1 | //===----RTLs/cuda/src/rtl.cpp - Target RTLs Implementation ------- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // RTL NextGen for CUDA machine |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include <cassert> |
14 | #include <cstddef> |
15 | #include <cuda.h> |
16 | #include <string> |
17 | #include <unordered_map> |
18 | |
19 | #include "Shared/Debug.h" |
20 | #include "Shared/Environment.h" |
21 | |
22 | #include "GlobalHandler.h" |
23 | #include "OpenMP/OMPT/Callback.h" |
24 | #include "PluginInterface.h" |
25 | #include "Utils/ELF.h" |
26 | |
27 | #include "llvm/BinaryFormat/ELF.h" |
28 | #include "llvm/Frontend/OpenMP/OMPConstants.h" |
29 | #include "llvm/Frontend/OpenMP/OMPGridValues.h" |
30 | #include "llvm/Support/Error.h" |
31 | #include "llvm/Support/FileOutputBuffer.h" |
32 | #include "llvm/Support/FileSystem.h" |
33 | #include "llvm/Support/Program.h" |
34 | |
35 | namespace llvm { |
36 | namespace omp { |
37 | namespace target { |
38 | namespace plugin { |
39 | |
40 | /// Forward declarations for all specialized data structures. |
41 | struct CUDAKernelTy; |
42 | struct CUDADeviceTy; |
43 | struct CUDAPluginTy; |
44 | |
45 | #if (defined(CUDA_VERSION) && (CUDA_VERSION < 11000)) |
46 | /// Forward declarations for all Virtual Memory Management |
47 | /// related data structures and functions. This is necessary |
48 | /// for older cuda versions. |
49 | typedef void *CUmemGenericAllocationHandle; |
50 | typedef void *CUmemAllocationProp; |
51 | typedef void *CUmemAccessDesc; |
52 | typedef void *CUmemAllocationGranularity_flags; |
53 | CUresult cuMemAddressReserve(CUdeviceptr *ptr, size_t size, size_t alignment, |
54 | CUdeviceptr addr, unsigned long long flags) {} |
55 | CUresult cuMemMap(CUdeviceptr ptr, size_t size, size_t offset, |
56 | CUmemGenericAllocationHandle handle, |
57 | unsigned long long flags) {} |
58 | CUresult cuMemCreate(CUmemGenericAllocationHandle *handle, size_t size, |
59 | const CUmemAllocationProp *prop, |
60 | unsigned long long flags) {} |
61 | CUresult cuMemSetAccess(CUdeviceptr ptr, size_t size, |
62 | const CUmemAccessDesc *desc, size_t count) {} |
63 | CUresult |
64 | cuMemGetAllocationGranularity(size_t *granularity, |
65 | const CUmemAllocationProp *prop, |
66 | CUmemAllocationGranularity_flags option) {} |
67 | #endif |
68 | |
69 | #if (defined(CUDA_VERSION) && (CUDA_VERSION < 11020)) |
70 | // Forward declarations of asynchronous memory management functions. This is |
71 | // necessary for older versions of CUDA. |
72 | CUresult cuMemAllocAsync(CUdeviceptr *ptr, size_t, CUstream) { *ptr = 0; } |
73 | |
74 | CUresult cuMemFreeAsync(CUdeviceptr dptr, CUstream hStream) {} |
75 | #endif |
76 | |
77 | /// Class implementing the CUDA device images properties. |
78 | struct CUDADeviceImageTy : public DeviceImageTy { |
79 | /// Create the CUDA image with the id and the target image pointer. |
80 | CUDADeviceImageTy(int32_t ImageId, GenericDeviceTy &Device, |
81 | const __tgt_device_image *TgtImage) |
82 | : DeviceImageTy(ImageId, Device, TgtImage), Module(nullptr) {} |
83 | |
84 | /// Load the image as a CUDA module. |
85 | Error loadModule() { |
86 | assert(!Module && "Module already loaded" ); |
87 | |
88 | CUresult Res = cuModuleLoadDataEx(&Module, getStart(), 0, nullptr, nullptr); |
89 | if (auto Err = Plugin::check(Res, "Error in cuModuleLoadDataEx: %s" )) |
90 | return Err; |
91 | |
92 | return Plugin::success(); |
93 | } |
94 | |
95 | /// Unload the CUDA module corresponding to the image. |
96 | Error unloadModule() { |
97 | assert(Module && "Module not loaded" ); |
98 | |
99 | CUresult Res = cuModuleUnload(Module); |
100 | if (auto Err = Plugin::check(Res, "Error in cuModuleUnload: %s" )) |
101 | return Err; |
102 | |
103 | Module = nullptr; |
104 | |
105 | return Plugin::success(); |
106 | } |
107 | |
108 | /// Getter of the CUDA module. |
109 | CUmodule getModule() const { return Module; } |
110 | |
111 | private: |
112 | /// The CUDA module that loaded the image. |
113 | CUmodule Module; |
114 | }; |
115 | |
116 | /// Class implementing the CUDA kernel functionalities which derives from the |
117 | /// generic kernel class. |
118 | struct CUDAKernelTy : public GenericKernelTy { |
119 | /// Create a CUDA kernel with a name and an execution mode. |
120 | CUDAKernelTy(const char *Name) : GenericKernelTy(Name), Func(nullptr) {} |
121 | |
122 | /// Initialize the CUDA kernel. |
123 | Error initImpl(GenericDeviceTy &GenericDevice, |
124 | DeviceImageTy &Image) override { |
125 | CUresult Res; |
126 | CUDADeviceImageTy &CUDAImage = static_cast<CUDADeviceImageTy &>(Image); |
127 | |
128 | // Retrieve the function pointer of the kernel. |
129 | Res = cuModuleGetFunction(&Func, CUDAImage.getModule(), getName()); |
130 | if (auto Err = Plugin::check(Res, "Error in cuModuleGetFunction('%s'): %s" , |
131 | getName())) |
132 | return Err; |
133 | |
134 | // Check that the function pointer is valid. |
135 | if (!Func) |
136 | return Plugin::error("Invalid function for kernel %s" , getName()); |
137 | |
138 | int MaxThreads; |
139 | Res = cuFuncGetAttribute(&MaxThreads, |
140 | CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK, Func); |
141 | if (auto Err = Plugin::check(Res, "Error in cuFuncGetAttribute: %s" )) |
142 | return Err; |
143 | |
144 | // The maximum number of threads cannot exceed the maximum of the kernel. |
145 | MaxNumThreads = std::min(MaxNumThreads, (uint32_t)MaxThreads); |
146 | |
147 | return Plugin::success(); |
148 | } |
149 | |
150 | /// Launch the CUDA kernel function. |
151 | Error launchImpl(GenericDeviceTy &GenericDevice, uint32_t NumThreads, |
152 | uint64_t NumBlocks, KernelArgsTy &KernelArgs, void *Args, |
153 | AsyncInfoWrapperTy &AsyncInfoWrapper) const override; |
154 | |
155 | private: |
156 | /// The CUDA kernel function to execute. |
157 | CUfunction Func; |
158 | }; |
159 | |
160 | /// Class wrapping a CUDA stream reference. These are the objects handled by the |
161 | /// Stream Manager for the CUDA plugin. |
162 | struct CUDAStreamRef final : public GenericDeviceResourceRef { |
163 | /// The underlying handle type for streams. |
164 | using HandleTy = CUstream; |
165 | |
166 | /// Create an empty reference to an invalid stream. |
167 | CUDAStreamRef() : Stream(nullptr) {} |
168 | |
169 | /// Create a reference to an existing stream. |
170 | CUDAStreamRef(HandleTy Stream) : Stream(Stream) {} |
171 | |
172 | /// Create a new stream and save the reference. The reference must be empty |
173 | /// before calling to this function. |
174 | Error create(GenericDeviceTy &Device) override { |
175 | if (Stream) |
176 | return Plugin::error("Creating an existing stream" ); |
177 | |
178 | CUresult Res = cuStreamCreate(&Stream, CU_STREAM_NON_BLOCKING); |
179 | if (auto Err = Plugin::check(Res, "Error in cuStreamCreate: %s" )) |
180 | return Err; |
181 | |
182 | return Plugin::success(); |
183 | } |
184 | |
185 | /// Destroy the referenced stream and invalidate the reference. The reference |
186 | /// must be to a valid stream before calling to this function. |
187 | Error destroy(GenericDeviceTy &Device) override { |
188 | if (!Stream) |
189 | return Plugin::error("Destroying an invalid stream" ); |
190 | |
191 | CUresult Res = cuStreamDestroy(Stream); |
192 | if (auto Err = Plugin::check(Res, "Error in cuStreamDestroy: %s" )) |
193 | return Err; |
194 | |
195 | Stream = nullptr; |
196 | return Plugin::success(); |
