| 1 | //===- DialectSparseTensor.cpp - 'sparse_tensor' dialect submodule --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include <optional> |
| 10 | #include <vector> |
| 11 | |
| 12 | #include "mlir-c/AffineMap.h" |
| 13 | #include "mlir-c/Dialect/SparseTensor.h" |
| 14 | #include "mlir-c/IR.h" |
| 15 | #include "mlir/Bindings/Python/NanobindAdaptors.h" |
| 16 | #include "mlir/Bindings/Python/Nanobind.h" |
| 17 | |
| 18 | namespace nb = nanobind; |
| 19 | using namespace llvm; |
| 20 | using namespace mlir; |
| 21 | using namespace mlir::python::nanobind_adaptors; |
| 22 | |
| 23 | static void populateDialectSparseTensorSubmodule(const nb::module_ &m) { |
| 24 | nb::enum_<MlirSparseTensorLevelFormat>(m, "LevelFormat" , nb::is_arithmetic(), |
| 25 | nb::is_flag()) |
| 26 | .value("dense" , MLIR_SPARSE_TENSOR_LEVEL_DENSE) |
| 27 | .value("n_out_of_m" , MLIR_SPARSE_TENSOR_LEVEL_N_OUT_OF_M) |
| 28 | .value("compressed" , MLIR_SPARSE_TENSOR_LEVEL_COMPRESSED) |
| 29 | .value("singleton" , MLIR_SPARSE_TENSOR_LEVEL_SINGLETON) |
| 30 | .value("loose_compressed" , MLIR_SPARSE_TENSOR_LEVEL_LOOSE_COMPRESSED); |
| 31 | |
| 32 | nb::enum_<MlirSparseTensorLevelPropertyNondefault>(m, "LevelProperty" ) |
| 33 | .value("non_ordered" , MLIR_SPARSE_PROPERTY_NON_ORDERED) |
| 34 | .value("non_unique" , MLIR_SPARSE_PROPERTY_NON_UNIQUE) |
| 35 | .value("soa" , MLIR_SPARSE_PROPERTY_SOA); |
| 36 | |
| 37 | mlir_attribute_subclass(m, "EncodingAttr" , |
| 38 | mlirAttributeIsASparseTensorEncodingAttr) |
| 39 | .def_classmethod( |
| 40 | "get" , |
| 41 | [](nb::object cls, std::vector<MlirSparseTensorLevelType> lvlTypes, |
| 42 | std::optional<MlirAffineMap> dimToLvl, |
| 43 | std::optional<MlirAffineMap> lvlToDim, int posWidth, int crdWidth, |
| 44 | std::optional<MlirAttribute> explicitVal, |
| 45 | std::optional<MlirAttribute> implicitVal, MlirContext context) { |
| 46 | return cls(mlirSparseTensorEncodingAttrGet( |
| 47 | context, lvlTypes.size(), lvlTypes.data(), |
| 48 | dimToLvl ? *dimToLvl : MlirAffineMap{nullptr}, |
| 49 | lvlToDim ? *lvlToDim : MlirAffineMap{nullptr}, posWidth, |
| 50 | crdWidth, explicitVal ? *explicitVal : MlirAttribute{nullptr}, |
| 51 | implicitVal ? *implicitVal : MlirAttribute{nullptr})); |
| 52 | }, |
| 53 | nb::arg("cls" ), nb::arg("lvl_types" ), nb::arg("dim_to_lvl" ).none(), |
| 54 | nb::arg("lvl_to_dim" ).none(), nb::arg("pos_width" ), |
| 55 | nb::arg("crd_width" ), nb::arg("explicit_val" ).none() = nb::none(), |
| 56 | nb::arg("implicit_val" ).none() = nb::none(), |
| 57 | nb::arg("context" ).none() = nb::none(), |
| 58 | "Gets a sparse_tensor.encoding from parameters." ) |
| 59 | .def_classmethod( |
| 60 | "build_level_type" , |
| 61 | [](nb::object cls, MlirSparseTensorLevelFormat lvlFmt, |
| 62 | const std::vector<MlirSparseTensorLevelPropertyNondefault> |
| 63 | &properties, |
| 64 | unsigned n, unsigned m) { |
| 65 | return mlirSparseTensorEncodingAttrBuildLvlType( |
| 66 | lvlFmt, properties.data(), properties.size(), n, m); |
| 67 | }, |
| 68 | nb::arg("cls" ), nb::arg("lvl_fmt" ), |
| 69 | nb::arg("properties" ) = |
| 70 | std::vector<MlirSparseTensorLevelPropertyNondefault>(), |
