1 | //===--- Float16bits.cpp - supports 2-byte floats ------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements f16 and bf16 to support the compilation and execution |
10 | // of programs using these types. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "mlir/ExecutionEngine/Float16bits.h" |
15 | |
16 | #ifdef MLIR_FLOAT16_DEFINE_FUNCTIONS // We are building this library |
17 | |
18 | #include <cmath> |
19 | #include <cstring> |
20 | |
21 | namespace { |
22 | |
23 | // Union used to make the int/float aliasing explicit so we can access the raw |
24 | // bits. |
25 | union Float32Bits { |
26 | uint32_t u; |
27 | float f; |
28 | }; |
29 | |
30 | const uint32_t kF32MantiBits = 23; |
31 | const uint32_t kF32HalfMantiBitDiff = 13; |
32 | const uint32_t kF32HalfBitDiff = 16; |
33 | const Float32Bits kF32Magic = {.u: 113 << kF32MantiBits}; |
34 | const uint32_t kF32HalfExpAdjust = (127 - 15) << kF32MantiBits; |
35 | |
36 | // Constructs the 16 bit representation for a half precision value from a float |
37 | // value. This implementation is adapted from Eigen. |
38 | uint16_t float2half(float floatValue) { |
39 | const Float32Bits inf = {.u: 255 << kF32MantiBits}; |
40 | const Float32Bits f16max = {.u: (127 + 16) << kF32MantiBits}; |
41 | const Float32Bits denormMagic = {.u: ((127 - 15) + (kF32MantiBits - 10) + 1) |
42 | << kF32MantiBits}; |
43 | uint32_t signMask = 0x80000000u; |
44 | uint16_t halfValue = static_cast<uint16_t>(0x0u); |
45 | Float32Bits f; |
46 | f.f = floatValue; |
47 | uint32_t sign = f.u & signMask; |
48 | f.u ^= sign; |
49 | |
50 | if (f.u >= f16max.u) { |
51 | const uint32_t halfQnan = 0x7e00; |
52 | const uint32_t halfInf = 0x7c00; |
53 | // Inf or NaN (all exponent bits set). |
54 | halfValue = (f.u > inf.u) ? halfQnan : halfInf; // NaN->qNaN and Inf->Inf |
55 | } else { |
56 | // (De)normalized number or zero. |
57 | if (f.u < kF32Magic.u) { |
58 | // The resulting FP16 is subnormal or zero. |
59 | // |
60 | // Use a magic value to align our 10 mantissa bits at the bottom of the |
61 | // float. As long as FP addition is round-to-nearest-even this works. |
62 | f.f += denormMagic.f; |
63 | |
64 | halfValue = static_cast<uint16_t>(f.u - denormMagic.u); |
65 | } else { |
66 | uint32_t mantOdd = |
67 | (f.u >> kF32HalfMantiBitDiff) & 1; // Resulting mantissa is odd. |
68 | |
69 | // Update exponent, rounding bias part 1. The following expressions are |
70 | // equivalent to `f.u += ((unsigned int)(15 - 127) << kF32MantiBits) + |
71 | // 0xfff`, but without arithmetic overflow. |
72 | f.u += 0xc8000fffU; |
73 | // Rounding bias part 2. |
74 | f.u += mantOdd; |
75 | halfValue = static_cast<uint16_t>(f.u >> kF32HalfMantiBitDiff); |
76 | } |
77 | } |
78 | |
79 | halfValue |= static_cast<uint16_t>(sign >> kF32HalfBitDiff); |
80 | return halfValue; |
81 | } |
82 | |
83 | // Converts the 16 bit representation of a half precision value to a float |
84 | // value. This implementation is adapted from Eigen. |
85 | float half2float(uint16_t halfValue) { |
86 | const uint32_t shiftedExp = |
87 | 0x7c00 << kF32HalfMantiBitDiff; // Exponent mask after shift. |
88 | |
89 | // Initialize the float representation with the exponent/mantissa bits. |
90 | Float32Bits f = { |
91 | .u: static_cast<uint32_t>((halfValue & 0x7fff) << kF32HalfMantiBitDiff)}; |
92 | const uint32_t exp = shiftedExp & f.u; |
93 | f.u += kF32HalfExpAdjust; // Adjust the exponent |
94 | |
95 | // Handle exponent special cases. |
96 | if (exp == shiftedExp) { |
97 | // Inf/NaN |
98 | f.u += kF32HalfExpAdjust; |
99 | } else if (exp == 0) { |
100 | // Zero/Denormal? |
101 | f.u += 1 << kF32MantiBits; |
102 | f.f -= kF32Magic.f; |
103 | } |
104 | |
105 | f.u |= (halfValue & 0x8000) << kF32HalfBitDiff; // Sign bit. |
106 | return f.f; |
107 | } |
108 | |
109 | const uint32_t kF32BfMantiBitDiff = 16; |
110 | |
111 | // Constructs the 16 bit representation for a bfloat value from a float value. |
