| 1 | //===- SparseTensor.h - Sparse tensor dialect -------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef MLIR_DIALECT_SPARSETENSOR_IR_SPARSETENSOR_H_ |
| 10 | #define MLIR_DIALECT_SPARSETENSOR_IR_SPARSETENSOR_H_ |
| 11 | |
| 12 | #include "mlir/Bytecode/BytecodeOpInterface.h" |
| 13 | #include "mlir/Dialect/SparseTensor/IR/Enums.h" |
| 14 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorInterfaces.h" |
| 15 | #include "mlir/IR/BuiltinTypes.h" |
| 16 | #include "mlir/IR/Dialect.h" |
| 17 | #include "mlir/IR/OpDefinition.h" |
| 18 | #include "mlir/IR/OpImplementation.h" |
| 19 | #include "mlir/IR/TensorEncoding.h" |
| 20 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
| 21 | #include "mlir/Interfaces/InferTypeOpInterface.h" |
| 22 | #include "mlir/Interfaces/LoopLikeInterface.h" |
| 23 | #include "mlir/Interfaces/SideEffectInterfaces.h" |
| 24 | |
| 25 | #include "llvm/ADT/bit.h" |
| 26 | |
| 27 | //===----------------------------------------------------------------------===// |
| 28 | // |
| 29 | // Type aliases to help code be more self-documenting. Unfortunately |
| 30 | // these are not type-checked, so they only provide documentation rather |
| 31 | // than doing anything to prevent mixups. |
| 32 | // |
| 33 | //===----------------------------------------------------------------------===// |
| 34 | |
| 35 | namespace mlir { |
| 36 | namespace sparse_tensor { |
| 37 | |
| 38 | /// The type of dimension identifiers and dimension-ranks. |
| 39 | using Dimension = uint64_t; |
| 40 | |
| 41 | /// The type of level identifiers and level-ranks. |
| 42 | using Level = uint64_t; |
| 43 | |
| 44 | /// The type for individual components of a compile-time shape, |
| 45 | /// including the value `ShapedType::kDynamic` (for shapes). |
| 46 | using Size = int64_t; |
| 47 | |
| 48 | /// A simple structure that encodes a range of levels in the sparse tensors |
| 49 | /// that forms a COO segment. |
| 50 | struct COOSegment { |
| 51 | std::pair<Level, Level> lvlRange; // [low, high) |
| 52 | bool isSoA; |
| 53 | |
| 54 | bool isAoS() const { return !isSoA; } |
| 55 | bool isSegmentStart(Level l) const { return l == lvlRange.first; } |
| 56 | bool inSegment(Level l) const { |
| 57 | return l >= lvlRange.first && l < lvlRange.second; |
| 58 | } |
| 59 | }; |
| 60 | |
| 61 | /// A simple wrapper to encode a bitset of (at most 64) levels, currently used |
| 62 | /// by `sparse_tensor.iterate` operation for the set of levels on which the |
| 63 | /// coordinates should be loaded. |
| 64 | class I64BitSet { |
| 65 | uint64_t storage = 0; |
| 66 | |
| 67 | public: |
| 68 | using const_set_bits_iterator = llvm::const_set_bits_iterator_impl<I64BitSet>; |
| 69 | const_set_bits_iterator begin() const { |
| 70 | return const_set_bits_iterator(*this); |
| 71 | } |
| 72 | const_set_bits_iterator end() const { |
| 73 | return const_set_bits_iterator(*this, -1); |
| 74 | } |
| 75 | iterator_range<const_set_bits_iterator> bits() const { |
| 76 | return make_range(x: begin(), y: end()); |
| 77 | } |
| 78 | |
| 79 | I64BitSet() = default; |
| 80 | explicit I64BitSet(uint64_t bits) : storage(bits) {} |
| 81 | operator uint64_t() const { return storage; } |
| 82 | |
| 83 | I64BitSet &set(unsigned i) { |
| 84 | assert(i < 64); |
| 85 | storage |= static_cast<uint64_t>(0x01u) << i; |
