1//===- LowerVectorInterleave.cpp - Lower 'vector.interleave' operation ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements target-independent rewrites and utilities to lower the
10// 'vector.interleave' operation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "mlir/Dialect/Vector/IR/VectorOps.h"
15#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
16#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
17#include "mlir/IR/BuiltinTypes.h"
18#include "mlir/IR/PatternMatch.h"
19
20#define DEBUG_TYPE "vector-interleave-lowering"
21
22using namespace mlir;
23using namespace mlir::vector;
24
25namespace {
26
27/// A one-shot unrolling of vector.interleave to the `targetRank`.
28///
29/// Example:
30///
31/// ```mlir
32/// vector.interleave %a, %b : vector<1x2x3x4xi64> -> vector<1x2x3x8xi64>
33/// ```
34/// Would be unrolled to:
35/// ```mlir
36/// %result = arith.constant dense<0> : vector<1x2x3x8xi64>
37/// %0 = vector.extract %a[0, 0, 0] ─┐
38/// : vector<4xi64> from vector<1x2x3x4xi64> |
39/// %1 = vector.extract %b[0, 0, 0] |
40/// : vector<4xi64> from vector<1x2x3x4xi64> | - Repeated 6x for
41/// %2 = vector.interleave %0, %1 : | all leading positions
42/// : vector<4xi64> -> vector<8xi64> |
43/// %3 = vector.insert %2, %result [0, 0, 0] |
44/// : vector<8xi64> into vector<1x2x3x8xi64> ┘
45/// ```
46///
47/// Note: If any leading dimension before the `targetRank` is scalable the
48/// unrolling will stop before the scalable dimension.
49class UnrollInterleaveOp final : public OpRewritePattern<vector::InterleaveOp> {
50public:
51 UnrollInterleaveOp(int64_t targetRank, MLIRContext *context,
52 PatternBenefit benefit = 1)
53 : OpRewritePattern(context, benefit), targetRank(targetRank){};
54
55 LogicalResult matchAndRewrite(vector::InterleaveOp op,
56 PatternRewriter &rewriter) const override {
57 VectorType resultType = op.getResultVectorType();
58 auto unrollIterator = vector::createUnrollIterator(vType: resultType, targetRank);
59 if (!unrollIterator)
60 return failure();
61
62 auto loc = op.getLoc();
63 Value result = rewriter.create<arith::ConstantOp>(
64 loc, resultType, rewriter.getZeroAttr(resultType));
65 for (auto position : *unrollIterator) {
66 Value extractLhs = rewriter.create<ExtractOp>(loc, op.getLhs(), position);
67 Value extractRhs = rewriter.create<ExtractOp>(loc, op.getRhs(), position);
68 Value interleave =
69 rewriter.create<InterleaveOp>(loc, extractLhs, extractRhs);
70 result = rewriter.create<InsertOp>(loc, interleave, result, position);
71 }
72
73 rewriter.replaceOp(op, result);
74 return success();
75 }
76
77private:
78 int64_t targetRank = 1;
79};
80
81/// A one-shot unrolling of vector.deinterleave to the `targetRank`.
82///
83/// Example:
84///
85/// ```mlir
86/// %0, %1 = vector.deinterleave %a : vector<1x2x3x8xi64> -> vector<1x2x3x4xi64>
87/// ```
88/// Would be unrolled to:
89/// ```mlir
90/// %result = arith.constant dense<0> : vector<1x2x3x4xi64>
91/// %0 = vector.extract %a[0, 0, 0] ─┐
92/// : vector<8xi64> from vector<1x2x3x8xi64> |
93/// %1, %2 = vector.deinterleave %0 |
94/// : vector<8xi64> -> vector<4xi64> | -- Initial deinterleave
95/// %3 = vector.insert %1, %result [0, 0, 0] | operation unrolled.
96/// : vector<4xi64> into vector<1x2x3x4xi64> |
97/// %4 = vector.insert %2, %result [0, 0, 0] |
98/// : vector<4xi64> into vector<1x2x3x4xi64> ┘
99/// %5 = vector.extract %a[0, 0, 1] ─┐
100/// : vector<8xi64> from vector<1x2x3x8xi64> |
101/// %6, %7 = vector.deinterleave %5 |
102/// : vector<8xi64> -> vector<4xi64> | -- Recursive pattern for
103/// %8 = vector.insert %6, %3 [0, 0, 1] | subsequent unrolled
