| 1 | //===- LoopSpecialization.cpp - scf.parallel/SCR.for specialization -------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Specializes parallel loops and for loops for easier unrolling and |
| 10 | // vectorization. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/Dialect/SCF/Transforms/Passes.h" |
| 15 | |
| 16 | #include "mlir/Dialect/Affine/Analysis/AffineStructures.h" |
| 17 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 18 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 19 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 20 | #include "mlir/Dialect/SCF/Transforms/Transforms.h" |
| 21 | #include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h" |
| 22 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
| 23 | #include "mlir/IR/AffineExpr.h" |
| 24 | #include "mlir/IR/IRMapping.h" |
| 25 | #include "mlir/IR/PatternMatch.h" |
| 26 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 27 | #include "llvm/ADT/DenseMap.h" |
| 28 | |
| 29 | namespace mlir { |
| 30 | #define GEN_PASS_DEF_SCFFORLOOPPEELING |
| 31 | #define GEN_PASS_DEF_SCFFORLOOPSPECIALIZATION |
| 32 | #define GEN_PASS_DEF_SCFPARALLELLOOPSPECIALIZATION |
| 33 | #include "mlir/Dialect/SCF/Transforms/Passes.h.inc" |
| 34 | } // namespace mlir |
| 35 | |
| 36 | using namespace mlir; |
| 37 | using namespace mlir::affine; |
| 38 | using scf::ForOp; |
| 39 | using scf::ParallelOp; |
| 40 | |
| 41 | /// Rewrite a parallel loop with bounds defined by an affine.min with a constant |
| 42 | /// into 2 loops after checking if the bounds are equal to that constant. This |
| 43 | /// is beneficial if the loop will almost always have the constant bound and |
| 44 | /// that version can be fully unrolled and vectorized. |
| 45 | static void specializeParallelLoopForUnrolling(ParallelOp op) { |
| 46 | SmallVector<int64_t, 2> constantIndices; |
| 47 | constantIndices.reserve(op.getUpperBound().size()); |
| 48 | for (auto bound : op.getUpperBound()) { |
| 49 | auto minOp = bound.getDefiningOp<AffineMinOp>(); |
| 50 | if (!minOp) |
| 51 | return; |
| 52 | int64_t minConstant = std::numeric_limits<int64_t>::max(); |
| 53 | for (AffineExpr expr : minOp.getMap().getResults()) { |
| 54 | if (auto constantIndex = dyn_cast<AffineConstantExpr>(expr)) |
| 55 | minConstant = std::min(minConstant, constantIndex.getValue()); |
| 56 | } |
| 57 | if (minConstant == std::numeric_limits<int64_t>::max()) |
| 58 | return; |
| 59 | constantIndices.push_back(minConstant); |
| 60 | } |
| 61 | |
| 62 | OpBuilder b(op); |
| 63 | IRMapping map; |
| 64 | Value cond; |
| 65 | for (auto bound : llvm::zip(op.getUpperBound(), constantIndices)) { |
| 66 | Value constant = |
| 67 | b.create<arith::ConstantIndexOp>(op.getLoc(), std::get<1>(bound)); |
| 68 | Value cmp = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq, |
| 69 | std::get<0>(bound), constant); |
| 70 | cond = cond ? b.create<arith::AndIOp>(op.getLoc(), cond, cmp) : cmp; |
| 71 | map.map(std::get<0>(bound), constant); |
| 72 | } |
| 73 | auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true); |
| 74 | ifOp.getThenBodyBuilder().clone(*op.getOperation(), map); |
| 75 | ifOp.getElseBodyBuilder().clone(*op.getOperation()); |
| 76 | op.erase(); |
| 77 | } |
