| 1 | //===- VectorToXeGPU.cpp - Convert vector to XeGPU dialect ------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements lowering of vector operations to XeGPU dialect ops. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Conversion/VectorToXeGPU/VectorToXeGPU.h" |
| 14 | |
| 15 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 16 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 17 | #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| 18 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 19 | #include "mlir/Dialect/XeGPU/IR/XeGPU.h" |
| 20 | #include "mlir/Pass/Pass.h" |
| 21 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 22 | #include "mlir/Transforms/Passes.h" |
| 23 | #include "llvm/ADT/TypeSwitch.h" |
| 24 | |
| 25 | #include <algorithm> |
| 26 | #include <optional> |
| 27 | |
| 28 | namespace mlir { |
| 29 | #define GEN_PASS_DEF_CONVERTVECTORTOXEGPU |
| 30 | #include "mlir/Conversion/Passes.h.inc" |
| 31 | } // namespace mlir |
| 32 | |
| 33 | using namespace mlir; |
| 34 | |
| 35 | namespace { |
| 36 | |
| 37 | // Return true if value represents a zero constant. |
| 38 | static bool isZeroConstant(Value val) { |
| 39 | auto constant = val.getDefiningOp<arith::ConstantOp>(); |
| 40 | if (!constant) |
| 41 | return false; |
| 42 | |
| 43 | return TypeSwitch<Attribute, bool>(constant.getValue()) |
| 44 | .Case<FloatAttr>( |
| 45 | [](auto floatAttr) { return floatAttr.getValue().isZero(); }) |
| 46 | .Case<IntegerAttr>( |
| 47 | [](auto intAttr) { return intAttr.getValue().isZero(); }) |
| 48 | .Default([](auto) { return false; }); |
| 49 | } |
| 50 | |
| 51 | static LogicalResult storeLoadPreconditions(PatternRewriter &rewriter, |
| 52 | Operation *op, VectorType vecTy) { |
| 53 | // Validate only vector as the basic vector store and load ops guarantee |
| 54 | // XeGPU-compatible memref source. |
| 55 | unsigned vecRank = vecTy.getRank(); |
| 56 | if (!(vecRank == 1 || vecRank == 2)) |
| 57 | return rewriter.notifyMatchFailure(op, "Expects 1D or 2D vector" ); |
| 58 | |
| 59 | return success(); |
| 60 | } |
| 61 | |
| 62 | static LogicalResult transferPreconditions(PatternRewriter &rewriter, |
| 63 | VectorTransferOpInterface xferOp) { |
| 64 | if (xferOp.getMask()) |
| 65 | return rewriter.notifyMatchFailure(xferOp, |
| 66 | "Masked transfer is not supported" ); |
| 67 | |
| 68 | auto srcTy = dyn_cast<MemRefType>(xferOp.getShapedType()); |
| 69 | if (!srcTy) |
| 70 | return rewriter.notifyMatchFailure(xferOp, "Expects memref source" ); |
| 71 | |
| 72 | // Perform common data transfer checks. |
| 73 | VectorType vecTy = xferOp.getVectorType(); |
| 74 | if (failed(storeLoadPreconditions(rewriter, xferOp, vecTy))) |
| 75 | return failure(); |
| 76 | |
| 77 | // Validate further transfer op semantics. |
| 78 | SmallVector<int64_t> strides; |
| 79 | int64_t offset; |
| 80 | if (failed(srcTy.getStridesAndOffset(strides, offset)) || strides.back() != 1) |
| 81 | return rewriter.notifyMatchFailure( |
| 82 | xferOp, "Buffer must be contiguous in the innermost dimension" ); |
| 83 | |
| 84 | unsigned vecRank = vecTy.getRank(); |
| 85 | if (xferOp.hasOutOfBoundsDim() && vecRank < 2) |
