| 1 | //===- XeGPUDialect.cpp - MLIR XeGPU dialect implementation -----*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
| 10 | #include "mlir/Dialect/XeGPU/IR/XeGPU.h" |
| 11 | #include "mlir/IR/Builders.h" |
| 12 | #include "mlir/IR/DialectImplementation.h" |
| 13 | #include "llvm/ADT/TypeSwitch.h" |
| 14 | #include <numeric> |
| 15 | |
| 16 | using std::optional; |
| 17 | |
| 18 | namespace mlir { |
| 19 | namespace xegpu { |
| 20 | |
| 21 | void XeGPUDialect::initialize() { |
| 22 | addTypes< |
| 23 | #define GET_TYPEDEF_LIST |
| 24 | #include <mlir/Dialect/XeGPU/IR/XeGPUTypes.cpp.inc> |
| 25 | >(); |
| 26 | addOperations< |
| 27 | #define GET_OP_LIST |
| 28 | #include <mlir/Dialect/XeGPU/IR/XeGPU.cpp.inc> |
| 29 | >(); |
| 30 | addAttributes< |
| 31 | #define GET_ATTRDEF_LIST |
| 32 | #include <mlir/Dialect/XeGPU/IR/XeGPUAttrs.cpp.inc> |
| 33 | >(); |
| 34 | } |
| 35 | |
| 36 | // Checks if the given shape can be evenly distributed based on the layout |
| 37 | // and data factors provided by the LayoutAttr. |
| 38 | bool XeGPUDialect::isEvenlyDistributable(llvm::ArrayRef<int64_t> shape, |
| 39 | xegpu::LayoutAttr attr) { |
| 40 | assert(attr && "Layout attribute is missing." ); |
| 41 | |
| 42 | // Checks whether the given shape can be evenly distributed using the |
| 43 | // specified layout and data attributes. If successful, it returns the work |
| 44 | // size for each compute unit; otherwise, it returns `std::nullopt`. The work |
| 45 | // size per compute unit is calculated as follows: |
| 46 | // - If `data` is null: newShape[i] = shape[i] / layout[i] |
| 47 | // - If `data` is not null: newShape[i] = data[i] |
| 48 | // When round-robin distribution (`rr`) is enabled, `shape[i]` can be |
| 49 | // smaller than `layout[i] * data[i]`, allowing multiple compute units to |
| 50 | // share the data. |
| 51 | auto tryDistribute = [&](llvm::ArrayRef<int64_t> shape, |
| 52 | DenseI32ArrayAttr layout, DenseI32ArrayAttr data, |
| 53 | bool rr = true) -> optional<SmallVector<int64_t>> { |
| 54 | llvm::SmallVector<int64_t> newShape(shape); |
| 55 | if (layout) { |
| 56 | auto vec = llvm::to_vector_of<int64_t>(layout.asArrayRef()); |
| 57 | if (vec.size() != shape.size()) |
| 58 | return std::nullopt; |
| 59 | auto ratio = computeShapeRatio(shape, vec); |
| 60 | if (!ratio.has_value()) |
| 61 | return std::nullopt; |
| 62 | newShape = ratio.value(); |
| 63 | } |
| 64 | |
| 65 | if (data) { |
| 66 | auto vec = llvm::to_vector_of<int64_t>(data.asArrayRef()); |
| 67 | if (vec.size() != shape.size()) |
| 68 | return std::nullopt; |
| 69 | auto ratio = computeShapeRatio(newShape, vec); |
| 70 | if (!ratio.has_value() && rr) |
| 71 | ratio = computeShapeRatio(vec, newShape); |
| 72 | if (!ratio.has_value()) |
| 73 | return std::nullopt; |
| 74 | |
| 75 | // if data is not null, we always return it for next phase. |
| 76 | newShape = vec; |
| 77 | } |
| 78 | return newShape; |
| 79 | }; |
| 80 | |
| 81 | // check the sgLayout and sgData |
| 82 | auto maybeSgShape = |
| 83 | tryDistribute(shape, attr.getSgLayout(), attr.getSgData()); |
| 84 | if (!maybeSgShape) |
| 85 | return false; |
| 86 | auto sgShape = maybeSgShape.value(); |
| 87 | |
