1 | //===----RTLs/cuda/src/rtl.cpp - Target RTLs Implementation ------- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // RTL NextGen for CUDA machine |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include <cassert> |
14 | #include <cstddef> |
15 | #include <cuda.h> |
16 | #include <string> |
17 | #include <unordered_map> |
18 | |
19 | #include "Shared/APITypes.h" |
20 | #include "Shared/Debug.h" |
21 | #include "Shared/Environment.h" |
22 | |
23 | #include "GlobalHandler.h" |
24 | #include "OpenMP/OMPT/Callback.h" |
25 | #include "PluginInterface.h" |
26 | #include "Utils/ELF.h" |
27 | |
28 | #include "llvm/BinaryFormat/ELF.h" |
29 | #include "llvm/Frontend/OpenMP/OMPConstants.h" |
30 | #include "llvm/Frontend/OpenMP/OMPGridValues.h" |
31 | #include "llvm/Support/Error.h" |
32 | #include "llvm/Support/FileOutputBuffer.h" |
33 | #include "llvm/Support/FileSystem.h" |
34 | #include "llvm/Support/Program.h" |
35 | |
36 | using namespace error; |
37 | |
38 | namespace llvm { |
39 | namespace omp { |
40 | namespace target { |
41 | namespace plugin { |
42 | |
43 | /// Forward declarations for all specialized data structures. |
44 | struct CUDAKernelTy; |
45 | struct CUDADeviceTy; |
46 | struct CUDAPluginTy; |
47 | |
48 | #if (defined(CUDA_VERSION) && (CUDA_VERSION < 11000)) |
49 | /// Forward declarations for all Virtual Memory Management |
50 | /// related data structures and functions. This is necessary |
51 | /// for older cuda versions. |
52 | typedef void *CUmemGenericAllocationHandle; |
53 | typedef void *CUmemAllocationProp; |
54 | typedef void *CUmemAccessDesc; |
55 | typedef void *CUmemAllocationGranularity_flags; |
56 | CUresult cuMemAddressReserve(CUdeviceptr *ptr, size_t size, size_t alignment, |
57 | CUdeviceptr addr, unsigned long long flags) {} |
58 | CUresult cuMemMap(CUdeviceptr ptr, size_t size, size_t offset, |
59 | CUmemGenericAllocationHandle handle, |
60 | unsigned long long flags) {} |
61 | CUresult cuMemCreate(CUmemGenericAllocationHandle *handle, size_t size, |
62 | const CUmemAllocationProp *prop, |
63 | unsigned long long flags) {} |
64 | CUresult cuMemSetAccess(CUdeviceptr ptr, size_t size, |
65 | const CUmemAccessDesc *desc, size_t count) {} |
66 | CUresult |
67 | cuMemGetAllocationGranularity(size_t *granularity, |
68 | const CUmemAllocationProp *prop, |
69 | CUmemAllocationGranularity_flags option) {} |
70 | #endif |
71 | |
72 | #if (defined(CUDA_VERSION) && (CUDA_VERSION < 11020)) |
73 | // Forward declarations of asynchronous memory management functions. This is |
74 | // necessary for older versions of CUDA. |
75 | CUresult cuMemAllocAsync(CUdeviceptr *ptr, size_t, CUstream) { *ptr = 0; } |
76 | |
77 | CUresult cuMemFreeAsync(CUdeviceptr dptr, CUstream hStream) {} |
78 | #endif |
79 | |
80 | /// Class implementing the CUDA device images properties. |
81 | struct CUDADeviceImageTy : public DeviceImageTy { |
82 | /// Create the CUDA image with the id and the target image pointer. |
83 | CUDADeviceImageTy(int32_t ImageId, GenericDeviceTy &Device, |
84 | const __tgt_device_image *TgtImage) |
85 | : DeviceImageTy(ImageId, Device, TgtImage), Module(nullptr) {} |
86 | |
87 | /// Load the image as a CUDA module. |
88 | Error loadModule() { |
89 | assert(!Module && "Module already loaded" ); |
90 | |
91 | CUresult Res = cuModuleLoadDataEx(&Module, getStart(), 0, nullptr, nullptr); |
92 | if (auto Err = Plugin::check(Res, "error in cuModuleLoadDataEx: %s" )) |
93 | return Err; |
94 | |
95 | return Plugin::success(); |
96 | } |
97 | |
98 | /// Unload the CUDA module corresponding to the image. |
99 | Error unloadModule() { |
100 | assert(Module && "Module not loaded" ); |
101 | |
102 | CUresult Res = cuModuleUnload(Module); |
103 | if (auto Err = Plugin::check(Res, "error in cuModuleUnload: %s" )) |
104 | return Err; |
105 | |
106 | Module = nullptr; |
107 | |
108 | return Plugin::success(); |
