| 1 | //===- TosaMakeBroadcastable.cpp ------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Insert reshape to binary op's input if needed to match rank |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 14 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 15 | #include "mlir/Dialect/Tosa/IR/TosaOps.h" |
| 16 | #include "mlir/Dialect/Tosa/Transforms/Passes.h" |
| 17 | #include "mlir/Dialect/Tosa/Utils/ConversionUtils.h" |
| 18 | #include "mlir/Dialect/Tosa/Utils/QuantUtils.h" |
| 19 | #include "mlir/Pass/Pass.h" |
| 20 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 21 | |
| 22 | namespace mlir { |
| 23 | namespace tosa { |
| 24 | #define GEN_PASS_DEF_TOSAMAKEBROADCASTABLEPASS |
| 25 | #include "mlir/Dialect/Tosa/Transforms/Passes.h.inc" |
| 26 | } // namespace tosa |
| 27 | } // namespace mlir |
| 28 | |
| 29 | using namespace mlir; |
| 30 | using namespace mlir::tosa; |
| 31 | |
| 32 | namespace { |
| 33 | |
| 34 | /// Common code to create the reshape op where necessary to make the rank of the |
| 35 | /// operations equal. input1 and input2 will be updated when the rank has |
| 36 | /// changed. The caller is expected to use these to rewrite the original |
| 37 | /// operator with the RESHAPE now in the graph. |
| 38 | /// return failure when (1) no reshape needed, or (2) output_type is specified |
| 39 | /// and it has different rank |
| 40 | LogicalResult reshapeLowerToHigher(PatternRewriter &rewriter, Location loc, |
| 41 | RankedTensorType outputType, Value &input1, |
| 42 | Value &input2) { |
| 43 | auto input1Ty = dyn_cast<RankedTensorType>(input1.getType()); |
| 44 | auto input2Ty = dyn_cast<RankedTensorType>(input2.getType()); |
| 45 | |
| 46 | if (!input1Ty || !input2Ty) { |
| 47 | return rewriter.notifyMatchFailure(loc, "input not a ranked tensor" ); |
| 48 | } |
| 49 | |
| 50 | int64_t input1Rank = input1Ty.getRank(); |
| 51 | int64_t input2Rank = input2Ty.getRank(); |
| 52 | |
| 53 | if (input1Rank == input2Rank) |
| 54 | return rewriter.notifyMatchFailure(loc, |
| 55 | "cannot rewrite as its already correct" ); |
| 56 | |
| 57 | Value input1Copy = input1; |
| 58 | Value input2Copy = input2; |
| 59 | if (EqualizeRanks(rewriter, loc, input1&: input1Copy, input2&: input2Copy).failed()) { |
| 60 | return rewriter.notifyMatchFailure(loc, "failed to reshape inputs" ); |
| 61 | } |
| 62 | |
| 63 | // Verify the rank agrees with the output type if the output type is ranked. |
| 64 | if (outputType) { |
| 65 | if (outputType.getRank() != |
| 66 | llvm::cast<RankedTensorType>(input1Copy.getType()).getRank() || |
| 67 | outputType.getRank() != |
| 68 | llvm::cast<RankedTensorType>(input2Copy.getType()).getRank()) |
| 69 | return rewriter.notifyMatchFailure( |
| 70 | loc, "the reshaped type doesn't agrees with the ranked output type" ); |
| 71 | } |
| 72 | |
| 73 | input1 = input1Copy; |
| 74 | input2 = input2Copy; |
| 75 | |
| 76 | return success(); |
| 77 | } |
| 78 | |
| 79 | template <typename OpTy> |
| 80 | struct ConvertTosaOp : public OpRewritePattern<OpTy> { |
| 81 | using OpRewritePattern<OpTy>::OpRewritePattern; |
| 82 | |
| 83 | LogicalResult matchAndRewrite(OpTy tosaBinaryOp, |
| 84 | PatternRewriter &rewriter) const override { |
| 85 | |
| 86 | Value input1 = tosaBinaryOp.getInput1(); |
| 87 | Value input2 = tosaBinaryOp.getInput2(); |
| 88 | Value output = tosaBinaryOp.getResult(); |
| 89 | |
| 90 | auto outputType = dyn_cast<RankedTensorType>(output.getType()); |
| 91 | if (!outputType) |
