| 1 | //===- Specialize.cpp - linalg generic ops to named ops ------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements a method to specialize generic operations to named |
| 10 | // operations. Conceptually it is the opposite of generalize.cpp. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/Dialect/Complex/IR/Complex.h" |
| 15 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 16 | #include "mlir/Dialect/Linalg/IR/LinalgInterfaces.h" |
| 17 | #include "mlir/Dialect/Linalg/Passes.h" |
| 18 | #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| 19 | #include "mlir/Dialect/Math/IR/Math.h" |
| 20 | #include "mlir/IR/PatternMatch.h" |
| 21 | #include "mlir/Support/TypeID.h" |
| 22 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 23 | #include "llvm/Support/Debug.h" |
| 24 | |
| 25 | namespace mlir { |
| 26 | #define GEN_PASS_DEF_LINALGSPECIALIZEGENERICOPSPASS |
| 27 | #include "mlir/Dialect/Linalg/Passes.h.inc" |
| 28 | } // namespace mlir |
| 29 | |
| 30 | #define DEBUG_TYPE "linalg-specialization" |
| 31 | |
| 32 | #define REPLACE_BINARY_OP(NEWOP, OPERANDS_SWAP) \ |
| 33 | (rewriter.replaceOpWithNewOp<NEWOP>( \ |
| 34 | genericOp, \ |
| 35 | ValueRange{genericOp.getDpsInputs()[(OPERANDS_SWAP) ? 1 : 0], \ |
| 36 | genericOp.getDpsInputs()[(OPERANDS_SWAP) ? 0 : 1]}, \ |
| 37 | ValueRange{genericOp.getDpsInits()[0]})) |
| 38 | |
| 39 | #define REPLACE_UNARY_OP(NEWOP) \ |
| 40 | (rewriter.replaceOpWithNewOp<NEWOP>(genericOp, \ |
| 41 | ValueRange{genericOp.getDpsInputs()[0]}, \ |
| 42 | ValueRange{genericOp.getDpsInits()[0]})) |
| 43 | |
| 44 | using namespace mlir; |
| 45 | using namespace mlir::linalg; |
| 46 | |
| 47 | // Given a elementwise single binary linalg generic op, checks whether the |
| 48 | // binary op accesses operands as swapped. e.g. |
| 49 | // this differentiates between a linalg-generic body that contains: |
| 50 | // ^bb0(%a: f32, %b: f32, %c : f32): |
| 51 | // %0 = arith.subf %a, %b : f32 |
| 52 | // linalg.yield %0: f32 |
| 53 | // against: |
| 54 | // ^bb0(%a: f32, %b: f32, %c : f32): |
| 55 | // %0 = arith.subf %b, %a : f32 |
| 56 | // linalg.yield %0: f32 |
| 57 | // Former is linalg.sub(a,b), latter is linalg.sub(b,a). |
| 58 | static bool areBinOpsSwapped(GenericOp genericOp) { |
| 59 | Block *body = genericOp.getBody(); |
| 60 | Operation *op = &body->front(); |
| 61 | bool swapped = false; |
| 62 | if (op->getOpOperand(idx: 0).get() != body->getArgument(i: 0)) { |
| 63 | swapped = true; |
| 64 | assert(op->getOpOperand(0).get() == body->getArgument(1) && |
| 65 | op->getOpOperand(1).get() == body->getArgument(0) && |
| 66 | "binary op uses just one block arg" ); |
| 67 | } |
| 68 | return swapped; |
| 69 | } |
| 70 | |
| 71 | //===----------------------------------------------------------------------===// |
| 72 | // Specialize linalg generic to matmul variants. |
| 73 | //===----------------------------------------------------------------------===// |
| 74 | /// Identifies linalg.generic that is essentially named op of the form: |
| 75 | // ` linalg.{batch_}?matmul{_transpose_a | _transpose_b}? ` |
| 76 | // |