197 | } |
198 | |
199 | /// Get the underlying CUDA stream. |
200 | operator HandleTy() const { return Stream; } |
201 | |
202 | private: |
203 | /// The reference to the CUDA stream. |
204 | HandleTy Stream; |
205 | }; |
206 | |
207 | /// Class wrapping a CUDA event reference. These are the objects handled by the |
208 | /// Event Manager for the CUDA plugin. |
209 | struct CUDAEventRef final : public GenericDeviceResourceRef { |
210 | /// The underlying handle type for events. |
211 | using HandleTy = CUevent; |
212 | |
213 | /// Create an empty reference to an invalid event. |
214 | CUDAEventRef() : Event(nullptr) {} |
215 | |
216 | /// Create a reference to an existing event. |
217 | CUDAEventRef(HandleTy Event) : Event(Event) {} |
218 | |
219 | /// Create a new event and save the reference. The reference must be empty |
220 | /// before calling to this function. |
221 | Error create(GenericDeviceTy &Device) override { |
222 | if (Event) |
223 | return Plugin::error("Creating an existing event" ); |
224 | |
225 | CUresult Res = cuEventCreate(&Event, CU_EVENT_DEFAULT); |
226 | if (auto Err = Plugin::check(Res, "Error in cuEventCreate: %s" )) |
227 | return Err; |
228 | |
229 | return Plugin::success(); |
230 | } |
231 | |
232 | /// Destroy the referenced event and invalidate the reference. The reference |
233 | /// must be to a valid event before calling to this function. |
234 | Error destroy(GenericDeviceTy &Device) override { |
235 | if (!Event) |
236 | return Plugin::error("Destroying an invalid event" ); |
237 | |
238 | CUresult Res = cuEventDestroy(Event); |
239 | if (auto Err = Plugin::check(Res, "Error in cuEventDestroy: %s" )) |
240 | return Err; |
241 | |
242 | Event = nullptr; |
243 | return Plugin::success(); |
244 | } |
245 | |
246 | /// Get the underlying CUevent. |
247 | operator HandleTy() const { return Event; } |
248 | |
249 | private: |
250 | /// The reference to the CUDA event. |
251 | HandleTy Event; |
252 | }; |
253 | |
254 | /// Class implementing the CUDA device functionalities which derives from the |
255 | /// generic device class. |
256 | struct CUDADeviceTy : public GenericDeviceTy { |
257 | // Create a CUDA device with a device id and the default CUDA grid values. |
258 | CUDADeviceTy(GenericPluginTy &Plugin, int32_t DeviceId, int32_t NumDevices) |
259 | : GenericDeviceTy(Plugin, DeviceId, NumDevices, NVPTXGridValues), |
260 | CUDAStreamManager(*this), CUDAEventManager(*this) {} |
261 | |
262 | ~CUDADeviceTy() {} |
263 | |
264 | /// Initialize the device, its resources and get its properties. |
265 | Error initImpl(GenericPluginTy &Plugin) override { |
266 | CUresult Res = cuDeviceGet(&Device, DeviceId); |
267 | if (auto Err = Plugin::check(Res, "Error in cuDeviceGet: %s" )) |
268 | return Err; |
269 | |
270 | // Query the current flags of the primary context and set its flags if |
271 | // it is inactive. |
272 | unsigned int FormerPrimaryCtxFlags = 0; |
273 | int FormerPrimaryCtxIsActive = 0; |
274 | Res = cuDevicePrimaryCtxGetState(Device, &FormerPrimaryCtxFlags, |
275 | &FormerPrimaryCtxIsActive); |
276 | if (auto Err = |
277 | Plugin::check(Res, "Error in cuDevicePrimaryCtxGetState: %s" )) |
278 | return Err; |
279 | |
280 | if (FormerPrimaryCtxIsActive) { |
281 | INFO(OMP_INFOTYPE_PLUGIN_KERNEL, DeviceId, |
282 | "The primary context is active, no change to its flags\n" ); |
283 | if ((FormerPrimaryCtxFlags & CU_CTX_SCHED_MASK) != |
284 | CU_CTX_SCHED_BLOCKING_SYNC) |
285 | INFO(OMP_INFOTYPE_PLUGIN_KERNEL, DeviceId, |
286 | "Warning: The current flags are not CU_CTX_SCHED_BLOCKING_SYNC\n" ); |
287 | } else { |
288 | INFO(OMP_INFOTYPE_PLUGIN_KERNEL, DeviceId, |
289 | "The primary context is inactive, set its flags to " |
290 | "CU_CTX_SCHED_BLOCKING_SYNC\n" ); |
291 | Res = cuDevicePrimaryCtxSetFlags(Device, CU_CTX_SCHED_BLOCKING_SYNC); |
292 | if (auto Err = |
293 | Plugin::check(Res, "Error in cuDevicePrimaryCtxSetFlags: %s" )) |
294 | return Err; |
295 | } |
296 | |
297 | // Retain the per device primary context and save it to use whenever this |
298 | // device is selected. |
299 | Res = cuDevicePrimaryCtxRetain(&Context, Device); |
300 | if (auto Err = Plugin::check(Res, "Error in cuDevicePrimaryCtxRetain: %s" )) |
301 | return Err; |
302 | |
303 | if (auto Err = setContext()) |
304 | return Err; |
305 | |
306 | // Initialize stream pool. |
307 | if (auto Err = CUDAStreamManager.init(OMPX_InitialNumStreams)) |
308 | return Err; |
309 | |
310 | // Initialize event pool. |
311 | if (auto Err = CUDAEventManager.init(OMPX_InitialNumEvents)) |
312 | return Err; |
313 | |
314 | // Query attributes to determine number of threads/block and blocks/grid. |
315 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, |
316 | GridValues.GV_Max_Teams)) |
317 | return Err; |
318 | |
319 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, |
320 | GridValues.GV_Max_WG_Size)) |
321 | return Err; |
322 | |
323 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_WARP_SIZE, |
324 | GridValues.GV_Warp_Size)) |
325 | return Err; |
326 | |
327 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, |
328 | ComputeCapability.Major)) |
329 | return Err; |
330 | |
331 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, |
332 | ComputeCapability.Minor)) |
333 | return Err; |
334 | |
335 | uint32_t NumMuliprocessors = 0; |
336 | uint32_t MaxThreadsPerSM = 0; |
337 | uint32_t WarpSize = 0; |
338 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, |
339 | NumMuliprocessors)) |
340 | return Err; |
341 | if (auto Err = |
342 | getDeviceAttr(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR, |
343 | MaxThreadsPerSM)) |
344 | return Err; |
345 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_WARP_SIZE, WarpSize)) |
346 | return Err; |
347 | HardwareParallelism = NumMuliprocessors * (MaxThreadsPerSM / WarpSize); |
348 | |
349 | return Plugin::success(); |
350 | } |
351 | |
352 | /// Deinitialize the device and release its resources. |
353 | Error deinitImpl() override { |
354 | if (Context) { |
355 | if (auto Err = setContext()) |
356 | return Err; |
357 | } |
358 | |
359 | // Deinitialize the stream manager. |
360 | if (auto Err = CUDAStreamManager.deinit()) |
361 | return Err; |
362 | |
363 | if (auto Err = CUDAEventManager.deinit()) |
364 | return Err; |
365 | |
366 | // Close modules if necessary. |
367 | if (!LoadedImages.empty()) { |
368 | assert(Context && "Invalid CUDA context" ); |
369 | |
370 | // Each image has its own module. |
371 | for (DeviceImageTy *Image : LoadedImages) { |
372 | CUDADeviceImageTy &CUDAImage = static_cast<CUDADeviceImageTy &>(*Image); |
373 | |
374 | // Unload the module of the image. |
375 | if (auto Err = CUDAImage.unloadModule()) |
376 | return Err; |
377 | } |
378 | } |
379 | |
380 | if (Context) { |
381 | CUresult Res = cuDevicePrimaryCtxRelease(Device); |
382 | if (auto Err = |
383 | Plugin::check(Res, "Error in cuDevicePrimaryCtxRelease: %s" )) |
384 | return Err; |
385 | } |
386 | |
387 | // Invalidate context and device references. |
388 | Context = nullptr; |
389 | Device = CU_DEVICE_INVALID; |
390 | |
391 | return Plugin::success(); |
392 | } |
393 | |
394 | virtual Error callGlobalConstructors(GenericPluginTy &Plugin, |
395 | DeviceImageTy &Image) override { |
396 | // Check for the presense of global destructors at initialization time. This |
397 | // is required when the image may be deallocated before destructors are run. |