| 88 | // check InstData, it neither have layout nor need round-robin |
| 89 | auto maybeInstShape = |
| 90 | tryDistribute(sgShape, nullptr, attr.getInstData(), false); |
| 91 | if (!maybeInstShape) |
| 92 | return false; |
| 93 | auto instShape = maybeInstShape.value(); |
| 94 | |
| 95 | // check LaneLayout and LaneData |
| 96 | auto maybeLaneShape = |
| 97 | tryDistribute(instShape, attr.getLaneLayout(), attr.getLaneData(), false); |
| 98 | return maybeLaneShape.has_value(); |
| 99 | } |
| 100 | |
| 101 | //===----------------------------------------------------------------------===// |
| 102 | // XeGPU_BlockTensorDescAttr |
| 103 | //===----------------------------------------------------------------------===// |
| 104 | BlockTensorDescAttr BlockTensorDescAttr::get(mlir::MLIRContext *context, |
| 105 | xegpu::MemorySpace memory_space, |
| 106 | int array_length, |
| 107 | bool boundary_check) { |
| 108 | auto scopeAttr = MemorySpaceAttr::get(context, memory_space); |
| 109 | auto lengthAttr = |
| 110 | IntegerAttr::get(IntegerType::get(context, 64), array_length); |
| 111 | auto boundaryAttr = BoolAttr::get(context, boundary_check); |
| 112 | return Base::get(context, scopeAttr, lengthAttr, boundaryAttr); |
| 113 | } |
| 114 | |
| 115 | //===----------------------------------------------------------------------===// |
| 116 | // XeGPU_ScatterTensorDescAttr |
| 117 | //===----------------------------------------------------------------------===// |
| 118 | ScatterTensorDescAttr |
| 119 | ScatterTensorDescAttr::get(mlir::MLIRContext *context, |
| 120 | xegpu::MemorySpace memory_space, int chunk_size) { |
| 121 | auto scopeAttr = MemorySpaceAttr::get(context, memory_space); |
| 122 | auto chunkSizeAttr = |
| 123 | IntegerAttr::get(IntegerType::get(context, 64), chunk_size); |
| 124 | return Base::get(context, scopeAttr, chunkSizeAttr); |
| 125 | } |
| 126 | |
| 127 | LogicalResult ScatterTensorDescAttr::verify( |
| 128 | llvm::function_ref<mlir::InFlightDiagnostic()> emitError, |
| 129 | MemorySpaceAttr memory_space, IntegerAttr chunk_size) { |
| 130 | int64_t chunkSize = chunk_size.getInt(); |
| 131 | SmallVector<int64_t> supportedChunkSizes = {1, 2, 3, 4, 8, |
| 132 | 16, 32, 64, 128, 256}; |
| 133 | if (!llvm::is_contained(supportedChunkSizes, chunkSize)) |
| 134 | return emitError() << "invalid chunk size" ; |
| 135 | |
| 136 | return success(); |
| 137 | } |
| 138 | |
| 139 | //===----------------------------------------------------------------------===// |
| 140 | // XeGPU_LayoutAttr |
| 141 | //===----------------------------------------------------------------------===// |
| 142 | LogicalResult |
| 143 | LayoutAttr::verify(llvm::function_ref<mlir::InFlightDiagnostic()> emitError, |
| 144 | DenseI32ArrayAttr sg_layout, DenseI32ArrayAttr sg_data, |
| 145 | DenseI32ArrayAttr inst_data, DenseI32ArrayAttr lane_layout, |
| 146 | DenseI32ArrayAttr lane_data, DenseI32ArrayAttr order) { |
| 147 | |
| 148 | // A valid layout must include at least one of sg_layout and lane_layout. |
| 149 | // sg_layout is essential for Workgroup layout, while lane_layout is |
| 150 | // required for Subgroup layout. |
| 151 | if (!sg_layout && !inst_data && !lane_layout) { |