| 86 | return *this; |
| 87 | } |
| 88 | |
| 89 | I64BitSet &operator|=(I64BitSet lhs) { |
| 90 | storage |= static_cast<uint64_t>(lhs); |
| 91 | return *this; |
| 92 | } |
| 93 | |
| 94 | I64BitSet &lshift(unsigned offset) { |
| 95 | storage = storage << offset; |
| 96 | return *this; |
| 97 | } |
| 98 | |
| 99 | bool isSubSetOf(const I64BitSet p) const { |
| 100 | I64BitSet tmp = *this; |
| 101 | tmp |= p; |
| 102 | return tmp == p; |
| 103 | } |
| 104 | |
| 105 | // Needed by `llvm::const_set_bits_iterator_impl`. |
| 106 | int find_first() const { return min(); } |
| 107 | int find_next(unsigned prev) const { |
| 108 | if (prev >= max() - 1) |
| 109 | return -1; |
| 110 | |
| 111 | uint64_t b = storage >> (prev + static_cast<int64_t>(1)); |
| 112 | assert(b != 0); |
| 113 | |
| 114 | return llvm::countr_zero(Val: b) + prev + static_cast<int64_t>(1); |
| 115 | } |
| 116 | |
| 117 | bool operator[](unsigned i) const { |
| 118 | assert(i < 64); |
| 119 | return (storage & (static_cast<int64_t>(1) << i)) != 0; |
| 120 | } |
| 121 | unsigned min() const { |
| 122 | unsigned m = llvm::countr_zero(Val: storage); |
| 123 | return m == 64 ? -1 : m; |
| 124 | } |
| 125 | unsigned max() const { return llvm::bit_width(Value: storage); } |
| 126 | unsigned count() const { return llvm::popcount(Value: storage); } |
| 127 | bool empty() const { return storage == 0; } |
| 128 | }; |
| 129 | |
| 130 | } // namespace sparse_tensor |
| 131 | } // namespace mlir |
| 132 | |
| 133 | //===----------------------------------------------------------------------===// |
| 134 | // TableGen-defined classes |
| 135 | //===----------------------------------------------------------------------===// |
| 136 | |
| 137 | #define GET_ATTRDEF_CLASSES |
| 138 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrEnums.h.inc" |
| 139 | |
| 140 | #define GET_ATTRDEF_CLASSES |
| 141 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.h.inc" |
| 142 | |
| 143 | #define GET_TYPEDEF_CLASSES |
| 144 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.h.inc" |
| 145 | |
| 146 | #define GET_OP_CLASSES |
| 147 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.h.inc" |
| 148 | |
| 149 | #include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.h.inc" |
| 150 | |
| 151 | //===----------------------------------------------------------------------===// |
| 152 | // Additional convenience methods. |
| 153 | //===----------------------------------------------------------------------===// |
| 154 | |
| 155 | namespace mlir { |
| 156 | namespace sparse_tensor { |
| 157 | |
| 158 | /// Convenience method to abbreviate casting `getType()`. |
| 159 | template <typename T> |
| 160 | inline RankedTensorType getRankedTensorType(T &&t) { |
| 161 | assert(static_cast<bool>(std::forward<T>(t)) && |
| 162 | "getRankedTensorType got null argument" ); |
| 163 | return dyn_cast<RankedTensorType>(std::forward<T>(t).getType()); |
| 164 | } |
| 165 | |
| 166 | /// Convenience method to abbreviate casting `getType()`. |
| 167 | template <typename T> |
| 168 | inline MemRefType getMemRefType(T &&t) { |
| 169 | assert(static_cast<bool>(std::forward<T>(t)) && |
| 170 | "getMemRefType got null argument" ); |
| 171 | return cast<MemRefType>(std::forward<T>(t).getType()); |
| 172 | } |
| 173 | |
| 174 | /// Convenience method to get a sparse encoding attribute from a type. |
