |
| 2676 | memcpy(&value->value.v_uint8, |
| 2677 | ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16), |
| 2678 | 16); |
| 2679 | #endif |
| 2680 | return true; |
| 2681 | } else if (reg == vfp_fpsr) { |
| 2682 | #if defined(__arm64__) || defined(__aarch64__) |
| 2683 | memcpy(&value->value.uint32, &m_state.context.vfp.__fpsr, 4); |
| 2684 | #else |
| 2685 | memcpy(&value->value.uint32, |
| 2686 | ((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0, 4); |
| 2687 | #endif |
| 2688 | return true; |
| 2689 | } else if (reg == vfp_fpcr) { |
| 2690 | #if defined(__arm64__) || defined(__aarch64__) |
| 2691 | memcpy(&value->value.uint32, &m_state.context.vfp.__fpcr, 4); |
| 2692 | #else |
| 2693 | memcpy(&value->value.uint32, |
| 2694 | ((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 4, 4); |
| 2695 | #endif |
| 2696 | return true; |
| 2697 | } else if (reg >= vfp_s0 && reg <= vfp_s31) { |
| 2698 | #if defined(__arm64__) || defined(__aarch64__) |
| 2699 | memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_s0], |
| 2700 | 4); |
| 2701 | #else |
| 2702 | memcpy(&value->value.v_uint8, |
| 2703 | ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16), |
| 2704 | 4); |
| 2705 | #endif |
| 2706 | return true; |
| 2707 | } else if (reg >= vfp_d0 && reg <= vfp_d31) { |
| 2708 | #if defined(__arm64__) || defined(__aarch64__) |
| 2709 | memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_d0], |
| 2710 | 8); |
| 2711 | #else |
| 2712 | memcpy(&value->value.v_uint8, |
| 2713 | ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16), |
| 2714 | 8); |
| 2715 | #endif |
| 2716 | return true; |
| 2717 | } |
| 2718 | break; |
| 2719 | |
| 2720 | case e_regSetSVE: |
| 2721 | if (GetRegisterState(e_regSetSVE, false) != KERN_SUCCESS) |
| 2722 | return false; |
| 2723 | |
| 2724 | if (reg >= sve_z0 && reg <= sve_z31) { |
| 2725 | memset(&value->value.v_uint8, 0, max_svl_bytes); |
| 2726 | memcpy(&value->value.v_uint8, &m_state.context.sve.z[reg - sve_z0], |
| 2727 | max_svl_bytes); |
| 2728 | return true; |
| 2729 | } else if (reg >= sve_p0 && reg <= sve_p15) { |
| 2730 | memset(&value->value.v_uint8, 0, max_svl_bytes / 8); |
| 2731 | memcpy(&value->value.v_uint8, &m_state.context.sve.p[reg - sve_p0], |
| 2732 | max_svl_bytes / 8); |
| 2733 | return true; |
| 2734 | } |
| 2735 | break; |
| 2736 | |
| 2737 | case e_regSetSME: |
| 2738 | if (GetRegisterState(e_regSetSME, false) != KERN_SUCCESS) |
| 2739 | return false; |
| 2740 | |
| 2741 | if (reg == sme_svcr) { |
| 2742 | value->value.uint64 = m_state.context.sme.svcr; |
| 2743 | return true; |
| 2744 | } else if (reg == sme_tpidr2) { |
| 2745 | value->value.uint64 = m_state.context.sme.tpidr2; |
| 2746 | return true; |
| 2747 | } else if (reg == sme_svl_b) { |
| 2748 | value->value.uint64 = m_state.context.sme.svl_b; |
| 2749 | return true; |
| 2750 | } else if (reg == sme_za) { |
| 2751 | memcpy(&value->value.v_uint8, m_state.context.sme.za.data(), |
| 2752 | max_svl_bytes * max_svl_bytes); |
| 2753 | return true; |
| 2754 | } else if (reg == sme_zt0) { |
| 2755 | memcpy(&value->value.v_uint8, &m_state.context.sme.zt0, 64); |
| 2756 | return true; |
| 2757 | } |
| 2758 | break; |
| 2759 | |
| 2760 | case e_regSetEXC: |
| 2761 | if (reg == exc_far) { |
| 2762 | value->value.uint64 = m_state.context.exc.__far; |