| 86 | return rewriter.notifyMatchFailure( |
| 87 | xferOp, "Boundary check is available only for block instructions." ); |
| 88 | |
| 89 | AffineMap map = xferOp.getPermutationMap(); |
| 90 | if (!map.isProjectedPermutation(/*allowZeroInResults=*/false)) |
| 91 | return rewriter.notifyMatchFailure(xferOp, "Unsupported permutation map" ); |
| 92 | unsigned numInputDims = map.getNumInputs(); |
| 93 | for (AffineExpr expr : map.getResults().take_back(vecRank)) { |
| 94 | auto dim = dyn_cast<AffineDimExpr>(expr); |
| 95 | if (dim.getPosition() < (numInputDims - vecRank)) |
| 96 | return rewriter.notifyMatchFailure( |
| 97 | xferOp, "Only the innermost dimensions can be accessed" ); |
| 98 | } |
| 99 | |
| 100 | return success(); |
| 101 | } |
| 102 | |
| 103 | static xegpu::CreateNdDescOp |
| 104 | createNdDescriptor(PatternRewriter &rewriter, Location loc, |
| 105 | xegpu::TensorDescType descType, TypedValue<MemRefType> src, |
| 106 | Operation::operand_range offsets) { |
| 107 | MemRefType srcTy = src.getType(); |
| 108 | auto [strides, offset] = srcTy.getStridesAndOffset(); |
| 109 | |
| 110 | xegpu::CreateNdDescOp ndDesc; |
| 111 | if (srcTy.hasStaticShape()) { |
| 112 | ndDesc = rewriter.create<xegpu::CreateNdDescOp>(loc, descType, src, |
| 113 | getAsOpFoldResult(offsets)); |
| 114 | } else { |
| 115 | // In case of any dynamic shapes, source's shape and strides have to be |
| 116 | // explicitly provided. |
| 117 | SmallVector<Value> sourceDims; |
| 118 | unsigned srcRank = srcTy.getRank(); |
| 119 | for (unsigned i = 0; i < srcRank; ++i) |
| 120 | sourceDims.push_back(rewriter.create<memref::DimOp>(loc, src, i)); |
| 121 | |
| 122 | SmallVector<int64_t> constOffsets; |
| 123 | SmallVector<Value> dynOffsets; |
| 124 | for (Value offset : offsets) { |
| 125 | std::optional<int64_t> staticVal = getConstantIntValue(ofr: offset); |
| 126 | if (!staticVal) |
| 127 | dynOffsets.push_back(offset); |
| 128 | constOffsets.push_back(staticVal.value_or(ShapedType::kDynamic)); |
| 129 | } |
| 130 | |
| 131 | SmallVector<Value> dynShapes; |
| 132 | for (auto [idx, shape] : llvm::enumerate(srcTy.getShape())) { |
| 133 | if (shape == ShapedType::kDynamic) |
| 134 | dynShapes.push_back(sourceDims[idx]); |
| 135 | } |
| 136 | |
| 137 | // Compute strides in reverse order. |
| 138 | SmallVector<Value> dynStrides; |
| 139 | Value accStride = rewriter.create<arith::ConstantIndexOp>(loc, 1); |
| 140 | // Last stride is guaranteed to be static and unit. |
| 141 | for (int i = static_cast<int>(strides.size()) - 2; i >= 0; --i) { |
| 142 | accStride = |
| 143 | rewriter.create<arith::MulIOp>(loc, accStride, sourceDims[i + 1]); |
| 144 | if (strides[i] == ShapedType::kDynamic) |
| 145 | dynStrides.push_back(accStride); |
| 146 | } |
| 147 | std::reverse(dynStrides.begin(), dynStrides.end()); |
| 148 | |
| 149 | ndDesc = rewriter.create<xegpu::CreateNdDescOp>( |
| 150 | loc, descType, src, dynOffsets, dynShapes, dynStrides, |
| 151 | DenseI64ArrayAttr::get(rewriter.getContext(), constOffsets), |
| 152 | DenseI64ArrayAttr::get(rewriter.getContext(), srcTy.getShape()), |
| 153 | DenseI64ArrayAttr::get(rewriter.getContext(), strides)); |