| 78 | |
| 79 | /// Rewrite a for loop with bounds defined by an affine.min with a constant into |
| 80 | /// 2 loops after checking if the bounds are equal to that constant. This is |
| 81 | /// beneficial if the loop will almost always have the constant bound and that |
| 82 | /// version can be fully unrolled and vectorized. |
| 83 | static void specializeForLoopForUnrolling(ForOp op) { |
| 84 | auto bound = op.getUpperBound(); |
| 85 | auto minOp = bound.getDefiningOp<AffineMinOp>(); |
| 86 | if (!minOp) |
| 87 | return; |
| 88 | int64_t minConstant = std::numeric_limits<int64_t>::max(); |
| 89 | for (AffineExpr expr : minOp.getMap().getResults()) { |
| 90 | if (auto constantIndex = dyn_cast<AffineConstantExpr>(expr)) |
| 91 | minConstant = std::min(minConstant, constantIndex.getValue()); |
| 92 | } |
| 93 | if (minConstant == std::numeric_limits<int64_t>::max()) |
| 94 | return; |
| 95 | |
| 96 | OpBuilder b(op); |
| 97 | IRMapping map; |
| 98 | Value constant = b.create<arith::ConstantIndexOp>(op.getLoc(), minConstant); |
| 99 | Value cond = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq, |
| 100 | bound, constant); |
| 101 | map.map(bound, constant); |
| 102 | auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true); |
| 103 | ifOp.getThenBodyBuilder().clone(*op.getOperation(), map); |
| 104 | ifOp.getElseBodyBuilder().clone(*op.getOperation()); |
| 105 | op.erase(); |
| 106 | } |
| 107 | |
| 108 | /// Rewrite a for loop with bounds/step that potentially do not divide evenly |
| 109 | /// into a for loop where the step divides the iteration space evenly, followed |
| 110 | /// by an scf.if for the last (partial) iteration (if any). |
| 111 | /// |
| 112 | /// This function rewrites the given scf.for loop in-place and creates a new |
| 113 | /// scf.if operation for the last iteration. It replaces all uses of the |
| 114 | /// unpeeled loop with the results of the newly generated scf.if. |
| 115 | /// |
| 116 | /// The newly generated scf.if operation is returned via `ifOp`. The boundary |
| 117 | /// at which the loop is split (new upper bound) is returned via `splitBound`. |
| 118 | /// The return value indicates whether the loop was rewritten or not. |
| 119 | static LogicalResult peelForLoop(RewriterBase &b, ForOp forOp, |
| 120 | ForOp &partialIteration, Value &splitBound) { |
| 121 | RewriterBase::InsertionGuard guard(b); |
| 122 | auto lbInt = getConstantIntValue(forOp.getLowerBound()); |
| 123 | auto ubInt = getConstantIntValue(forOp.getUpperBound()); |
| 124 | auto stepInt = getConstantIntValue(forOp.getStep()); |
| 125 | |
| 126 | // No specialization necessary if step size is 1. Also bail out in case of an |
| 127 | // invalid zero or negative step which might have happened during folding. |
| 128 | if (stepInt && *stepInt <= 1) |
| 129 | return failure(); |
| 130 | |
| 131 | // No specialization necessary if step already divides upper bound evenly. |
| 132 | // Fast path: lb, ub and step are constants. |
| 133 | if (lbInt && ubInt && stepInt && (*ubInt - *lbInt) % *stepInt == 0) |
| 134 | return failure(); |
| 135 | // Slow path: Examine the ops that define lb, ub and step. |
| 136 | AffineExpr sym0, sym1, sym2; |