109 | } |
110 | |
111 | /// Getter of the CUDA module. |
112 | CUmodule getModule() const { return Module; } |
113 | |
114 | private: |
115 | /// The CUDA module that loaded the image. |
116 | CUmodule Module; |
117 | }; |
118 | |
119 | /// Class implementing the CUDA kernel functionalities which derives from the |
120 | /// generic kernel class. |
121 | struct CUDAKernelTy : public GenericKernelTy { |
122 | /// Create a CUDA kernel with a name and an execution mode. |
123 | CUDAKernelTy(const char *Name) : GenericKernelTy(Name), Func(nullptr) {} |
124 | |
125 | /// Initialize the CUDA kernel. |
126 | Error initImpl(GenericDeviceTy &GenericDevice, |
127 | DeviceImageTy &Image) override { |
128 | CUresult Res; |
129 | CUDADeviceImageTy &CUDAImage = static_cast<CUDADeviceImageTy &>(Image); |
130 | |
131 | // Retrieve the function pointer of the kernel. |
132 | Res = cuModuleGetFunction(&Func, CUDAImage.getModule(), getName()); |
133 | if (auto Err = Plugin::check(Res, "error in cuModuleGetFunction('%s'): %s" , |
134 | getName())) |
135 | return Err; |
136 | |
137 | // Check that the function pointer is valid. |
138 | if (!Func) |
139 | return Plugin::error(ErrorCode::INVALID_BINARY, |
140 | "invalid function for kernel %s" , getName()); |
141 | |
142 | int MaxThreads; |
143 | Res = cuFuncGetAttribute(&MaxThreads, |
144 | CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK, Func); |
145 | if (auto Err = Plugin::check(Res, "error in cuFuncGetAttribute: %s" )) |
146 | return Err; |
147 | |
148 | // The maximum number of threads cannot exceed the maximum of the kernel. |
149 | MaxNumThreads = std::min(MaxNumThreads, (uint32_t)MaxThreads); |
150 | |
151 | return Plugin::success(); |
152 | } |
153 | |
154 | /// Launch the CUDA kernel function. |
155 | Error launchImpl(GenericDeviceTy &GenericDevice, uint32_t NumThreads[3], |
156 | uint32_t NumBlocks[3], KernelArgsTy &KernelArgs, |
157 | KernelLaunchParamsTy LaunchParams, |
158 | AsyncInfoWrapperTy &AsyncInfoWrapper) const override; |
159 | |
160 | private: |
161 | /// The CUDA kernel function to execute. |
162 | CUfunction Func; |
163 | }; |
164 | |
165 | /// Class wrapping a CUDA stream reference. These are the objects handled by the |
166 | /// Stream Manager for the CUDA plugin. |
167 | struct CUDAStreamRef final : public GenericDeviceResourceRef { |
168 | /// The underlying handle type for streams. |
169 | using HandleTy = CUstream; |
170 | |
171 | /// Create an empty reference to an invalid stream. |
172 | CUDAStreamRef() : Stream(nullptr) {} |
173 | |
174 | /// Create a reference to an existing stream. |
175 | CUDAStreamRef(HandleTy Stream) : Stream(Stream) {} |
176 | |
177 | /// Create a new stream and save the reference. The reference must be empty |
178 | /// before calling to this function. |
179 | Error create(GenericDeviceTy &Device) override { |
180 | if (Stream) |
181 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
182 | "creating an existing stream" ); |
183 | |
184 | CUresult Res = cuStreamCreate(&Stream, CU_STREAM_NON_BLOCKING); |
185 | if (auto Err = Plugin::check(Res, "error in cuStreamCreate: %s" )) |
186 | return Err; |
187 | |
188 | return Plugin::success(); |
189 | } |
190 | |
191 | /// Destroy the referenced stream and invalidate the reference. The reference |
192 | /// must be to a valid stream before calling to this function. |
193 | Error destroy(GenericDeviceTy &Device) override { |
194 | if (!Stream) |
195 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
196 | "destroying an invalid stream" ); |
197 | |
198 | CUresult Res = cuStreamDestroy(Stream); |
199 | if (auto Err = Plugin::check(Res, "error in cuStreamDestroy: %s" )) |
200 | return Err; |
201 | |
202 | Stream = nullptr; |
203 | return Plugin::success(); |
204 | } |
205 | |
206 | /// Get the underlying CUDA stream. |
207 | operator HandleTy() const { return Stream; } |
