| 1 | //===--- Float16bits.cpp - supports 2-byte floats ------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements f16 and bf16 to support the compilation and execution |
| 10 | // of programs using these types. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/ExecutionEngine/Float16bits.h" |
| 15 | |
| 16 | #ifdef MLIR_FLOAT16_DEFINE_FUNCTIONS // We are building this library |
| 17 | |
| 18 | #include <cmath> |
| 19 | #include <cstring> |
| 20 | |
| 21 | namespace { |
| 22 | |
| 23 | // Union used to make the int/float aliasing explicit so we can access the raw |
| 24 | // bits. |
| 25 | union Float32Bits { |
| 26 | uint32_t u; |
| 27 | float f; |
| 28 | }; |
| 29 | |
| 30 | const uint32_t kF32MantiBits = 23; |
| 31 | const uint32_t kF32HalfMantiBitDiff = 13; |
| 32 | const uint32_t kF32HalfBitDiff = 16; |
| 33 | const Float32Bits kF32Magic = {.u: 113 << kF32MantiBits}; |
| 34 | const uint32_t kF32HalfExpAdjust = (127 - 15) << kF32MantiBits; |
| 35 | |
| 36 | // Constructs the 16 bit representation for a half precision value from a float |
| 37 | // value. This implementation is adapted from Eigen. |
| 38 | uint16_t float2half(float floatValue) { |
| 39 | const Float32Bits inf = {.u: 255 << kF32MantiBits}; |
| 40 | const Float32Bits f16max = {.u: (127 + 16) << kF32MantiBits}; |
| 41 | const Float32Bits denormMagic = {.u: ((127 - 15) + (kF32MantiBits - 10) + 1) |
| 42 | << kF32MantiBits}; |
| 43 | uint32_t signMask = 0x80000000u; |
| 44 | uint16_t halfValue = static_cast<uint16_t>(0x0u); |
| 45 | Float32Bits f; |
| 46 | f.f = floatValue; |
| 47 | uint32_t sign = f.u & signMask; |
| 48 | f.u ^= sign; |
| 49 | |
| 50 | if (f.u >= f16max.u) { |
| 51 | const uint32_t halfQnan = 0x7e00; |
| 52 | const uint32_t halfInf = 0x7c00; |
| 53 | // Inf or NaN (all exponent bits set). |
| 54 | halfValue = (f.u > inf.u) ? halfQnan : halfInf; // NaN->qNaN and Inf->Inf |
| 55 | } else { |
| 56 | // (De)normalized number or zero. |
| 57 | if (f.u < kF32Magic.u) { |
| 58 | // The resulting FP16 is subnormal or zero. |
| 59 | // |
| 60 | // Use a magic value to align our 10 mantissa bits at the bottom of the |
| 61 | // float. As long as FP addition is round-to-nearest-even this works. |
| 62 | f.f += denormMagic.f; |
| 63 | |
| 64 | halfValue = static_cast<uint16_t>(f.u - denormMagic.u); |
| 65 | } else { |
| 66 | uint32_t mantOdd = |
| 67 | (f.u >> kF32HalfMantiBitDiff) & 1; // Resulting mantissa is odd. |
| 68 | |
| 69 | // Update exponent, rounding bias part 1. The following expressions are |
| 70 | // equivalent to `f.u += ((unsigned int)(15 - 127) << kF32MantiBits) + |
| 71 | // 0xfff`, but without arithmetic overflow. |
| 72 | f.u += 0xc8000fffU; |
| 73 | // Rounding bias part 2. |
| 74 | f.u += mantOdd; |
| 75 | halfValue = static_cast<uint16_t>(f.u >> kF32HalfMantiBitDiff); |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | halfValue |= static_cast<uint16_t>(sign >> kF32HalfBitDiff); |
| 80 | return halfValue; |
| 81 | } |
| 82 | |
| 83 | // Converts the 16 bit representation of a half precision value to a float |
| 84 | // value. This implementation is adapted from Eigen. |
| 85 | float half2float(uint16_t halfValue) { |
| 86 | const uint32_t shiftedExp = |
| 87 | 0x7c00 << kF32HalfMantiBitDiff; // Exponent mask after shift. |
| 88 | |
| 89 | // Initialize the float representation with the exponent/mantissa bits. |
| 90 | Float32Bits f = { |
| 91 | .u: static_cast<uint32_t>((halfValue & 0x7fff) << kF32HalfMantiBitDiff)}; |
| 92 | const uint32_t exp = shiftedExp & f.u; |
| 93 | f.u += kF32HalfExpAdjust; // Adjust the exponent |
| 94 | |
| 95 | // Handle exponent special cases. |
| 96 | if (exp == shiftedExp) { |
| 97 | // Inf/NaN |
| 98 | f.u += kF32HalfExpAdjust; |
| 99 | } else if (exp == 0) { |
| 100 | // Zero/Denormal? |
| 101 | f.u += 1 << kF32MantiBits; |
| 102 | f.f -= kF32Magic.f; |
| 103 | } |
| 104 | |
| 105 | f.u |= (halfValue & 0x8000) << kF32HalfBitDiff; // Sign bit. |
| 106 | return f.f; |
| 107 | } |
| 108 | |
| 109 | const uint32_t kF32BfMantiBitDiff = 16; |
| 110 | |
| 111 | // Constructs the 16 bit representation for a bfloat value from a float value. |