| 137 | bindSymbols(ctx: b.getContext(), exprs&: sym0, exprs&: sym1, exprs&: sym2); |
| 138 | SmallVector<Value> operands{forOp.getLowerBound(), forOp.getUpperBound(), |
| 139 | forOp.getStep()}; |
| 140 | AffineMap map = AffineMap::get(dimCount: 0, symbolCount: 3, result: {(sym1 - sym0) % sym2}); |
| 141 | affine::fullyComposeAffineMapAndOperands(map: &map, operands: &operands); |
| 142 | if (auto constExpr = dyn_cast<AffineConstantExpr>(Val: map.getResult(idx: 0))) |
| 143 | if (constExpr.getValue() == 0) |
| 144 | return failure(); |
| 145 | |
| 146 | // New upper bound: %ub - (%ub - %lb) mod %step |
| 147 | auto modMap = AffineMap::get(dimCount: 0, symbolCount: 3, result: {sym1 - ((sym1 - sym0) % sym2)}); |
| 148 | b.setInsertionPoint(forOp); |
| 149 | auto loc = forOp.getLoc(); |
| 150 | splitBound = b.createOrFold<AffineApplyOp>(loc, modMap, |
| 151 | ValueRange{forOp.getLowerBound(), |
| 152 | forOp.getUpperBound(), |
| 153 | forOp.getStep()}); |
| 154 | |
| 155 | // Create ForOp for partial iteration. |
| 156 | b.setInsertionPointAfter(forOp); |
| 157 | partialIteration = cast<ForOp>(b.clone(*forOp.getOperation())); |
| 158 | partialIteration.getLowerBoundMutable().assign(splitBound); |
| 159 | b.replaceAllUsesWith(forOp.getResults(), partialIteration->getResults()); |
| 160 | partialIteration.getInitArgsMutable().assign(forOp->getResults()); |
| 161 | |
| 162 | // Set new upper loop bound. |
| 163 | b.modifyOpInPlace(forOp, |
| 164 | [&]() { forOp.getUpperBoundMutable().assign(splitBound); }); |
| 165 | |
| 166 | return success(); |
| 167 | } |
| 168 | |
| 169 | static void rewriteAffineOpAfterPeeling(RewriterBase &rewriter, ForOp forOp, |
| 170 | ForOp partialIteration, |
| 171 | Value previousUb) { |
| 172 | Value mainIv = forOp.getInductionVar(); |
| 173 | Value partialIv = partialIteration.getInductionVar(); |
| 174 | assert(forOp.getStep() == partialIteration.getStep() && |
| 175 | "expected same step in main and partial loop" ); |
| 176 | Value step = forOp.getStep(); |
| 177 | |
| 178 | forOp.walk([&](Operation *affineOp) { |
| 179 | if (!isa<AffineMinOp, AffineMaxOp>(Val: affineOp)) |
| 180 | return WalkResult::advance(); |
| 181 | (void)scf::rewritePeeledMinMaxOp(rewriter, op: affineOp, iv: mainIv, ub: previousUb, |
| 182 | step, |
| 183 | /*insideLoop=*/true); |
| 184 | return WalkResult::advance(); |
| 185 | }); |
| 186 | partialIteration.walk([&](Operation *affineOp) { |
| 187 | if (!isa<AffineMinOp, AffineMaxOp>(Val: affineOp)) |
| 188 | return WalkResult::advance(); |
| 189 | (void)scf::rewritePeeledMinMaxOp(rewriter, op: affineOp, iv: partialIv, ub: previousUb, |
| 190 | step, /*insideLoop=*/false); |
| 191 | return WalkResult::advance(); |
| 192 | }); |
| 193 | } |
| 194 | |
| 195 | LogicalResult mlir::scf::peelForLoopAndSimplifyBounds(RewriterBase &rewriter, |
| 196 | ForOp forOp, |
| 197 | ForOp &partialIteration) { |
| 198 | Value previousUb = forOp.getUpperBound(); |
| 199 | Value splitBound; |
| 200 | if (failed(peelForLoop(rewriter, forOp, partialIteration, splitBound))) |
| 201 | return failure(); |
| 202 | |
| 203 | // Rewrite affine.min and affine.max ops. |
| 204 | rewriteAffineOpAfterPeeling(rewriter, forOp, partialIteration, previousUb); |
| 205 | |
| 206 | return success(); |
