| 1 | //===- AsyncRuntime.cpp - Async runtime reference implementation ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements basic Async runtime API for supporting Async dialect |
| 10 | // to LLVM dialect lowering. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/ExecutionEngine/AsyncRuntime.h" |
| 15 | |
| 16 | #include <atomic> |
| 17 | #include <cassert> |
| 18 | #include <condition_variable> |
| 19 | #include <functional> |
| 20 | #include <iostream> |
| 21 | #include <mutex> |
| 22 | #include <thread> |
| 23 | #include <vector> |
| 24 | |
| 25 | #include "llvm/ADT/StringMap.h" |
| 26 | #include "llvm/Support/ThreadPool.h" |
| 27 | |
| 28 | using namespace mlir::runtime; |
| 29 | |
| 30 | //===----------------------------------------------------------------------===// |
| 31 | // Async runtime API. |
| 32 | //===----------------------------------------------------------------------===// |
| 33 | |
| 34 | namespace mlir { |
| 35 | namespace runtime { |
| 36 | namespace { |
| 37 | |
| 38 | // Forward declare class defined below. |
| 39 | class RefCounted; |
| 40 | |
| 41 | // -------------------------------------------------------------------------- // |
| 42 | // AsyncRuntime orchestrates all async operations and Async runtime API is built |
| 43 | // on top of the default runtime instance. |
| 44 | // -------------------------------------------------------------------------- // |
| 45 | |
| 46 | class AsyncRuntime { |
| 47 | public: |
| 48 | AsyncRuntime() : numRefCountedObjects(0) {} |
| 49 | |
| 50 | ~AsyncRuntime() { |
| 51 | threadPool.wait(); // wait for the completion of all async tasks |
| 52 | assert(getNumRefCountedObjects() == 0 && |
| 53 | "all ref counted objects must be destroyed" ); |
| 54 | } |
| 55 | |
| 56 | int64_t getNumRefCountedObjects() { |
| 57 | return numRefCountedObjects.load(m: std::memory_order_relaxed); |
| 58 | } |
| 59 | |
| 60 | llvm::ThreadPoolInterface &getThreadPool() { return threadPool; } |
| 61 | |
| 62 | private: |
| 63 | friend class RefCounted; |
| 64 | |
| 65 | // Count the total number of reference counted objects in this instance |
| 66 | // of an AsyncRuntime. For debugging purposes only. |
| 67 | void addNumRefCountedObjects() { |
| 68 | numRefCountedObjects.fetch_add(i: 1, m: std::memory_order_relaxed); |
| 69 | } |
| 70 | void dropNumRefCountedObjects() { |
| 71 | numRefCountedObjects.fetch_sub(i: 1, m: std::memory_order_relaxed); |
| 72 | } |
| 73 | |
| 74 | std::atomic<int64_t> numRefCountedObjects; |
| 75 | llvm::DefaultThreadPool threadPool; |
| 76 | }; |
| 77 | |
| 78 | // -------------------------------------------------------------------------- // |
| 79 | // A state of the async runtime value (token, value or group). |
| 80 | // -------------------------------------------------------------------------- // |
| 81 | |
| 82 | class State { |
| 83 | public: |
| 84 | enum StateEnum : int8_t { |
| 85 | // The underlying value is not yet available for consumption. |
| 86 | kUnavailable = 0, |
| 87 | // The underlying value is available for consumption. This state can not |
| 88 | // transition to any other state. |
| 89 | kAvailable = 1, |
| 90 | // This underlying value is available and contains an error. This state can |
