| 1 | //===-- mlir-c/AffineExpr.h - C API for MLIR Affine Expressions ---*- C -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM |
| 4 | // Exceptions. |
| 5 | // See https://llvm.org/LICENSE.txt for license information. |
| 6 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #ifndef MLIR_C_AFFINEEXPR_H |
| 11 | #define MLIR_C_AFFINEEXPR_H |
| 12 | |
| 13 | #include "mlir-c/IR.h" |
| 14 | |
| 15 | #ifdef __cplusplus |
| 16 | extern "C" { |
| 17 | #endif |
| 18 | |
| 19 | //===----------------------------------------------------------------------===// |
| 20 | // Opaque type declarations. |
| 21 | // |
| 22 | // Types are exposed to C bindings as structs containing opaque pointers. They |
| 23 | // are not supposed to be inspected from C. This allows the underlying |
| 24 | // representation to change without affecting the API users. The use of structs |
| 25 | // instead of typedefs enables some type safety as structs are not implicitly |
| 26 | // convertible to each other. |
| 27 | // |
| 28 | // Instances of these types may or may not own the underlying object. The |
| 29 | // ownership semantics is defined by how an instance of the type was obtained. |
| 30 | //===----------------------------------------------------------------------===// |
| 31 | |
| 32 | #define DEFINE_C_API_STRUCT(name, storage) \ |
| 33 | struct name { \ |
| 34 | storage *ptr; \ |
| 35 | }; \ |
| 36 | typedef struct name name |
| 37 | |
| 38 | DEFINE_C_API_STRUCT(MlirAffineExpr, const void); |
| 39 | |
| 40 | #undef DEFINE_C_API_STRUCT |
| 41 | |
| 42 | struct MlirAffineMap; |
| 43 | |
| 44 | /// Gets the context that owns the affine expression. |
| 45 | MLIR_CAPI_EXPORTED MlirContext |
| 46 | mlirAffineExprGetContext(MlirAffineExpr affineExpr); |
| 47 | |
| 48 | /// Returns `true` if the two affine expressions are equal. |
| 49 | MLIR_CAPI_EXPORTED bool mlirAffineExprEqual(MlirAffineExpr lhs, |
| 50 | MlirAffineExpr rhs); |
| 51 | |
| 52 | /// Returns `true` if the given affine expression is a null expression. Note |
| 53 | /// constant zero is not a null expression. |
| 54 | inline static bool mlirAffineExprIsNull(MlirAffineExpr affineExpr) { |
| 55 | return affineExpr.ptr == NULL; |
| 56 | } |
| 57 | |
| 58 | /// Prints an affine expression by sending chunks of the string representation |
| 59 | /// and forwarding `userData to `callback`. Note that the callback may be called |
| 60 | /// several times with consecutive chunks of the string. |
| 61 | MLIR_CAPI_EXPORTED void mlirAffineExprPrint(MlirAffineExpr affineExpr, |
| 62 | MlirStringCallback callback, |
| 63 | void *userData); |
| 64 | |
| 65 | /// Prints the affine expression to the standard error stream. |
| 66 | MLIR_CAPI_EXPORTED void mlirAffineExprDump(MlirAffineExpr affineExpr); |
| 67 | |
| 68 | /// Checks whether the given affine expression is made out of only symbols and |
| 69 | /// constants. |
| 70 | MLIR_CAPI_EXPORTED bool |
| 71 | mlirAffineExprIsSymbolicOrConstant(MlirAffineExpr affineExpr); |
| 72 | |
| 73 | /// Checks whether the given affine expression is a pure affine expression, i.e. |
| 74 | /// mul, floordiv, ceildic, and mod is only allowed w.r.t constants. |
| 75 | MLIR_CAPI_EXPORTED bool mlirAffineExprIsPureAffine(MlirAffineExpr affineExpr); |
| 76 | |
| 77 | /// Returns the greatest known integral divisor of this affine expression. The |
| 78 | /// result is always positive. |
| 79 | MLIR_CAPI_EXPORTED int64_t |
| 80 | mlirAffineExprGetLargestKnownDivisor(MlirAffineExpr affineExpr); |
| 81 | |
| 82 | /// Checks whether the given affine expression is a multiple of 'factor'. |
| 83 | MLIR_CAPI_EXPORTED bool mlirAffineExprIsMultipleOf(MlirAffineExpr affineExpr, |
| 84 | int64_t factor); |
| 85 | |
| 86 | /// Checks whether the given affine expression involves AffineDimExpr |
| 87 | /// 'position'. |
| 88 | MLIR_CAPI_EXPORTED bool mlirAffineExprIsFunctionOfDim(MlirAffineExpr affineExpr, |
| 89 | intptr_t position); |
