| 1 | //===- RewriteAsConstant.cpp - Patterns to rewrite tensor ops as constants ===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 10 | #include "mlir/Dialect/Tensor/Transforms/Transforms.h" |
| 11 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
| 12 | #include "mlir/IR/Matchers.h" |
| 13 | #include "mlir/IR/PatternMatch.h" |
| 14 | |
| 15 | #include "llvm/ADT/TypeSwitch.h" |
| 16 | |
| 17 | using namespace mlir; |
| 18 | using namespace mlir::tensor; |
| 19 | |
| 20 | namespace { |
| 21 | |
| 22 | /// Rewrite tensor.generate with arith.constant if the yielded value is a |
| 23 | /// constant and the tensor type is static. |
| 24 | struct GenerateToConstant : public OpRewritePattern<GenerateOp> { |
| 25 | using OpRewritePattern<GenerateOp>::OpRewritePattern; |
| 26 | |
| 27 | LogicalResult matchAndRewrite(GenerateOp generateOp, |
| 28 | PatternRewriter &rewriter) const override { |
| 29 | auto tensorType = |
| 30 | llvm::cast<RankedTensorType>(generateOp.getResult().getType()); |
| 31 | if (!tensorType.hasStaticShape()) |
| 32 | return failure(); |
| 33 | auto terminatorOp = |
| 34 | cast<tensor::YieldOp>(generateOp.getBody().front().getTerminator()); |
| 35 | Attribute attr; |
| 36 | if (!matchPattern(terminatorOp.getValue(), m_Constant(bind_value: &attr))) |
| 37 | return failure(); |
| 38 | Operation *constantOp = |
| 39 | rewriter.getContext() |
| 40 | ->getLoadedDialect<TensorDialect>() |
| 41 | ->materializeConstant(rewriter, |
| 42 | DenseElementsAttr::get(tensorType, attr), |
| 43 | tensorType, generateOp->getLoc()); |
| 44 | if (!constantOp) |
| 45 | return failure(); |
| 46 | rewriter.replaceOp(generateOp, constantOp->getResults()); |
| 47 | return success(); |
| 48 | } |
| 49 | }; |
| 50 | |
| 51 | /// Transform a linear index from one indexing space to another given: |
| 52 | /// |
| 53 | /// - the shape of the source indexing space, |
| 54 | /// - the strides of the target indexing space, |
| 55 | /// - a linear index into the source indexing space. |
| 56 | /// |
| 57 | /// This function is logically a sequence of linearize/delinearize over |
| 58 | /// different bases but avoids allocating intermediate SmallVectors. |
| 59 | int64_t transformIndexSpace(ArrayRef<int64_t> inputShape, |
| 60 | ArrayRef<int64_t> outputStrides, |
| 61 | int64_t srcLinearIndex) { |
| 62 | assert(inputShape.size() == outputStrides.size()); |
| 63 | |
| 64 | int64_t dstLinearIndex = 0; |
| 65 | |
| 66 | for (int64_t dim = inputShape.size() - 1; dim >= 0; --dim) { |
| 67 | // Compute the index into the current dimension of the source tensor. |
| 68 | // `quotient` is the remaining linear index after accounting for the |
| 69 | // current dimension. |
| 70 | // |
| 71 | // `remainder` is the index into the source tensor for the current |
| 72 | // dimension. |
| 73 | auto [quotient, remainder] = std::div(i: srcLinearIndex, j: inputShape[dim]); |
| 74 | |
| 75 | srcLinearIndex = quotient; |
| 76 | |
| 77 | // Add the contribution of the current dimension to the output using the |
| 78 | // permutation map. |
| 79 | dstLinearIndex += outputStrides[dim] * remainder; |
| 80 | } |
| 81 | |
| 82 | return dstLinearIndex; |
| 83 | } |
| 84 | |
| 85 | template <typename ElemType, typename AttrType> |
| 86 | Value constantFoldPadOp(PatternRewriter &rewriter, Location loc, |
| 87 | DenseElementsAttr input, AttrType padValue, |
| 88 | ArrayRef<int64_t> padLow, ArrayRef<int64_t> padHigh) { |
| 89 | auto inputValues = input.tryGetValues<ElemType>(); |
| 90 | if (failed(inputValues)) |
| 91 | return nullptr; |
| 92 | |
| 93 | auto oldShape = input.getType().getShape(); |
| 94 | |
| 95 | // Compute the output shape of the new value. |
| 96 | auto newShape = |
| 97 | llvm::map_to_vector(llvm::zip(oldShape, padLow, padHigh), |
| 98 | [](std::tuple<int64_t, int64_t, int64_t> pack) { |
| 99 | auto [old, low, high] = pack; |
| 100 | return old + low + high; |
| 101 | }); |
| 102 | |
| 103 | int64_t outputSize = computeProduct(newShape); |
| 104 | |
| 105 | // Fully initialize the vector with the padding value. |
| 106 | // The non-padded area will then be copied. |
| 107 | SmallVector<ElemType> values(outputSize, padValue.getValue()); |
| 108 | |
| 109 | // Strides for input and output are used to transform between the indexing |
| 110 | // space of the input and output tensors. |
| 111 | SmallVector<int64_t> outputStrides = computeStrides(newShape); |
| 112 | |
| 113 | // The contribution of the low padding to the offset in the output tensor. |