| 2763 | return true; |
| 2764 | } else if (reg == exc_esr) { |
| 2765 | value->value.uint32 = m_state.context.exc.__esr; |
| 2766 | return true; |
| 2767 | } else if (reg == exc_exception) { |
| 2768 | value->value.uint32 = m_state.context.exc.__exception; |
| 2769 | return true; |
| 2770 | } |
| 2771 | break; |
| 2772 | } |
| 2773 | } |
| 2774 | return false; |
| 2775 | } |
| 2776 | |
| 2777 | bool DNBArchMachARM64::SetRegisterValue(uint32_t set, uint32_t reg, |
| 2778 | const DNBRegisterValue *value) { |
| 2779 | if (!FixGenericRegisterNumber(set, reg)) |
| 2780 | return false; |
| 2781 | |
| 2782 | if (GetRegisterState(set, false) != KERN_SUCCESS) |
| 2783 | return false; |
| 2784 | |
| 2785 | bool success = false; |
| 2786 | const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); |
| 2787 | if (regInfo) { |
| 2788 | switch (set) { |
| 2789 | case e_regSetGPR: |
| 2790 | if (reg <= gpr_pc) { |
| 2791 | #if defined(__LP64__) |
| 2792 | uint64_t signed_value = value->value.uint64; |
| 2793 | #if __has_feature(ptrauth_calls) |
| 2794 | // The incoming value could be garbage. Strip it to avoid |
| 2795 | // trapping when it gets resigned in the thread state. |
| 2796 | signed_value = (uint64_t) ptrauth_strip((void*) signed_value, ptrauth_key_function_pointer); |
| 2797 | signed_value = (uint64_t) ptrauth_sign_unauthenticated((void*) signed_value, ptrauth_key_function_pointer, 0); |
| 2798 | #endif |
| 2799 | if (reg == gpr_pc) |
| 2800 | arm_thread_state64_set_pc_fptr (m_state.context.gpr, (void*) signed_value); |
| 2801 | else if (reg == gpr_lr) |
| 2802 | arm_thread_state64_set_lr_fptr (m_state.context.gpr, (void*) signed_value); |
| 2803 | else if (reg == gpr_sp) |
| 2804 | arm_thread_state64_set_sp (m_state.context.gpr, value->value.uint64); |
| 2805 | else if (reg == gpr_fp) |
| 2806 | arm_thread_state64_set_fp (m_state.context.gpr, value->value.uint64); |
| 2807 | else |
| 2808 | m_state.context.gpr.__x[reg] = value->value.uint64; |
| 2809 | #else |
| 2810 | m_state.context.gpr.__x[reg] = value->value.uint64; |
| 2811 | #endif |
| 2812 | success = true; |
| 2813 | } else if (reg == gpr_cpsr) { |
| 2814 | m_state.context.gpr.__cpsr = value->value.uint32; |
| 2815 | success = true; |
| 2816 | } |
| 2817 | break; |
| 2818 | |
| 2819 | case e_regSetVFP: |
| 2820 | if (reg >= vfp_v0 && reg <= vfp_v31) { |
| 2821 | #if defined(__arm64__) || defined(__aarch64__) |
| 2822 | memcpy(&m_state.context.vfp.__v[reg - vfp_v0], &value->value.v_uint8, |
| 2823 | 16); |
| 2824 | #else |
| 2825 | memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16), |
| 2826 | &value->value.v_uint8, 16); |
| 2827 | #endif |
| 2828 | success = true; |
| 2829 | } else if (reg == vfp_fpsr) { |
| 2830 | #if defined(__arm64__) || defined(__aarch64__) |
| 2831 | memcpy(&m_state.context.vfp.__fpsr, &value->value.uint32, 4); |
| 2832 | #else |
| 2833 | memcpy(((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0, |
| 2834 | &value->value.uint32, 4); |
| 2835 | #endif |
| 2836 | success = true; |
| 2837 | } else if (reg == vfp_fpcr) { |
| 2838 | #if defined(__arm64__) || defined(__aarch64__) |
| 2839 | memcpy(&m_state.context.vfp.__fpcr, &value->value.uint32, 4); |
| 2840 | #else |
| 2841 | memcpy(((uint8_t *)m_state.context.vfp.opaque) + (32 * 16) + 4, |
| 2842 | &value->value.uint32, 4); |