| 91 | // not transition to any other state. |
| 92 | kError = 2, |
| 93 | }; |
| 94 | |
| 95 | /* implicit */ State(StateEnum s) : state(s) {} |
| 96 | /* implicit */ operator StateEnum() { return state; } |
| 97 | |
| 98 | bool isUnavailable() const { return state == kUnavailable; } |
| 99 | bool isAvailable() const { return state == kAvailable; } |
| 100 | bool isError() const { return state == kError; } |
| 101 | bool isAvailableOrError() const { return isAvailable() || isError(); } |
| 102 | |
| 103 | const char *debug() const { |
| 104 | switch (state) { |
| 105 | case kUnavailable: |
| 106 | return "unavailable" ; |
| 107 | case kAvailable: |
| 108 | return "available" ; |
| 109 | case kError: |
| 110 | return "error" ; |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | private: |
| 115 | StateEnum state; |
| 116 | }; |
| 117 | |
| 118 | // -------------------------------------------------------------------------- // |
| 119 | // A base class for all reference counted objects created by the async runtime. |
| 120 | // -------------------------------------------------------------------------- // |
| 121 | |
| 122 | class RefCounted { |
| 123 | public: |
| 124 | RefCounted(AsyncRuntime *runtime, int64_t refCount = 1) |
| 125 | : runtime(runtime), refCount(refCount) { |
| 126 | runtime->addNumRefCountedObjects(); |
| 127 | } |
| 128 | |
| 129 | virtual ~RefCounted() { |
| 130 | assert(refCount.load() == 0 && "reference count must be zero" ); |
| 131 | runtime->dropNumRefCountedObjects(); |
| 132 | } |
| 133 | |
| 134 | RefCounted(const RefCounted &) = delete; |
| 135 | RefCounted &operator=(const RefCounted &) = delete; |
| 136 | |
| 137 | void addRef(int64_t count = 1) { refCount.fetch_add(i: count); } |
| 138 | |
| 139 | void dropRef(int64_t count = 1) { |
| 140 | int64_t previous = refCount.fetch_sub(i: count); |
| 141 | assert(previous >= count && "reference count should not go below zero" ); |
| 142 | if (previous == count) |
| 143 | destroy(); |
| 144 | } |
| 145 | |
| 146 | protected: |
| 147 | virtual void destroy() { delete this; } |
| 148 | |
| 149 | private: |
| 150 | AsyncRuntime *runtime; |
| 151 | std::atomic<int64_t> refCount; |
| 152 | }; |
| 153 | |
| 154 | } // namespace |
| 155 | |
| 156 | // Returns the default per-process instance of an async runtime. |
| 157 | static std::unique_ptr<AsyncRuntime> &getDefaultAsyncRuntimeInstance() { |
| 158 | static auto runtime = std::make_unique<AsyncRuntime>(); |
| 159 | return runtime; |
| 160 | } |
| 161 | |
| 162 | static void resetDefaultAsyncRuntime() { |
| 163 | return getDefaultAsyncRuntimeInstance().reset(); |
| 164 | } |
| 165 | |
| 166 | static AsyncRuntime *getDefaultAsyncRuntime() { |
| 167 | return getDefaultAsyncRuntimeInstance().get(); |
| 168 | } |
| 169 | |
| 170 | // Async token provides a mechanism to signal asynchronous operation completion. |
| 171 | struct AsyncToken : public RefCounted { |
| 172 | // AsyncToken created with a reference count of 2 because it will be returned |
| 173 | // to the `async.execute` caller and also will be later on emplaced by the |
| 174 | // asynchronously executed task. If the caller immediately will drop its |