| 175 | /// Returns null-attribute for any type without an encoding. |
| 176 | SparseTensorEncodingAttr getSparseTensorEncoding(Type type); |
| 177 | |
| 178 | /// Returns true iff the type range has any sparse tensor type. |
| 179 | inline bool hasAnySparseType(TypeRange types) { |
| 180 | return llvm::any_of(Range&: types, P: [](Type type) { |
| 181 | return getSparseTensorEncoding(type) != nullptr; |
| 182 | }); |
| 183 | } |
| 184 | |
| 185 | /// Returns true iff MLIR operand has any sparse operand. |
| 186 | inline bool hasAnySparseOperand(Operation *op) { |
| 187 | return hasAnySparseType(types: op->getOperands().getTypes()); |
| 188 | } |
| 189 | |
| 190 | /// Returns true iff MLIR operand has any sparse result. |
| 191 | inline bool hasAnySparseResult(Operation *op) { |
| 192 | return hasAnySparseType(types: op->getResults().getTypes()); |
| 193 | } |
| 194 | |
| 195 | /// Returns true iff MLIR operand has any sparse operand or result. |
| 196 | inline bool hasAnySparseOperandOrResult(Operation *op) { |
| 197 | return hasAnySparseOperand(op) || hasAnySparseResult(op); |
| 198 | } |
| 199 | |
| 200 | /// Returns true iff MLIR operation has any sparse tensor with non-identity |
| 201 | /// dim2lvl maps. |
| 202 | bool hasAnyNonIdentityOperandsOrResults(Operation *op); |
| 203 | |
| 204 | // |
| 205 | // Inference. |
| 206 | // |
| 207 | |
| 208 | /// Given the dimToLvl map, infers the lvlToDim map, or returns |
| 209 | /// empty Affine map when inference fails. |
| 210 | AffineMap inferLvlToDim(AffineMap dimToLvl, MLIRContext *context); |
| 211 | |
| 212 | /// Returns the lvlToDim map for the given dimToLvl map specific |
| 213 | /// to the block sparse cases. |
| 214 | /// Asserts on failure (so only use when known to succeed). |
| 215 | AffineMap inverseBlockSparsity(AffineMap dimToLvl, MLIRContext *context); |
| 216 | |
| 217 | /// Given the dimToLvl map, returns the block sizes in a vector. |
| 218 | /// For instance, a 2x3 block will return [2, 3]. Unblocked dimension i |
| 219 | /// will return 0, and i floordiv 1, i mod 1 will return 1. Therefore, |
| 220 | /// the example below will return [0, 1]. |
| 221 | /// map = ( i, j ) -> |
| 222 | /// ( i : dense, |
| 223 | /// j floordiv 1 : compressed, |
| 224 | /// j mod 1 : dense |
| 225 | /// ) |
| 226 | /// Only valid block sparsity will be accepted. |
| 227 | SmallVector<unsigned> getBlockSize(AffineMap dimToLvl); |
| 228 | |
| 229 | /// Given the dimToLvl map, returns if it's block sparsity. |
| 230 | bool isBlockSparsity(AffineMap dimToLvl); |
| 231 | |
| 232 | // |
| 233 | // Reordering. |
| 234 | // |
| 235 | |
| 236 | /// Convenience method to translate the given level to the corresponding |
| 237 | /// dimension. |
| 238 | /// Requires: `enc` has a permuted dim2lvl map and `0 <= l < lvlRank`. |
| 239 | Dimension toDim(SparseTensorEncodingAttr enc, Level l); |
| 240 | |
| 241 | /// Convenience method to translate the given dimension to the corresponding |
| 242 | /// level. |
| 243 | /// Requires: `enc` has a permuted dim2lvl map and `0 <= d < dimRank`. |
| 244 | Level toLvl(SparseTensorEncodingAttr enc, Dimension d); |
| 245 | |
| 246 | } // namespace sparse_tensor |
| 247 | } // namespace mlir |
| 248 | |
| 249 | #endif // MLIR_DIALECT_SPARSETENSOR_IR_SPARSETENSOR_H_ |
| 250 | |