1 | //===- SparseTensor.h - Sparse tensor dialect -------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef MLIR_DIALECT_SPARSETENSOR_IR_SPARSETENSOR_H_ |
10 | #define MLIR_DIALECT_SPARSETENSOR_IR_SPARSETENSOR_H_ |
11 | |
12 | #include "mlir/Bytecode/BytecodeOpInterface.h" |
13 | #include "mlir/Dialect/SparseTensor/IR/Enums.h" |
14 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorInterfaces.h" |
15 | #include "mlir/IR/BuiltinTypes.h" |
16 | #include "mlir/IR/Dialect.h" |
17 | #include "mlir/IR/OpDefinition.h" |
18 | #include "mlir/IR/OpImplementation.h" |
19 | #include "mlir/IR/TensorEncoding.h" |
20 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
21 | #include "mlir/Interfaces/InferTypeOpInterface.h" |
22 | #include "mlir/Interfaces/LoopLikeInterface.h" |
23 | #include "mlir/Interfaces/SideEffectInterfaces.h" |
24 | |
25 | #include "llvm/ADT/bit.h" |
26 | |
27 | //===----------------------------------------------------------------------===// |
28 | // |
29 | // Type aliases to help code be more self-documenting. Unfortunately |
30 | // these are not type-checked, so they only provide documentation rather |
31 | // than doing anything to prevent mixups. |
32 | // |
33 | //===----------------------------------------------------------------------===// |
34 | |
35 | namespace mlir { |
36 | namespace sparse_tensor { |
37 | |
38 | /// The type of dimension identifiers and dimension-ranks. |
39 | using Dimension = uint64_t; |
40 | |
41 | /// The type of level identifiers and level-ranks. |
42 | using Level = uint64_t; |
43 | |
44 | /// The type for individual components of a compile-time shape, |
45 | /// including the value `ShapedType::kDynamic` (for shapes). |
46 | using Size = int64_t; |
47 | |
48 | /// A simple structure that encodes a range of levels in the sparse tensors |
49 | /// that forms a COO segment. |
50 | struct COOSegment { |
51 | std::pair<Level, Level> lvlRange; // [low, high) |
52 | bool isSoA; |
53 | |
54 | bool isAoS() const { return !isSoA; } |
55 | bool isSegmentStart(Level l) const { return l == lvlRange.first; } |
56 | bool inSegment(Level l) const { |
57 | return l >= lvlRange.first && l < lvlRange.second; |
58 | } |
59 | }; |
60 | |
61 | /// A simple wrapper to encode a bitset of (at most 64) levels, currently used |
62 | /// by `sparse_tensor.iterate` operation for the set of levels on which the |
63 | /// coordinates should be loaded. |
64 | class I64BitSet { |
65 | uint64_t storage = 0; |
66 | |
67 | public: |
68 | using const_set_bits_iterator = llvm::const_set_bits_iterator_impl<I64BitSet>; |
69 | const_set_bits_iterator begin() const { |
70 | return const_set_bits_iterator(*this); |
71 | } |
72 | const_set_bits_iterator end() const { |
73 | return const_set_bits_iterator(*this, -1); |
74 | } |
75 | iterator_range<const_set_bits_iterator> bits() const { |
76 | return make_range(x: begin(), y: end()); |
77 | } |
78 | |
79 | I64BitSet() = default; |
80 | explicit I64BitSet(uint64_t bits) : storage(bits) {} |
81 | operator uint64_t() const { return storage; } |
82 | |
83 | I64BitSet &set(unsigned i) { |
84 | assert(i < 64); |
85 | storage |= static_cast<uint64_t>(0x01u) << i; |
86 | return *this; |
87 | } |
88 | |
89 | I64BitSet &operator|=(I64BitSet lhs) { |
90 | storage |= static_cast<uint64_t>(lhs); |
91 | return *this; |
92 | } |
93 | |
94 | I64BitSet &lshift(unsigned offset) { |
95 | storage = storage << offset; |
96 | return *this; |
97 | } |
98 | |
99 | bool isSubSetOf(const I64BitSet p) const { |
100 | I64BitSet tmp = *this; |
101 | tmp |= p; |
102 | return tmp == p; |
103 | } |
104 | |
105 | // Needed by `llvm::const_set_bits_iterator_impl`. |
106 | int find_first() const { return min(); } |
107 | int find_next(unsigned prev) const { |
108 | if (prev >= max() - 1) |
109 | return -1; |
110 | |
111 | uint64_t b = storage >> (prev + static_cast<int64_t>(1)); |
112 | assert(b != 0); |
113 | |
114 | return llvm::countr_zero(Val: b) + prev + static_cast<int64_t>(1); |
115 | } |
116 | |
117 | bool operator[](unsigned i) const { |
118 | assert(i < 64); |
119 | return (storage & (static_cast<int64_t>(1) << i)) != 0; |
120 | } |
121 | unsigned min() const { |
122 | unsigned m = llvm::countr_zero(Val: storage); |
123 | return m == 64 ? -1 : m; |
124 | } |
125 | unsigned max() const { return llvm::bit_width(Value: storage); } |
126 | unsigned count() const { return llvm::popcount(Value: storage); } |
127 | bool empty() const { return storage == 0; } |
128 | }; |
129 | |
130 | } // namespace sparse_tensor |
131 | } // namespace mlir |
132 | |
133 | //===----------------------------------------------------------------------===// |
134 | // TableGen-defined classes |
135 | //===----------------------------------------------------------------------===// |