| 92 | return failure(); |
| 93 | |
| 94 | if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType, |
| 95 | input1, input2) |
| 96 | .failed()) |
| 97 | return failure(); |
| 98 | |
| 99 | rewriter.replaceOpWithNewOp<OpTy>(tosaBinaryOp, outputType, input1, input2); |
| 100 | |
| 101 | return success(); |
| 102 | } |
| 103 | }; |
| 104 | |
| 105 | // The MulOp has an extra parameter 'shift' not present in other elementwise |
| 106 | // binary ops, that necessitates special handling of its builder. |
| 107 | template <> |
| 108 | struct ConvertTosaOp<tosa::MulOp> : public OpRewritePattern<tosa::MulOp> { |
| 109 | using OpRewritePattern<tosa::MulOp>::OpRewritePattern; |
| 110 | |
| 111 | LogicalResult matchAndRewrite(tosa::MulOp tosaBinaryOp, |
| 112 | PatternRewriter &rewriter) const override { |
| 113 | |
| 114 | Value input1 = tosaBinaryOp.getInput1(); |
| 115 | Value input2 = tosaBinaryOp.getInput2(); |
| 116 | Value shift = tosaBinaryOp.getShift(); |
| 117 | Value output = tosaBinaryOp.getResult(); |
| 118 | auto outputType = dyn_cast<RankedTensorType>(output.getType()); |
| 119 | if (!outputType) |
| 120 | return failure(); |
| 121 | |
| 122 | if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType, |
| 123 | input1, input2) |
| 124 | .failed()) |
| 125 | return failure(); |
| 126 | |
| 127 | rewriter.replaceOpWithNewOp<tosa::MulOp>(tosaBinaryOp, outputType, input1, |
| 128 | input2, shift); |
| 129 | |
| 130 | return success(); |
| 131 | } |
| 132 | }; |
| 133 | |
| 134 | // The ArithmeticRightShiftOp has an extra parameter 'round' not present in |
| 135 | // other elementwise binary ops, that necessitates special handling of its |
| 136 | // builder. |
| 137 | template <> |
| 138 | struct ConvertTosaOp<tosa::ArithmeticRightShiftOp> |
| 139 | : public OpRewritePattern<tosa::ArithmeticRightShiftOp> { |
| 140 | using OpRewritePattern<tosa::ArithmeticRightShiftOp>::OpRewritePattern; |
| 141 | |
| 142 | LogicalResult matchAndRewrite(tosa::ArithmeticRightShiftOp tosaBinaryOp, |
| 143 | PatternRewriter &rewriter) const override { |
| 144 | |
| 145 | Value input1 = tosaBinaryOp.getInput1(); |
| 146 | Value input2 = tosaBinaryOp.getInput2(); |
| 147 | int32_t round = tosaBinaryOp.getRound(); |
| 148 | Value output = tosaBinaryOp.getResult(); |
| 149 | auto outputType = dyn_cast<RankedTensorType>(output.getType()); |
| 150 | if (!outputType) |
| 151 | return failure(); |
| 152 | |
| 153 | if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType, |
| 154 | input1, input2) |
| 155 | .failed()) |
| 156 | return failure(); |
| 157 | |
| 158 | rewriter.replaceOpWithNewOp<tosa::ArithmeticRightShiftOp>( |
| 159 | tosaBinaryOp, outputType, input1, input2, round); |
| 160 | |
| 161 | return success(); |
| 162 | } |
| 163 | }; |
| 164 | |
| 165 | template <> |
| 166 | struct ConvertTosaOp<tosa::SelectOp> : public OpRewritePattern<tosa::SelectOp> { |
| 167 | using OpRewritePattern<tosa::SelectOp>::OpRewritePattern; |
| 168 | |
| 169 | LogicalResult matchAndRewrite(tosa::SelectOp tosaOp, |
| 170 | PatternRewriter &rewriter) const override { |
| 171 | |
| 172 | Value input1 = tosaOp.getInput1(); |
| 173 | Value input2 = tosaOp.getInput2(); |
| 174 | Value input3 = tosaOp.getInput3(); |
| 175 | Value output = tosaOp.getResult(); |
| 176 | |
| 177 | auto outputType = dyn_cast<RankedTensorType>(output.getType()); |
| 178 | if (!outputType) |
| 179 | return rewriter.notifyMatchFailure(tosaOp, "output not a ranked tensor" ); |
| 180 | |