| 175 | // reference we must ensure that the token will be alive until the |
| 176 | // asynchronous operation is completed. |
| 177 | AsyncToken(AsyncRuntime *runtime) |
| 178 | : RefCounted(runtime, /*refCount=*/2), state(State::kUnavailable) {} |
| 179 | |
| 180 | std::atomic<State::StateEnum> state; |
| 181 | |
| 182 | // Pending awaiters are guarded by a mutex. |
| 183 | std::mutex mu; |
| 184 | std::condition_variable cv; |
| 185 | std::vector<std::function<void()>> awaiters; |
| 186 | }; |
| 187 | |
| 188 | // Async value provides a mechanism to access the result of asynchronous |
| 189 | // operations. It owns the storage that is used to store/load the value of the |
| 190 | // underlying type, and a flag to signal if the value is ready or not. |
| 191 | struct AsyncValue : public RefCounted { |
| 192 | // AsyncValue similar to an AsyncToken created with a reference count of 2. |
| 193 | AsyncValue(AsyncRuntime *runtime, int64_t size) |
| 194 | : RefCounted(runtime, /*refCount=*/2), state(State::kUnavailable), |
| 195 | storage(size) {} |
| 196 | |
| 197 | std::atomic<State::StateEnum> state; |
| 198 | |
| 199 | // Use vector of bytes to store async value payload. |
| 200 | std::vector<std::byte> storage; |
| 201 | |
| 202 | // Pending awaiters are guarded by a mutex. |
| 203 | std::mutex mu; |
| 204 | std::condition_variable cv; |
| 205 | std::vector<std::function<void()>> awaiters; |
| 206 | }; |
| 207 | |
| 208 | // Async group provides a mechanism to group together multiple async tokens or |
| 209 | // values to await on all of them together (wait for the completion of all |
| 210 | // tokens or values added to the group). |
| 211 | struct AsyncGroup : public RefCounted { |
| 212 | AsyncGroup(AsyncRuntime *runtime, int64_t size) |
| 213 | : RefCounted(runtime), pendingTokens(size), numErrors(0), rank(0) {} |
| 214 | |
| 215 | std::atomic<int> pendingTokens; |
| 216 | std::atomic<int> numErrors; |
| 217 | std::atomic<int> rank; |
| 218 | |
| 219 | // Pending awaiters are guarded by a mutex. |
| 220 | std::mutex mu; |
| 221 | std::condition_variable cv; |
| 222 | std::vector<std::function<void()>> awaiters; |
| 223 | }; |
| 224 | |
| 225 | // Adds references to reference counted runtime object. |
| 226 | extern "C" void mlirAsyncRuntimeAddRef(RefCountedObjPtr ptr, int64_t count) { |
| 227 | RefCounted *refCounted = static_cast<RefCounted *>(ptr); |
| 228 | refCounted->addRef(count); |
| 229 | } |
| 230 | |
| 231 | // Drops references from reference counted runtime object. |
| 232 | extern "C" void mlirAsyncRuntimeDropRef(RefCountedObjPtr ptr, int64_t count) { |
| 233 | RefCounted *refCounted = static_cast<RefCounted *>(ptr); |
| 234 | refCounted->dropRef(count); |
| 235 | } |
| 236 | |
| 237 | // Creates a new `async.token` in not-ready state. |
| 238 | extern "C" AsyncToken *mlirAsyncRuntimeCreateToken() { |
| 239 | AsyncToken *token = new AsyncToken(getDefaultAsyncRuntime()); |
| 240 | return token; |
| 241 | } |
| 242 | |
| 243 | // Creates a new `async.value` in not-ready state. |
| 244 | extern "C" AsyncValue *mlirAsyncRuntimeCreateValue(int64_t size) { |
| 245 | AsyncValue *value = new AsyncValue(getDefaultAsyncRuntime(), size); |