| 154 | } |
| 155 | |
| 156 | return ndDesc; |
| 157 | } |
| 158 | |
| 159 | struct TransferReadLowering : public OpRewritePattern<vector::TransferReadOp> { |
| 160 | using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern; |
| 161 | |
| 162 | LogicalResult matchAndRewrite(vector::TransferReadOp readOp, |
| 163 | PatternRewriter &rewriter) const override { |
| 164 | Location loc = readOp.getLoc(); |
| 165 | |
| 166 | if (failed(transferPreconditions(rewriter, readOp))) |
| 167 | return failure(); |
| 168 | |
| 169 | bool isOutOfBounds = readOp.hasOutOfBoundsDim(); |
| 170 | if (isOutOfBounds && !isZeroConstant(readOp.getPadding())) |
| 171 | return rewriter.notifyMatchFailure( |
| 172 | readOp, "Unsupported non-zero padded out-of-bounds read" ); |
| 173 | |
| 174 | AffineMap readMap = readOp.getPermutationMap(); |
| 175 | bool isTransposeLoad = !readMap.isMinorIdentity(); |
| 176 | |
| 177 | VectorType vecTy = readOp.getVectorType(); |
| 178 | Type elementType = vecTy.getElementType(); |
| 179 | unsigned minTransposeBitWidth = 32; |
| 180 | if (isTransposeLoad && |
| 181 | elementType.getIntOrFloatBitWidth() < minTransposeBitWidth) |
| 182 | return rewriter.notifyMatchFailure( |
| 183 | readOp, "Unsupported data type for transposition" ); |
| 184 | |
| 185 | // If load is transposed, get the base shape for the tensor descriptor. |
| 186 | SmallVector<int64_t> descShape(vecTy.getShape()); |
| 187 | if (isTransposeLoad) |
| 188 | std::reverse(descShape.begin(), descShape.end()); |
| 189 | auto descType = xegpu::TensorDescType::get( |
| 190 | descShape, elementType, /*array_length=*/1, |
| 191 | /*boundary_check=*/isOutOfBounds, xegpu::MemorySpace::Global); |
| 192 | |
| 193 | xegpu::CreateNdDescOp ndDesc = |
| 194 | createNdDescriptor(rewriter, loc, descType, |
| 195 | dyn_cast<TypedValue<MemRefType>>(readOp.getBase()), |
| 196 | readOp.getIndices()); |
| 197 | |
| 198 | DenseI64ArrayAttr transposeAttr = |
| 199 | !isTransposeLoad ? nullptr |
| 200 | : DenseI64ArrayAttr::get(rewriter.getContext(), |
| 201 | ArrayRef<int64_t>{1, 0}); |
| 202 | // By default, no specific caching policy is assigned. |
| 203 | xegpu::CachePolicyAttr hint = nullptr; |
| 204 | auto loadOp = rewriter.create<xegpu::LoadNdOp>( |
| 205 | loc, vecTy, ndDesc, /*packed=*/nullptr, transposeAttr, |
| 206 | /*l1_hint=*/hint, |
| 207 | /*l2_hint=*/hint, /*l3_hint=*/hint); |
| 208 | rewriter.replaceOp(readOp, loadOp); |
| 209 | |
| 210 | return success(); |
| 211 | } |
| 212 | }; |
| 213 | |
| 214 | struct TransferWriteLowering |
| 215 | : public OpRewritePattern<vector::TransferWriteOp> { |
| 216 | using OpRewritePattern<vector::TransferWriteOp>::OpRewritePattern; |
| 217 | |
| 218 | LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp, |
| 219 | PatternRewriter &rewriter) const override { |
| 220 | Location loc = writeOp.getLoc(); |
| 221 | |
| 222 | if (failed(transferPreconditions(rewriter, writeOp))) |
| 223 | return failure(); |
| 224 | |
| 225 | AffineMap map = writeOp.getPermutationMap(); |
| 226 | if (!map.isMinorIdentity()) |
| 227 | return rewriter.notifyMatchFailure(writeOp, "Expects identity map" ); |
| 228 | |