136 | |
137 | #define GET_ATTRDEF_CLASSES |
138 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrEnums.h.inc" |
139 | |
140 | #define GET_ATTRDEF_CLASSES |
141 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.h.inc" |
142 | |
143 | #define GET_TYPEDEF_CLASSES |
144 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.h.inc" |
145 | |
146 | #define GET_OP_CLASSES |
147 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.h.inc" |
148 | |
149 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.h.inc" |
150 | |
151 | //===----------------------------------------------------------------------===// |
152 | // Additional convenience methods. |
153 | //===----------------------------------------------------------------------===// |
154 | |
155 | namespace mlir { |
156 | namespace sparse_tensor { |
157 | |
158 | /// Convenience method to abbreviate casting `getType()`. |
159 | template <typename T> |
160 | inline RankedTensorType getRankedTensorType(T &&t) { |
161 | assert(static_cast<bool>(std::forward<T>(t)) && |
162 | "getRankedTensorType got null argument" ); |
163 | return dyn_cast<RankedTensorType>(std::forward<T>(t).getType()); |
164 | } |
165 | |
166 | /// Convenience method to abbreviate casting `getType()`. |
167 | template <typename T> |
168 | inline MemRefType getMemRefType(T &&t) { |
169 | assert(static_cast<bool>(std::forward<T>(t)) && |
170 | "getMemRefType got null argument" ); |
171 | return cast<MemRefType>(std::forward<T>(t).getType()); |
172 | } |
173 | |
174 | /// Convenience method to get a sparse encoding attribute from a type. |
175 | /// Returns null-attribute for any type without an encoding. |
176 | SparseTensorEncodingAttr getSparseTensorEncoding(Type type); |
177 | |
178 | /// Returns true iff the type range has any sparse tensor type. |
179 | inline bool hasAnySparseType(TypeRange types) { |
180 | return llvm::any_of(Range&: types, P: [](Type type) { |
181 | return getSparseTensorEncoding(type) != nullptr; |
182 | }); |
183 | } |
184 | |
185 | /// Returns true iff MLIR operand has any sparse operand. |
186 | inline bool hasAnySparseOperand(Operation *op) { |
187 | return hasAnySparseType(types: op->getOperands().getTypes()); |
188 | } |
189 | |
190 | /// Returns true iff MLIR operand has any sparse result. |
191 | inline bool hasAnySparseResult(Operation *op) { |
192 | return hasAnySparseType(types: op->getResults().getTypes()); |
193 | } |
194 | |
195 | /// Returns true iff MLIR operand has any sparse operand or result. |
196 | inline bool hasAnySparseOperandOrResult(Operation *op) { |
197 | return hasAnySparseOperand(op) || hasAnySparseResult(op); |
198 | } |
199 | |
200 | /// Returns true iff MLIR operation has any sparse tensor with non-identity |
201 | /// dim2lvl maps. |
202 | bool hasAnyNonIdentityOperandsOrResults(Operation *op); |
203 | |
204 | // |
205 | // Inference. |
206 | // |
207 | |
208 | /// Given the dimToLvl map, infers the lvlToDim map, or returns |
209 | /// empty Affine map when inference fails. |
210 | AffineMap inferLvlToDim(AffineMap dimToLvl, MLIRContext *context); |
211 | |
212 | /// Returns the lvlToDim map for the given dimToLvl map specific |
213 | /// to the block sparse cases. |
214 | /// Asserts on failure (so only use when known to succeed). |
215 | AffineMap inverseBlockSparsity(AffineMap dimToLvl, MLIRContext *context); |
216 | |
217 | /// Given the dimToLvl map, returns the block sizes in a vector. |
218 | /// For instance, a 2x3 block will return [2, 3]. Unblocked dimension i |
219 | /// will return 0, and i floordiv 1, i mod 1 will return 1. Therefore, |
220 | /// the example below will return [0, 1]. |
221 | /// map = ( i, j ) -> |
222 | /// ( i : dense, |
223 | /// j floordiv 1 : compressed, |
224 | /// j mod 1 : dense |
225 | /// ) |
226 | /// Only valid block sparsity will be accepted. |
227 | SmallVector<unsigned> getBlockSize(AffineMap dimToLvl); |
228 | |
229 | /// Given the dimToLvl map, returns if it's block sparsity. |
230 | bool isBlockSparsity(AffineMap dimToLvl); |
231 | |
232 | // |
233 | // Reordering. |
234 | // |
235 | |
236 | /// Convenience method to translate the given level to the corresponding |
237 | /// dimension. |
238 | /// Requires: `enc` has a permuted dim2lvl map and `0 <= l < lvlRank`. |
239 | Dimension toDim(SparseTensorEncodingAttr enc, Level l); |
240 | |
241 | /// Convenience method to translate the given dimension to the corresponding |
242 | /// level. |
243 | /// Requires: `enc` has a permuted dim2lvl map and `0 <= d < dimRank`. |
244 | Level toLvl(SparseTensorEncodingAttr enc, Dimension d); |
245 | |
246 | } // namespace sparse_tensor |
247 | } // namespace mlir |
248 | |
249 | #endif // MLIR_DIALECT_SPARSETENSOR_IR_SPARSETENSOR_H_ |
250 | |