| 246 | return value; |
| 247 | } |
| 248 | |
| 249 | // Create a new `async.group` in empty state. |
| 250 | extern "C" AsyncGroup *mlirAsyncRuntimeCreateGroup(int64_t size) { |
| 251 | AsyncGroup *group = new AsyncGroup(getDefaultAsyncRuntime(), size); |
| 252 | return group; |
| 253 | } |
| 254 | |
| 255 | extern "C" int64_t mlirAsyncRuntimeAddTokenToGroup(AsyncToken *token, |
| 256 | AsyncGroup *group) { |
| 257 | std::unique_lock<std::mutex> lockToken(token->mu); |
| 258 | std::unique_lock<std::mutex> lockGroup(group->mu); |
| 259 | |
| 260 | // Get the rank of the token inside the group before we drop the reference. |
| 261 | int rank = group->rank.fetch_add(i: 1); |
| 262 | |
| 263 | auto onTokenReady = [group, token]() { |
| 264 | // Increment the number of errors in the group. |
| 265 | if (State(token->state).isError()) |
| 266 | group->numErrors.fetch_add(i: 1); |
| 267 | |
| 268 | // If pending tokens go below zero it means that more tokens than the group |
| 269 | // size were added to this group. |
| 270 | assert(group->pendingTokens > 0 && "wrong group size" ); |
| 271 | |
| 272 | // Run all group awaiters if it was the last token in the group. |
| 273 | if (group->pendingTokens.fetch_sub(i: 1) == 1) { |
| 274 | group->cv.notify_all(); |
| 275 | for (auto &awaiter : group->awaiters) |
| 276 | awaiter(); |
| 277 | } |
| 278 | }; |
| 279 | |
| 280 | if (State(token->state).isAvailableOrError()) { |
| 281 | // Update group pending tokens immediately and maybe run awaiters. |
| 282 | onTokenReady(); |
| 283 | |
| 284 | } else { |
| 285 | // Update group pending tokens when token will become ready. Because this |
| 286 | // will happen asynchronously we must ensure that `group` is alive until |
| 287 | // then, and re-ackquire the lock. |
| 288 | group->addRef(); |
| 289 | |
| 290 | token->awaiters.emplace_back(args: [group, onTokenReady]() { |
| 291 | // Make sure that `dropRef` does not destroy the mutex owned by the lock. |
| 292 | { |
| 293 | std::unique_lock<std::mutex> lockGroup(group->mu); |
| 294 | onTokenReady(); |
| 295 | } |
| 296 | group->dropRef(); |
| 297 | }); |
| 298 | } |
| 299 | |
| 300 | return rank; |
| 301 | } |
| 302 | |
| 303 | // Switches `async.token` to available or error state (terminatl state) and runs |
| 304 | // all awaiters. |
| 305 | static void setTokenState(AsyncToken *token, State state) { |
| 306 | assert(state.isAvailableOrError() && "must be terminal state" ); |
| 307 | assert(State(token->state).isUnavailable() && "token must be unavailable" ); |
| 308 | |
| 309 | // Make sure that `dropRef` does not destroy the mutex owned by the lock. |
| 310 | { |
| 311 | std::unique_lock<std::mutex> lock(token->mu); |
| 312 | token->state = state; |
| 313 | token->cv.notify_all(); |
| 314 | for (auto &awaiter : token->awaiters) |
| 315 | awaiter(); |
| 316 | } |
| 317 | |
| 318 | // Async tokens created with a ref count `2` to keep token alive until the |
| 319 | // async task completes. Drop this reference explicitly when token emplaced. |
| 320 | token->dropRef(); |
| 321 | } |
| 322 | |
| 323 | static void setValueState(AsyncValue *value, State state) { |
| 324 | assert(state.isAvailableOrError() && "must be terminal state" ); |
