| 1 | //===- ReductionNode.cpp - Reduction Node Implementation -----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the reduction nodes which are used to track of the |
| 10 | // metadata for a specific generated variant within a reduction pass and are the |
| 11 | // building blocks of the reduction tree structure. A reduction tree is used to |
| 12 | // keep track of the different generated variants throughout a reduction pass in |
| 13 | // the MLIR Reduce tool. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "mlir/Reducer/ReductionNode.h" |
| 18 | #include "mlir/IR/IRMapping.h" |
| 19 | #include "llvm/ADT/STLExtras.h" |
| 20 | |
| 21 | #include <algorithm> |
| 22 | #include <limits> |
| 23 | |
| 24 | using namespace mlir; |
| 25 | |
| 26 | ReductionNode::ReductionNode( |
| 27 | ReductionNode *parentNode, const std::vector<Range> &ranges, |
| 28 | llvm::SpecificBumpPtrAllocator<ReductionNode> &allocator) |
| 29 | /// Root node will have the parent pointer point to themselves. |
| 30 | : parent(parentNode == nullptr ? this : parentNode), |
| 31 | size(std::numeric_limits<size_t>::max()), ranges(ranges), |
| 32 | startRanges(ranges), allocator(allocator) { |
| 33 | if (parent != this) |
| 34 | if (failed(Result: initialize(parent->getModule(), parent->getRegion()))) |
| 35 | llvm_unreachable("unexpected initialization failure" ); |
| 36 | } |
| 37 | |
| 38 | LogicalResult ReductionNode::initialize(ModuleOp parentModule, |
| 39 | Region &targetRegion) { |
| 40 | // Use the mapper help us find the corresponding region after module clone. |
| 41 | IRMapping mapper; |
| 42 | module = cast<ModuleOp>(parentModule->clone(mapper)); |
| 43 | // Use the first block of targetRegion to locate the cloned region. |
| 44 | Block *block = mapper.lookup(from: &*targetRegion.begin()); |
| 45 | region = block->getParent(); |
| 46 | return success(); |
| 47 | } |
| 48 | |
| 49 | /// If we haven't explored any variants from this node, we will create N |
| 50 | /// variants, N is the length of `ranges` if N > 1. Otherwise, we will split the |
| 51 | /// max element in `ranges` and create 2 new variants for each call. |
| 52 | ArrayRef<ReductionNode *> ReductionNode::generateNewVariants() { |
| 53 | int oldNumVariant = getVariants().size(); |
| 54 | |
| 55 | auto createNewNode = [this](const std::vector<Range> &ranges) { |
| 56 | return new (allocator.Allocate()) ReductionNode(this, ranges, allocator); |
| 57 | }; |
| 58 | |
| 59 | // If we haven't created new variant, then we can create varients by removing |
| 60 | // each of them respectively. For example, given {{1, 3}, {4, 9}}, we can |
| 61 | // produce variants with range {{1, 3}} and {{4, 9}}. |
| 62 | if (variants.empty() && getRanges().size() > 1) { |
| 63 | for (const Range &range : getRanges()) { |
| 64 | std::vector<Range> subRanges = getRanges(); |
| 65 | llvm::erase(C&: subRanges, V: range); |
| 66 | variants.push_back(x: createNewNode(subRanges)); |
| 67 | } |
| 68 | |
| 69 | return getVariants().drop_front(N: oldNumVariant); |
| 70 | } |
| 71 | |
| 72 | // At here, we have created the type of variants mentioned above. We would |
| 73 | // like to split the max range into 2 to create 2 new variants. Continue on |
| 74 | // the above example, we split the range {4, 9} into {4, 6}, {6, 9}, and |
| 75 | // create two variants with range {{1, 3}, {4, 6}} and {{1, 3}, {6, 9}}. The |
| 76 | // final ranges vector will be {{1, 3}, {4, 6}, {6, 9}}. |
| 77 | auto maxElement = |
| 78 | llvm::max_element(Range&: ranges, C: [](const Range &lhs, const Range &rhs) { |
| 79 | return (lhs.second - lhs.first) > (rhs.second - rhs.first); |