398 | GenericGlobalHandlerTy &Handler = Plugin.getGlobalHandler(); |
399 | if (Handler.isSymbolInImage(*this, Image, "nvptx$device$fini" )) |
400 | Image.setPendingGlobalDtors(); |
401 | |
402 | return callGlobalCtorDtorCommon(Plugin, Image, /*IsCtor=*/true); |
403 | } |
404 | |
405 | virtual Error callGlobalDestructors(GenericPluginTy &Plugin, |
406 | DeviceImageTy &Image) override { |
407 | if (Image.hasPendingGlobalDtors()) |
408 | return callGlobalCtorDtorCommon(Plugin, Image, /*IsCtor=*/false); |
409 | return Plugin::success(); |
410 | } |
411 | |
412 | Expected<std::unique_ptr<MemoryBuffer>> |
413 | doJITPostProcessing(std::unique_ptr<MemoryBuffer> MB) const override { |
414 | // TODO: We should be able to use the 'nvidia-ptxjitcompiler' interface to |
415 | // avoid the call to 'ptxas'. |
416 | SmallString<128> PTXInputFilePath; |
417 | std::error_code EC = sys::fs::createTemporaryFile("nvptx-pre-link-jit" , "s" , |
418 | PTXInputFilePath); |
419 | if (EC) |
420 | return Plugin::error("Failed to create temporary file for ptxas" ); |
421 | |
422 | // Write the file's contents to the output file. |
423 | Expected<std::unique_ptr<FileOutputBuffer>> OutputOrErr = |
424 | FileOutputBuffer::create(PTXInputFilePath, MB->getBuffer().size()); |
425 | if (!OutputOrErr) |
426 | return OutputOrErr.takeError(); |
427 | std::unique_ptr<FileOutputBuffer> Output = std::move(*OutputOrErr); |
428 | llvm::copy(MB->getBuffer(), Output->getBufferStart()); |
429 | if (Error E = Output->commit()) |
430 | return std::move(E); |
431 | |
432 | SmallString<128> PTXOutputFilePath; |
433 | EC = sys::fs::createTemporaryFile("nvptx-post-link-jit" , "cubin" , |
434 | PTXOutputFilePath); |
435 | if (EC) |
436 | return Plugin::error("Failed to create temporary file for ptxas" ); |
437 | |
438 | // Try to find `ptxas` in the path to compile the PTX to a binary. |
439 | const auto ErrorOrPath = sys::findProgramByName("ptxas" ); |
440 | if (!ErrorOrPath) |
441 | return Plugin::error("Failed to find 'ptxas' on the PATH." ); |
442 | |
443 | std::string Arch = getComputeUnitKind(); |
444 | StringRef Args[] = {*ErrorOrPath, |
445 | "-m64" , |
446 | "-O2" , |
447 | "--gpu-name" , |
448 | Arch, |
449 | "--output-file" , |
450 | PTXOutputFilePath, |
451 | PTXInputFilePath}; |
452 | |
453 | std::string ErrMsg; |
454 | if (sys::ExecuteAndWait(*ErrorOrPath, Args, std::nullopt, {}, 0, 0, |
455 | &ErrMsg)) |
456 | return Plugin::error("Running 'ptxas' failed: %s\n" , ErrMsg.c_str()); |
457 | |
458 | auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(PTXOutputFilePath.data()); |
459 | if (!BufferOrErr) |
460 | return Plugin::error("Failed to open temporary file for ptxas" ); |
461 | |
462 | // Clean up the temporary files afterwards. |
463 | if (sys::fs::remove(PTXOutputFilePath)) |
464 | return Plugin::error("Failed to remove temporary file for ptxas" ); |
465 | if (sys::fs::remove(PTXInputFilePath)) |
466 | return Plugin::error("Failed to remove temporary file for ptxas" ); |
467 | |
468 | return std::move(*BufferOrErr); |
469 | } |
470 | |
471 | /// Allocate and construct a CUDA kernel. |
472 | Expected<GenericKernelTy &> constructKernel(const char *Name) override { |
473 | // Allocate and construct the CUDA kernel. |
474 | CUDAKernelTy *CUDAKernel = Plugin.allocate<CUDAKernelTy>(); |
475 | if (!CUDAKernel) |
476 | return Plugin::error("Failed to allocate memory for CUDA kernel" ); |
477 | |
478 | new (CUDAKernel) CUDAKernelTy(Name); |
479 | |
480 | return *CUDAKernel; |
481 | } |
482 | |
483 | /// Set the current context to this device's context. |
484 | Error setContext() override { |
485 | CUresult Res = cuCtxSetCurrent(Context); |
486 | return Plugin::check(Res, "Error in cuCtxSetCurrent: %s" ); |
487 | } |
488 | |
489 | /// NVIDIA returns the product of the SM count and the number of warps that |
490 | /// fit if the maximum number of threads were scheduled on each SM. |
491 | uint64_t getHardwareParallelism() const override { |
492 | return HardwareParallelism; |
493 | } |
494 | |
495 | /// We want to set up the RPC server for host services to the GPU if it is |
496 | /// availible. |
497 | bool shouldSetupRPCServer() const override { |
498 | return libomptargetSupportsRPC(); |
499 | } |
500 | |
501 | /// The RPC interface should have enough space for all availible parallelism. |
502 | uint64_t requestedRPCPortCount() const override { |
503 | return getHardwareParallelism(); |
504 | } |
505 | |
506 | /// Get the stream of the asynchronous info sructure or get a new one. |
507 | Error getStream(AsyncInfoWrapperTy &AsyncInfoWrapper, CUstream &Stream) { |
508 | // Get the stream (if any) from the async info. |
509 | Stream = AsyncInfoWrapper.getQueueAs<CUstream>(); |
510 | if (!Stream) { |
511 | // There was no stream; get an idle one. |
512 | if (auto Err = CUDAStreamManager.getResource(Stream)) |
513 | return Err; |
514 | |
515 | // Modify the async info's stream. |
516 | AsyncInfoWrapper.setQueueAs<CUstream>(Stream); |
517 | } |
518 | return Plugin::success(); |
519 | } |
520 | |
521 | /// Getters of CUDA references. |
522 | CUcontext getCUDAContext() const { return Context; } |
523 | CUdevice getCUDADevice() const { return Device; } |
524 | |
525 | /// Load the binary image into the device and allocate an image object. |
526 | Expected<DeviceImageTy *> loadBinaryImpl(const __tgt_device_image *TgtImage, |
527 | int32_t ImageId) override { |
528 | if (auto Err = setContext()) |
529 | return std::move(Err); |
530 | |
531 | // Allocate and initialize the image object. |
532 | CUDADeviceImageTy *CUDAImage = Plugin.allocate<CUDADeviceImageTy>(); |
533 | new (CUDAImage) CUDADeviceImageTy(ImageId, *this, TgtImage); |
534 | |
535 | // Load the CUDA module. |
536 | if (auto Err = CUDAImage->loadModule()) |
537 | return std::move(Err); |
538 | |
539 | return CUDAImage; |
540 | } |
541 | |
542 | /// Allocate memory on the device or related to the device. |
543 | void *allocate(size_t Size, void *, TargetAllocTy Kind) override { |
544 | if (Size == 0) |
545 | return nullptr; |
546 | |
547 | if (auto Err = setContext()) { |
548 | REPORT("Failure to alloc memory: %s\n" , toString(E: std::move(Err)).data()); |
549 | return nullptr; |
550 | } |
551 | |
552 | void *MemAlloc = nullptr; |
553 | CUdeviceptr DevicePtr; |
554 | CUresult Res; |
555 | |
556 | switch (Kind) { |
557 | case TARGET_ALLOC_DEFAULT: |
558 | case TARGET_ALLOC_DEVICE: |
559 | Res = cuMemAlloc(&DevicePtr, Size); |
560 | MemAlloc = (void *)DevicePtr; |
561 | break; |
562 | case TARGET_ALLOC_HOST: |
563 | Res = cuMemAllocHost(&MemAlloc, Size); |
564 | break; |
565 | case TARGET_ALLOC_SHARED: |
566 | Res = cuMemAllocManaged(&DevicePtr, Size, CU_MEM_ATTACH_GLOBAL); |
567 | MemAlloc = (void *)DevicePtr; |
568 | break; |
569 | case TARGET_ALLOC_DEVICE_NON_BLOCKING: { |
570 | CUstream Stream; |
571 | if ((Res = cuStreamCreate(&Stream, CU_STREAM_NON_BLOCKING))) |
572 | break; |
573 | if ((Res = cuMemAllocAsync(&DevicePtr, Size, Stream))) |
574 | break; |
575 | cuStreamSynchronize(Stream); |
576 | Res = cuStreamDestroy(Stream); |
577 | MemAlloc = (void *)DevicePtr; |
578 | } |
579 | } |
580 | |
581 | if (auto Err = |
582 | Plugin::check(Res, "Error in cuMemAlloc[Host|Managed]: %s" )) { |
583 | REPORT("Failure to alloc memory: %s\n" , toString(std::move(Err)).data()); |
584 | return nullptr; |
585 | } |
586 | return MemAlloc; |
587 | } |
588 | |