| 77 | // It is possible that a linalg.generic may be implementing a matmul but not |
| 78 | // in a straight-forward way e.g. below is matrix multiply over some slice |
| 79 | // ``` |
| 80 | // %0 = linalg.generic { |
| 81 | // indexing_maps = [affine_map<(d0, d1, d2) -> (3, d1, d0)>, |
| 82 | // affine_map<(d0, d1, d2) -> (d0, 5, d2)>, |
| 83 | // affine_map<(d0, d1, d2) -> (d2, d1, 13)>], |
| 84 | // iterator_types = ["parallel", "parallel", "parallel"]} |
| 85 | // ins(%A, %B : tensor<20x20x20xf32>, tensor<20x20x20xf32>) |
| 86 | // outs(%C : tensor<20x20x20xf32>) { |
| 87 | // ^bb0(%a: f32, %b: f32, %c : f32): |
| 88 | // %mul = arith.mulf %a, %b : f32 |
| 89 | // %add = arith.addf %mul, %c : f32 |
| 90 | // linalg.yield %add : f32 |
| 91 | // } -> tensor<20x20x20xf32> |
| 92 | // ``` |
| 93 | // It is not possible to represent above as named op. |
| 94 | // e.g. linalg.batch_matmul(%A, %B : tensor<20x20x20xf32>, ...) is |
| 95 | // not the same as linalg.generic above. |
| 96 | namespace { |
| 97 | enum class IndexMatchResult { |
| 98 | Match = 0, // identity map. |
| 99 | Transposed, // transposed map. |
| 100 | Mismatch // none of the above. |
| 101 | }; |
| 102 | |
| 103 | // Checks whether the input Affine `map` contains two consecutive dims that |
| 104 | // can be interpreted as accessing a 2D matrix. It is assumed that the row |
| 105 | // column dimension are adjacent axis (in this order) and start at |
| 106 | // `rowDimIdx` in the input map. |
| 107 | // |
| 108 | // e.g. consider A matrix in `C[M,N] = A[M,K] * B[K,N]`. We will check |
| 109 | // whether the map of A is identity (match), transposed, or something |
| 110 | // completely different (mis-match). Similar for B and C. |
| 111 | static IndexMatchResult matchOperandMap(AffineMap map, unsigned rowDimIdx, |
| 112 | unsigned expectedPosOfRowDim, |
| 113 | unsigned expectedPosOfColDim) { |
| 114 | // Get the matrix multiply indices. They are past the batch indices. |
| 115 | auto exprOfRowDim = map.getResults()[rowDimIdx]; |
| 116 | auto exprOfColDim = map.getResults()[rowDimIdx + 1]; |
| 117 | |
| 118 | // They should be pure dimension ids. |
| 119 | if (exprOfRowDim.getKind() != AffineExprKind::DimId || |
| 120 | exprOfColDim.getKind() != AffineExprKind::DimId) |
| 121 | return IndexMatchResult::Mismatch; |
| 122 | |
| 123 | auto posRowDim = cast<AffineDimExpr>(Val&: exprOfRowDim).getPosition(); |
| 124 | auto posColDim = cast<AffineDimExpr>(Val&: exprOfColDim).getPosition(); |
| 125 | |
| 126 | if (expectedPosOfRowDim == posRowDim && expectedPosOfColDim == posColDim) |
| 127 | return IndexMatchResult::Match; |
| 128 | |
| 129 | if (expectedPosOfRowDim == posColDim && expectedPosOfColDim == posRowDim) |
| 130 | return IndexMatchResult::Transposed; |
| 131 | |
| 132 | return IndexMatchResult::Mismatch; |
| 133 | } |
| 134 | |
| 135 | // Replaces genericOp with `NamedOpTy` op, supplied as a template arg. |
| 136 | // All the variants expressed as pseudo regular expression: |
| 137 | // `linalg.{batch_}?matmul{_transpose_a | _transpose_b}?` |
| 138 | // have same number of ins/out, so its easy to stamp different versions. |