| 2843 | #endif |
| 2844 | success = true; |
| 2845 | } else if (reg >= vfp_s0 && reg <= vfp_s31) { |
| 2846 | #if defined(__arm64__) || defined(__aarch64__) |
| 2847 | memcpy(&m_state.context.vfp.__v[reg - vfp_s0], &value->value.v_uint8, |
| 2848 | 4); |
| 2849 | #else |
| 2850 | memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16), |
| 2851 | &value->value.v_uint8, 4); |
| 2852 | #endif |
| 2853 | success = true; |
| 2854 | } else if (reg >= vfp_d0 && reg <= vfp_d31) { |
| 2855 | #if defined(__arm64__) || defined(__aarch64__) |
| 2856 | memcpy(&m_state.context.vfp.__v[reg - vfp_d0], &value->value.v_uint8, |
| 2857 | 8); |
| 2858 | #else |
| 2859 | memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16), |
| 2860 | &value->value.v_uint8, 8); |
| 2861 | #endif |
| 2862 | success = true; |
| 2863 | } |
| 2864 | break; |
| 2865 | |
| 2866 | case e_regSetSVE: |
| 2867 | if (reg >= sve_z0 && reg <= sve_z31) { |
| 2868 | uint16_t max_svl_bytes = GetSMEMaxSVL(); |
| 2869 | memcpy(&m_state.context.sve.z[reg - sve_z0], &value->value.v_uint8, |
| 2870 | max_svl_bytes); |
| 2871 | success = true; |
| 2872 | } |
| 2873 | if (reg >= sve_p0 && reg <= sve_p15) { |
| 2874 | uint16_t max_svl_bytes = GetSMEMaxSVL(); |
| 2875 | memcpy(&m_state.context.sve.p[reg - sve_p0], &value->value.v_uint8, |
| 2876 | max_svl_bytes / 8); |
| 2877 | success = true; |
| 2878 | } |
| 2879 | break; |
| 2880 | |
| 2881 | case e_regSetSME: |
| 2882 | // Cannot change ARM_SME_STATE registers with thread_set_state |
| 2883 | if (reg == sme_svcr || reg == sme_tpidr2 || reg == sme_svl_b) |
| 2884 | return false; |
| 2885 | if (reg == sme_za) { |
| 2886 | uint16_t max_svl_bytes = GetSMEMaxSVL(); |
| 2887 | memcpy(m_state.context.sme.za.data(), &value->value.v_uint8, |
| 2888 | max_svl_bytes * max_svl_bytes); |
| 2889 | success = true; |
| 2890 | } |
| 2891 | if (reg == sme_zt0) { |
| 2892 | memcpy(&m_state.context.sme.zt0, &value->value.v_uint8, 64); |
| 2893 | success = true; |
| 2894 | } |
| 2895 | break; |
| 2896 | |
| 2897 | case e_regSetEXC: |
| 2898 | if (reg == exc_far) { |
| 2899 | m_state.context.exc.__far = value->value.uint64; |
| 2900 | success = true; |
| 2901 | } else if (reg == exc_esr) { |
| 2902 | m_state.context.exc.__esr = value->value.uint32; |
| 2903 | success = true; |
| 2904 | } else if (reg == exc_exception) { |
| 2905 | m_state.context.exc.__exception = value->value.uint32; |
| 2906 | success = true; |
| 2907 | } |
| 2908 | break; |
| 2909 | } |
| 2910 | } |
| 2911 | if (success) |
| 2912 | return SetRegisterState(set) == KERN_SUCCESS; |
| 2913 | return false; |
| 2914 | } |
| 2915 | |
| 2916 | kern_return_t DNBArchMachARM64::GetRegisterState(int set, bool force) { |
| 2917 | switch (set) { |
| 2918 | case e_regSetALL: { |
| 2919 | kern_return_t retval = GetGPRState(force) | GetVFPState(force) | |
| 2920 | GetEXCState(force) | GetDBGState(force); |
| 2921 | // If the processor is not in Streaming SVE Mode currently, these |
| 2922 | // two will fail to read. Don't return that as an error, it will |
| 2923 | // be the most common case. |
| 2924 | if (CPUHasSME()) { |
| 2925 | GetSVEState(force); |
| 2926 | GetSMEState(force); |
| 2927 | } |
| 2928 | return retval; |
| 2929 | } |
| 2930 | case e_regSetGPR: |
| 2931 | return GetGPRState(force); |