| 207 | } |
| 208 | |
| 209 | /// Rewrites the original scf::ForOp as two scf::ForOp Ops, the first |
| 210 | /// scf::ForOp corresponds to the first iteration of the loop which can be |
| 211 | /// canonicalized away in the following optimizations. The second loop Op |
| 212 | /// contains the remaining iterations, with a lower bound updated as the |
| 213 | /// original lower bound plus the step (i.e. skips the first iteration). |
| 214 | LogicalResult mlir::scf::peelForLoopFirstIteration(RewriterBase &b, ForOp forOp, |
| 215 | ForOp &firstIteration) { |
| 216 | RewriterBase::InsertionGuard guard(b); |
| 217 | auto lbInt = getConstantIntValue(forOp.getLowerBound()); |
| 218 | auto ubInt = getConstantIntValue(forOp.getUpperBound()); |
| 219 | auto stepInt = getConstantIntValue(forOp.getStep()); |
| 220 | |
| 221 | // Peeling is not needed if there is one or less iteration. |
| 222 | if (lbInt && ubInt && stepInt && ceil(float(*ubInt - *lbInt) / *stepInt) <= 1) |
| 223 | return failure(); |
| 224 | |
| 225 | AffineExpr lbSymbol, stepSymbol; |
| 226 | bindSymbols(ctx: b.getContext(), exprs&: lbSymbol, exprs&: stepSymbol); |
| 227 | |
| 228 | // New lower bound for main loop: %lb + %step |
| 229 | auto ubMap = AffineMap::get(dimCount: 0, symbolCount: 2, result: {lbSymbol + stepSymbol}); |
| 230 | b.setInsertionPoint(forOp); |
| 231 | auto loc = forOp.getLoc(); |
| 232 | Value splitBound = b.createOrFold<AffineApplyOp>( |
| 233 | loc, ubMap, ValueRange{forOp.getLowerBound(), forOp.getStep()}); |
| 234 | |
| 235 | // Peel the first iteration. |
| 236 | IRMapping map; |
| 237 | map.map(forOp.getUpperBound(), splitBound); |
| 238 | firstIteration = cast<ForOp>(b.clone(*forOp.getOperation(), map)); |
| 239 | |
| 240 | // Update main loop with new lower bound. |
| 241 | b.modifyOpInPlace(forOp, [&]() { |
| 242 | forOp.getInitArgsMutable().assign(firstIteration->getResults()); |
| 243 | forOp.getLowerBoundMutable().assign(splitBound); |
| 244 | }); |
| 245 | |
| 246 | return success(); |
| 247 | } |
| 248 | |
| 249 | static constexpr char kPeeledLoopLabel[] = "__peeled_loop__" ; |
| 250 | static constexpr char kPartialIterationLabel[] = "__partial_iteration__" ; |
| 251 | |
| 252 | namespace { |
| 253 | struct ForLoopPeelingPattern : public OpRewritePattern<ForOp> { |
| 254 | ForLoopPeelingPattern(MLIRContext *ctx, bool peelFront, bool skipPartial) |
| 255 | : OpRewritePattern<ForOp>(ctx), peelFront(peelFront), |
| 256 | skipPartial(skipPartial) {} |
| 257 | |
| 258 | LogicalResult matchAndRewrite(ForOp forOp, |
| 259 | PatternRewriter &rewriter) const override { |
| 260 | // Do not peel already peeled loops. |
| 261 | if (forOp->hasAttr(kPeeledLoopLabel)) |
| 262 | return failure(); |
| 263 | |
| 264 | scf::ForOp partialIteration; |
| 265 | // The case for peeling the first iteration of the loop. |
| 266 | if (peelFront) { |
| 267 | if (failed( |
| 268 | peelForLoopFirstIteration(rewriter, forOp, partialIteration))) { |
| 269 | return failure(); |
| 270 | } |
| 271 | } else { |
| 272 | if (skipPartial) { |
| 273 | // No peeling of loops inside the partial iteration of another peeled |
| 274 | // loop. |
| 275 | Operation *op = forOp.getOperation(); |
