| 1 | //===- LowerVectorInterleave.cpp - Lower 'vector.interleave' operation ----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements target-independent rewrites and utilities to lower the |
| 10 | // 'vector.interleave' operation. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 15 | #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" |
| 16 | #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
| 17 | #include "mlir/IR/BuiltinTypes.h" |
| 18 | #include "mlir/IR/PatternMatch.h" |
| 19 | |
| 20 | #define DEBUG_TYPE "vector-interleave-lowering" |
| 21 | |
| 22 | using namespace mlir; |
| 23 | using namespace mlir::vector; |
| 24 | |
| 25 | namespace { |
| 26 | |
| 27 | /// A one-shot unrolling of vector.interleave to the `targetRank`. |
| 28 | /// |
| 29 | /// Example: |
| 30 | /// |
| 31 | /// ```mlir |
| 32 | /// vector.interleave %a, %b : vector<1x2x3x4xi64> -> vector<1x2x3x8xi64> |
| 33 | /// ``` |
| 34 | /// Would be unrolled to: |
| 35 | /// ```mlir |
| 36 | /// %result = arith.constant dense<0> : vector<1x2x3x8xi64> |
| 37 | /// %0 = vector.extract %a[0, 0, 0] ─┐ |
| 38 | /// : vector<4xi64> from vector<1x2x3x4xi64> | |
| 39 | /// %1 = vector.extract %b[0, 0, 0] | |
| 40 | /// : vector<4xi64> from vector<1x2x3x4xi64> | - Repeated 6x for |
| 41 | /// %2 = vector.interleave %0, %1 : | all leading positions |
| 42 | /// : vector<4xi64> -> vector<8xi64> | |
| 43 | /// %3 = vector.insert %2, %result [0, 0, 0] | |
| 44 | /// : vector<8xi64> into vector<1x2x3x8xi64> ┘ |
| 45 | /// ``` |
| 46 | /// |
| 47 | /// Note: If any leading dimension before the `targetRank` is scalable the |
| 48 | /// unrolling will stop before the scalable dimension. |
| 49 | class UnrollInterleaveOp final : public OpRewritePattern<vector::InterleaveOp> { |
| 50 | public: |
| 51 | UnrollInterleaveOp(int64_t targetRank, MLIRContext *context, |
| 52 | PatternBenefit benefit = 1) |
| 53 | : OpRewritePattern(context, benefit), targetRank(targetRank){}; |
| 54 | |
| 55 | LogicalResult matchAndRewrite(vector::InterleaveOp op, |
| 56 | PatternRewriter &rewriter) const override { |
| 57 | VectorType resultType = op.getResultVectorType(); |
| 58 | auto unrollIterator = vector::createUnrollIterator(vType: resultType, targetRank); |
| 59 | if (!unrollIterator) |
| 60 | return failure(); |
| 61 | |
| 62 | auto loc = op.getLoc(); |
| 63 | Value result = rewriter.create<arith::ConstantOp>( |
| 64 | loc, resultType, rewriter.getZeroAttr(resultType)); |
| 65 | for (auto position : *unrollIterator) { |
| 66 | Value extractLhs = rewriter.create<ExtractOp>(loc, op.getLhs(), position); |
| 67 | Value extractRhs = rewriter.create<ExtractOp>(loc, op.getRhs(), position); |
| 68 | Value interleave = |
| 69 | rewriter.create<InterleaveOp>(loc, extractLhs, extractRhs); |
| 70 | result = rewriter.create<InsertOp>(loc, interleave, result, position); |
| 71 | } |
| 72 | |
| 73 | rewriter.replaceOp(op, result); |
| 74 | return success(); |
| 75 | } |
| 76 | |
| 77 | private: |
| 78 | int64_t targetRank = 1; |
| 79 | }; |
| 80 | |
| 81 | /// A one-shot unrolling of vector.deinterleave to the `targetRank`. |
| 82 | /// |
| 83 | /// Example: |
| 84 | /// |
| 85 | /// ```mlir |
| 86 | /// %0, %1 = vector.deinterleave %a : vector<1x2x3x8xi64> -> vector<1x2x3x4xi64> |
| 87 | /// ``` |
| 88 | /// Would be unrolled to: |
| 89 | /// ```mlir |
| 90 | /// %result = arith.constant dense<0> : vector<1x2x3x4xi64> |
| 91 | /// %0 = vector.extract %a[0, 0, 0] ─┐ |
| 92 | /// : vector<8xi64> from vector<1x2x3x8xi64> | |
| 93 | /// %1, %2 = vector.deinterleave %0 | |
| 94 | /// : vector<8xi64> -> vector<4xi64> | -- Initial deinterleave |
| 95 | /// %3 = vector.insert %1, %result [0, 0, 0] | operation unrolled. |
| 96 | /// : vector<4xi64> into vector<1x2x3x4xi64> | |
| 97 | /// %4 = vector.insert %2, %result [0, 0, 0] | |
| 98 | /// : vector<4xi64> into vector<1x2x3x4xi64> ┘ |
| 99 | /// %5 = vector.extract %a[0, 0, 1] ─┐ |
| 100 | /// : vector<8xi64> from vector<1x2x3x8xi64> | |
| 101 | /// %6, %7 = vector.deinterleave %5 | |
| 102 | /// : vector<8xi64> -> vector<4xi64> | -- Recursive pattern for |