| 71 | nb::arg("n" ) = 0, nb::arg("m" ) = 0, |
| 72 | "Builds a sparse_tensor.encoding.level_type from parameters." ) |
| 73 | .def_property_readonly( |
| 74 | "lvl_types" , |
| 75 | [](MlirAttribute self) { |
| 76 | const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self); |
| 77 | std::vector<MlirSparseTensorLevelType> ret; |
| 78 | ret.reserve(lvlRank); |
| 79 | for (int l = 0; l < lvlRank; ++l) |
| 80 | ret.push_back(mlirSparseTensorEncodingAttrGetLvlType(self, l)); |
| 81 | return ret; |
| 82 | }) |
| 83 | .def_property_readonly( |
| 84 | "dim_to_lvl" , |
| 85 | [](MlirAttribute self) -> std::optional<MlirAffineMap> { |
| 86 | MlirAffineMap ret = mlirSparseTensorEncodingAttrGetDimToLvl(self); |
| 87 | if (mlirAffineMapIsNull(ret)) |
| 88 | return {}; |
| 89 | return ret; |
| 90 | }) |
| 91 | .def_property_readonly( |
| 92 | "lvl_to_dim" , |
| 93 | [](MlirAttribute self) -> std::optional<MlirAffineMap> { |
| 94 | MlirAffineMap ret = mlirSparseTensorEncodingAttrGetLvlToDim(self); |
| 95 | if (mlirAffineMapIsNull(ret)) |
| 96 | return {}; |
| 97 | return ret; |
| 98 | }) |
| 99 | .def_property_readonly("pos_width" , |
| 100 | mlirSparseTensorEncodingAttrGetPosWidth) |
| 101 | .def_property_readonly("crd_width" , |
| 102 | mlirSparseTensorEncodingAttrGetCrdWidth) |
| 103 | .def_property_readonly( |
| 104 | "explicit_val" , |
| 105 | [](MlirAttribute self) -> std::optional<MlirAttribute> { |
| 106 | MlirAttribute ret = |
| 107 | mlirSparseTensorEncodingAttrGetExplicitVal(self); |
| 108 | if (mlirAttributeIsNull(ret)) |
| 109 | return {}; |
| 110 | return ret; |
| 111 | }) |
| 112 | .def_property_readonly( |
| 113 | "implicit_val" , |
| 114 | [](MlirAttribute self) -> std::optional<MlirAttribute> { |
| 115 | MlirAttribute ret = |
| 116 | mlirSparseTensorEncodingAttrGetImplicitVal(self); |
| 117 | if (mlirAttributeIsNull(ret)) |
| 118 | return {}; |
| 119 | return ret; |
| 120 | }) |
| 121 | .def_property_readonly( |
| 122 | "structured_n" , |
| 123 | [](MlirAttribute self) -> unsigned { |
| 124 | const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self); |
| 125 | return mlirSparseTensorEncodingAttrGetStructuredN( |
| 126 | mlirSparseTensorEncodingAttrGetLvlType(self, lvlRank - 1)); |
| 127 | }) |
| 128 | .def_property_readonly( |
| 129 | "structured_m" , |
| 130 | [](MlirAttribute self) -> unsigned { |
| 131 | const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self); |
| 132 | return mlirSparseTensorEncodingAttrGetStructuredM( |
| 133 | mlirSparseTensorEncodingAttrGetLvlType(self, lvlRank - 1)); |
| 134 | }) |
| 135 | .def_property_readonly("lvl_formats_enum" , [](MlirAttribute self) { |
| 136 | const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self); |
| 137 | std::vector<MlirSparseTensorLevelFormat> ret; |
| 138 | ret.reserve(lvlRank); |
| 139 | for (int l = 0; l < lvlRank; l++) |
| 140 | ret.push_back(mlirSparseTensorEncodingAttrGetLvlFmt(self, l)); |
| 141 | return ret; |
| 142 | }); |
| 143 | } |
| 144 | |
| 145 | NB_MODULE(_mlirDialectsSparseTensor, m) { |
| 146 | m.doc() = "MLIR SparseTensor dialect." ; |
| 147 | populateDialectSparseTensorSubmodule(m); |
| 148 | } |
| 149 | |