| 139 | template <typename NamedOpTy> |
| 140 | static LinalgOp replaceWithMatmulVariant(RewriterBase &rewriter, GenericOp op) { |
| 141 | LinalgOp namedOp = rewriter.replaceOpWithNewOp<NamedOpTy>( |
| 142 | op, ValueRange{op.getDpsInputs()[0], op.getDpsInputs()[1]}, |
| 143 | ValueRange{op.getDpsInits()[0]}); |
| 144 | return namedOp; |
| 145 | } |
| 146 | |
| 147 | // Converts linalg.generic to named linalg.*matmul* where possible. |
| 148 | static FailureOr<LinalgOp> specializeLinalgContractions(RewriterBase &rewriter, |
| 149 | GenericOp genericOp) { |
| 150 | if (genericOp.getNumDpsInputs() != 2 || genericOp.getNumDpsInits() != 1) |
| 151 | return failure(); |
| 152 | |
| 153 | // Early exit if not projected permutations. |
| 154 | auto mapRange = genericOp.getIndexingMapsArray(); |
| 155 | if (llvm::any_of(mapRange, |
| 156 | [](AffineMap m) { return !m.isProjectedPermutation(); })) |
| 157 | return failure(); |
| 158 | |
| 159 | // Linalg generic contraction can be across multiple axis e.g. |
| 160 | // ``` |
| 161 | // linalg.generic |
| 162 | // {indexing_maps = [affine_map<(m, n, k1, k2) -> (m, k1, k2)>, |
| 163 | // affine_map<(m, n, k1, k2) -> (k2, k1, n)>, |
| 164 | // affine_map<(m, n, k1, k2) -> (m, n)>], |
| 165 | // iterator_types = ["parallel", "parallel", |
| 166 | // "reduction", "reduction"]} |
| 167 | // ins(%A, %B : tensor<10x20x30xf32>, tensor<30x20x40xf32>) |
| 168 | // outs(%C : tensor<10x40xf32>) { |
| 169 | // ^bb0(%a: f32, %b: f32, %c: f32): |
| 170 | // %1 = arith.mulf %a, %b : f32 |
| 171 | // %2 = arith.addf %c, %1 : f32 |
| 172 | // linalg.yield %2 : f32 |
| 173 | // } -> tensor<10x40xf32> |
| 174 | // ``` |
| 175 | // In above contraction, there are two reduction dimensions {k1, k2} |
| 176 | // and although a valid linalg contraction, it is not a named-op |
| 177 | // matrix multiply kind. Therefore, reject multi-dim reduction. |
| 178 | auto res = inferContractionDims(genericOp); |
| 179 | if (!succeeded(res)) |
| 180 | return failure(); |
| 181 | auto dims = *res; |
| 182 | if (dims.m.size() != 1 || dims.n.size() != 1 || dims.k.size() != 1) |
| 183 | return failure(); |
| 184 | |
| 185 | if (!mlir::linalg::detail::isContractionBody( |
| 186 | block&: *genericOp.getBlock(), isaPair: [](Operation *first, Operation *second) { |
| 187 | if ((isa<arith::MulFOp>(first) && isa<arith::AddFOp>(second)) || |
| 188 | (isa<arith::MulIOp>(first) && isa<arith::AddIOp>(second)) || |
| 189 | (isa<complex::MulOp>(first) && isa<complex::AddOp>(second))) |
| 190 | return true; |
| 191 | return false; |
| 192 | })) |
| 193 | return failure(); |
| 194 | |
| 195 | // Check rank of operands |
| 196 | auto indexingMaps = genericOp.getIndexingMapsArray(); |
| 197 | if (llvm::any_of(indexingMaps, [&dims](AffineMap m) { |
| 198 | return m.getResults().size() != |
| 199 | dims.batch.size() + 2 /* any two of {m,n,k} */; |
| 200 | })) |
| 201 | return failure(); |
| 202 | |
| 203 | auto numOfBatchDims = dims.batch.size(); |
| 204 | if (indexingMaps[0].getNumDims() != numOfBatchDims + 3) |
| 205 | return failure(); |
| 206 | |