208 | |
209 | private: |
210 | /// The reference to the CUDA stream. |
211 | HandleTy Stream; |
212 | }; |
213 | |
214 | /// Class wrapping a CUDA event reference. These are the objects handled by the |
215 | /// Event Manager for the CUDA plugin. |
216 | struct CUDAEventRef final : public GenericDeviceResourceRef { |
217 | /// The underlying handle type for events. |
218 | using HandleTy = CUevent; |
219 | |
220 | /// Create an empty reference to an invalid event. |
221 | CUDAEventRef() : Event(nullptr) {} |
222 | |
223 | /// Create a reference to an existing event. |
224 | CUDAEventRef(HandleTy Event) : Event(Event) {} |
225 | |
226 | /// Create a new event and save the reference. The reference must be empty |
227 | /// before calling to this function. |
228 | Error create(GenericDeviceTy &Device) override { |
229 | if (Event) |
230 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
231 | "creating an existing event" ); |
232 | |
233 | CUresult Res = cuEventCreate(&Event, CU_EVENT_DEFAULT); |
234 | if (auto Err = Plugin::check(Res, "error in cuEventCreate: %s" )) |
235 | return Err; |
236 | |
237 | return Plugin::success(); |
238 | } |
239 | |
240 | /// Destroy the referenced event and invalidate the reference. The reference |
241 | /// must be to a valid event before calling to this function. |
242 | Error destroy(GenericDeviceTy &Device) override { |
243 | if (!Event) |
244 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
245 | "destroying an invalid event" ); |
246 | |
247 | CUresult Res = cuEventDestroy(Event); |
248 | if (auto Err = Plugin::check(Res, "error in cuEventDestroy: %s" )) |
249 | return Err; |
250 | |
251 | Event = nullptr; |
252 | return Plugin::success(); |
253 | } |
254 | |
255 | /// Get the underlying CUevent. |
256 | operator HandleTy() const { return Event; } |
257 | |
258 | private: |
259 | /// The reference to the CUDA event. |
260 | HandleTy Event; |
261 | }; |
262 | |
263 | /// Class implementing the CUDA device functionalities which derives from the |
264 | /// generic device class. |
265 | struct CUDADeviceTy : public GenericDeviceTy { |
266 | // Create a CUDA device with a device id and the default CUDA grid values. |
267 | CUDADeviceTy(GenericPluginTy &Plugin, int32_t DeviceId, int32_t NumDevices) |
268 | : GenericDeviceTy(Plugin, DeviceId, NumDevices, NVPTXGridValues), |
269 | CUDAStreamManager(*this), CUDAEventManager(*this) {} |
270 | |
271 | ~CUDADeviceTy() {} |
272 | |
273 | /// Initialize the device, its resources and get its properties. |
274 | Error initImpl(GenericPluginTy &Plugin) override { |
275 | CUresult Res = cuDeviceGet(&Device, DeviceId); |
276 | if (auto Err = Plugin::check(Res, "error in cuDeviceGet: %s" )) |
277 | return Err; |
278 | |
279 | // Query the current flags of the primary context and set its flags if |
280 | // it is inactive. |
281 | unsigned int FormerPrimaryCtxFlags = 0; |
282 | int FormerPrimaryCtxIsActive = 0; |
283 | Res = cuDevicePrimaryCtxGetState(Device, &FormerPrimaryCtxFlags, |
284 | &FormerPrimaryCtxIsActive); |
285 | if (auto Err = |
286 | Plugin::check(Res, "error in cuDevicePrimaryCtxGetState: %s" )) |
287 | return Err; |
288 | |
289 | if (FormerPrimaryCtxIsActive) { |
290 | INFO(OMP_INFOTYPE_PLUGIN_KERNEL, DeviceId, |
291 | "The primary context is active, no change to its flags\n" ); |
292 | if ((FormerPrimaryCtxFlags & CU_CTX_SCHED_MASK) != |
293 | CU_CTX_SCHED_BLOCKING_SYNC) |
294 | INFO(OMP_INFOTYPE_PLUGIN_KERNEL, DeviceId, |
295 | "Warning: The current flags are not CU_CTX_SCHED_BLOCKING_SYNC\n" ); |
296 | } else { |
297 | INFO(OMP_INFOTYPE_PLUGIN_KERNEL, DeviceId, |
298 | "The primary context is inactive, set its flags to " |
299 | "CU_CTX_SCHED_BLOCKING_SYNC\n" ); |
300 | Res = cuDevicePrimaryCtxSetFlags(Device, CU_CTX_SCHED_BLOCKING_SYNC); |
301 | if (auto Err = |
302 | Plugin::check(Res, "error in cuDevicePrimaryCtxSetFlags: %s" )) |