589 | /// Deallocate memory on the device or related to the device. |
590 | int free(void *TgtPtr, TargetAllocTy Kind) override { |
591 | if (TgtPtr == nullptr) |
592 | return OFFLOAD_SUCCESS; |
593 | |
594 | if (auto Err = setContext()) { |
595 | REPORT("Failure to free memory: %s\n" , toString(E: std::move(Err)).data()); |
596 | return OFFLOAD_FAIL; |
597 | } |
598 | |
599 | CUresult Res; |
600 | switch (Kind) { |
601 | case TARGET_ALLOC_DEFAULT: |
602 | case TARGET_ALLOC_DEVICE: |
603 | case TARGET_ALLOC_SHARED: |
604 | Res = cuMemFree((CUdeviceptr)TgtPtr); |
605 | break; |
606 | case TARGET_ALLOC_HOST: |
607 | Res = cuMemFreeHost(TgtPtr); |
608 | break; |
609 | case TARGET_ALLOC_DEVICE_NON_BLOCKING: { |
610 | CUstream Stream; |
611 | if ((Res = cuStreamCreate(&Stream, CU_STREAM_NON_BLOCKING))) |
612 | break; |
613 | cuMemFreeAsync(reinterpret_cast<CUdeviceptr>(TgtPtr), Stream); |
614 | cuStreamSynchronize(Stream); |
615 | if ((Res = cuStreamDestroy(Stream))) |
616 | break; |
617 | } |
618 | } |
619 | |
620 | if (auto Err = Plugin::check(Res, "Error in cuMemFree[Host]: %s" )) { |
621 | REPORT("Failure to free memory: %s\n" , toString(std::move(Err)).data()); |
622 | return OFFLOAD_FAIL; |
623 | } |
624 | return OFFLOAD_SUCCESS; |
625 | } |
626 | |
627 | /// Synchronize current thread with the pending operations on the async info. |
628 | Error synchronizeImpl(__tgt_async_info &AsyncInfo) override { |
629 | CUstream Stream = reinterpret_cast<CUstream>(AsyncInfo.Queue); |
630 | CUresult Res; |
631 | // If we have an RPC server running on this device we will continuously |
632 | // query it for work rather than blocking. |
633 | if (!getRPCServer()) { |
634 | Res = cuStreamSynchronize(Stream); |
635 | } else { |
636 | do { |
637 | Res = cuStreamQuery(Stream); |
638 | if (auto Err = getRPCServer()->runServer(*this)) |
639 | return Err; |
640 | } while (Res == CUDA_ERROR_NOT_READY); |
641 | } |
642 | |
643 | // Once the stream is synchronized, return it to stream pool and reset |
644 | // AsyncInfo. This is to make sure the synchronization only works for its |
645 | // own tasks. |
646 | AsyncInfo.Queue = nullptr; |
647 | if (auto Err = CUDAStreamManager.returnResource(Stream)) |
648 | return Err; |
649 | |
650 | return Plugin::check(Res, "Error in cuStreamSynchronize: %s" ); |
651 | } |
652 | |
653 | /// CUDA support VA management |
654 | bool supportVAManagement() const override { |
655 | #if (defined(CUDA_VERSION) && (CUDA_VERSION >= 11000)) |
656 | return true; |
657 | #else |
658 | return false; |
659 | #endif |
660 | } |
661 | |
662 | /// Allocates \p RSize bytes (rounded up to page size) and hints the cuda |
663 | /// driver to map it to \p VAddr. The obtained address is stored in \p Addr. |
664 | /// At return \p RSize contains the actual size |
665 | Error memoryVAMap(void **Addr, void *VAddr, size_t *RSize) override { |
666 | CUdeviceptr DVAddr = reinterpret_cast<CUdeviceptr>(VAddr); |
667 | auto IHandle = DeviceMMaps.find(DVAddr); |
668 | size_t Size = *RSize; |
669 | |
670 | if (Size == 0) |
671 | return Plugin::error("Memory Map Size must be larger than 0" ); |
672 | |
673 | // Check if we have already mapped this address |
674 | if (IHandle != DeviceMMaps.end()) |
675 | return Plugin::error("Address already memory mapped" ); |
676 | |
677 | CUmemAllocationProp Prop = {}; |
678 | size_t Granularity = 0; |
679 | |
680 | size_t Free, Total; |
681 | CUresult Res = cuMemGetInfo(&Free, &Total); |
682 | if (auto Err = Plugin::check(Res, "Error in cuMemGetInfo: %s" )) |
683 | return Err; |
684 | |
685 | if (Size >= Free) { |
686 | *Addr = nullptr; |
687 | return Plugin::error( |
688 | "Canot map memory size larger than the available device memory" ); |
689 | } |
690 | |
691 | // currently NVidia only supports pinned device types |
692 | Prop.type = CU_MEM_ALLOCATION_TYPE_PINNED; |
693 | Prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE; |
694 | |
695 | Prop.location.id = DeviceId; |
696 | cuMemGetAllocationGranularity(&Granularity, &Prop, |
697 | CU_MEM_ALLOC_GRANULARITY_MINIMUM); |
698 | if (auto Err = |
699 | Plugin::check(Res, "Error in cuMemGetAllocationGranularity: %s" )) |
700 | return Err; |
701 | |
702 | if (Granularity == 0) |
703 | return Plugin::error("Wrong device Page size" ); |
704 | |
705 | // Ceil to page size. |
706 | Size = roundUp(Size, Granularity); |
707 | |
708 | // Create a handler of our allocation |
709 | CUmemGenericAllocationHandle AHandle; |
710 | Res = cuMemCreate(&AHandle, Size, &Prop, 0); |
711 | if (auto Err = Plugin::check(Res, "Error in cuMemCreate: %s" )) |
712 | return Err; |
713 | |
714 | CUdeviceptr DevPtr = 0; |
715 | Res = cuMemAddressReserve(&DevPtr, Size, 0, DVAddr, 0); |
716 | if (auto Err = Plugin::check(Res, "Error in cuMemAddressReserve: %s" )) |
717 | return Err; |
718 | |
719 | Res = cuMemMap(DevPtr, Size, 0, AHandle, 0); |
720 | if (auto Err = Plugin::check(Res, "Error in cuMemMap: %s" )) |
721 | return Err; |
722 | |
723 | CUmemAccessDesc ADesc = {}; |
724 | ADesc.location.type = CU_MEM_LOCATION_TYPE_DEVICE; |
725 | ADesc.location.id = DeviceId; |
726 | ADesc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE; |
727 | |
728 | // Sets address |
729 | Res = cuMemSetAccess(DevPtr, Size, &ADesc, 1); |
730 | if (auto Err = Plugin::check(Res, "Error in cuMemSetAccess: %s" )) |
731 | return Err; |
732 | |
733 | *Addr = reinterpret_cast<void *>(DevPtr); |
734 | *RSize = Size; |
735 | DeviceMMaps.insert({DevPtr, AHandle}); |
736 | return Plugin::success(); |
737 | } |
738 | |
739 | /// De-allocates device memory and Unmaps the Virtual Addr |
740 | Error memoryVAUnMap(void *VAddr, size_t Size) override { |
741 | CUdeviceptr DVAddr = reinterpret_cast<CUdeviceptr>(VAddr); |
742 | auto IHandle = DeviceMMaps.find(DVAddr); |
743 | // Mapping does not exist |
744 | if (IHandle == DeviceMMaps.end()) { |
745 | return Plugin::error("Addr is not MemoryMapped" ); |
746 | } |
747 | |
748 | if (IHandle == DeviceMMaps.end()) |
749 | return Plugin::error("Addr is not MemoryMapped" ); |
750 | |
751 | CUmemGenericAllocationHandle &AllocHandle = IHandle->second; |
752 | |
753 | CUresult Res = cuMemUnmap(DVAddr, Size); |
754 | if (auto Err = Plugin::check(Res, "Error in cuMemUnmap: %s" )) |
755 | return Err; |
756 | |
757 | Res = cuMemRelease(AllocHandle); |
758 | if (auto Err = Plugin::check(Res, "Error in cuMemRelease: %s" )) |
759 | return Err; |
760 | |
761 | Res = cuMemAddressFree(DVAddr, Size); |
762 | if (auto Err = Plugin::check(Res, "Error in cuMemAddressFree: %s" )) |
763 | return Err; |
764 | |
765 | DeviceMMaps.erase(IHandle); |
766 | return Plugin::success(); |
767 | } |
768 | |
769 | /// Query for the completion of the pending operations on the async info. |
770 | Error queryAsyncImpl(__tgt_async_info &AsyncInfo) override { |
771 | CUstream Stream = reinterpret_cast<CUstream>(AsyncInfo.Queue); |
772 | CUresult Res = cuStreamQuery(Stream); |
773 | |
774 | // Not ready streams must be considered as successful operations. |
775 | if (Res == CUDA_ERROR_NOT_READY) |
776 | return Plugin::success(); |
777 | |
778 | // Once the stream is synchronized and the operations completed (or an error |
779 | // occurs), return it to stream pool and reset AsyncInfo. This is to make |
780 | // sure the synchronization only works for its own tasks. |
781 | AsyncInfo.Queue = nullptr; |
782 | if (auto Err = CUDAStreamManager.returnResource(Stream)) |
783 | return Err; |
784 | |