| 103 | /// %8 = vector.insert %6, %3 [0, 0, 1] | subsequent unrolled |
| 104 | /// : vector<4xi64> into vector<1x2x3x4xi64> | deinterleave |
| 105 | /// %9 = vector.insert %7, %4 [0, 0, 1] | operations. Repeated |
| 106 | /// : vector<4xi64> into vector<1x2x3x4xi64> ┘ 5x in this case. |
| 107 | /// ``` |
| 108 | /// |
| 109 | /// Note: If any leading dimension before the `targetRank` is scalable the |
| 110 | /// unrolling will stop before the scalable dimension. |
| 111 | class UnrollDeinterleaveOp final |
| 112 | : public OpRewritePattern<vector::DeinterleaveOp> { |
| 113 | public: |
| 114 | UnrollDeinterleaveOp(int64_t targetRank, MLIRContext *context, |
| 115 | PatternBenefit benefit = 1) |
| 116 | : OpRewritePattern(context, benefit), targetRank(targetRank) {}; |
| 117 | |
| 118 | LogicalResult matchAndRewrite(vector::DeinterleaveOp op, |
| 119 | PatternRewriter &rewriter) const override { |
| 120 | VectorType resultType = op.getResultVectorType(); |
| 121 | auto unrollIterator = vector::createUnrollIterator(vType: resultType, targetRank); |
| 122 | if (!unrollIterator) |
| 123 | return failure(); |
| 124 | |
| 125 | auto loc = op.getLoc(); |
| 126 | Value emptyResult = rewriter.create<arith::ConstantOp>( |
| 127 | loc, resultType, rewriter.getZeroAttr(resultType)); |
| 128 | Value evenResult = emptyResult; |
| 129 | Value oddResult = emptyResult; |
| 130 | |
| 131 | for (auto position : *unrollIterator) { |
| 132 | auto extractSrc = |
| 133 | rewriter.create<vector::ExtractOp>(loc, op.getSource(), position); |
| 134 | auto deinterleave = |
| 135 | rewriter.create<vector::DeinterleaveOp>(loc, extractSrc); |
| 136 | evenResult = rewriter.create<vector::InsertOp>( |
| 137 | loc, deinterleave.getRes1(), evenResult, position); |
| 138 | oddResult = rewriter.create<vector::InsertOp>(loc, deinterleave.getRes2(), |
| 139 | oddResult, position); |
| 140 | } |
| 141 | rewriter.replaceOp(op, ValueRange{evenResult, oddResult}); |
| 142 | return success(); |
| 143 | } |
| 144 | |
| 145 | private: |
| 146 | int64_t targetRank = 1; |
| 147 | }; |
| 148 | /// Rewrite vector.interleave op into an equivalent vector.shuffle op, when |
| 149 | /// applicable: `sourceType` must be 1D and non-scalable. |
| 150 | /// |
| 151 | /// Example: |
| 152 | /// |
| 153 | /// ```mlir |
| 154 | /// vector.interleave %a, %b : vector<7xi16> -> vector<14xi16> |
| 155 | /// ``` |
| 156 | /// |
| 157 | /// Is rewritten into: |
| 158 | /// |
| 159 | /// ```mlir |
| 160 | /// vector.shuffle %arg0, %arg1 [0, 7, 1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13] |
| 161 | /// : vector<7xi16>, vector<7xi16> |
| 162 | /// ``` |
| 163 | struct InterleaveToShuffle final : OpRewritePattern<vector::InterleaveOp> { |
| 164 | using OpRewritePattern::OpRewritePattern; |
| 165 | |
| 166 | LogicalResult matchAndRewrite(vector::InterleaveOp op, |
| 167 | PatternRewriter &rewriter) const override { |
| 168 | VectorType sourceType = op.getSourceVectorType(); |
| 169 | if (sourceType.getRank() != 1 || sourceType.isScalable()) { |
| 170 | return failure(); |
| 171 | } |
| 172 | int64_t n = sourceType.getNumElements(); |
| 173 | auto seq = llvm::seq<int64_t>(Size: 2 * n); |
| 174 | auto zip = llvm::to_vector(llvm::map_range( |
| 175 | seq, [n](int64_t i) { return (i % 2 ? n : 0) + i / 2; })); |
| 176 | rewriter.replaceOpWithNewOp<ShuffleOp>(op, op.getLhs(), op.getRhs(), zip); |
| 177 | return success(); |
| 178 | } |
| 179 | }; |
| 180 | |
| 181 | } // namespace |
| 182 | |
| 183 | void mlir::vector::populateVectorInterleaveLoweringPatterns( |
| 184 | RewritePatternSet &patterns, int64_t targetRank, PatternBenefit benefit) { |
| 185 | patterns.add<UnrollInterleaveOp, UnrollDeinterleaveOp>( |
| 186 | arg&: targetRank, args: patterns.getContext(), args&: benefit); |
| 187 | } |
| 188 | |
| 189 | void mlir::vector::populateVectorInterleaveToShufflePatterns( |
| 190 | RewritePatternSet &patterns, PatternBenefit benefit) { |
| 191 | patterns.add<InterleaveToShuffle>(arg: patterns.getContext(), args&: benefit); |
| 192 | } |
| 193 | |