| 181 | // Apply broadcasting to each pair of inputs separately, and chain them as |
| 182 | // compound as below so that the broadcasting happens all at once. |
| 183 | bool reshaped1 = reshapeLowerToHigher(rewriter, tosaOp.getLoc(), outputType, |
| 184 | input1, input2) |
| 185 | .succeeded(); |
| 186 | |
| 187 | bool reshaped2 = reshapeLowerToHigher(rewriter, tosaOp.getLoc(), outputType, |
| 188 | input1, input3) |
| 189 | .succeeded(); |
| 190 | |
| 191 | bool reshaped3 = reshapeLowerToHigher(rewriter, tosaOp.getLoc(), outputType, |
| 192 | input2, input3) |
| 193 | .succeeded(); |
| 194 | |
| 195 | if (!reshaped1 && !reshaped2 && !reshaped3) |
| 196 | return rewriter.notifyMatchFailure( |
| 197 | tosaOp, |
| 198 | "cannot rewrite as the rank of all operands is already aligned" ); |
| 199 | |
| 200 | int32_t result1Rank = cast<RankedTensorType>(input1.getType()).getRank(); |
| 201 | int32_t result2Rank = cast<RankedTensorType>(input2.getType()).getRank(); |
| 202 | int32_t result3Rank = cast<RankedTensorType>(input3.getType()).getRank(); |
| 203 | int32_t outputRank = outputType.getRank(); |
| 204 | |
| 205 | if ((result1Rank != result2Rank) || (result2Rank != result3Rank) || |
| 206 | (result1Rank != outputRank)) |
| 207 | return rewriter.notifyMatchFailure( |
| 208 | tosaOp, "not all ranks are aligned with each other" ); |
| 209 | |
| 210 | rewriter.replaceOpWithNewOp<tosa::SelectOp>(tosaOp, outputType, input1, |
| 211 | input2, input3); |
| 212 | |
| 213 | return success(); |
| 214 | } |
| 215 | }; |
| 216 | } // namespace |
| 217 | |
| 218 | namespace { |
| 219 | /// Pass that enables broadcast by making all input arrays have the same |
| 220 | /// number of dimensions. Insert RESHAPE operations to lower rank operand |
| 221 | struct TosaMakeBroadcastable |
| 222 | : public tosa::impl::TosaMakeBroadcastablePassBase<TosaMakeBroadcastable> { |
| 223 | public: |
| 224 | void runOnOperation() override { |
| 225 | auto func = getOperation(); |
| 226 | RewritePatternSet patterns(func.getContext()); |
| 227 | MLIRContext *ctx = func.getContext(); |
| 228 | // Add the generated patterns to the list. |
| 229 | patterns.add<ConvertTosaOp<tosa::BitwiseAndOp>>(ctx); |
| 230 | patterns.add<ConvertTosaOp<tosa::BitwiseOrOp>>(ctx); |
| 231 | patterns.add<ConvertTosaOp<tosa::BitwiseXorOp>>(ctx); |
| 232 | patterns.add<ConvertTosaOp<tosa::AddOp>>(ctx); |
| 233 | patterns.add<ConvertTosaOp<tosa::SubOp>>(ctx); |
| 234 | patterns.add<ConvertTosaOp<tosa::MulOp>>(ctx); |
| 235 | patterns.add<ConvertTosaOp<tosa::IntDivOp>>(ctx); |
| 236 | patterns.add<ConvertTosaOp<tosa::MaximumOp>>(ctx); |
| 237 | patterns.add<ConvertTosaOp<tosa::MinimumOp>>(ctx); |
| 238 | patterns.add<ConvertTosaOp<tosa::EqualOp>>(ctx); |
| 239 | patterns.add<ConvertTosaOp<tosa::GreaterOp>>(ctx); |
| 240 | patterns.add<ConvertTosaOp<tosa::GreaterEqualOp>>(ctx); |
| 241 | patterns.add<ConvertTosaOp<tosa::LogicalLeftShiftOp>>(ctx); |
| 242 | patterns.add<ConvertTosaOp<tosa::ArithmeticRightShiftOp>>(ctx); |
| 243 | patterns.add<ConvertTosaOp<tosa::LogicalRightShiftOp>>(ctx); |
| 244 | patterns.add<ConvertTosaOp<tosa::LogicalAndOp>>(ctx); |
| 245 | patterns.add<ConvertTosaOp<tosa::LogicalOrOp>>(ctx); |
| 246 | patterns.add<ConvertTosaOp<tosa::LogicalXorOp>>(ctx); |
| 247 | patterns.add<ConvertTosaOp<tosa::SelectOp>>(ctx); |
| 248 | patterns.add<ConvertTosaOp<tosa::PowOp>>(ctx); |
| 249 | (void)applyPatternsGreedily(func, std::move(patterns)); |
| 250 | } |
| 251 | }; |
| 252 | } // namespace |
| 253 | |