785 | return Plugin::check(Res, "Error in cuStreamQuery: %s" ); |
786 | } |
787 | |
788 | Expected<void *> dataLockImpl(void *HstPtr, int64_t Size) override { |
789 | // TODO: Register the buffer as CUDA host memory. |
790 | return HstPtr; |
791 | } |
792 | |
793 | Error dataUnlockImpl(void *HstPtr) override { return Plugin::success(); } |
794 | |
795 | Expected<bool> isPinnedPtrImpl(void *HstPtr, void *&BaseHstPtr, |
796 | void *&BaseDevAccessiblePtr, |
797 | size_t &BaseSize) const override { |
798 | // TODO: Implement pinning feature for CUDA. |
799 | return false; |
800 | } |
801 | |
802 | /// Submit data to the device (host to device transfer). |
803 | Error dataSubmitImpl(void *TgtPtr, const void *HstPtr, int64_t Size, |
804 | AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
805 | if (auto Err = setContext()) |
806 | return Err; |
807 | |
808 | CUstream Stream; |
809 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
810 | return Err; |
811 | |
812 | CUresult Res = cuMemcpyHtoDAsync((CUdeviceptr)TgtPtr, HstPtr, Size, Stream); |
813 | return Plugin::check(Res, "Error in cuMemcpyHtoDAsync: %s" ); |
814 | } |
815 | |
816 | /// Retrieve data from the device (device to host transfer). |
817 | Error dataRetrieveImpl(void *HstPtr, const void *TgtPtr, int64_t Size, |
818 | AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
819 | if (auto Err = setContext()) |
820 | return Err; |
821 | |
822 | CUstream Stream; |
823 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
824 | return Err; |
825 | |
826 | // If there is already pending work on the stream it could be waiting for |
827 | // someone to check the RPC server. |
828 | if (auto *RPCServer = getRPCServer()) { |
829 | CUresult Res = cuStreamQuery(Stream); |
830 | while (Res == CUDA_ERROR_NOT_READY) { |
831 | if (auto Err = RPCServer->runServer(*this)) |
832 | return Err; |
833 | Res = cuStreamQuery(Stream); |
834 | } |
835 | } |
836 | |
837 | CUresult Res = cuMemcpyDtoHAsync(HstPtr, (CUdeviceptr)TgtPtr, Size, Stream); |
838 | return Plugin::check(Res, "Error in cuMemcpyDtoHAsync: %s" ); |
839 | } |
840 | |
841 | /// Exchange data between two devices directly. We may use peer access if |
842 | /// the CUDA devices and driver allow them. |
843 | Error dataExchangeImpl(const void *SrcPtr, GenericDeviceTy &DstGenericDevice, |
844 | void *DstPtr, int64_t Size, |
845 | AsyncInfoWrapperTy &AsyncInfoWrapper) override; |
846 | |
847 | /// Initialize the async info for interoperability purposes. |
848 | Error initAsyncInfoImpl(AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
849 | if (auto Err = setContext()) |
850 | return Err; |
851 | |
852 | CUstream Stream; |
853 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
854 | return Err; |
855 | |
856 | return Plugin::success(); |
857 | } |
858 | |
859 | /// Initialize the device info for interoperability purposes. |
860 | Error initDeviceInfoImpl(__tgt_device_info *DeviceInfo) override { |
861 | assert(Context && "Context is null" ); |
862 | assert(Device != CU_DEVICE_INVALID && "Invalid CUDA device" ); |
863 | |
864 | if (auto Err = setContext()) |
865 | return Err; |
866 | |
867 | if (!DeviceInfo->Context) |
868 | DeviceInfo->Context = Context; |
869 | |
870 | if (!DeviceInfo->Device) |
871 | DeviceInfo->Device = reinterpret_cast<void *>(Device); |
872 | |
873 | return Plugin::success(); |
874 | } |
875 | |
876 | /// Create an event. |
877 | Error createEventImpl(void **EventPtrStorage) override { |
878 | CUevent *Event = reinterpret_cast<CUevent *>(EventPtrStorage); |
879 | return CUDAEventManager.getResource(*Event); |
880 | } |
881 | |
882 | /// Destroy a previously created event. |
883 | Error destroyEventImpl(void *EventPtr) override { |
884 | CUevent Event = reinterpret_cast<CUevent>(EventPtr); |
885 | return CUDAEventManager.returnResource(Event); |
886 | } |
887 | |
888 | /// Record the event. |
889 | Error recordEventImpl(void *EventPtr, |
890 | AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
891 | CUevent Event = reinterpret_cast<CUevent>(EventPtr); |
892 | |
893 | CUstream Stream; |
894 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
895 | return Err; |
896 | |
897 | CUresult Res = cuEventRecord(Event, Stream); |
898 | return Plugin::check(Res, "Error in cuEventRecord: %s" ); |
899 | } |
900 | |
901 | /// Make the stream wait on the event. |
902 | Error waitEventImpl(void *EventPtr, |
903 | AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
904 | CUevent Event = reinterpret_cast<CUevent>(EventPtr); |
905 | |
906 | CUstream Stream; |
907 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
908 | return Err; |
909 | |
910 | // Do not use CU_EVENT_WAIT_DEFAULT here as it is only available from |
911 | // specific CUDA version, and defined as 0x0. In previous version, per CUDA |
912 | // API document, that argument has to be 0x0. |
913 | CUresult Res = cuStreamWaitEvent(Stream, Event, 0); |
914 | return Plugin::check(Res, "Error in cuStreamWaitEvent: %s" ); |
915 | } |
916 | |
917 | /// Synchronize the current thread with the event. |
918 | Error syncEventImpl(void *EventPtr) override { |
919 | CUevent Event = reinterpret_cast<CUevent>(EventPtr); |
920 | CUresult Res = cuEventSynchronize(Event); |
921 | return Plugin::check(Res, "Error in cuEventSynchronize: %s" ); |
922 | } |
923 | |
924 | /// Print information about the device. |
925 | Error obtainInfoImpl(InfoQueueTy &Info) override { |
926 | char TmpChar[1000]; |
927 | const char *TmpCharPtr; |
928 | size_t TmpSt; |
929 | int TmpInt; |
930 | |
931 | CUresult Res = cuDriverGetVersion(&TmpInt); |
932 | if (Res == CUDA_SUCCESS) |
933 | Info.add("CUDA Driver Version" , TmpInt); |
934 | |
935 | Info.add("CUDA OpenMP Device Number" , DeviceId); |
936 | |
937 | Res = cuDeviceGetName(TmpChar, 1000, Device); |
938 | if (Res == CUDA_SUCCESS) |
939 | Info.add("Device Name" , TmpChar); |
940 | |
941 | Res = cuDeviceTotalMem(&TmpSt, Device); |
942 | if (Res == CUDA_SUCCESS) |
943 | Info.add("Global Memory Size" , TmpSt, "bytes" ); |
944 | |
945 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, TmpInt); |
946 | if (Res == CUDA_SUCCESS) |
947 | Info.add("Number of Multiprocessors" , TmpInt); |
948 | |
949 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_GPU_OVERLAP, TmpInt); |
950 | if (Res == CUDA_SUCCESS) |
951 | Info.add("Concurrent Copy and Execution" , (bool)TmpInt); |
952 | |
953 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY, TmpInt); |
954 | if (Res == CUDA_SUCCESS) |
955 | Info.add("Total Constant Memory" , TmpInt, "bytes" ); |
956 | |
957 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK, |
958 | TmpInt); |
959 | if (Res == CUDA_SUCCESS) |
960 | Info.add("Max Shared Memory per Block" , TmpInt, "bytes" ); |
961 | |
962 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK, TmpInt); |
963 | if (Res == CUDA_SUCCESS) |
964 | Info.add("Registers per Block" , TmpInt); |
965 | |
966 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_WARP_SIZE, TmpInt); |
967 | if (Res == CUDA_SUCCESS) |
968 | Info.add("Warp Size" , TmpInt); |
969 | |
970 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, TmpInt); |
971 | if (Res == CUDA_SUCCESS) |
972 | Info.add("Maximum Threads per Block" , TmpInt); |
973 | |
974 | Info.add("Maximum Block Dimensions" , "" ); |
975 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, TmpInt); |
976 | if (Res == CUDA_SUCCESS) |
977 | Info.add<InfoLevel2>("x" , TmpInt); |