| 2932 | case e_regSetVFP: |
| 2933 | return GetVFPState(force); |
| 2934 | case e_regSetSVE: |
| 2935 | return GetSVEState(force); |
| 2936 | case e_regSetSME: |
| 2937 | return GetSMEState(force); |
| 2938 | case e_regSetEXC: |
| 2939 | return GetEXCState(force); |
| 2940 | case e_regSetDBG: |
| 2941 | return GetDBGState(force); |
| 2942 | default: |
| 2943 | break; |
| 2944 | } |
| 2945 | return KERN_INVALID_ARGUMENT; |
| 2946 | } |
| 2947 | |
| 2948 | kern_return_t DNBArchMachARM64::SetRegisterState(int set) { |
| 2949 | // Make sure we have a valid context to set. |
| 2950 | kern_return_t err = GetRegisterState(set, false); |
| 2951 | if (err != KERN_SUCCESS) |
| 2952 | return err; |
| 2953 | |
| 2954 | switch (set) { |
| 2955 | case e_regSetALL: { |
| 2956 | kern_return_t ret = |
| 2957 | SetGPRState() | SetVFPState() | SetEXCState() | SetDBGState(false); |
| 2958 | if (CPUHasSME()) { |
| 2959 | SetSVEState(); |
| 2960 | SetSMEState(); |
| 2961 | } |
| 2962 | return ret; |
| 2963 | } |
| 2964 | case e_regSetGPR: |
| 2965 | return SetGPRState(); |
| 2966 | case e_regSetVFP: |
| 2967 | return SetVFPState(); |
| 2968 | case e_regSetSVE: |
| 2969 | return SetSVEState(); |
| 2970 | case e_regSetSME: |
| 2971 | return SetSMEState(); |
| 2972 | case e_regSetEXC: |
| 2973 | return SetEXCState(); |
| 2974 | case e_regSetDBG: |
| 2975 | return SetDBGState(false); |
| 2976 | default: |
| 2977 | break; |
| 2978 | } |
| 2979 | return KERN_INVALID_ARGUMENT; |
| 2980 | } |
| 2981 | |
| 2982 | bool DNBArchMachARM64::RegisterSetStateIsValid(int set) const { |
| 2983 | return m_state.RegsAreValid(set); |
| 2984 | } |
| 2985 | |
| 2986 | nub_size_t DNBArchMachARM64::GetRegisterContext(void *buf, nub_size_t buf_len) { |
| 2987 | nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) + |
| 2988 | sizeof(m_state.context.exc); |
| 2989 | const bool cpu_has_sme = CPUHasSME(); |
| 2990 | if (cpu_has_sme) { |
| 2991 | size += sizeof(m_state.context.sve); |
| 2992 | // ZA register is in a std::vector<uint8_t> so we need to add |
| 2993 | // the sizes of the SME manually. |
| 2994 | size += ARM_SME_STATE_COUNT * sizeof(uint32_t); |
| 2995 | size += m_state.context.sme.za.size(); |
| 2996 | size += ARM_SME2_STATE_COUNT * sizeof(uint32_t); |
| 2997 | } |
| 2998 | |
| 2999 | if (buf && buf_len) { |
| 3000 | if (size > buf_len) |
| 3001 | size = buf_len; |
| 3002 | |
| 3003 | bool force = false; |
| 3004 | if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force)) |
| 3005 | return 0; |
| 3006 | // Don't error out if SME/SVE fail to read. These can only be read |
| 3007 | // when the process is in Streaming SVE Mode, so the failure to read |
| 3008 | // them will be common. |
| 3009 | if (cpu_has_sme) { |
| 3010 | GetSVEState(force); |
| 3011 | GetSMEState(force); |
| 3012 | } |
| 3013 | |
| 3014 | // Copy each struct individually to avoid any padding that might be between |
| 3015 | // the structs in m_state.context |
| 3016 | uint8_t *p = (uint8_t *)buf; |
| 3017 | ::memcpy(p, &m_state.context.gpr, sizeof(m_state.context.gpr)); |
| 3018 | p += sizeof(m_state.context.gpr); |
| 3019 | ::memcpy(p, &m_state.context.vfp, sizeof(m_state.context.vfp)); |
| 3020 | p += sizeof(m_state.context.vfp); |
| 3021 | if (cpu_has_sme) { |
| 3022 | ::memcpy(p, &m_state.context.sve, sizeof(m_state.context.sve)); |