| 152 | return emitError() |
| 153 | << "expected at least one of sg_layout, inst_data or lane_layout" ; |
| 154 | } |
| 155 | |
| 156 | // generate code to check sg_laout, inst_data and lane_layout having the same |
| 157 | // rank if they are not null. |
| 158 | |
| 159 | if (sg_layout && inst_data && sg_layout.size() != inst_data.size()) { |
| 160 | return emitError() |
| 161 | << "expected sg_layout and inst_data to have the same rank" ; |
| 162 | } |
| 163 | |
| 164 | if (sg_layout && lane_layout && sg_layout.size() != lane_layout.size()) { |
| 165 | return emitError() |
| 166 | << "expected sg_layout and lane_layout to have the same rank" ; |
| 167 | } |
| 168 | |
| 169 | if (inst_data && lane_layout && inst_data.size() != lane_layout.size()) { |
| 170 | return emitError() |
| 171 | << "expected inst_data and lane_layout to have the same rank" ; |
| 172 | } |
| 173 | |
| 174 | // sg_data is optional for Workgroup layout, but its presence requires |
| 175 | // sg_layout. |
| 176 | if (sg_data) { |
| 177 | if (!sg_layout) |
| 178 | return emitError() << "expected sg_layout being used with sg_data" ; |
| 179 | if (sg_data.size() != sg_layout.size()) |
| 180 | return emitError() |
| 181 | << "expected sg_data and sg_layout to have the same rank" ; |
| 182 | } |
| 183 | |
| 184 | // lane_data is optional for Subgroup layout, but its presence requires |
| 185 | // lane_layout. |
| 186 | if (lane_data) { |
| 187 | if (!lane_layout) |
| 188 | return emitError() << "expected lane_layout being used with lane_data" ; |
| 189 | if (lane_data.size() != lane_layout.size()) |
| 190 | return emitError() |
| 191 | << "expected lane_data and lane_layout to have the same rank" ; |
| 192 | } |
| 193 | |
| 194 | if (order) { |
| 195 | if (!sg_layout && !lane_layout) |
| 196 | return emitError() |
| 197 | << "expected sg_layout/lane_layout being used with order" ; |
| 198 | |
| 199 | if (sg_layout && order.size() != sg_layout.size()) |
| 200 | return emitError() |
| 201 | << "expected order and sg_layout to have the same rank" ; |
| 202 | |
| 203 | if (lane_layout && order.size() != lane_layout.size()) |
| 204 | return emitError() |
| 205 | << "expected order and lane_layout to have the same rank" ; |
| 206 | } |
| 207 | |
| 208 | return success(); |
| 209 | } |
| 210 | |
| 211 | //===----------------------------------------------------------------------===// |
| 212 | // XeGPU_TensorDescType |
| 213 | //===----------------------------------------------------------------------===// |
| 214 | |
| 215 | mlir::Type TensorDescType::parse(::mlir::AsmParser &parser) { |
| 216 | llvm::SmallVector<int64_t> shape; |
| 217 | mlir::Type elementType; |
| 218 | mlir::FailureOr<mlir::Attribute> encoding; |
| 219 | mlir::FailureOr<mlir::Attribute> layout; |
| 220 | |
| 221 | // Parse literal '<' |
| 222 | if (parser.parseLess()) |
| 223 | return {}; |
| 224 | |
| 225 | auto shapeLoc = parser.getCurrentLocation(); |
| 226 | if (mlir::failed(parser.parseDimensionList(shape))) { |
| 227 | parser.emitError(shapeLoc, "failed to parse parameter 'shape'" ); |
| 228 | return {}; |
| 229 | } |
| 230 | |
| 231 | auto elemTypeLoc = parser.getCurrentLocation(); |
| 232 | if (mlir::failed(parser.parseType(elementType))) { |