978 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y, TmpInt); |
979 | if (Res == CUDA_SUCCESS) |
980 | Info.add<InfoLevel2>("y" , TmpInt); |
981 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z, TmpInt); |
982 | if (Res == CUDA_SUCCESS) |
983 | Info.add<InfoLevel2>("z" , TmpInt); |
984 | |
985 | Info.add("Maximum Grid Dimensions" , "" ); |
986 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, TmpInt); |
987 | if (Res == CUDA_SUCCESS) |
988 | Info.add<InfoLevel2>("x" , TmpInt); |
989 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y, TmpInt); |
990 | if (Res == CUDA_SUCCESS) |
991 | Info.add<InfoLevel2>("y" , TmpInt); |
992 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z, TmpInt); |
993 | if (Res == CUDA_SUCCESS) |
994 | Info.add<InfoLevel2>("z" , TmpInt); |
995 | |
996 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_PITCH, TmpInt); |
997 | if (Res == CUDA_SUCCESS) |
998 | Info.add("Maximum Memory Pitch" , TmpInt, "bytes" ); |
999 | |
1000 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT, TmpInt); |
1001 | if (Res == CUDA_SUCCESS) |
1002 | Info.add("Texture Alignment" , TmpInt, "bytes" ); |
1003 | |
1004 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_CLOCK_RATE, TmpInt); |
1005 | if (Res == CUDA_SUCCESS) |
1006 | Info.add("Clock Rate" , TmpInt, "kHz" ); |
1007 | |
1008 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT, TmpInt); |
1009 | if (Res == CUDA_SUCCESS) |
1010 | Info.add("Execution Timeout" , (bool)TmpInt); |
1011 | |
1012 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_INTEGRATED, TmpInt); |
1013 | if (Res == CUDA_SUCCESS) |
1014 | Info.add("Integrated Device" , (bool)TmpInt); |
1015 | |
1016 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, TmpInt); |
1017 | if (Res == CUDA_SUCCESS) |
1018 | Info.add("Can Map Host Memory" , (bool)TmpInt); |
1019 | |
1020 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_COMPUTE_MODE, TmpInt); |
1021 | if (Res == CUDA_SUCCESS) { |
1022 | if (TmpInt == CU_COMPUTEMODE_DEFAULT) |
1023 | TmpCharPtr = "Default" ; |
1024 | else if (TmpInt == CU_COMPUTEMODE_PROHIBITED) |
1025 | TmpCharPtr = "Prohibited" ; |
1026 | else if (TmpInt == CU_COMPUTEMODE_EXCLUSIVE_PROCESS) |
1027 | TmpCharPtr = "Exclusive process" ; |
1028 | else |
1029 | TmpCharPtr = "Unknown" ; |
1030 | Info.add("Compute Mode" , TmpCharPtr); |
1031 | } |
1032 | |
1033 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS, TmpInt); |
1034 | if (Res == CUDA_SUCCESS) |
1035 | Info.add("Concurrent Kernels" , (bool)TmpInt); |
1036 | |
1037 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_ECC_ENABLED, TmpInt); |
1038 | if (Res == CUDA_SUCCESS) |
1039 | Info.add("ECC Enabled" , (bool)TmpInt); |
1040 | |
1041 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, TmpInt); |
1042 | if (Res == CUDA_SUCCESS) |
1043 | Info.add("Memory Clock Rate" , TmpInt, "kHz" ); |
1044 | |
1045 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, TmpInt); |
1046 | if (Res == CUDA_SUCCESS) |
1047 | Info.add("Memory Bus Width" , TmpInt, "bits" ); |
1048 | |
1049 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, TmpInt); |
1050 | if (Res == CUDA_SUCCESS) |
1051 | Info.add("L2 Cache Size" , TmpInt, "bytes" ); |
1052 | |
1053 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR, |
1054 | TmpInt); |
1055 | if (Res == CUDA_SUCCESS) |
1056 | Info.add("Max Threads Per SMP" , TmpInt); |
1057 | |
1058 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT, TmpInt); |
1059 | if (Res == CUDA_SUCCESS) |
1060 | Info.add("Async Engines" , TmpInt); |
1061 | |
1062 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING, TmpInt); |
1063 | if (Res == CUDA_SUCCESS) |
1064 | Info.add("Unified Addressing" , (bool)TmpInt); |
1065 | |
1066 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY, TmpInt); |
1067 | if (Res == CUDA_SUCCESS) |
1068 | Info.add("Managed Memory" , (bool)TmpInt); |
1069 | |
1070 | Res = |
1071 | getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS, TmpInt); |
1072 | if (Res == CUDA_SUCCESS) |
1073 | Info.add("Concurrent Managed Memory" , (bool)TmpInt); |
1074 | |
1075 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED, |
1076 | TmpInt); |
1077 | if (Res == CUDA_SUCCESS) |
1078 | Info.add("Preemption Supported" , (bool)TmpInt); |
1079 | |
1080 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_COOPERATIVE_LAUNCH, TmpInt); |
1081 | if (Res == CUDA_SUCCESS) |
1082 | Info.add("Cooperative Launch" , (bool)TmpInt); |
1083 | |
1084 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD, TmpInt); |
1085 | if (Res == CUDA_SUCCESS) |
1086 | Info.add("Multi-Device Boars" , (bool)TmpInt); |
1087 | |
1088 | Info.add("Compute Capabilities" , ComputeCapability.str()); |
1089 | |
1090 | return Plugin::success(); |
1091 | } |
1092 | |
1093 | virtual bool shouldSetupDeviceMemoryPool() const override { |
1094 | /// We use the CUDA malloc for now. |
1095 | return false; |
1096 | } |
1097 | |
1098 | /// Getters and setters for stack and heap sizes. |
1099 | Error getDeviceStackSize(uint64_t &Value) override { |
1100 | return getCtxLimit(CU_LIMIT_STACK_SIZE, Value); |
1101 | } |
1102 | Error setDeviceStackSize(uint64_t Value) override { |
1103 | return setCtxLimit(CU_LIMIT_STACK_SIZE, Value); |
1104 | } |
1105 | Error getDeviceHeapSize(uint64_t &Value) override { |
1106 | return getCtxLimit(CU_LIMIT_MALLOC_HEAP_SIZE, Value); |
1107 | } |
1108 | Error setDeviceHeapSize(uint64_t Value) override { |
1109 | return setCtxLimit(CU_LIMIT_MALLOC_HEAP_SIZE, Value); |
1110 | } |
1111 | Error getDeviceMemorySize(uint64_t &Value) override { |
1112 | CUresult Res = cuDeviceTotalMem(&Value, Device); |
1113 | return Plugin::check(Res, "Error in getDeviceMemorySize %s" ); |
1114 | } |
1115 | |
1116 | /// CUDA-specific functions for getting and setting context limits. |
1117 | Error setCtxLimit(CUlimit Kind, uint64_t Value) { |
1118 | CUresult Res = cuCtxSetLimit(Kind, Value); |
1119 | return Plugin::check(Res, "Error in cuCtxSetLimit: %s" ); |
1120 | } |
1121 | Error getCtxLimit(CUlimit Kind, uint64_t &Value) { |
1122 | CUresult Res = cuCtxGetLimit(&Value, Kind); |
1123 | return Plugin::check(Res, "Error in cuCtxGetLimit: %s" ); |
1124 | } |
1125 | |
1126 | /// CUDA-specific function to get device attributes. |
1127 | Error getDeviceAttr(uint32_t Kind, uint32_t &Value) { |
1128 | // TODO: Warn if the new value is larger than the old. |
1129 | CUresult Res = |
1130 | cuDeviceGetAttribute((int *)&Value, (CUdevice_attribute)Kind, Device); |
1131 | return Plugin::check(Res, "Error in cuDeviceGetAttribute: %s" ); |
1132 | } |
1133 | |
1134 | CUresult getDeviceAttrRaw(uint32_t Kind, int &Value) { |
1135 | return cuDeviceGetAttribute(&Value, (CUdevice_attribute)Kind, Device); |
1136 | } |
1137 | |
1138 | /// See GenericDeviceTy::getComputeUnitKind(). |
1139 | std::string getComputeUnitKind() const override { |
1140 | return ComputeCapability.str(); |
1141 | } |
1142 | |
1143 | /// Returns the clock frequency for the given NVPTX device. |
1144 | uint64_t getClockFrequency() const override { return 1000000000; } |
1145 | |
1146 | private: |
1147 | using CUDAStreamManagerTy = GenericDeviceResourceManagerTy<CUDAStreamRef>; |
1148 | using CUDAEventManagerTy = GenericDeviceResourceManagerTy<CUDAEventRef>; |
1149 | |
1150 | Error callGlobalCtorDtorCommon(GenericPluginTy &Plugin, DeviceImageTy &Image, |
1151 | bool IsCtor) { |
1152 | const char *KernelName = IsCtor ? "nvptx$device$init" : "nvptx$device$fini" ; |