303 | return Err; |
304 | } |
305 | |
306 | // Retain the per device primary context and save it to use whenever this |
307 | // device is selected. |
308 | Res = cuDevicePrimaryCtxRetain(&Context, Device); |
309 | if (auto Err = Plugin::check(Res, "error in cuDevicePrimaryCtxRetain: %s" )) |
310 | return Err; |
311 | |
312 | if (auto Err = setContext()) |
313 | return Err; |
314 | |
315 | // Initialize stream pool. |
316 | if (auto Err = CUDAStreamManager.init(OMPX_InitialNumStreams)) |
317 | return Err; |
318 | |
319 | // Initialize event pool. |
320 | if (auto Err = CUDAEventManager.init(OMPX_InitialNumEvents)) |
321 | return Err; |
322 | |
323 | // Query attributes to determine number of threads/block and blocks/grid. |
324 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, |
325 | GridValues.GV_Max_Teams)) |
326 | return Err; |
327 | |
328 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, |
329 | GridValues.GV_Max_WG_Size)) |
330 | return Err; |
331 | |
332 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_WARP_SIZE, |
333 | GridValues.GV_Warp_Size)) |
334 | return Err; |
335 | |
336 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, |
337 | ComputeCapability.Major)) |
338 | return Err; |
339 | |
340 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, |
341 | ComputeCapability.Minor)) |
342 | return Err; |
343 | |
344 | uint32_t NumMuliprocessors = 0; |
345 | uint32_t MaxThreadsPerSM = 0; |
346 | uint32_t WarpSize = 0; |
347 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, |
348 | NumMuliprocessors)) |
349 | return Err; |
350 | if (auto Err = |
351 | getDeviceAttr(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR, |
352 | MaxThreadsPerSM)) |
353 | return Err; |
354 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_WARP_SIZE, WarpSize)) |
355 | return Err; |
356 | HardwareParallelism = NumMuliprocessors * (MaxThreadsPerSM / WarpSize); |
357 | |
358 | return Plugin::success(); |
359 | } |
360 | |
361 | /// Deinitialize the device and release its resources. |
362 | Error deinitImpl() override { |
363 | if (Context) { |
364 | if (auto Err = setContext()) |
365 | return Err; |
366 | } |
367 | |
368 | // Deinitialize the stream manager. |
369 | if (auto Err = CUDAStreamManager.deinit()) |
370 | return Err; |
371 | |
372 | if (auto Err = CUDAEventManager.deinit()) |
373 | return Err; |
374 | |
375 | // Close modules if necessary. |
376 | if (!LoadedImages.empty()) { |
377 | assert(Context && "Invalid CUDA context" ); |
378 | |
379 | // Each image has its own module. |
380 | for (DeviceImageTy *Image : LoadedImages) { |
381 | CUDADeviceImageTy &CUDAImage = static_cast<CUDADeviceImageTy &>(*Image); |
382 | |
383 | // Unload the module of the image. |
384 | if (auto Err = CUDAImage.unloadModule()) |
385 | return Err; |
386 | } |
387 | } |
388 | |
389 | if (Context) { |
390 | CUresult Res = cuDevicePrimaryCtxRelease(Device); |
391 | if (auto Err = |
392 | Plugin::check(Res, "error in cuDevicePrimaryCtxRelease: %s" )) |
393 | return Err; |
394 | } |
395 | |
396 | // Invalidate context and device references. |
397 | Context = nullptr; |
398 | Device = CU_DEVICE_INVALID; |
399 | |
400 | return Plugin::success(); |
401 | } |
402 | |
403 | virtual Error callGlobalConstructors(GenericPluginTy &Plugin, |
404 | DeviceImageTy &Image) override { |
405 | // Check for the presence of global destructors at initialization time. This |
406 | // is required when the image may be deallocated before destructors are run. |
407 | GenericGlobalHandlerTy &Handler = Plugin.getGlobalHandler(); |
408 | if (Handler.isSymbolInImage(*this, Image, "nvptx$device$fini" )) |
409 | Image.setPendingGlobalDtors(); |
410 | |
411 | return callGlobalCtorDtorCommon(Plugin, Image, /*IsCtor=*/true); |
412 | } |
413 | |
414 | virtual Error callGlobalDestructors(GenericPluginTy &Plugin, |