| 3023 | p += sizeof(m_state.context.sve); |
| 3024 | |
| 3025 | memcpy(p, &m_state.context.sme.svcr, |
| 3026 | ARM_SME_STATE_COUNT * sizeof(uint32_t)); |
| 3027 | p += ARM_SME_STATE_COUNT * sizeof(uint32_t); |
| 3028 | memcpy(p, m_state.context.sme.za.data(), m_state.context.sme.za.size()); |
| 3029 | p += m_state.context.sme.za.size(); |
| 3030 | if (CPUHasSME2()) { |
| 3031 | memcpy(p, &m_state.context.sme.zt0, |
| 3032 | ARM_SME2_STATE_COUNT * sizeof(uint32_t)); |
| 3033 | p += ARM_SME2_STATE_COUNT * sizeof(uint32_t); |
| 3034 | } |
| 3035 | } |
| 3036 | ::memcpy(p, &m_state.context.exc, sizeof(m_state.context.exc)); |
| 3037 | p += sizeof(m_state.context.exc); |
| 3038 | |
| 3039 | size_t bytes_written = p - (uint8_t *)buf; |
| 3040 | UNUSED_IF_ASSERT_DISABLED(bytes_written); |
| 3041 | assert(bytes_written == size); |
| 3042 | } |
| 3043 | DNBLogThreadedIf( |
| 3044 | LOG_THREAD, |
| 3045 | "DNBArchMachARM64::GetRegisterContext (buf = %p, len = %zu) => %zu" , buf, |
| 3046 | buf_len, size); |
| 3047 | // Return the size of the register context even if NULL was passed in |
| 3048 | return size; |
| 3049 | } |
| 3050 | |
| 3051 | nub_size_t DNBArchMachARM64::SetRegisterContext(const void *buf, |
| 3052 | nub_size_t buf_len) { |
| 3053 | nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) + |
| 3054 | sizeof(m_state.context.exc); |
| 3055 | if (CPUHasSME()) { |
| 3056 | // m_state.context.za is three status registers, then a std::vector<uint8_t> |
| 3057 | // for ZA, then zt0, so the size of the data is not statically knowable. |
| 3058 | nub_size_t sme_size = ARM_SME_STATE_COUNT * sizeof(uint32_t); |
| 3059 | sme_size += m_state.context.sme.za.size(); |
| 3060 | sme_size += ARM_SME2_STATE_COUNT * sizeof(uint32_t); |
| 3061 | |
| 3062 | size += sizeof(m_state.context.sve) + sme_size; |
| 3063 | } |
| 3064 | |
| 3065 | if (buf == NULL || buf_len == 0) |
| 3066 | size = 0; |
| 3067 | |
| 3068 | if (size) { |
| 3069 | if (size > buf_len) |
| 3070 | size = buf_len; |
| 3071 | |
| 3072 | // Copy each struct individually to avoid any padding that might be between |
| 3073 | // the structs in m_state.context |
| 3074 | uint8_t *p = const_cast<uint8_t*>(reinterpret_cast<const uint8_t *>(buf)); |
| 3075 | ::memcpy(&m_state.context.gpr, p, sizeof(m_state.context.gpr)); |
| 3076 | p += sizeof(m_state.context.gpr); |
| 3077 | ::memcpy(&m_state.context.vfp, p, sizeof(m_state.context.vfp)); |
| 3078 | p += sizeof(m_state.context.vfp); |
| 3079 | if (CPUHasSME()) { |
| 3080 | memcpy(&m_state.context.sve, p, sizeof(m_state.context.sve)); |
| 3081 | p += sizeof(m_state.context.sve); |
| 3082 | memcpy(&m_state.context.sme.svcr, p, |
| 3083 | ARM_SME_STATE_COUNT * sizeof(uint32_t)); |
| 3084 | p += ARM_SME_STATE_COUNT * sizeof(uint32_t); |
| 3085 | memcpy(m_state.context.sme.za.data(), p, m_state.context.sme.za.size()); |
| 3086 | p += m_state.context.sme.za.size(); |
| 3087 | if (CPUHasSME2()) { |
| 3088 | memcpy(&m_state.context.sme.zt0, p, |
| 3089 | ARM_SME2_STATE_COUNT * sizeof(uint32_t)); |
| 3090 | p += ARM_SME2_STATE_COUNT * sizeof(uint32_t); |
| 3091 | } |
| 3092 | } |
| 3093 | ::memcpy(&m_state.context.exc, p, sizeof(m_state.context.exc)); |
| 3094 | p += sizeof(m_state.context.exc); |
| 3095 | |
| 3096 | size_t bytes_written = p - reinterpret_cast<const uint8_t *>(buf); |