1153 | // Perform a quick check for the named kernel in the image. The kernel |
1154 | // should be created by the 'nvptx-lower-ctor-dtor' pass. |
1155 | GenericGlobalHandlerTy &Handler = Plugin.getGlobalHandler(); |
1156 | if (IsCtor && !Handler.isSymbolInImage(*this, Image, KernelName)) |
1157 | return Plugin::success(); |
1158 | |
1159 | // The Nvidia backend cannot handle creating the ctor / dtor array |
1160 | // automatically so we must create it ourselves. The backend will emit |
1161 | // several globals that contain function pointers we can call. These are |
1162 | // prefixed with a known name due to Nvidia's lack of section support. |
1163 | auto ELFObjOrErr = Handler.getELFObjectFile(Image); |
1164 | if (!ELFObjOrErr) |
1165 | return ELFObjOrErr.takeError(); |
1166 | |
1167 | // Search for all symbols that contain a constructor or destructor. |
1168 | SmallVector<std::pair<StringRef, uint16_t>> Funcs; |
1169 | for (ELFSymbolRef Sym : (*ELFObjOrErr)->symbols()) { |
1170 | auto NameOrErr = Sym.getName(); |
1171 | if (!NameOrErr) |
1172 | return NameOrErr.takeError(); |
1173 | |
1174 | if (!NameOrErr->starts_with(IsCtor ? "__init_array_object_" |
1175 | : "__fini_array_object_" )) |
1176 | continue; |
1177 | |
1178 | uint16_t Priority; |
1179 | if (NameOrErr->rsplit('_').second.getAsInteger(10, Priority)) |
1180 | return Plugin::error("Invalid priority for constructor or destructor" ); |
1181 | |
1182 | Funcs.emplace_back(*NameOrErr, Priority); |
1183 | } |
1184 | |
1185 | // Sort the created array to be in priority order. |
1186 | llvm::sort(Funcs, [=](auto X, auto Y) { return X.second < Y.second; }); |
1187 | |
1188 | // Allocate a buffer to store all of the known constructor / destructor |
1189 | // functions in so we can iterate them on the device. |
1190 | void *Buffer = |
1191 | allocate(Funcs.size() * sizeof(void *), nullptr, TARGET_ALLOC_DEVICE); |
1192 | if (!Buffer) |
1193 | return Plugin::error("Failed to allocate memory for global buffer" ); |
1194 | |
1195 | auto *GlobalPtrStart = reinterpret_cast<uintptr_t *>(Buffer); |
1196 | auto *GlobalPtrStop = reinterpret_cast<uintptr_t *>(Buffer) + Funcs.size(); |
1197 | |
1198 | SmallVector<void *> FunctionPtrs(Funcs.size()); |
1199 | std::size_t Idx = 0; |
1200 | for (auto [Name, Priority] : Funcs) { |
1201 | GlobalTy FunctionAddr(Name.str(), sizeof(void *), &FunctionPtrs[Idx++]); |
1202 | if (auto Err = Handler.readGlobalFromDevice(*this, Image, FunctionAddr)) |
1203 | return Err; |
1204 | } |
1205 | |
1206 | // Copy the local buffer to the device. |
1207 | if (auto Err = dataSubmit(GlobalPtrStart, FunctionPtrs.data(), |
1208 | FunctionPtrs.size() * sizeof(void *), nullptr)) |
1209 | return Err; |
1210 | |
1211 | // Copy the created buffer to the appropriate symbols so the kernel can |
1212 | // iterate through them. |
1213 | GlobalTy StartGlobal(IsCtor ? "__init_array_start" : "__fini_array_start" , |
1214 | sizeof(void *), &GlobalPtrStart); |
1215 | if (auto Err = Handler.writeGlobalToDevice(*this, Image, StartGlobal)) |
1216 | return Err; |
1217 | |
1218 | GlobalTy StopGlobal(IsCtor ? "__init_array_end" : "__fini_array_end" , |
1219 | sizeof(void *), &GlobalPtrStop); |
1220 | if (auto Err = Handler.writeGlobalToDevice(*this, Image, StopGlobal)) |
1221 | return Err; |
1222 | |
1223 | CUDAKernelTy CUDAKernel(KernelName); |
1224 | |
1225 | if (auto Err = CUDAKernel.init(*this, Image)) |
1226 | return Err; |
1227 | |
1228 | AsyncInfoWrapperTy AsyncInfoWrapper(*this, nullptr); |
1229 | |
1230 | KernelArgsTy KernelArgs = {}; |
1231 | if (auto Err = CUDAKernel.launchImpl(*this, /*NumThread=*/1u, |
1232 | /*NumBlocks=*/1ul, KernelArgs, nullptr, |
1233 | AsyncInfoWrapper)) |
1234 | return Err; |
1235 | |
1236 | Error Err = Plugin::success(); |
1237 | AsyncInfoWrapper.finalize(Err); |
1238 | |
1239 | if (free(Buffer, TARGET_ALLOC_DEVICE) != OFFLOAD_SUCCESS) |
1240 | return Plugin::error("Failed to free memory for global buffer" ); |
1241 | |
1242 | return Err; |
1243 | } |
1244 | |
1245 | /// Stream manager for CUDA streams. |
1246 | CUDAStreamManagerTy CUDAStreamManager; |
1247 | |
1248 | /// Event manager for CUDA events. |
1249 | CUDAEventManagerTy CUDAEventManager; |
1250 | |
1251 | /// The device's context. This context should be set before performing |
1252 | /// operations on the device. |
1253 | CUcontext Context = nullptr; |
1254 | |
1255 | /// The CUDA device handler. |
1256 | CUdevice Device = CU_DEVICE_INVALID; |
1257 | |
1258 | /// The memory mapped addresses and their handles |
1259 | std::unordered_map<CUdeviceptr, CUmemGenericAllocationHandle> DeviceMMaps; |
1260 | |
1261 | /// The compute capability of the corresponding CUDA device. |
1262 | struct ComputeCapabilityTy { |
1263 | uint32_t Major; |
1264 | uint32_t Minor; |
1265 | std::string str() const { |
1266 | return "sm_" + std::to_string(val: Major * 10 + Minor); |
1267 | } |
1268 | } ComputeCapability; |
1269 | |
1270 | /// The maximum number of warps that can be resident on all the SMs |
1271 | /// simultaneously. |
1272 | uint32_t HardwareParallelism = 0; |
1273 | }; |
1274 | |
1275 | Error CUDAKernelTy::launchImpl(GenericDeviceTy &GenericDevice, |
1276 | uint32_t NumThreads, uint64_t NumBlocks, |
1277 | KernelArgsTy &KernelArgs, void *Args, |
1278 | AsyncInfoWrapperTy &AsyncInfoWrapper) const { |
1279 | CUDADeviceTy &CUDADevice = static_cast<CUDADeviceTy &>(GenericDevice); |
1280 | |
1281 | CUstream Stream; |
1282 | if (auto Err = CUDADevice.getStream(AsyncInfoWrapper, Stream)) |
1283 | return Err; |
1284 | |
1285 | uint32_t MaxDynCGroupMem = |
1286 | std::max(KernelArgs.DynCGroupMem, GenericDevice.getDynamicMemorySize()); |
1287 | |
1288 | CUresult Res = |
1289 | cuLaunchKernel(Func, NumBlocks, /*gridDimY=*/1, |
1290 | /*gridDimZ=*/1, NumThreads, |
1291 | /*blockDimY=*/1, /*blockDimZ=*/1, MaxDynCGroupMem, Stream, |
1292 | (void **)Args, nullptr); |
1293 | return Plugin::check(Res, "Error in cuLaunchKernel for '%s': %s" , getName()); |
1294 | } |
1295 | |
1296 | /// Class implementing the CUDA-specific functionalities of the global handler. |
1297 | class CUDAGlobalHandlerTy final : public GenericGlobalHandlerTy { |
1298 | public: |
1299 | /// Get the metadata of a global from the device. The name and size of the |
1300 | /// global is read from DeviceGlobal and the address of the global is written |
1301 | /// to DeviceGlobal. |
1302 | Error getGlobalMetadataFromDevice(GenericDeviceTy &Device, |
1303 | DeviceImageTy &Image, |
1304 | GlobalTy &DeviceGlobal) override { |
1305 | CUDADeviceImageTy &CUDAImage = static_cast<CUDADeviceImageTy &>(Image); |
1306 | |
1307 | const char *GlobalName = DeviceGlobal.getName().data(); |
1308 | |
1309 | size_t CUSize; |
1310 | CUdeviceptr CUPtr; |
1311 | CUresult Res = |
1312 | cuModuleGetGlobal(&CUPtr, &CUSize, CUDAImage.getModule(), GlobalName); |
1313 | if (auto Err = Plugin::check(Res, "Error in cuModuleGetGlobal for '%s': %s" , |
1314 | GlobalName)) |
1315 | return Err; |
1316 | |
1317 | if (CUSize != DeviceGlobal.getSize()) |
1318 | return Plugin::error( |
1319 | "Failed to load global '%s' due to size mismatch (%zu != %zu)" , |
1320 | GlobalName, CUSize, (size_t)DeviceGlobal.getSize()); |
1321 | |
1322 | DeviceGlobal.setPtr(reinterpret_cast<void *>(CUPtr)); |
1323 | return Plugin::success(); |
1324 | } |
1325 | }; |
1326 | |
1327 | /// Class implementing the CUDA-specific functionalities of the plugin. |