112 | // This implementation is adapted from Eigen. |
113 | uint16_t float2bfloat(float floatValue) { |
114 | if (std::isnan(x: floatValue)) |
115 | return std::signbit(x: floatValue) ? 0xFFC0 : 0x7FC0; |
116 | |
117 | Float32Bits floatBits; |
118 | floatBits.f = floatValue; |
119 | uint16_t bfloatBits; |
120 | |
121 | // Least significant bit of resulting bfloat. |
122 | uint32_t lsb = (floatBits.u >> kF32BfMantiBitDiff) & 1; |
123 | uint32_t roundingBias = 0x7fff + lsb; |
124 | floatBits.u += roundingBias; |
125 | bfloatBits = static_cast<uint16_t>(floatBits.u >> kF32BfMantiBitDiff); |
126 | return bfloatBits; |
127 | } |
128 | |
129 | // Converts the 16 bit representation of a bfloat value to a float value. This |
130 | // implementation is adapted from Eigen. |
131 | float bfloat2float(uint16_t bfloatBits) { |
132 | Float32Bits floatBits; |
133 | floatBits.u = static_cast<uint32_t>(bfloatBits) << kF32BfMantiBitDiff; |
134 | return floatBits.f; |
135 | } |
136 | |
137 | } // namespace |
138 | |
139 | f16::f16(float f) : bits(float2half(floatValue: f)) {} |
140 | |
141 | bf16::bf16(float f) : bits(float2bfloat(floatValue: f)) {} |
142 | |
143 | std::ostream &operator<<(std::ostream &os, const f16 &f) { |
144 | os << half2float(halfValue: f.bits); |
145 | return os; |
146 | } |
147 | |
148 | std::ostream &operator<<(std::ostream &os, const bf16 &d) { |
149 | os << bfloat2float(bfloatBits: d.bits); |
150 | return os; |
151 | } |
152 | |
153 | bool operator==(const f16 &f1, const f16 &f2) { return f1.bits == f2.bits; } |
154 | |
155 | bool operator==(const bf16 &f1, const bf16 &f2) { return f1.bits == f2.bits; } |
156 | |
157 | // Mark these symbols as weak so they don't conflict when compiler-rt also |
158 | // defines them. |
159 | #define ATTR_WEAK |
160 | #ifdef __has_attribute |
161 | #if __has_attribute(weak) && !defined(__MINGW32__) && !defined(__CYGWIN__) && \ |
162 | !defined(_WIN32) |
163 | #undef ATTR_WEAK |
164 | #define ATTR_WEAK __attribute__((__weak__)) |
165 | #endif |
166 | #endif |
167 | |
168 | #if defined(__x86_64__) || defined(_M_X64) |
169 | // On x86 bfloat16 is passed in SSE registers. Since both float and __bf16 |
170 | // are passed in the same register we can use the wider type and careful casting |
171 | // to conform to x86_64 psABI. This only works with the assumption that we're |
172 | // dealing with little-endian values passed in wider registers. |
173 | // Ideally this would directly use __bf16, but that type isn't supported by all |
174 | // compilers. |
175 | using BF16ABIType = float; |
176 | #else |
177 | // Default to uint16_t if we have nothing else. |
178 | using BF16ABIType = uint16_t; |
179 | #endif |
180 | |
181 | // Provide a float->bfloat conversion routine in case the runtime doesn't have |
182 | // one. |
183 | extern "C" BF16ABIType ATTR_WEAK __truncsfbf2(float f) { |
184 | uint16_t bf = float2bfloat(floatValue: f); |
185 | // The output can be a float type, bitcast it from uint16_t. |
186 | BF16ABIType ret = 0; |
187 | std::memcpy(dest: &ret, src: &bf, n: sizeof(bf)); |
188 | return ret; |
189 | } |
190 | |
191 | // Provide a double->bfloat conversion routine in case the runtime doesn't have |
192 | // one. |
193 | extern "C" BF16ABIType ATTR_WEAK __truncdfbf2(double d) { |
194 | // This does a double rounding step, but it's precise enough for our use |
195 | // cases. |
196 | return __truncsfbf2(f: static_cast<float>(d)); |
197 | } |
198 | |
199 | // Provide these to the CRunner with the local float16 knowledge. |
200 | extern "C" void printF16(uint16_t bits) { |
201 | f16 f; |
202 | std::memcpy(dest: &f, src: &bits, n: sizeof(f16)); |
203 | std::cout << f; |
204 | } |
205 | extern "C" void printBF16(uint16_t bits) { |
206 | bf16 f; |
207 | std::memcpy(dest: &f, src: &bits, n: sizeof(bf16)); |
208 | std::cout << f; |
209 | } |
210 | |
211 | #endif // MLIR_FLOAT16_DEFINE_FUNCTIONS |
212 | |