| 207 | if (numOfBatchDims) { |
| 208 | // Each operand in a linalg generic contraction could express different |
| 209 | // permutations for its batch dimension. But for named op it must be |
| 210 | // identity since separate maps are not specified. |
| 211 | if (llvm::any_of(indexingMaps, [numOfBatchDims](AffineMap m) { |
| 212 | for (unsigned i = 0; i < numOfBatchDims; ++i) { |
| 213 | auto expr = m.getResults()[i]; |
| 214 | if (expr.getKind() != AffineExprKind::DimId || |
| 215 | cast<AffineDimExpr>(Val&: expr).getPosition() != i) |
| 216 | return true; |
| 217 | } |
| 218 | return false; |
| 219 | })) |
| 220 | return failure(); |
| 221 | } |
| 222 | |
| 223 | auto a = |
| 224 | matchOperandMap(indexingMaps[0], numOfBatchDims, dims.m[0], dims.k[0]); |
| 225 | auto b = |
| 226 | matchOperandMap(indexingMaps[1], numOfBatchDims, dims.k[0], dims.n[0]); |
| 227 | auto c = |
| 228 | matchOperandMap(indexingMaps[2], numOfBatchDims, dims.m[0], dims.n[0]); |
| 229 | |
| 230 | if (llvm::is_contained({a, b, c}, IndexMatchResult::Mismatch)) |
| 231 | return failure(); |
| 232 | |
| 233 | if (c != IndexMatchResult::Match || |
| 234 | (a == IndexMatchResult::Transposed && b == IndexMatchResult::Transposed)) |
| 235 | return failure(); |
| 236 | |
| 237 | /// Codegen the different matmul variants. |
| 238 | if (numOfBatchDims) { |
| 239 | if (a == IndexMatchResult::Transposed) |
| 240 | return replaceWithMatmulVariant<BatchMatmulTransposeAOp>(rewriter, |
| 241 | genericOp); |
| 242 | if (b == IndexMatchResult::Transposed) |
| 243 | return replaceWithMatmulVariant<BatchMatmulTransposeBOp>(rewriter, |
| 244 | genericOp); |
| 245 | return replaceWithMatmulVariant<BatchMatmulOp>(rewriter, genericOp); |
| 246 | } |
| 247 | |
| 248 | if (a == IndexMatchResult::Transposed) |
| 249 | return replaceWithMatmulVariant<MatmulTransposeAOp>(rewriter, genericOp); |
| 250 | if (b == IndexMatchResult::Transposed) |
| 251 | return replaceWithMatmulVariant<MatmulTransposeBOp>(rewriter, genericOp); |
| 252 | return replaceWithMatmulVariant<MatmulOp>(rewriter, genericOp); |
| 253 | } |
| 254 | |
| 255 | } // namespace |
| 256 | |
| 257 | //===----------------------------------------------------------------------===// |
| 258 | // Categorize linalg generic to named op where possible. |
| 259 | //===----------------------------------------------------------------------===// |
| 260 | FailureOr<LinalgOp> mlir::linalg::specializeGenericOp(RewriterBase &rewriter, |
| 261 | GenericOp genericOp) { |
| 262 | // Copy |
| 263 | if (isaCopyOpInterface(genericOp)) { |
| 264 | LinalgOp namedOp = rewriter.replaceOpWithNewOp<CopyOp>( |
| 265 | genericOp, genericOp.getDpsInputs()[0], genericOp.getDpsInits()[0]); |
| 266 | return namedOp; |
| 267 | } |
| 268 | |
| 269 | // Fill |
| 270 | if (isaFillOpInterface(genericOp)) { |
| 271 | LinalgOp namedOp = rewriter.replaceOpWithNewOp<FillOp>( |
| 272 | genericOp, genericOp.getDpsInputs()[0], genericOp.getDpsInits()[0]); |
| 273 | return namedOp; |
| 274 | } |
| 275 | |
| 276 | // Broadcast |
| 277 | std::optional<SmallVector<int64_t>> equivalentToBroadcast = |