| 90 | |
| 91 | /// Composes the given map with the given expression. |
| 92 | MLIR_CAPI_EXPORTED MlirAffineExpr mlirAffineExprCompose( |
| 93 | MlirAffineExpr affineExpr, struct MlirAffineMap affineMap); |
| 94 | |
| 95 | /// Replace dims[offset ... numDims) |
| 96 | /// by dims[offset + shift ... shift + numDims). |
| 97 | MLIR_CAPI_EXPORTED MlirAffineExpr |
| 98 | mlirAffineExprShiftDims(MlirAffineExpr affineExpr, uint32_t numDims, |
| 99 | uint32_t shift, uint32_t offset); |
| 100 | |
| 101 | /// Replace symbols[offset ... numSymbols) |
| 102 | /// by symbols[offset + shift ... shift + numSymbols). |
| 103 | MLIR_CAPI_EXPORTED MlirAffineExpr |
| 104 | mlirAffineExprShiftSymbols(MlirAffineExpr affineExpr, uint32_t numSymbols, |
| 105 | uint32_t shift, uint32_t offset); |
| 106 | |
| 107 | /// Simplify an affine expression by flattening and some amount of simple |
| 108 | /// analysis. This has complexity linear in the number of nodes in 'expr'. |
| 109 | /// Returns the simplified expression, which is the same as the input expression |
| 110 | /// if it can't be simplified. When `expr` is semi-affine, a simplified |
| 111 | /// semi-affine expression is constructed in the sorted order of dimension and |
| 112 | /// symbol positions. |
| 113 | MLIR_CAPI_EXPORTED MlirAffineExpr mlirSimplifyAffineExpr(MlirAffineExpr expr, |
| 114 | uint32_t numDims, |
| 115 | uint32_t numSymbols); |
| 116 | |
| 117 | //===----------------------------------------------------------------------===// |
| 118 | // Affine Dimension Expression. |
| 119 | //===----------------------------------------------------------------------===// |
| 120 | |
| 121 | /// Checks whether the given affine expression is a dimension expression. |
| 122 | MLIR_CAPI_EXPORTED bool mlirAffineExprIsADim(MlirAffineExpr affineExpr); |
| 123 | |
| 124 | /// Creates an affine dimension expression with 'position' in the context. |
| 125 | MLIR_CAPI_EXPORTED MlirAffineExpr mlirAffineDimExprGet(MlirContext ctx, |
| 126 | intptr_t position); |
| 127 | |
| 128 | /// Returns the position of the given affine dimension expression. |
| 129 | MLIR_CAPI_EXPORTED intptr_t |
| 130 | mlirAffineDimExprGetPosition(MlirAffineExpr affineExpr); |
| 131 | |
| 132 | //===----------------------------------------------------------------------===// |
| 133 | // Affine Symbol Expression. |
| 134 | //===----------------------------------------------------------------------===// |
| 135 | |
| 136 | /// Checks whether the given affine expression is a symbol expression. |
| 137 | MLIR_CAPI_EXPORTED bool mlirAffineExprIsASymbol(MlirAffineExpr affineExpr); |
| 138 | |
| 139 | /// Creates an affine symbol expression with 'position' in the context. |
| 140 | MLIR_CAPI_EXPORTED MlirAffineExpr mlirAffineSymbolExprGet(MlirContext ctx, |
| 141 | intptr_t position); |
| 142 | |
| 143 | /// Returns the position of the given affine symbol expression. |
| 144 | MLIR_CAPI_EXPORTED intptr_t |
| 145 | mlirAffineSymbolExprGetPosition(MlirAffineExpr affineExpr); |
| 146 | |
| 147 | //===----------------------------------------------------------------------===// |
| 148 | // Affine Constant Expression. |
| 149 | //===----------------------------------------------------------------------===// |
| 150 | |
| 151 | /// Checks whether the given affine expression is a constant expression. |
| 152 | MLIR_CAPI_EXPORTED bool mlirAffineExprIsAConstant(MlirAffineExpr affineExpr); |
| 153 | |
| 154 | /// Creates an affine constant expression with 'constant' in the context. |
| 155 | MLIR_CAPI_EXPORTED MlirAffineExpr mlirAffineConstantExprGet(MlirContext ctx, |
| 156 | int64_t constant); |
| 157 | |
| 158 | /// Returns the value of the given affine constant expression. |
| 159 | MLIR_CAPI_EXPORTED int64_t |
| 160 | mlirAffineConstantExprGetValue(MlirAffineExpr affineExpr); |
| 161 | |
| 162 | //===----------------------------------------------------------------------===// |