| 229 | VectorType vecTy = writeOp.getVectorType(); |
| 230 | auto descType = xegpu::TensorDescType::get( |
| 231 | vecTy.getShape(), vecTy.getElementType(), |
| 232 | /*array_length=*/1, /*boundary_check=*/writeOp.hasOutOfBoundsDim(), |
| 233 | xegpu::MemorySpace::Global); |
| 234 | xegpu::CreateNdDescOp ndDesc = |
| 235 | createNdDescriptor(rewriter, loc, descType, |
| 236 | dyn_cast<TypedValue<MemRefType>>(writeOp.getBase()), |
| 237 | writeOp.getIndices()); |
| 238 | |
| 239 | // By default, no specific caching policy is assigned. |
| 240 | xegpu::CachePolicyAttr hint = nullptr; |
| 241 | auto storeOp = |
| 242 | rewriter.create<xegpu::StoreNdOp>(loc, writeOp.getVector(), ndDesc, |
| 243 | /*l1_hint=*/hint, |
| 244 | /*l2_hint=*/hint, /*l3_hint=*/hint); |
| 245 | rewriter.replaceOp(writeOp, storeOp); |
| 246 | |
| 247 | return success(); |
| 248 | } |
| 249 | }; |
| 250 | |
| 251 | struct LoadLowering : public OpRewritePattern<vector::LoadOp> { |
| 252 | using OpRewritePattern<vector::LoadOp>::OpRewritePattern; |
| 253 | |
| 254 | LogicalResult matchAndRewrite(vector::LoadOp loadOp, |
| 255 | PatternRewriter &rewriter) const override { |
| 256 | Location loc = loadOp.getLoc(); |
| 257 | |
| 258 | VectorType vecTy = loadOp.getResult().getType(); |
| 259 | if (failed(storeLoadPreconditions(rewriter, loadOp, vecTy))) |
| 260 | return failure(); |
| 261 | |
| 262 | // Boundary check is available only for block instructions. |
| 263 | bool boundaryCheck = vecTy.getRank() > 1; |
| 264 | |
| 265 | auto descType = xegpu::TensorDescType::get( |
| 266 | vecTy.getShape(), vecTy.getElementType(), /*array_length=*/1, |
| 267 | boundaryCheck, xegpu::MemorySpace::Global); |
| 268 | xegpu::CreateNdDescOp ndDesc = createNdDescriptor( |
| 269 | rewriter, loc, descType, loadOp.getBase(), loadOp.getIndices()); |
| 270 | |
| 271 | // By default, no specific caching policy is assigned. |
| 272 | xegpu::CachePolicyAttr hint = nullptr; |
| 273 | auto loadNdOp = rewriter.create<xegpu::LoadNdOp>( |
| 274 | loc, vecTy, ndDesc, /*packed=*/nullptr, /*transpose=*/nullptr, |
| 275 | /*l1_hint=*/hint, |
| 276 | /*l2_hint=*/hint, /*l3_hint=*/hint); |
| 277 | rewriter.replaceOp(loadOp, loadNdOp); |
| 278 | |
| 279 | return success(); |
| 280 | } |
| 281 | }; |
| 282 | |
| 283 | struct StoreLowering : public OpRewritePattern<vector::StoreOp> { |
| 284 | using OpRewritePattern<vector::StoreOp>::OpRewritePattern; |
| 285 | |
| 286 | LogicalResult matchAndRewrite(vector::StoreOp storeOp, |
| 287 | PatternRewriter &rewriter) const override { |
| 288 | Location loc = storeOp.getLoc(); |
| 289 | |
| 290 | TypedValue<VectorType> vector = storeOp.getValueToStore(); |
| 291 | VectorType vecTy = vector.getType(); |
| 292 | if (failed(storeLoadPreconditions(rewriter, storeOp, vecTy))) |
| 293 | return failure(); |
| 294 | |
| 295 | // Boundary check is available only for block instructions. |
| 296 | bool boundaryCheck = vecTy.getRank() > 1; |
| 297 | |
| 298 | auto descType = xegpu::TensorDescType::get( |
| 299 | vecTy.getShape(), vecTy.getElementType(), |
| 300 | /*array_length=*/1, boundaryCheck, xegpu::MemorySpace::Global); |
| 301 | xegpu::CreateNdDescOp ndDesc = createNdDescriptor( |