415 | DeviceImageTy &Image) override { |
416 | if (Image.hasPendingGlobalDtors()) |
417 | return callGlobalCtorDtorCommon(Plugin, Image, /*IsCtor=*/false); |
418 | return Plugin::success(); |
419 | } |
420 | |
421 | Expected<std::unique_ptr<MemoryBuffer>> |
422 | doJITPostProcessing(std::unique_ptr<MemoryBuffer> MB) const override { |
423 | // TODO: We should be able to use the 'nvidia-ptxjitcompiler' interface to |
424 | // avoid the call to 'ptxas'. |
425 | SmallString<128> PTXInputFilePath; |
426 | std::error_code EC = sys::fs::createTemporaryFile("nvptx-pre-link-jit" , "s" , |
427 | PTXInputFilePath); |
428 | if (EC) |
429 | return Plugin::error(ErrorCode::HOST_IO, |
430 | "failed to create temporary file for ptxas" ); |
431 | |
432 | // Write the file's contents to the output file. |
433 | Expected<std::unique_ptr<FileOutputBuffer>> OutputOrErr = |
434 | FileOutputBuffer::create(PTXInputFilePath, MB->getBuffer().size()); |
435 | if (!OutputOrErr) |
436 | return OutputOrErr.takeError(); |
437 | std::unique_ptr<FileOutputBuffer> Output = std::move(*OutputOrErr); |
438 | llvm::copy(MB->getBuffer(), Output->getBufferStart()); |
439 | if (Error E = Output->commit()) |
440 | return std::move(E); |
441 | |
442 | SmallString<128> PTXOutputFilePath; |
443 | EC = sys::fs::createTemporaryFile("nvptx-post-link-jit" , "cubin" , |
444 | PTXOutputFilePath); |
445 | if (EC) |
446 | return Plugin::error(ErrorCode::HOST_IO, |
447 | "failed to create temporary file for ptxas" ); |
448 | |
449 | // Try to find `ptxas` in the path to compile the PTX to a binary. |
450 | const auto ErrorOrPath = sys::findProgramByName("ptxas" ); |
451 | if (!ErrorOrPath) |
452 | return Plugin::error(ErrorCode::HOST_TOOL_NOT_FOUND, |
453 | "failed to find 'ptxas' on the PATH." ); |
454 | |
455 | std::string Arch = getComputeUnitKind(); |
456 | StringRef Args[] = {*ErrorOrPath, |
457 | "-m64" , |
458 | "-O2" , |
459 | "--gpu-name" , |
460 | Arch, |
461 | "--output-file" , |
462 | PTXOutputFilePath, |
463 | PTXInputFilePath}; |
464 | |
465 | std::string ErrMsg; |
466 | if (sys::ExecuteAndWait(*ErrorOrPath, Args, std::nullopt, {}, 0, 0, |
467 | &ErrMsg)) |
468 | return Plugin::error(ErrorCode::ASSEMBLE_FAILURE, |
469 | "running 'ptxas' failed: %s\n" , ErrMsg.c_str()); |
470 | |
471 | auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(PTXOutputFilePath.data()); |
472 | if (!BufferOrErr) |
473 | return Plugin::error(ErrorCode::HOST_IO, |
474 | "failed to open temporary file for ptxas" ); |
475 | |
476 | // Clean up the temporary files afterwards. |
477 | if (sys::fs::remove(PTXOutputFilePath)) |
478 | return Plugin::error(ErrorCode::HOST_IO, |
479 | "failed to remove temporary file for ptxas" ); |
480 | if (sys::fs::remove(PTXInputFilePath)) |
481 | return Plugin::error(ErrorCode::HOST_IO, |
482 | "failed to remove temporary file for ptxas" ); |
483 | |
484 | return std::move(*BufferOrErr); |
485 | } |
486 | |
487 | /// Allocate and construct a CUDA kernel. |
488 | Expected<GenericKernelTy &> constructKernel(const char *Name) override { |
489 | // Allocate and construct the CUDA kernel. |
490 | CUDAKernelTy *CUDAKernel = Plugin.allocate<CUDAKernelTy>(); |
491 | if (!CUDAKernel) |
492 | return Plugin::error(ErrorCode::OUT_OF_RESOURCES, |
493 | "failed to allocate memory for CUDA kernel" ); |
494 | |
495 | new (CUDAKernel) CUDAKernelTy(Name); |
496 | |
497 | return *CUDAKernel; |
498 | } |
499 | |
500 | /// Set the current context to this device's context. |
501 | Error setContext() override { |
502 | CUresult Res = cuCtxSetCurrent(Context); |
503 | return Plugin::check(Res, "error in cuCtxSetCurrent: %s" ); |
504 | } |
505 | |
506 | /// NVIDIA returns the product of the SM count and the number of warps that |
507 | /// fit if the maximum number of threads were scheduled on each SM. |
508 | uint64_t getHardwareParallelism() const override { |
509 | return HardwareParallelism; |