| 80 | }); |
| 81 | |
| 82 | // The length of range is less than 1, we can't split it to create new |
| 83 | // variant. |
| 84 | if (maxElement->second - maxElement->first <= 1) |
| 85 | return {}; |
| 86 | |
| 87 | Range maxRange = *maxElement; |
| 88 | std::vector<Range> subRanges = getRanges(); |
| 89 | auto subRangesIter = subRanges.begin() + (maxElement - ranges.begin()); |
| 90 | int half = (maxRange.first + maxRange.second) / 2; |
| 91 | *subRangesIter = std::make_pair(x&: maxRange.first, y&: half); |
| 92 | variants.push_back(x: createNewNode(subRanges)); |
| 93 | *subRangesIter = std::make_pair(x&: half, y&: maxRange.second); |
| 94 | variants.push_back(x: createNewNode(subRanges)); |
| 95 | |
| 96 | auto it = ranges.insert(position: maxElement, x: std::make_pair(x&: half, y&: maxRange.second)); |
| 97 | it = ranges.insert(position: it, x: std::make_pair(x&: maxRange.first, y&: half)); |
| 98 | // Remove the range that has been split. |
| 99 | ranges.erase(position: it + 2); |
| 100 | |
| 101 | return getVariants().drop_front(N: oldNumVariant); |
| 102 | } |
| 103 | |
| 104 | void ReductionNode::update(std::pair<Tester::Interestingness, size_t> result) { |
| 105 | std::tie(args&: interesting, args&: size) = result; |
| 106 | // After applying reduction, the number of operation in the region may have |
| 107 | // changed. Non-interesting case won't be explored thus it's safe to keep it |
| 108 | // in a stale status. |
| 109 | if (interesting == Tester::Interestingness::True) { |
| 110 | // This module may has been updated. Reset the range. |
| 111 | ranges.clear(); |
| 112 | ranges.emplace_back(args: 0, args: std::distance(first: region->op_begin(), last: region->op_end())); |
| 113 | } else { |
| 114 | // Release the uninteresting module to save some memory. |
| 115 | module.release()->erase(); |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | ArrayRef<ReductionNode *> |
| 120 | ReductionNode::iterator<SinglePath>::getNeighbors(ReductionNode *node) { |
| 121 | // Single Path: Traverses the smallest successful variant at each level until |
| 122 | // no new successful variants can be created at that level. |
| 123 | ArrayRef<ReductionNode *> variantsFromParent = |
| 124 | node->getParent()->getVariants(); |
| 125 | |
| 126 | // The parent node created several variants and they may be waiting for |
| 127 | // examing interestingness. In Single Path approach, we will select the |
| 128 | // smallest variant to continue our exploration. Thus we should wait until the |
| 129 | // last variant to be examed then do the following traversal decision. |
| 130 | if (!llvm::all_of(Range&: variantsFromParent, P: [](ReductionNode *node) { |
| 131 | return node->isInteresting() != Tester::Interestingness::Untested; |
| 132 | })) { |
| 133 | return {}; |
| 134 | } |
| 135 | |
| 136 | ReductionNode *smallest = nullptr; |
| 137 | for (ReductionNode *node : variantsFromParent) { |
| 138 | if (node->isInteresting() != Tester::Interestingness::True) |
| 139 | continue; |
| 140 | if (smallest == nullptr || node->getSize() < smallest->getSize()) |
| 141 | smallest = node; |
| 142 | } |
| 143 | |
| 144 | if (smallest != nullptr && |
| 145 | smallest->getSize() < node->getParent()->getSize()) { |
| 146 | // We got a smallest one, keep traversing from this node. |
| 147 | node = smallest; |
| 148 | } else { |
| 149 | // None of these variants is interesting, let the parent node to generate |
| 150 | // more variants. |
| 151 | node = node->getParent(); |
| 152 | } |
| 153 | |
| 154 | return node->generateNewVariants(); |
| 155 | } |
| 156 | |