| 276 | while ((op = op->getParentOfType<scf::ForOp>())) { |
| 277 | if (op->hasAttr(name: kPartialIterationLabel)) |
| 278 | return failure(); |
| 279 | } |
| 280 | } |
| 281 | // Apply loop peeling. |
| 282 | if (failed( |
| 283 | peelForLoopAndSimplifyBounds(rewriter, forOp, partialIteration))) |
| 284 | return failure(); |
| 285 | } |
| 286 | |
| 287 | // Apply label, so that the same loop is not rewritten a second time. |
| 288 | rewriter.modifyOpInPlace(partialIteration, [&]() { |
| 289 | partialIteration->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr()); |
| 290 | partialIteration->setAttr(kPartialIterationLabel, rewriter.getUnitAttr()); |
| 291 | }); |
| 292 | rewriter.modifyOpInPlace(forOp, [&]() { |
| 293 | forOp->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr()); |
| 294 | }); |
| 295 | return success(); |
| 296 | } |
| 297 | |
| 298 | // If set to true, the first iteration of the loop will be peeled. Otherwise, |
| 299 | // the unevenly divisible loop will be peeled at the end. |
| 300 | bool peelFront; |
| 301 | |
| 302 | /// If set to true, loops inside partial iterations of another peeled loop |
| 303 | /// are not peeled. This reduces the size of the generated code. Partial |
| 304 | /// iterations are not usually performance critical. |
| 305 | /// Note: Takes into account the entire chain of parent operations, not just |
| 306 | /// the direct parent. |
| 307 | bool skipPartial; |
| 308 | }; |
| 309 | } // namespace |
| 310 | |
| 311 | namespace { |
| 312 | struct ParallelLoopSpecialization |
| 313 | : public impl::SCFParallelLoopSpecializationBase< |
| 314 | ParallelLoopSpecialization> { |
| 315 | void runOnOperation() override { |
| 316 | getOperation()->walk( |
| 317 | [](ParallelOp op) { specializeParallelLoopForUnrolling(op); }); |
| 318 | } |
| 319 | }; |
| 320 | |
| 321 | struct ForLoopSpecialization |
| 322 | : public impl::SCFForLoopSpecializationBase<ForLoopSpecialization> { |
| 323 | void runOnOperation() override { |
| 324 | getOperation()->walk([](ForOp op) { specializeForLoopForUnrolling(op); }); |
| 325 | } |
| 326 | }; |
| 327 | |
| 328 | struct ForLoopPeeling : public impl::SCFForLoopPeelingBase<ForLoopPeeling> { |
| 329 | void runOnOperation() override { |
| 330 | auto *parentOp = getOperation(); |
| 331 | MLIRContext *ctx = parentOp->getContext(); |
| 332 | RewritePatternSet patterns(ctx); |
| 333 | patterns.add<ForLoopPeelingPattern>(ctx, peelFront, skipPartial); |
| 334 | (void)applyPatternsGreedily(parentOp, std::move(patterns)); |
| 335 | |
| 336 | // Drop the markers. |
| 337 | parentOp->walk([](Operation *op) { |
| 338 | op->removeAttr(name: kPeeledLoopLabel); |
| 339 | op->removeAttr(name: kPartialIterationLabel); |
| 340 | }); |
| 341 | } |
| 342 | }; |
| 343 | } // namespace |
| 344 | |
| 345 | std::unique_ptr<Pass> mlir::createParallelLoopSpecializationPass() { |
| 346 | return std::make_unique<ParallelLoopSpecialization>(); |
| 347 | } |
| 348 | |
| 349 | std::unique_ptr<Pass> mlir::createForLoopSpecializationPass() { |
| 350 | return std::make_unique<ForLoopSpecialization>(); |
| 351 | } |
| 352 | |
| 353 | std::unique_ptr<Pass> mlir::createForLoopPeelingPass() { |
| 354 | return std::make_unique<ForLoopPeeling>(); |
| 355 | } |
| 356 | |