1 | //===- ReductionNode.cpp - Reduction Node Implementation -----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the reduction nodes which are used to track of the |
10 | // metadata for a specific generated variant within a reduction pass and are the |
11 | // building blocks of the reduction tree structure. A reduction tree is used to |
12 | // keep track of the different generated variants throughout a reduction pass in |
13 | // the MLIR Reduce tool. |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "mlir/Reducer/ReductionNode.h" |
18 | #include "mlir/IR/IRMapping.h" |
19 | #include "llvm/ADT/STLExtras.h" |
20 | |
21 | #include <algorithm> |
22 | #include <limits> |
23 | |
24 | using namespace mlir; |
25 | |
26 | ReductionNode::ReductionNode( |
27 | ReductionNode *parentNode, const std::vector<Range> &ranges, |
28 | llvm::SpecificBumpPtrAllocator<ReductionNode> &allocator) |
29 | /// Root node will have the parent pointer point to themselves. |
30 | : parent(parentNode == nullptr ? this : parentNode), |
31 | size(std::numeric_limits<size_t>::max()), ranges(ranges), |
32 | startRanges(ranges), allocator(allocator) { |
33 | if (parent != this) |
34 | if (failed(initialize(parentModule: parent->getModule(), parentRegion&: parent->getRegion()))) |
35 | llvm_unreachable("unexpected initialization failure" ); |
36 | } |
37 | |
38 | LogicalResult ReductionNode::initialize(ModuleOp parentModule, |
39 | Region &targetRegion) { |
40 | // Use the mapper help us find the corresponding region after module clone. |
41 | IRMapping mapper; |
42 | module = cast<ModuleOp>(parentModule->clone(mapper)); |
43 | // Use the first block of targetRegion to locate the cloned region. |
44 | Block *block = mapper.lookup(from: &*targetRegion.begin()); |
45 | region = block->getParent(); |
46 | return success(); |
47 | } |
48 | |
49 | /// If we haven't explored any variants from this node, we will create N |
50 | /// variants, N is the length of `ranges` if N > 1. Otherwise, we will split the |
51 | /// max element in `ranges` and create 2 new variants for each call. |
52 | ArrayRef<ReductionNode *> ReductionNode::generateNewVariants() { |
53 | int oldNumVariant = getVariants().size(); |
54 | |
55 | auto createNewNode = [this](const std::vector<Range> &ranges) { |
56 | return new (allocator.Allocate()) ReductionNode(this, ranges, allocator); |
57 | }; |
58 | |
59 | // If we haven't created new variant, then we can create varients by removing |
60 | // each of them respectively. For example, given {{1, 3}, {4, 9}}, we can |
61 | // produce variants with range {{1, 3}} and {{4, 9}}. |
62 | if (variants.empty() && getRanges().size() > 1) { |
63 | for (const Range &range : getRanges()) { |
64 | std::vector<Range> subRanges = getRanges(); |
65 | llvm::erase(C&: subRanges, V: range); |
66 | variants.push_back(x: createNewNode(subRanges)); |
67 | } |
68 | |
69 | return getVariants().drop_front(N: oldNumVariant); |
70 | } |
71 | |
72 | // At here, we have created the type of variants mentioned above. We would |
73 | // like to split the max range into 2 to create 2 new variants. Continue on |
74 | // the above example, we split the range {4, 9} into {4, 6}, {6, 9}, and |
75 | // create two variants with range {{1, 3}, {4, 6}} and {{1, 3}, {6, 9}}. The |
76 | // final ranges vector will be {{1, 3}, {4, 6}, {6, 9}}. |
77 | auto maxElement = |
78 | llvm::max_element(Range&: ranges, C: [](const Range &lhs, const Range &rhs) { |
79 | return (lhs.second - lhs.first) > (rhs.second - rhs.first); |
80 | }); |
81 | |
82 | // The length of range is less than 1, we can't split it to create new |
83 | // variant. |
84 | if (maxElement->second - maxElement->first <= 1) |
85 | return {}; |
86 | |
87 | Range maxRange = *maxElement; |
88 | std::vector<Range> subRanges = getRanges(); |
89 | auto subRangesIter = subRanges.begin() + (maxElement - ranges.begin()); |
90 | int half = (maxRange.first + maxRange.second) / 2; |
91 | *subRangesIter = std::make_pair(x&: maxRange.first, y&: half); |
92 | variants.push_back(x: createNewNode(subRanges)); |
93 | *subRangesIter = std::make_pair(x&: half, y&: maxRange.second); |
94 | variants.push_back(x: createNewNode(subRanges)); |
95 | |
96 | auto it = ranges.insert(position: maxElement, x: std::make_pair(x&: half, y&: maxRange.second)); |
97 | it = ranges.insert(position: it, x: std::make_pair(x&: maxRange.first, y&: half)); |
98 | // Remove the range that has been split. |
99 | ranges.erase(position: it + 2); |
100 | |
101 | return getVariants().drop_front(N: oldNumVariant); |
102 | } |
103 | |
104 | void ReductionNode::update(std::pair<Tester::Interestingness, size_t> result) { |
105 | std::tie(args&: interesting, args&: size) = result; |
106 | // After applying reduction, the number of operation in the region may have |
107 | // changed. Non-interesting case won't be explored thus it's safe to keep it |
108 | // in a stale status. |
109 | if (interesting == Tester::Interestingness::True) { |
110 | // This module may has been updated. Reset the range. |
111 | ranges.clear(); |
112 | ranges.emplace_back(args: 0, args: std::distance(first: region->op_begin(), last: region->op_end())); |
113 | } else { |
114 | // Release the uninteresting module to save some memory. |
115 | module.release()->erase(); |
116 | } |
117 | } |
118 | |
119 | ArrayRef<ReductionNode *> |
120 | ReductionNode::iterator<SinglePath>::getNeighbors(ReductionNode *node) { |
121 | // Single Path: Traverses the smallest successful variant at each level until |
122 | // no new successful variants can be created at that level. |
123 | ArrayRef<ReductionNode *> variantsFromParent = |
124 | node->getParent()->getVariants(); |
125 | |
126 | // The parent node created several variants and they may be waiting for |
127 | // examing interestingness. In Single Path approach, we will select the |
128 | // smallest variant to continue our exploration. Thus we should wait until the |
129 | // last variant to be examed then do the following traversal decision. |
130 | if (!llvm::all_of(Range&: variantsFromParent, P: [](ReductionNode *node) { |
131 | return node->isInteresting() != Tester::Interestingness::Untested; |
132 | })) { |
133 | return {}; |
134 | } |
135 | |
136 | ReductionNode *smallest = nullptr; |
137 | for (ReductionNode *node : variantsFromParent) { |
138 | if (node->isInteresting() != Tester::Interestingness::True) |
139 | continue; |
140 | if (smallest == nullptr || node->getSize() < smallest->getSize()) |
141 | smallest = node; |
142 | } |
143 | |
144 | if (smallest != nullptr && |
145 | smallest->getSize() < node->getParent()->getSize()) { |
146 | // We got a smallest one, keep traversing from this node. |
147 | node = smallest; |
148 | } else { |
149 | // None of these variants is interesting, let the parent node to generate |
150 | // more variants. |
151 | node = node->getParent(); |
152 | } |
153 | |
154 | return node->generateNewVariants(); |
155 | } |
156 | |