1328 | struct CUDAPluginTy final : public GenericPluginTy { |
1329 | /// Create a CUDA plugin. |
1330 | CUDAPluginTy() : GenericPluginTy(getTripleArch()) {} |
1331 | |
1332 | /// This class should not be copied. |
1333 | CUDAPluginTy(const CUDAPluginTy &) = delete; |
1334 | CUDAPluginTy(CUDAPluginTy &&) = delete; |
1335 | |
1336 | /// Initialize the plugin and return the number of devices. |
1337 | Expected<int32_t> initImpl() override { |
1338 | CUresult Res = cuInit(0); |
1339 | if (Res == CUDA_ERROR_INVALID_HANDLE) { |
1340 | // Cannot call cuGetErrorString if dlsym failed. |
1341 | DP("Failed to load CUDA shared library\n" ); |
1342 | return 0; |
1343 | } |
1344 | |
1345 | #ifdef OMPT_SUPPORT |
1346 | ompt::connectLibrary(); |
1347 | #endif |
1348 | |
1349 | if (Res == CUDA_ERROR_NO_DEVICE) { |
1350 | // Do not initialize if there are no devices. |
1351 | DP("There are no devices supporting CUDA.\n" ); |
1352 | return 0; |
1353 | } |
1354 | |
1355 | if (auto Err = Plugin::check(Res, "Error in cuInit: %s" )) |
1356 | return std::move(Err); |
1357 | |
1358 | // Get the number of devices. |
1359 | int NumDevices; |
1360 | Res = cuDeviceGetCount(&NumDevices); |
1361 | if (auto Err = Plugin::check(Res, "Error in cuDeviceGetCount: %s" )) |
1362 | return std::move(Err); |
1363 | |
1364 | // Do not initialize if there are no devices. |
1365 | if (NumDevices == 0) |
1366 | DP("There are no devices supporting CUDA.\n" ); |
1367 | |
1368 | return NumDevices; |
1369 | } |
1370 | |
1371 | /// Deinitialize the plugin. |
1372 | Error deinitImpl() override { return Plugin::success(); } |
1373 | |
1374 | /// Creates a CUDA device to use for offloading. |
1375 | GenericDeviceTy *createDevice(GenericPluginTy &Plugin, int32_t DeviceId, |
1376 | int32_t NumDevices) override { |
1377 | return new CUDADeviceTy(Plugin, DeviceId, NumDevices); |
1378 | } |
1379 | |
1380 | /// Creates a CUDA global handler. |
1381 | GenericGlobalHandlerTy *createGlobalHandler() override { |
1382 | return new CUDAGlobalHandlerTy(); |
1383 | } |
1384 | |
1385 | /// Get the ELF code for recognizing the compatible image binary. |
1386 | uint16_t getMagicElfBits() const override { return ELF::EM_CUDA; } |
1387 | |
1388 | Triple::ArchType getTripleArch() const override { |
1389 | // TODO: I think we can drop the support for 32-bit NVPTX devices. |
1390 | return Triple::nvptx64; |
1391 | } |
1392 | |
1393 | /// Check whether the image is compatible with the available CUDA devices. |
1394 | Expected<bool> isELFCompatible(StringRef Image) const override { |
1395 | auto ElfOrErr = |
1396 | ELF64LEObjectFile::create(MemoryBufferRef(Image, /*Identifier=*/"" ), |
1397 | /*InitContent=*/false); |
1398 | if (!ElfOrErr) |
1399 | return ElfOrErr.takeError(); |
1400 | |
1401 | // Get the numeric value for the image's `sm_` value. |
1402 | auto SM = ElfOrErr->getPlatformFlags() & ELF::EF_CUDA_SM; |
1403 | |
1404 | for (int32_t DevId = 0; DevId < getNumDevices(); ++DevId) { |
1405 | CUdevice Device; |
1406 | CUresult Res = cuDeviceGet(&Device, DevId); |
1407 | if (auto Err = Plugin::check(Res, "Error in cuDeviceGet: %s" )) |
1408 | return std::move(Err); |
1409 | |
1410 | int32_t Major, Minor; |
1411 | Res = cuDeviceGetAttribute( |
1412 | &Major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, Device); |
1413 | if (auto Err = Plugin::check(Res, "Error in cuDeviceGetAttribute: %s" )) |
1414 | return std::move(Err); |
1415 | |
1416 | Res = cuDeviceGetAttribute( |
1417 | &Minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, Device); |
1418 | if (auto Err = Plugin::check(Res, "Error in cuDeviceGetAttribute: %s" )) |
1419 | return std::move(Err); |
1420 | |
1421 | int32_t ImageMajor = SM / 10; |
1422 | int32_t ImageMinor = SM % 10; |
1423 | |
1424 | // A cubin generated for a certain compute capability is supported to |
1425 | // run on any GPU with the same major revision and same or higher minor |
1426 | // revision. |
1427 | if (Major != ImageMajor || Minor < ImageMinor) |
1428 | return false; |
1429 | } |
1430 | return true; |
1431 | } |
1432 | }; |
1433 | |
1434 | Error CUDADeviceTy::dataExchangeImpl(const void *SrcPtr, |
1435 | GenericDeviceTy &DstGenericDevice, |
1436 | void *DstPtr, int64_t Size, |
1437 | AsyncInfoWrapperTy &AsyncInfoWrapper) { |
1438 | if (auto Err = setContext()) |
1439 | return Err; |
1440 | |
1441 | CUDADeviceTy &DstDevice = static_cast<CUDADeviceTy &>(DstGenericDevice); |
1442 | |
1443 | CUresult Res; |
1444 | int32_t DstDeviceId = DstDevice.DeviceId; |
1445 | CUdeviceptr CUSrcPtr = (CUdeviceptr)SrcPtr; |
1446 | CUdeviceptr CUDstPtr = (CUdeviceptr)DstPtr; |
1447 | |
1448 | int CanAccessPeer = 0; |
1449 | if (DeviceId != DstDeviceId) { |
1450 | // Make sure the lock is released before performing the copies. |
1451 | std::lock_guard<std::mutex> Lock(PeerAccessesLock); |
1452 | |
1453 | switch (PeerAccesses[DstDeviceId]) { |
1454 | case PeerAccessState::AVAILABLE: |
1455 | CanAccessPeer = 1; |
1456 | break; |
1457 | case PeerAccessState::UNAVAILABLE: |
1458 | CanAccessPeer = 0; |
1459 | break; |
1460 | case PeerAccessState::PENDING: |
1461 | // Check whether the source device can access the destination device. |
1462 | Res = cuDeviceCanAccessPeer(&CanAccessPeer, Device, DstDevice.Device); |
1463 | if (auto Err = Plugin::check(Res, "Error in cuDeviceCanAccessPeer: %s" )) |
1464 | return Err; |
1465 | |
1466 | if (CanAccessPeer) { |
1467 | Res = cuCtxEnablePeerAccess(DstDevice.Context, 0); |
1468 | if (Res == CUDA_ERROR_TOO_MANY_PEERS) { |
1469 | // Resources may be exhausted due to many P2P links. |
1470 | CanAccessPeer = 0; |
1471 | DP("Too many P2P so fall back to D2D memcpy" ); |
1472 | } else if (auto Err = |
1473 | Plugin::check(Res, "Error in cuCtxEnablePeerAccess: %s" )) |
1474 | return Err; |
1475 | } |
1476 | PeerAccesses[DstDeviceId] = (CanAccessPeer) |
1477 | ? PeerAccessState::AVAILABLE |
1478 | : PeerAccessState::UNAVAILABLE; |
1479 | } |
1480 | } |
1481 | |
1482 | CUstream Stream; |
1483 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
1484 | return Err; |
1485 | |
1486 | if (CanAccessPeer) { |
1487 | // TODO: Should we fallback to D2D if peer access fails? |
1488 | Res = cuMemcpyPeerAsync(CUDstPtr, Context, CUSrcPtr, DstDevice.Context, |
1489 | Size, Stream); |
1490 | return Plugin::check(Res, "Error in cuMemcpyPeerAsync: %s" ); |
1491 | } |
1492 | |
1493 | // Fallback to D2D copy. |
1494 | Res = cuMemcpyDtoDAsync(CUDstPtr, CUSrcPtr, Size, Stream); |
1495 | return Plugin::check(Res, "Error in cuMemcpyDtoDAsync: %s" ); |
1496 | } |
1497 | |
1498 | GenericPluginTy *PluginTy::createPlugin() { return new CUDAPluginTy(); } |
1499 | |
1500 | template <typename... ArgsTy> |
1501 | static Error Plugin::check(int32_t Code, const char *ErrFmt, ArgsTy... Args) { |
1502 | CUresult ResultCode = static_cast<CUresult>(Code); |
1503 | if (ResultCode == CUDA_SUCCESS) |
1504 | return Error::success(); |
1505 | |
1506 | const char *Desc = "Unknown error" ; |
1507 | CUresult Ret = cuGetErrorString(ResultCode, &Desc); |
1508 | if (Ret != CUDA_SUCCESS) |
1509 | REPORT("Unrecognized " GETNAME(TARGET_NAME) " error code %d\n" , Code); |
1510 | |
1511 | return createStringError<ArgsTy..., const char *>(inconvertibleErrorCode(), |
1512 | ErrFmt, Args..., Desc); |
1513 | } |
1514 | |
1515 | } // namespace plugin |
1516 | } // namespace target |
1517 | } // namespace omp |
1518 | } // namespace llvm |
1519 | |