| 278 | isaBroadcastOpInterface(genericOp); |
| 279 | if (equivalentToBroadcast) { |
| 280 | auto dims = *equivalentToBroadcast; |
| 281 | LinalgOp namedOp = rewriter.replaceOpWithNewOp<BroadcastOp>( |
| 282 | genericOp, genericOp.getDpsInputs()[0], genericOp.getDpsInits()[0], |
| 283 | dims); |
| 284 | return namedOp; |
| 285 | } |
| 286 | |
| 287 | // Transpose |
| 288 | std::optional<SmallVector<int64_t>> equivalentToTranspose = |
| 289 | isaTransposeOpInterface(genericOp); |
| 290 | if (equivalentToTranspose) { |
| 291 | auto permutation = *equivalentToTranspose; |
| 292 | LinalgOp namedOp = rewriter.replaceOpWithNewOp<TransposeOp>( |
| 293 | genericOp, genericOp.getDpsInputs()[0], genericOp.getDpsInits()[0], |
| 294 | permutation); |
| 295 | return namedOp; |
| 296 | } |
| 297 | |
| 298 | // Elementwise Unary |
| 299 | if (isaElemwiseSingleUnaryOpInterface(genericOp)) { |
| 300 | Operation *op = &genericOp.getBody()->front(); |
| 301 | if (isa<math::ExpOp>(op)) { |
| 302 | LinalgOp namedOp = REPLACE_UNARY_OP(ExpOp); |
| 303 | return namedOp; |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | // Elementwise Binary |
| 308 | if (isaElemwiseSingleBinaryOpInterface(genericOp)) { |
| 309 | bool swap = areBinOpsSwapped(genericOp); |
| 310 | Operation *op = &genericOp.getBody()->front(); |
| 311 | if (isa<arith::AddFOp>(op)) { |
| 312 | LinalgOp namedOp = REPLACE_BINARY_OP(AddOp, swap); |
| 313 | return namedOp; |
| 314 | } |
| 315 | if (isa<arith::SubFOp>(op)) { |
| 316 | LinalgOp namedOp = REPLACE_BINARY_OP(SubOp, swap); |
| 317 | return namedOp; |
| 318 | } |
| 319 | if (isa<arith::MulFOp>(op)) { |
| 320 | LinalgOp namedOp = REPLACE_BINARY_OP(MulOp, swap); |
| 321 | return namedOp; |
| 322 | } |
| 323 | if (isa<arith::DivFOp>(op)) { |
| 324 | LinalgOp namedOp = REPLACE_BINARY_OP(DivOp, swap); |
| 325 | return namedOp; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | // Contraction - e.g. matmul |
| 330 | if (isaContractionOpInterface(genericOp)) { |
| 331 | return specializeLinalgContractions(rewriter, genericOp); |
| 332 | } |
| 333 | return failure(); |
| 334 | } |
| 335 | |
| 336 | namespace { |
| 337 | struct LinalgSpecializeGenericOpsPass |
| 338 | : public impl::LinalgSpecializeGenericOpsPassBase< |
| 339 | LinalgSpecializeGenericOpsPass> { |
| 340 | |
| 341 | using impl::LinalgSpecializeGenericOpsPassBase< |
| 342 | LinalgSpecializeGenericOpsPass>::LinalgSpecializeGenericOpsPassBase; |
| 343 | void runOnOperation() override; |
| 344 | }; |
| 345 | } // namespace |
| 346 | |
| 347 | void LinalgSpecializeGenericOpsPass::runOnOperation() { |
| 348 | RewritePatternSet patterns(&getContext()); |
| 349 | populateLinalgGenericOpsSpecializationPatterns(patterns); |
| 350 | populateDecomposeProjectedPermutationPatterns(patterns); |
| 351 | |
| 352 | if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) |
| 353 | signalPassFailure(); |
| 354 | } |
| 355 | |
| 356 | void mlir::linalg::populateLinalgGenericOpsSpecializationPatterns( |
| 357 | RewritePatternSet &patterns) { |
| 358 | patterns.add<LinalgSpecializationPattern>(arg: patterns.getContext()); |
| 359 | } |
| 360 | |