| 114 | // This is the starting position of the source tensor within the padding |
| 115 | // tensor. |
| 116 | int64_t startingOffset = linearize(offsets: padLow, basis: outputStrides); |
| 117 | |
| 118 | // Copy values from the input tensor to the corresponding sub-region |
| 119 | // of the output tensor. |
| 120 | for (auto [inputIndex, inputValue] : llvm::enumerate(*inputValues)) { |
| 121 | auto outputIndex = transformIndexSpace(oldShape, outputStrides, inputIndex); |
| 122 | values[outputIndex + startingOffset] = inputValue; |
| 123 | } |
| 124 | |
| 125 | // Create an attribute for the folded value. |
| 126 | auto newType = input.getType().clone(newShape); |
| 127 | auto newAttr = DenseElementsAttr::get(newType, values); |
| 128 | |
| 129 | Operation *constantOp = |
| 130 | rewriter.getContext() |
| 131 | ->getLoadedDialect<TensorDialect>() |
| 132 | ->materializeConstant(rewriter, newAttr, newType, loc); |
| 133 | |
| 134 | return constantOp ? constantOp->getResult(idx: 0) : nullptr; |
| 135 | } |
| 136 | |
| 137 | struct PadOpToConstant final : public OpRewritePattern<PadOp> { |
| 138 | |
| 139 | PadOpToConstant(MLIRContext *context, const ControlFoldFn &controlFn, |
| 140 | PatternBenefit benefit = 1) |
| 141 | : OpRewritePattern<PadOp>(context, benefit), controlFn{controlFn} {} |
| 142 | |
| 143 | LogicalResult matchAndRewrite(PadOp padTensorOp, |
| 144 | PatternRewriter &rewriter) const override { |
| 145 | if (padTensorOp.getNofold()) |
| 146 | return rewriter.notifyMatchFailure( |
| 147 | padTensorOp, "refusing to fold nofold pad operation" ); |
| 148 | |
| 149 | TypedValue<RankedTensorType> input = padTensorOp.getSource(); |
| 150 | RankedTensorType resultType = padTensorOp.getResult().getType(); |
| 151 | |
| 152 | DenseElementsAttr inputAttr = nullptr; |
| 153 | if (!matchPattern(value: input, pattern: m_Constant(bind_value: &inputAttr))) |
| 154 | return failure(); |
| 155 | |
| 156 | Value paddingValue = padTensorOp.getConstantPaddingValue(); |
| 157 | |
| 158 | // Extract the constant value used for padding or bail out. |
| 159 | Attribute paddingAttr = nullptr; |
| 160 | if (!paddingValue || !matchPattern(value: paddingValue, pattern: m_Constant(bind_value: &paddingAttr))) |
| 161 | return rewriter.notifyMatchFailure(padTensorOp, |
| 162 | "unable to get constant value" ); |
| 163 | |
| 164 | // Try to extract the constant values of the low and high padding. |
| 165 | auto lowPad = getConstantIntValues(padTensorOp.getMixedLowPad()); |
| 166 | auto highPad = getConstantIntValues(padTensorOp.getMixedHighPad()); |
| 167 | |
| 168 | // If the padding cannot be extracted, bail out. |
| 169 | if (!lowPad || !highPad) |
| 170 | return rewriter.notifyMatchFailure(padTensorOp, |
| 171 | "unable to extract constant padding" ); |
| 172 | |
| 173 | // We have a potential candidate, consult the control function to |
| 174 | // determine if the op should fold. |
| 175 | if (!controlFn(&padTensorOp.getSourceMutable())) |
| 176 | return rewriter.notifyMatchFailure(padTensorOp, |
| 177 | "not folding due to cost function" ); |
| 178 | |
| 179 | Location loc = padTensorOp.getLoc(); |
| 180 | |
| 181 | // Try constant folding the supported cases of integer and float values. |
| 182 | Value newOp = |
| 183 | llvm::TypeSwitch<Attribute, Value>(paddingAttr) |
| 184 | .Case(caseFn: [&](FloatAttr floatAttr) { |
| 185 | return constantFoldPadOp<llvm::APFloat>( |
| 186 | rewriter, loc, inputAttr, floatAttr, *lowPad, *highPad); |
| 187 | }) |
| 188 | .Case(caseFn: [&](IntegerAttr integerAttr) { |
| 189 | return constantFoldPadOp<llvm::APInt>( |
| 190 | rewriter, loc, inputAttr, integerAttr, *lowPad, *highPad); |
| 191 | }) |
| 192 | .Default(defaultResult: Value()); |
| 193 | |
| 194 | if (!newOp) |
| 195 | return rewriter.notifyMatchFailure(padTensorOp, |
| 196 | "tensor type not supported" ); |
| 197 | |
| 198 | if (newOp.getType() != resultType) |
| 199 | newOp = rewriter.create<tensor::CastOp>(loc, resultType, newOp); |
| 200 | |
| 201 | rewriter.replaceOp(padTensorOp, newOp); |
| 202 | return success(); |
| 203 | } |
| 204 | |
| 205 | private: |
| 206 | ControlFoldFn controlFn; |
| 207 | }; |
| 208 | |
| 209 | } // namespace |
| 210 | |
| 211 | void mlir::tensor::populateRewriteAsConstantPatterns( |
| 212 | RewritePatternSet &patterns, const ControlFoldFn &controlFn) { |
| 213 | patterns.add<GenerateToConstant>(arg: patterns.getContext()); |
| 214 | |
| 215 | patterns.add<PadOpToConstant>(arg: patterns.getContext(), args: controlFn); |
| 216 | } |
| 217 | |