| 233 | parser.emitError(elemTypeLoc, "failed to parse parameter 'elementType'" ); |
| 234 | return {}; |
| 235 | } |
| 236 | |
| 237 | // parse optional attributes |
| 238 | while (mlir::succeeded(parser.parseOptionalComma())) { |
| 239 | mlir::Attribute attr; |
| 240 | ParseResult res = parser.parseAttribute(attr); |
| 241 | if (mlir::succeeded(res)) { |
| 242 | if (mlir::isa<LayoutAttr>(attr)) { |
| 243 | layout = attr; |
| 244 | continue; |
| 245 | } |
| 246 | if (mlir::isa<BlockTensorDescAttr, ScatterTensorDescAttr>(attr)) { |
| 247 | encoding = attr; |
| 248 | continue; |
| 249 | } |
| 250 | } |
| 251 | return {}; |
| 252 | } |
| 253 | |
| 254 | // Parse literal '>' |
| 255 | if (parser.parseGreater()) |
| 256 | return {}; |
| 257 | |
| 258 | return TensorDescType::getChecked( |
| 259 | [&]() { return parser.emitError(parser.getNameLoc()); }, |
| 260 | parser.getContext(), shape, elementType, |
| 261 | encoding.value_or(mlir::Attribute()), layout.value_or(mlir::Attribute())); |
| 262 | } |
| 263 | |
| 264 | void TensorDescType::print(::mlir::AsmPrinter &printer) const { |
| 265 | printer << "<" ; |
| 266 | |
| 267 | auto shape = getShape(); |
| 268 | for (int64_t dim : shape) { |
| 269 | if (mlir::ShapedType::isDynamic(dim)) |
| 270 | printer << '?'; |
| 271 | else |
| 272 | printer << dim; |
| 273 | printer << 'x'; |
| 274 | } |
| 275 | |
| 276 | printer << getElementType(); |
| 277 | |
| 278 | if (auto encoding = getEncoding()) |
| 279 | printer << ", " << encoding; |
| 280 | |
| 281 | if (auto layout = getLayout()) |
| 282 | printer << ", " << layout; |
| 283 | |
| 284 | printer << ">" ; |
| 285 | } |
| 286 | |
| 287 | TensorDescType TensorDescType::get(llvm::ArrayRef<int64_t> shape, |
| 288 | mlir::Type elementType, int array_length, |
| 289 | bool boundary_check, |
| 290 | MemorySpace memory_space, |
| 291 | mlir::Attribute layout) { |
| 292 | auto context = elementType.getContext(); |
| 293 | auto attr = BlockTensorDescAttr::get(context, memory_space, array_length, |
| 294 | boundary_check); |
| 295 | return Base::get(context, shape, elementType, attr, layout); |
| 296 | } |
| 297 | |
| 298 | TensorDescType TensorDescType::get(llvm::ArrayRef<int64_t> shape, |
| 299 | mlir::Type elementType, int chunk_size, |
| 300 | MemorySpace memory_space, |
| 301 | mlir::Attribute layout) { |
| 302 | auto context = elementType.getContext(); |
| 303 | auto attr = ScatterTensorDescAttr::get(context, memory_space, chunk_size); |
| 304 | return Base::get(context, shape, elementType, attr, layout); |
| 305 | } |
| 306 | |
| 307 | LogicalResult TensorDescType::verify( |
| 308 | llvm::function_ref<::mlir::InFlightDiagnostic()> emitError, |
| 309 | llvm::ArrayRef<int64_t> shape, mlir::Type elementType, |
| 310 | mlir::Attribute encoding, mlir::Attribute layout) { |
| 311 | size_t rank = shape.size(); |
| 312 | // Low-precision types are packed in 32-bit units. |
| 313 | int32_t packingFactor = 32 / elementType.getIntOrFloatBitWidth(); |
| 314 | if (rank != 1 && rank != 2) |
| 315 | return emitError() << "expected 1D or 2D tensor" ; |
| 316 | |
| 317 | auto scatterAttr = mlir::dyn_cast_if_present<ScatterTensorDescAttr>(encoding); |
| 318 | if (scatterAttr) { |