510 | } |
511 | |
512 | /// We want to set up the RPC server for host services to the GPU if it is |
513 | /// available. |
514 | bool shouldSetupRPCServer() const override { return true; } |
515 | |
516 | /// The RPC interface should have enough space for all available parallelism. |
517 | uint64_t requestedRPCPortCount() const override { |
518 | return getHardwareParallelism(); |
519 | } |
520 | |
521 | /// Get the stream of the asynchronous info structure or get a new one. |
522 | Error getStream(AsyncInfoWrapperTy &AsyncInfoWrapper, CUstream &Stream) { |
523 | // Get the stream (if any) from the async info. |
524 | Stream = AsyncInfoWrapper.getQueueAs<CUstream>(); |
525 | if (!Stream) { |
526 | // There was no stream; get an idle one. |
527 | if (auto Err = CUDAStreamManager.getResource(Stream)) |
528 | return Err; |
529 | |
530 | // Modify the async info's stream. |
531 | AsyncInfoWrapper.setQueueAs<CUstream>(Stream); |
532 | } |
533 | return Plugin::success(); |
534 | } |
535 | |
536 | /// Getters of CUDA references. |
537 | CUcontext getCUDAContext() const { return Context; } |
538 | CUdevice getCUDADevice() const { return Device; } |
539 | |
540 | /// Load the binary image into the device and allocate an image object. |
541 | Expected<DeviceImageTy *> loadBinaryImpl(const __tgt_device_image *TgtImage, |
542 | int32_t ImageId) override { |
543 | if (auto Err = setContext()) |
544 | return std::move(Err); |
545 | |
546 | // Allocate and initialize the image object. |
547 | CUDADeviceImageTy *CUDAImage = Plugin.allocate<CUDADeviceImageTy>(); |
548 | new (CUDAImage) CUDADeviceImageTy(ImageId, *this, TgtImage); |
549 | |
550 | // Load the CUDA module. |
551 | if (auto Err = CUDAImage->loadModule()) |
552 | return std::move(Err); |
553 | |
554 | return CUDAImage; |
555 | } |
556 | |
557 | /// Allocate memory on the device or related to the device. |
558 | void *allocate(size_t Size, void *, TargetAllocTy Kind) override { |
559 | if (Size == 0) |
560 | return nullptr; |
561 | |
562 | if (auto Err = setContext()) { |
563 | REPORT("Failure to alloc memory: %s\n" , toString(E: std::move(Err)).data()); |
564 | return nullptr; |
565 | } |
566 | |
567 | void *MemAlloc = nullptr; |
568 | CUdeviceptr DevicePtr; |
569 | CUresult Res; |
570 | |
571 | switch (Kind) { |
572 | case TARGET_ALLOC_DEFAULT: |
573 | case TARGET_ALLOC_DEVICE: |
574 | Res = cuMemAlloc(&DevicePtr, Size); |
575 | MemAlloc = (void *)DevicePtr; |
576 | break; |
577 | case TARGET_ALLOC_HOST: |
578 | Res = cuMemAllocHost(&MemAlloc, Size); |
579 | break; |
580 | case TARGET_ALLOC_SHARED: |
581 | Res = cuMemAllocManaged(&DevicePtr, Size, CU_MEM_ATTACH_GLOBAL); |
582 | MemAlloc = (void *)DevicePtr; |
583 | break; |
584 | case TARGET_ALLOC_DEVICE_NON_BLOCKING: { |
585 | CUstream Stream; |
586 | if ((Res = cuStreamCreate(&Stream, CU_STREAM_NON_BLOCKING))) |
587 | break; |
588 | if ((Res = cuMemAllocAsync(&DevicePtr, Size, Stream))) |
589 | break; |
590 | cuStreamSynchronize(Stream); |
591 | Res = cuStreamDestroy(Stream); |
592 | MemAlloc = (void *)DevicePtr; |
593 | } |
594 | } |
595 | |
596 | if (auto Err = |
597 | Plugin::check(Res, "error in cuMemAlloc[Host|Managed]: %s" )) { |
598 | REPORT("Failure to alloc memory: %s\n" , toString(std::move(Err)).data()); |
599 | return nullptr; |
600 | } |
601 | return MemAlloc; |
602 | } |
603 | |
604 | /// Deallocate memory on the device or related to the device. |
605 | int free(void *TgtPtr, TargetAllocTy Kind) override { |
606 | if (TgtPtr == nullptr) |
607 | return OFFLOAD_SUCCESS; |
608 | |
609 | if (auto Err = setContext()) { |
610 | REPORT("Failure to free memory: %s\n" , toString(E: std::move(Err)).data()); |
611 | return OFFLOAD_FAIL; |
612 | } |
613 | |
614 | CUresult Res; |
615 | switch (Kind) { |
616 | case TARGET_ALLOC_DEFAULT: |
617 | case TARGET_ALLOC_DEVICE: |
618 | case TARGET_ALLOC_SHARED: |