| 163 | // Affine Add Expression. |
| 164 | //===----------------------------------------------------------------------===// |
| 165 | |
| 166 | /// Checks whether the given affine expression is an add expression. |
| 167 | MLIR_CAPI_EXPORTED bool mlirAffineExprIsAAdd(MlirAffineExpr affineExpr); |
| 168 | |
| 169 | /// Creates an affine add expression with 'lhs' and 'rhs'. |
| 170 | MLIR_CAPI_EXPORTED MlirAffineExpr mlirAffineAddExprGet(MlirAffineExpr lhs, |
| 171 | MlirAffineExpr rhs); |
| 172 | |
| 173 | //===----------------------------------------------------------------------===// |
| 174 | // Affine Mul Expression. |
| 175 | //===----------------------------------------------------------------------===// |
| 176 | |
| 177 | /// Checks whether the given affine expression is an mul expression. |
| 178 | MLIR_CAPI_EXPORTED bool mlirAffineExprIsAMul(MlirAffineExpr affineExpr); |
| 179 | |
| 180 | /// Creates an affine mul expression with 'lhs' and 'rhs'. |
| 181 | MLIR_CAPI_EXPORTED MlirAffineExpr mlirAffineMulExprGet(MlirAffineExpr lhs, |
| 182 | MlirAffineExpr rhs); |
| 183 | |
| 184 | //===----------------------------------------------------------------------===// |
| 185 | // Affine Mod Expression. |
| 186 | //===----------------------------------------------------------------------===// |
| 187 | |
| 188 | /// Checks whether the given affine expression is an mod expression. |
| 189 | MLIR_CAPI_EXPORTED bool mlirAffineExprIsAMod(MlirAffineExpr affineExpr); |
| 190 | |
| 191 | /// Creates an affine mod expression with 'lhs' and 'rhs'. |
| 192 | MLIR_CAPI_EXPORTED MlirAffineExpr mlirAffineModExprGet(MlirAffineExpr lhs, |
| 193 | MlirAffineExpr rhs); |
| 194 | |
| 195 | //===----------------------------------------------------------------------===// |
| 196 | // Affine FloorDiv Expression. |
| 197 | //===----------------------------------------------------------------------===// |
| 198 | |
| 199 | /// Checks whether the given affine expression is an floordiv expression. |
| 200 | MLIR_CAPI_EXPORTED bool mlirAffineExprIsAFloorDiv(MlirAffineExpr affineExpr); |
| 201 | |
| 202 | /// Creates an affine floordiv expression with 'lhs' and 'rhs'. |
| 203 | MLIR_CAPI_EXPORTED MlirAffineExpr mlirAffineFloorDivExprGet(MlirAffineExpr lhs, |
| 204 | MlirAffineExpr rhs); |
| 205 | |
| 206 | //===----------------------------------------------------------------------===// |
| 207 | // Affine CeilDiv Expression. |
| 208 | //===----------------------------------------------------------------------===// |
| 209 | |
| 210 | /// Checks whether the given affine expression is an ceildiv expression. |
| 211 | MLIR_CAPI_EXPORTED bool mlirAffineExprIsACeilDiv(MlirAffineExpr affineExpr); |
| 212 | |
| 213 | /// Creates an affine ceildiv expression with 'lhs' and 'rhs'. |
| 214 | MLIR_CAPI_EXPORTED MlirAffineExpr mlirAffineCeilDivExprGet(MlirAffineExpr lhs, |
| 215 | MlirAffineExpr rhs); |
| 216 | |
| 217 | //===----------------------------------------------------------------------===// |
| 218 | // Affine Binary Operation Expression. |
| 219 | //===----------------------------------------------------------------------===// |
| 220 | |
| 221 | /// Checks whether the given affine expression is binary. |
| 222 | MLIR_CAPI_EXPORTED bool mlirAffineExprIsABinary(MlirAffineExpr affineExpr); |
| 223 | |
| 224 | /// Returns the left hand side affine expression of the given affine binary |
| 225 | /// operation expression. |
| 226 | MLIR_CAPI_EXPORTED MlirAffineExpr |
| 227 | mlirAffineBinaryOpExprGetLHS(MlirAffineExpr affineExpr); |
| 228 | |
| 229 | /// Returns the right hand side affine expression of the given affine binary |
| 230 | /// operation expression. |
| 231 | MLIR_CAPI_EXPORTED MlirAffineExpr |
| 232 | mlirAffineBinaryOpExprGetRHS(MlirAffineExpr affineExpr); |
| 233 | |
| 234 | #ifdef __cplusplus |
| 235 | } |
| 236 | #endif |
| 237 | |
| 238 | #endif // MLIR_C_AFFINEEXPR_H |
| 239 | |