| 319 | // Expected tensor ranks for scattered data: |
| 320 | // - 1D tensor for fully non-contiguous elements (chunk size == 1) |
| 321 | // - 2D tensor for scattered blocks (chunk size > 1) |
| 322 | unsigned chunkSize = scatterAttr.getChunkSize().getInt(); |
| 323 | if (rank == 1 && chunkSize != 1) |
| 324 | return emitError() << "expected non-contiguous elements for 1D tensor" ; |
| 325 | if (rank == 2 && chunkSize < 2) |
| 326 | return emitError() << "expected chunk blocks for 2D tensor" ; |
| 327 | // If chunk size > 1, the second dimension of the tensor shape must be |
| 328 | // equal to chunk size and it must be a multiple of the packing factor. |
| 329 | if (chunkSize > 1) { |
| 330 | if (shape.back() != chunkSize) |
| 331 | return emitError() << "expected tensor shape[1] to match chunk size" ; |
| 332 | if (shape.back() % packingFactor != 0) |
| 333 | return emitError() |
| 334 | << "expected tensor shape[1] to be a multiple of packing factor " |
| 335 | << packingFactor; |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | auto blockAttr = mlir::dyn_cast_if_present<BlockTensorDescAttr>(encoding); |
| 340 | if (blockAttr) { |
| 341 | MemorySpaceAttr memorySpaceAttr = blockAttr.getMemorySpace(); |
| 342 | if (rank == 2 && memorySpaceAttr && |
| 343 | memorySpaceAttr.getValue() == MemorySpace::SLM) |
| 344 | return emitError() << "SLM is not supported for 2D block tensor" ; |
| 345 | } |
| 346 | |
| 347 | auto layoutAttr = llvm::dyn_cast_if_present<LayoutAttr>(layout); |
| 348 | if (layoutAttr) { |
| 349 | if (rank != (size_t)layoutAttr.getRank()) |
| 350 | return emitError() << "expected layout rank to match tensor rank" ; |
| 351 | |
| 352 | auto laneData = layoutAttr.getLaneData(); |
| 353 | if (scatterAttr && laneData) { |
| 354 | // Validate subgroup mapping rules for scattered tensors. |
| 355 | // A work-item's slice of the tensor with shape [sg_size] or |
| 356 | // [sg_size, chunk_size] will be [1] or [1, 32/element_ty_bit_width] |
| 357 | // respectively, the mapping should reflect that. This is because each |
| 358 | // work item access data in 32 bit granularity. |
| 359 | |
| 360 | if (rank > 1 && laneData[0] != 1) |
| 361 | return emitError() |
| 362 | << "cannot map over non-contiguous scattered row elements" ; |
| 363 | if (laneData[rank - 1] != packingFactor) |
| 364 | return emitError() << "work item data mapping must match the number of " |
| 365 | "contiguous elements" ; |
| 366 | } |
| 367 | |
| 368 | if (!XeGPUDialect::isEvenlyDistributable(shape, layoutAttr)) { |
| 369 | std::string shapeStr; |
| 370 | llvm::raw_string_ostream stream(shapeStr); |
| 371 | llvm::interleaveComma(shape, stream); |
| 372 | return emitError() << "cannot distribute [" << shapeStr << "] using " |
| 373 | << layoutAttr; |
| 374 | } |
| 375 | } |
| 376 | return success(); |
| 377 | } |
| 378 | |
| 379 | } // namespace xegpu |
| 380 | } // namespace mlir |
| 381 | |
| 382 | #include <mlir/Dialect/XeGPU/IR/XeGPUDialect.cpp.inc> |
| 383 | #define GET_ATTRDEF_CLASSES |
| 384 | #include <mlir/Dialect/XeGPU/IR/XeGPUAttrs.cpp.inc> |
| 385 | #define GET_TYPEDEF_CLASSES |
| 386 | #include <mlir/Dialect/XeGPU/IR/XeGPUTypes.cpp.inc> |
| 387 | |