619 | Res = cuMemFree((CUdeviceptr)TgtPtr); |
620 | break; |
621 | case TARGET_ALLOC_HOST: |
622 | Res = cuMemFreeHost(TgtPtr); |
623 | break; |
624 | case TARGET_ALLOC_DEVICE_NON_BLOCKING: { |
625 | CUstream Stream; |
626 | if ((Res = cuStreamCreate(&Stream, CU_STREAM_NON_BLOCKING))) |
627 | break; |
628 | cuMemFreeAsync(reinterpret_cast<CUdeviceptr>(TgtPtr), Stream); |
629 | cuStreamSynchronize(Stream); |
630 | if ((Res = cuStreamDestroy(Stream))) |
631 | break; |
632 | } |
633 | } |
634 | |
635 | if (auto Err = Plugin::check(Res, "error in cuMemFree[Host]: %s" )) { |
636 | REPORT("Failure to free memory: %s\n" , toString(std::move(Err)).data()); |
637 | return OFFLOAD_FAIL; |
638 | } |
639 | return OFFLOAD_SUCCESS; |
640 | } |
641 | |
642 | /// Synchronize current thread with the pending operations on the async info. |
643 | Error synchronizeImpl(__tgt_async_info &AsyncInfo) override { |
644 | CUstream Stream = reinterpret_cast<CUstream>(AsyncInfo.Queue); |
645 | CUresult Res; |
646 | Res = cuStreamSynchronize(Stream); |
647 | |
648 | // Once the stream is synchronized, return it to stream pool and reset |
649 | // AsyncInfo. This is to make sure the synchronization only works for its |
650 | // own tasks. |
651 | AsyncInfo.Queue = nullptr; |
652 | if (auto Err = CUDAStreamManager.returnResource(Stream)) |
653 | return Err; |
654 | |
655 | return Plugin::check(Res, "error in cuStreamSynchronize: %s" ); |
656 | } |
657 | |
658 | /// CUDA support VA management |
659 | bool supportVAManagement() const override { |
660 | #if (defined(CUDA_VERSION) && (CUDA_VERSION >= 11000)) |
661 | return true; |
662 | #else |
663 | return false; |
664 | #endif |
665 | } |
666 | |
667 | /// Allocates \p RSize bytes (rounded up to page size) and hints the cuda |
668 | /// driver to map it to \p VAddr. The obtained address is stored in \p Addr. |
669 | /// At return \p RSize contains the actual size |
670 | Error memoryVAMap(void **Addr, void *VAddr, size_t *RSize) override { |
671 | CUdeviceptr DVAddr = reinterpret_cast<CUdeviceptr>(VAddr); |
672 | auto IHandle = DeviceMMaps.find(DVAddr); |
673 | size_t Size = *RSize; |
674 | |
675 | if (Size == 0) |
676 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
677 | "memory Map Size must be larger than 0" ); |
678 | |
679 | // Check if we have already mapped this address |
680 | if (IHandle != DeviceMMaps.end()) |
681 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
682 | "address already memory mapped" ); |
683 | |
684 | CUmemAllocationProp Prop = {}; |
685 | size_t Granularity = 0; |
686 | |
687 | size_t Free, Total; |
688 | CUresult Res = cuMemGetInfo(&Free, &Total); |
689 | if (auto Err = Plugin::check(Res, "Error in cuMemGetInfo: %s" )) |
690 | return Err; |
691 | |
692 | if (Size >= Free) { |
693 | *Addr = nullptr; |
694 | return Plugin::error( |
695 | ErrorCode::OUT_OF_RESOURCES, |
696 | "cannot map memory size larger than the available device memory" ); |
697 | } |
698 | |
699 | // currently NVidia only supports pinned device types |
700 | Prop.type = CU_MEM_ALLOCATION_TYPE_PINNED; |
701 | Prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE; |
702 | |
703 | Prop.location.id = DeviceId; |
704 | cuMemGetAllocationGranularity(&Granularity, &Prop, |
705 | CU_MEM_ALLOC_GRANULARITY_MINIMUM); |
706 | if (auto Err = |
707 | Plugin::check(Res, "error in cuMemGetAllocationGranularity: %s" )) |
708 | return Err; |
709 | |
710 | if (Granularity == 0) |
711 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
712 | "wrong device Page size" ); |
713 | |
714 | // Ceil to page size. |
715 | Size = utils::roundUp(Size, Granularity); |
716 | |
717 | // Create a handler of our allocation |
718 | CUmemGenericAllocationHandle AHandle; |
719 | Res = cuMemCreate(&AHandle, Size, &Prop, 0); |
720 | if (auto Err = Plugin::check(Res, "error in cuMemCreate: %s" )) |
721 | return Err; |
722 | |