| 325 | assert(State(value->state).isUnavailable() && "value must be unavailable" ); |
| 326 | |
| 327 | // Make sure that `dropRef` does not destroy the mutex owned by the lock. |
| 328 | { |
| 329 | std::unique_lock<std::mutex> lock(value->mu); |
| 330 | value->state = state; |
| 331 | value->cv.notify_all(); |
| 332 | for (auto &awaiter : value->awaiters) |
| 333 | awaiter(); |
| 334 | } |
| 335 | |
| 336 | // Async values created with a ref count `2` to keep value alive until the |
| 337 | // async task completes. Drop this reference explicitly when value emplaced. |
| 338 | value->dropRef(); |
| 339 | } |
| 340 | |
| 341 | extern "C" void mlirAsyncRuntimeEmplaceToken(AsyncToken *token) { |
| 342 | setTokenState(token, state: State::kAvailable); |
| 343 | } |
| 344 | |
| 345 | extern "C" void mlirAsyncRuntimeEmplaceValue(AsyncValue *value) { |
| 346 | setValueState(value, state: State::kAvailable); |
| 347 | } |
| 348 | |
| 349 | extern "C" void mlirAsyncRuntimeSetTokenError(AsyncToken *token) { |
| 350 | setTokenState(token, state: State::kError); |
| 351 | } |
| 352 | |
| 353 | extern "C" void mlirAsyncRuntimeSetValueError(AsyncValue *value) { |
| 354 | setValueState(value, state: State::kError); |
| 355 | } |
| 356 | |
| 357 | extern "C" bool mlirAsyncRuntimeIsTokenError(AsyncToken *token) { |
| 358 | return State(token->state).isError(); |
| 359 | } |
| 360 | |
| 361 | extern "C" bool mlirAsyncRuntimeIsValueError(AsyncValue *value) { |
| 362 | return State(value->state).isError(); |
| 363 | } |
| 364 | |
| 365 | extern "C" bool mlirAsyncRuntimeIsGroupError(AsyncGroup *group) { |
| 366 | return group->numErrors.load() > 0; |
| 367 | } |
| 368 | |
| 369 | extern "C" void mlirAsyncRuntimeAwaitToken(AsyncToken *token) { |
| 370 | std::unique_lock<std::mutex> lock(token->mu); |
| 371 | if (!State(token->state).isAvailableOrError()) |
| 372 | token->cv.wait( |
| 373 | lock&: lock, p: [token] { return State(token->state).isAvailableOrError(); }); |
| 374 | } |
| 375 | |
| 376 | extern "C" void mlirAsyncRuntimeAwaitValue(AsyncValue *value) { |
| 377 | std::unique_lock<std::mutex> lock(value->mu); |
| 378 | if (!State(value->state).isAvailableOrError()) |
| 379 | value->cv.wait( |
| 380 | lock&: lock, p: [value] { return State(value->state).isAvailableOrError(); }); |
| 381 | } |
| 382 | |
| 383 | extern "C" void mlirAsyncRuntimeAwaitAllInGroup(AsyncGroup *group) { |
| 384 | std::unique_lock<std::mutex> lock(group->mu); |
| 385 | if (group->pendingTokens != 0) |
| 386 | group->cv.wait(lock&: lock, p: [group] { return group->pendingTokens == 0; }); |
| 387 | } |
| 388 | |
| 389 | // Returns a pointer to the storage owned by the async value. |
| 390 | extern "C" ValueStorage mlirAsyncRuntimeGetValueStorage(AsyncValue *value) { |
| 391 | assert(!State(value->state).isError() && "unexpected error state" ); |
| 392 | return value->storage.data(); |
| 393 | } |
| 394 | |
| 395 | extern "C" void mlirAsyncRuntimeExecute(CoroHandle handle, CoroResume resume) { |
| 396 | auto *runtime = getDefaultAsyncRuntime(); |
| 397 | runtime->getThreadPool().async(F: [handle, resume]() { (*resume)(handle); }); |
| 398 | } |
| 399 | |