| 302 | rewriter, loc, descType, storeOp.getBase(), storeOp.getIndices()); |
| 303 | |
| 304 | // By default, no specific caching policy is assigned. |
| 305 | xegpu::CachePolicyAttr hint = nullptr; |
| 306 | auto storeNdOp = |
| 307 | rewriter.create<xegpu::StoreNdOp>(loc, vector, ndDesc, |
| 308 | /*l1_hint=*/hint, |
| 309 | /*l2_hint=*/hint, /*l3_hint=*/hint); |
| 310 | rewriter.replaceOp(storeOp, storeNdOp); |
| 311 | |
| 312 | return success(); |
| 313 | } |
| 314 | }; |
| 315 | |
| 316 | struct ContractionLowering : public OpRewritePattern<vector::ContractionOp> { |
| 317 | using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; |
| 318 | |
| 319 | LogicalResult matchAndRewrite(vector::ContractionOp contractOp, |
| 320 | PatternRewriter &rewriter) const override { |
| 321 | Location loc = contractOp.getLoc(); |
| 322 | |
| 323 | if (contractOp.getKind() != vector::CombiningKind::ADD) |
| 324 | return rewriter.notifyMatchFailure(contractOp, |
| 325 | "Expects add combining kind" ); |
| 326 | |
| 327 | TypedValue<Type> acc = contractOp.getAcc(); |
| 328 | VectorType accType = dyn_cast<VectorType>(acc.getType()); |
| 329 | if (!accType || accType.getRank() != 2) |
| 330 | return rewriter.notifyMatchFailure(contractOp, "Expects acc 2D vector" ); |
| 331 | |
| 332 | // Accept only plain 2D data layout. |
| 333 | // VNNI packing is applied to DPAS as a separate lowering step. |
| 334 | TypedValue<VectorType> lhs = contractOp.getLhs(); |
| 335 | TypedValue<VectorType> rhs = contractOp.getRhs(); |
| 336 | if (lhs.getType().getRank() != 2 || rhs.getType().getRank() != 2) |
| 337 | return rewriter.notifyMatchFailure(contractOp, |
| 338 | "Expects lhs and rhs 2D vectors" ); |
| 339 | |
| 340 | if (!isRowMajorMatmul(contractOp.getIndexingMapsAttr())) |
| 341 | return rewriter.notifyMatchFailure(contractOp, "Invalid indexing maps" ); |
| 342 | |
| 343 | // TODO: Update shape validation to be target aware. |
| 344 | auto accShape = accType.getShape(); |
| 345 | int64_t dimN = accShape[1]; |
| 346 | if (dimN != 8 && dimN != 16) |
| 347 | return rewriter.notifyMatchFailure(contractOp, |
| 348 | "Invalid operand dimensions" ); |
| 349 | |
| 350 | auto dpasOp = rewriter.create<xegpu::DpasOp>( |
| 351 | loc, TypeRange{contractOp.getResultType()}, ValueRange{lhs, rhs, acc}); |
| 352 | rewriter.replaceOp(contractOp, dpasOp); |
| 353 | |
| 354 | return success(); |
| 355 | } |
| 356 | }; |
| 357 | |
| 358 | struct ConvertVectorToXeGPUPass |
| 359 | : public impl::ConvertVectorToXeGPUBase<ConvertVectorToXeGPUPass> { |
| 360 | void runOnOperation() override { |
| 361 | RewritePatternSet patterns(&getContext()); |
| 362 | populateVectorToXeGPUConversionPatterns(patterns); |
| 363 | if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) |
| 364 | return signalPassFailure(); |
| 365 | } |
| 366 | }; |
| 367 | |
| 368 | } // namespace |
| 369 | |
| 370 | void mlir::populateVectorToXeGPUConversionPatterns( |
| 371 | RewritePatternSet &patterns) { |
| 372 | patterns.add<TransferReadLowering, TransferWriteLowering, LoadLowering, |
| 373 | StoreLowering, ContractionLowering>(arg: patterns.getContext()); |
| 374 | } |
| 375 | |