| 112 | // This implementation is adapted from Eigen. |
| 113 | uint16_t float2bfloat(float floatValue) { |
| 114 | if (std::isnan(x: floatValue)) |
| 115 | return std::signbit(x: floatValue) ? 0xFFC0 : 0x7FC0; |
| 116 | |
| 117 | Float32Bits floatBits; |
| 118 | floatBits.f = floatValue; |
| 119 | uint16_t bfloatBits; |
| 120 | |
| 121 | // Least significant bit of resulting bfloat. |
| 122 | uint32_t lsb = (floatBits.u >> kF32BfMantiBitDiff) & 1; |
| 123 | uint32_t roundingBias = 0x7fff + lsb; |
| 124 | floatBits.u += roundingBias; |
| 125 | bfloatBits = static_cast<uint16_t>(floatBits.u >> kF32BfMantiBitDiff); |
| 126 | return bfloatBits; |
| 127 | } |
| 128 | |
| 129 | // Converts the 16 bit representation of a bfloat value to a float value. This |
| 130 | // implementation is adapted from Eigen. |
| 131 | float bfloat2float(uint16_t bfloatBits) { |
| 132 | Float32Bits floatBits; |
| 133 | floatBits.u = static_cast<uint32_t>(bfloatBits) << kF32BfMantiBitDiff; |
| 134 | return floatBits.f; |
| 135 | } |
| 136 | |
| 137 | } // namespace |
| 138 | |
| 139 | f16::f16(float f) : bits(float2half(floatValue: f)) {} |
| 140 | |
| 141 | bf16::bf16(float f) : bits(float2bfloat(floatValue: f)) {} |
| 142 | |
| 143 | std::ostream &operator<<(std::ostream &os, const f16 &f) { |
| 144 | os << half2float(halfValue: f.bits); |
| 145 | return os; |
| 146 | } |
| 147 | |
| 148 | std::ostream &operator<<(std::ostream &os, const bf16 &d) { |
| 149 | os << bfloat2float(bfloatBits: d.bits); |
| 150 | return os; |
| 151 | } |
| 152 | |
| 153 | bool operator==(const f16 &f1, const f16 &f2) { return f1.bits == f2.bits; } |
| 154 | |
| 155 | bool operator==(const bf16 &f1, const bf16 &f2) { return f1.bits == f2.bits; } |
| 156 | |
| 157 | // Mark these symbols as weak so they don't conflict when compiler-rt also |
| 158 | // defines them. |
| 159 | #define ATTR_WEAK |
| 160 | #ifdef __has_attribute |
| 161 | #if __has_attribute(weak) && !defined(__MINGW32__) && !defined(__CYGWIN__) && \ |
| 162 | !defined(_WIN32) |
| 163 | #undef ATTR_WEAK |
| 164 | #define ATTR_WEAK __attribute__((__weak__)) |
| 165 | #endif |
| 166 | #endif |
| 167 | |
| 168 | #if defined(__x86_64__) || defined(_M_X64) |
| 169 | // On x86 bfloat16 is passed in SSE registers. Since both float and __bf16 |
| 170 | // are passed in the same register we can use the wider type and careful casting |
| 171 | // to conform to x86_64 psABI. This only works with the assumption that we're |
| 172 | // dealing with little-endian values passed in wider registers. |
| 173 | // Ideally this would directly use __bf16, but that type isn't supported by all |
| 174 | // compilers. |
| 175 | using BF16ABIType = float; |
| 176 | #else |
| 177 | // Default to uint16_t if we have nothing else. |
| 178 | using BF16ABIType = uint16_t; |
| 179 | #endif |
| 180 | |
| 181 | // Provide a float->bfloat conversion routine in case the runtime doesn't have |
| 182 | // one. |
| 183 | extern "C" BF16ABIType ATTR_WEAK __truncsfbf2(float f) { |
| 184 | uint16_t bf = float2bfloat(floatValue: f); |
| 185 | // The output can be a float type, bitcast it from uint16_t. |
| 186 | BF16ABIType ret = 0; |
| 187 | std::memcpy(dest: &ret, src: &bf, n: sizeof(bf)); |
| 188 | return ret; |
| 189 | } |
| 190 | |
| 191 | // Provide a double->bfloat conversion routine in case the runtime doesn't have |
| 192 | // one. |
| 193 | extern "C" BF16ABIType ATTR_WEAK __truncdfbf2(double d) { |
| 194 | // This does a double rounding step, but it's precise enough for our use |
| 195 | // cases. |
| 196 | return __truncsfbf2(f: static_cast<float>(d)); |
| 197 | } |
| 198 | |
| 199 | // Provide these to the CRunner with the local float16 knowledge. |
| 200 | extern "C" void printF16(uint16_t bits) { |
| 201 | f16 f; |
| 202 | std::memcpy(dest: &f, src: &bits, n: sizeof(f16)); |
| 203 | std::cout << f; |
| 204 | } |
| 205 | extern "C" void printBF16(uint16_t bits) { |
| 206 | bf16 f; |
| 207 | std::memcpy(dest: &f, src: &bits, n: sizeof(bf16)); |
| 208 | std::cout << f; |
| 209 | } |
| 210 | |
| 211 | #endif // MLIR_FLOAT16_DEFINE_FUNCTIONS |
| 212 | |