| 400 | extern "C" void mlirAsyncRuntimeAwaitTokenAndExecute(AsyncToken *token, |
| 401 | CoroHandle handle, |
| 402 | CoroResume resume) { |
| 403 | auto execute = [handle, resume]() { (*resume)(handle); }; |
| 404 | std::unique_lock<std::mutex> lock(token->mu); |
| 405 | if (State(token->state).isAvailableOrError()) { |
| 406 | lock.unlock(); |
| 407 | execute(); |
| 408 | } else { |
| 409 | token->awaiters.emplace_back(args: [execute]() { execute(); }); |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | extern "C" void mlirAsyncRuntimeAwaitValueAndExecute(AsyncValue *value, |
| 414 | CoroHandle handle, |
| 415 | CoroResume resume) { |
| 416 | auto execute = [handle, resume]() { (*resume)(handle); }; |
| 417 | std::unique_lock<std::mutex> lock(value->mu); |
| 418 | if (State(value->state).isAvailableOrError()) { |
| 419 | lock.unlock(); |
| 420 | execute(); |
| 421 | } else { |
| 422 | value->awaiters.emplace_back(args: [execute]() { execute(); }); |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | extern "C" void mlirAsyncRuntimeAwaitAllInGroupAndExecute(AsyncGroup *group, |
| 427 | CoroHandle handle, |
| 428 | CoroResume resume) { |
| 429 | auto execute = [handle, resume]() { (*resume)(handle); }; |
| 430 | std::unique_lock<std::mutex> lock(group->mu); |
| 431 | if (group->pendingTokens == 0) { |
| 432 | lock.unlock(); |
| 433 | execute(); |
| 434 | } else { |
| 435 | group->awaiters.emplace_back(args: [execute]() { execute(); }); |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | extern "C" int64_t mlirAsyncRuntimGetNumWorkerThreads() { |
| 440 | return getDefaultAsyncRuntime()->getThreadPool().getMaxConcurrency(); |
| 441 | } |
| 442 | |
| 443 | //===----------------------------------------------------------------------===// |
| 444 | // Small async runtime support library for testing. |
| 445 | //===----------------------------------------------------------------------===// |
| 446 | |
| 447 | extern "C" void mlirAsyncRuntimePrintCurrentThreadId() { |
| 448 | static thread_local std::thread::id thisId = std::this_thread::get_id(); |
| 449 | std::cout << "Current thread id: " << thisId << '\n'; |
| 450 | } |
| 451 | |
| 452 | //===----------------------------------------------------------------------===// |
| 453 | // MLIR ExecutionEngine dynamic library integration. |
| 454 | //===----------------------------------------------------------------------===// |
| 455 | |
| 456 | // Visual Studio had a bug that fails to compile nested generic lambdas |
| 457 | // inside an `extern "C"` function. |
| 458 | // https://developercommunity.visualstudio.com/content/problem/475494/clexe-error-with-lambda-inside-function-templates.html |
| 459 | // The bug is fixed in VS2019 16.1. Separating the declaration and definition is |
| 460 | // a work around for older versions of Visual Studio. |
| 461 | // NOLINTNEXTLINE(*-identifier-naming): externally called. |
| 462 | extern "C" MLIR_ASYNC_RUNTIME_EXPORT void |
| 463 | __mlir_execution_engine_init(llvm::StringMap<void *> &exportSymbols); |
| 464 | |
| 465 | // NOLINTNEXTLINE(*-identifier-naming): externally called. |
| 466 | void __mlir_execution_engine_init(llvm::StringMap<void *> &exportSymbols) { |