| 3097 | UNUSED_IF_ASSERT_DISABLED(bytes_written); |
| 3098 | assert(bytes_written == size); |
| 3099 | SetGPRState(); |
| 3100 | SetVFPState(); |
| 3101 | if (CPUHasSME()) { |
| 3102 | SetSVEState(); |
| 3103 | SetSMEState(); |
| 3104 | } |
| 3105 | SetEXCState(); |
| 3106 | } |
| 3107 | DNBLogThreadedIf( |
| 3108 | LOG_THREAD, |
| 3109 | "DNBArchMachARM64::SetRegisterContext (buf = %p, len = %zu) => %zu" , buf, |
| 3110 | buf_len, size); |
| 3111 | return size; |
| 3112 | } |
| 3113 | |
| 3114 | uint32_t DNBArchMachARM64::SaveRegisterState() { |
| 3115 | kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber()); |
| 3116 | DNBLogThreadedIf( |
| 3117 | LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u " |
| 3118 | "(SetGPRState() for stop_count = %u)" , |
| 3119 | m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount()); |
| 3120 | |
| 3121 | // Always re-read the registers because above we call thread_abort_safely(); |
| 3122 | bool force = true; |
| 3123 | |
| 3124 | if ((kret = GetGPRState(force)) != KERN_SUCCESS) { |
| 3125 | DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () " |
| 3126 | "error: GPR regs failed to read: %u " , |
| 3127 | kret); |
| 3128 | } else if ((kret = GetVFPState(force)) != KERN_SUCCESS) { |
| 3129 | DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () " |
| 3130 | "error: %s regs failed to read: %u" , |
| 3131 | "VFP" , kret); |
| 3132 | } else { |
| 3133 | if (CPUHasSME()) { |
| 3134 | // These can fail when processor is not in streaming SVE mode, |
| 3135 | // and that failure should be ignored. |
| 3136 | GetSVEState(force); |
| 3137 | GetSMEState(force); |
| 3138 | } |
| 3139 | const uint32_t save_id = GetNextRegisterStateSaveID(); |
| 3140 | m_saved_register_states[save_id] = m_state.context; |
| 3141 | return save_id; |
| 3142 | } |
| 3143 | return UINT32_MAX; |
| 3144 | } |
| 3145 | |
| 3146 | bool DNBArchMachARM64::RestoreRegisterState(uint32_t save_id) { |
| 3147 | SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id); |
| 3148 | if (pos != m_saved_register_states.end()) { |
| 3149 | m_state.context.gpr = pos->second.gpr; |
| 3150 | m_state.context.vfp = pos->second.vfp; |
| 3151 | kern_return_t kret; |
| 3152 | bool success = true; |
| 3153 | if ((kret = SetGPRState()) != KERN_SUCCESS) { |
| 3154 | DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState " |
| 3155 | "(save_id = %u) error: GPR regs failed to " |
| 3156 | "write: %u" , |
| 3157 | save_id, kret); |
| 3158 | success = false; |
| 3159 | } else if ((kret = SetVFPState()) != KERN_SUCCESS) { |
| 3160 | DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState " |
| 3161 | "(save_id = %u) error: %s regs failed to " |
| 3162 | "write: %u" , |
| 3163 | save_id, "VFP" , kret); |
| 3164 | success = false; |
| 3165 | } |
| 3166 | if (CPUHasSME()) { |
| 3167 | // These can fail when processor is not in streaming SVE mode, |
| 3168 | // and that failure should be ignored. |
| 3169 | SetSVEState(); |
| 3170 | SetSMEState(); |
| 3171 | } |
| 3172 | m_saved_register_states.erase(pos); |
| 3173 | return success; |
| 3174 | } |
| 3175 | return false; |
| 3176 | } |
| 3177 | |
| 3178 | #endif // #if defined (ARM_THREAD_STATE64_COUNT) |
| 3179 | #endif // #if defined (__arm__) || defined (__arm64__) || defined (__aarch64__) |
| 3180 | |