104/// : vector<4xi64> into vector<1x2x3x4xi64> | deinterleave
105/// %9 = vector.insert %7, %4 [0, 0, 1] | operations. Repeated
106/// : vector<4xi64> into vector<1x2x3x4xi64> ┘ 5x in this case.
107/// ```
108///
109/// Note: If any leading dimension before the `targetRank` is scalable the
110/// unrolling will stop before the scalable dimension.
111class UnrollDeinterleaveOp final
112 : public OpRewritePattern<vector::DeinterleaveOp> {
113public:
114 UnrollDeinterleaveOp(int64_t targetRank, MLIRContext *context,
115 PatternBenefit benefit = 1)
116 : OpRewritePattern(context, benefit), targetRank(targetRank) {};
117
118 LogicalResult matchAndRewrite(vector::DeinterleaveOp op,
119 PatternRewriter &rewriter) const override {
120 VectorType resultType = op.getResultVectorType();
121 auto unrollIterator = vector::createUnrollIterator(vType: resultType, targetRank);
122 if (!unrollIterator)
123 return failure();
124
125 auto loc = op.getLoc();
126 Value emptyResult = rewriter.create<arith::ConstantOp>(
127 loc, resultType, rewriter.getZeroAttr(resultType));
128 Value evenResult = emptyResult;
129 Value oddResult = emptyResult;
130
131 for (auto position : *unrollIterator) {
132 auto extractSrc =
133 rewriter.create<vector::ExtractOp>(loc, op.getSource(), position);
134 auto deinterleave =
135 rewriter.create<vector::DeinterleaveOp>(loc, extractSrc);
136 evenResult = rewriter.create<vector::InsertOp>(
137 loc, deinterleave.getRes1(), evenResult, position);
138 oddResult = rewriter.create<vector::InsertOp>(loc, deinterleave.getRes2(),
139 oddResult, position);
140 }
141 rewriter.replaceOp(op, ValueRange{evenResult, oddResult});
142 return success();
143 }
144
145private:
146 int64_t targetRank = 1;
147};
148/// Rewrite vector.interleave op into an equivalent vector.shuffle op, when
149/// applicable: `sourceType` must be 1D and non-scalable.
150///
151/// Example:
152///
153/// ```mlir
154/// vector.interleave %a, %b : vector<7xi16> -> vector<14xi16>
155/// ```
156///
157/// Is rewritten into:
158///
159/// ```mlir
160/// vector.shuffle %arg0, %arg1 [0, 7, 1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13]
161/// : vector<7xi16>, vector<7xi16>
162/// ```
163struct InterleaveToShuffle final : OpRewritePattern<vector::InterleaveOp> {
164 using OpRewritePattern::OpRewritePattern;
165
166 LogicalResult matchAndRewrite(vector::InterleaveOp op,
167 PatternRewriter &rewriter) const override {
168 VectorType sourceType = op.getSourceVectorType();
169 if (sourceType.getRank() != 1 || sourceType.isScalable()) {
170 return failure();
171 }
172 int64_t n = sourceType.getNumElements();
173 auto seq = llvm::seq<int64_t>(Size: 2 * n);
174 auto zip = llvm::to_vector(llvm::map_range(
175 seq, [n](int64_t i) { return (i % 2 ? n : 0) + i / 2; }));
176 rewriter.replaceOpWithNewOp<ShuffleOp>(op, op.getLhs(), op.getRhs(), zip);
177 return success();
178 }
179};
180
181} // namespace
182
183void mlir::vector::populateVectorInterleaveLoweringPatterns(
184 RewritePatternSet &patterns, int64_t targetRank, PatternBenefit benefit) {
185 patterns.add<UnrollInterleaveOp, UnrollDeinterleaveOp>(
186 arg&: targetRank, args: patterns.getContext(), args&: benefit);
187}
188
189void mlir::vector::populateVectorInterleaveToShufflePatterns(
190 RewritePatternSet &patterns, PatternBenefit benefit) {
191 patterns.add<InterleaveToShuffle>(arg: patterns.getContext(), args&: benefit);
192}
193

Provided by KDAB

Privacy Policy
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more

source code of mlir/lib/Dialect/Vector/Transforms/LowerVectorInterleave.cpp