| 467 | auto exportSymbol = [&](llvm::StringRef name, auto ptr) { |
| 468 | assert(exportSymbols.count(name) == 0 && "symbol already exists" ); |
| 469 | exportSymbols[name] = reinterpret_cast<void *>(ptr); |
| 470 | }; |
| 471 | |
| 472 | exportSymbol("mlirAsyncRuntimeAddRef" , |
| 473 | &mlir::runtime::mlirAsyncRuntimeAddRef); |
| 474 | exportSymbol("mlirAsyncRuntimeDropRef" , |
| 475 | &mlir::runtime::mlirAsyncRuntimeDropRef); |
| 476 | exportSymbol("mlirAsyncRuntimeExecute" , |
| 477 | &mlir::runtime::mlirAsyncRuntimeExecute); |
| 478 | exportSymbol("mlirAsyncRuntimeGetValueStorage" , |
| 479 | &mlir::runtime::mlirAsyncRuntimeGetValueStorage); |
| 480 | exportSymbol("mlirAsyncRuntimeCreateToken" , |
| 481 | &mlir::runtime::mlirAsyncRuntimeCreateToken); |
| 482 | exportSymbol("mlirAsyncRuntimeCreateValue" , |
| 483 | &mlir::runtime::mlirAsyncRuntimeCreateValue); |
| 484 | exportSymbol("mlirAsyncRuntimeEmplaceToken" , |
| 485 | &mlir::runtime::mlirAsyncRuntimeEmplaceToken); |
| 486 | exportSymbol("mlirAsyncRuntimeEmplaceValue" , |
| 487 | &mlir::runtime::mlirAsyncRuntimeEmplaceValue); |
| 488 | exportSymbol("mlirAsyncRuntimeSetTokenError" , |
| 489 | &mlir::runtime::mlirAsyncRuntimeSetTokenError); |
| 490 | exportSymbol("mlirAsyncRuntimeSetValueError" , |
| 491 | &mlir::runtime::mlirAsyncRuntimeSetValueError); |
| 492 | exportSymbol("mlirAsyncRuntimeIsTokenError" , |
| 493 | &mlir::runtime::mlirAsyncRuntimeIsTokenError); |
| 494 | exportSymbol("mlirAsyncRuntimeIsValueError" , |
| 495 | &mlir::runtime::mlirAsyncRuntimeIsValueError); |
| 496 | exportSymbol("mlirAsyncRuntimeIsGroupError" , |
| 497 | &mlir::runtime::mlirAsyncRuntimeIsGroupError); |
| 498 | exportSymbol("mlirAsyncRuntimeAwaitToken" , |
| 499 | &mlir::runtime::mlirAsyncRuntimeAwaitToken); |
| 500 | exportSymbol("mlirAsyncRuntimeAwaitValue" , |
| 501 | &mlir::runtime::mlirAsyncRuntimeAwaitValue); |
| 502 | exportSymbol("mlirAsyncRuntimeAwaitTokenAndExecute" , |
| 503 | &mlir::runtime::mlirAsyncRuntimeAwaitTokenAndExecute); |
| 504 | exportSymbol("mlirAsyncRuntimeAwaitValueAndExecute" , |
| 505 | &mlir::runtime::mlirAsyncRuntimeAwaitValueAndExecute); |
| 506 | exportSymbol("mlirAsyncRuntimeCreateGroup" , |
| 507 | &mlir::runtime::mlirAsyncRuntimeCreateGroup); |
| 508 | exportSymbol("mlirAsyncRuntimeAddTokenToGroup" , |
| 509 | &mlir::runtime::mlirAsyncRuntimeAddTokenToGroup); |
| 510 | exportSymbol("mlirAsyncRuntimeAwaitAllInGroup" , |
| 511 | &mlir::runtime::mlirAsyncRuntimeAwaitAllInGroup); |
| 512 | exportSymbol("mlirAsyncRuntimeAwaitAllInGroupAndExecute" , |
| 513 | &mlir::runtime::mlirAsyncRuntimeAwaitAllInGroupAndExecute); |
| 514 | exportSymbol("mlirAsyncRuntimGetNumWorkerThreads" , |
| 515 | &mlir::runtime::mlirAsyncRuntimGetNumWorkerThreads); |
| 516 | exportSymbol("mlirAsyncRuntimePrintCurrentThreadId" , |
| 517 | &mlir::runtime::mlirAsyncRuntimePrintCurrentThreadId); |
| 518 | } |
| 519 | |
| 520 | // NOLINTNEXTLINE(*-identifier-naming): externally called. |
| 521 | extern "C" MLIR_ASYNC_RUNTIME_EXPORT void __mlir_execution_engine_destroy() { |
| 522 | resetDefaultAsyncRuntime(); |
| 523 | } |
| 524 | |
| 525 | } // namespace runtime |
| 526 | } // namespace mlir |
| 527 | |