723 | CUdeviceptr DevPtr = 0; |
724 | Res = cuMemAddressReserve(&DevPtr, Size, 0, DVAddr, 0); |
725 | if (auto Err = Plugin::check(Res, "error in cuMemAddressReserve: %s" )) |
726 | return Err; |
727 | |
728 | Res = cuMemMap(DevPtr, Size, 0, AHandle, 0); |
729 | if (auto Err = Plugin::check(Res, "error in cuMemMap: %s" )) |
730 | return Err; |
731 | |
732 | CUmemAccessDesc ADesc = {}; |
733 | ADesc.location.type = CU_MEM_LOCATION_TYPE_DEVICE; |
734 | ADesc.location.id = DeviceId; |
735 | ADesc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE; |
736 | |
737 | // Sets address |
738 | Res = cuMemSetAccess(DevPtr, Size, &ADesc, 1); |
739 | if (auto Err = Plugin::check(Res, "error in cuMemSetAccess: %s" )) |
740 | return Err; |
741 | |
742 | *Addr = reinterpret_cast<void *>(DevPtr); |
743 | *RSize = Size; |
744 | DeviceMMaps.insert({DevPtr, AHandle}); |
745 | return Plugin::success(); |
746 | } |
747 | |
748 | /// De-allocates device memory and Unmaps the Virtual Addr |
749 | Error memoryVAUnMap(void *VAddr, size_t Size) override { |
750 | CUdeviceptr DVAddr = reinterpret_cast<CUdeviceptr>(VAddr); |
751 | auto IHandle = DeviceMMaps.find(DVAddr); |
752 | // Mapping does not exist |
753 | if (IHandle == DeviceMMaps.end()) { |
754 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
755 | "addr is not MemoryMapped" ); |
756 | } |
757 | |
758 | if (IHandle == DeviceMMaps.end()) |
759 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
760 | "addr is not MemoryMapped" ); |
761 | |
762 | CUmemGenericAllocationHandle &AllocHandle = IHandle->second; |
763 | |
764 | CUresult Res = cuMemUnmap(DVAddr, Size); |
765 | if (auto Err = Plugin::check(Res, "error in cuMemUnmap: %s" )) |
766 | return Err; |
767 | |
768 | Res = cuMemRelease(AllocHandle); |
769 | if (auto Err = Plugin::check(Res, "error in cuMemRelease: %s" )) |
770 | return Err; |
771 | |
772 | Res = cuMemAddressFree(DVAddr, Size); |
773 | if (auto Err = Plugin::check(Res, "error in cuMemAddressFree: %s" )) |
774 | return Err; |
775 | |
776 | DeviceMMaps.erase(IHandle); |
777 | return Plugin::success(); |
778 | } |
779 | |
780 | /// Query for the completion of the pending operations on the async info. |
781 | Error queryAsyncImpl(__tgt_async_info &AsyncInfo) override { |
782 | CUstream Stream = reinterpret_cast<CUstream>(AsyncInfo.Queue); |
783 | CUresult Res = cuStreamQuery(Stream); |
784 | |
785 | // Not ready streams must be considered as successful operations. |
786 | if (Res == CUDA_ERROR_NOT_READY) |
787 | return Plugin::success(); |
788 | |
789 | // Once the stream is synchronized and the operations completed (or an error |
790 | // occurs), return it to stream pool and reset AsyncInfo. This is to make |
791 | // sure the synchronization only works for its own tasks. |
792 | AsyncInfo.Queue = nullptr; |
793 | if (auto Err = CUDAStreamManager.returnResource(Stream)) |
794 | return Err; |
795 | |
796 | return Plugin::check(Res, "error in cuStreamQuery: %s" ); |
797 | } |
798 | |
799 | Expected<void *> dataLockImpl(void *HstPtr, int64_t Size) override { |
800 | // TODO: Register the buffer as CUDA host memory. |
801 | return HstPtr; |
802 | } |
803 | |
804 | Error dataUnlockImpl(void *HstPtr) override { return Plugin::success(); } |
805 | |
806 | Expected<bool> isPinnedPtrImpl(void *HstPtr, void *&BaseHstPtr, |
807 | void *&BaseDevAccessiblePtr, |
808 | size_t &BaseSize) const override { |
809 | // TODO: Implement pinning feature for CUDA. |
810 | return false; |
811 | } |
812 | |
813 | /// Submit data to the device (host to device transfer). |
814 | Error dataSubmitImpl(void *TgtPtr, const void *HstPtr, int64_t Size, |
815 | AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
816 | if (auto Err = setContext()) |
817 | return Err; |
818 | |
819 | CUstream Stream; |
820 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
821 | return Err; |
822 | |
823 | CUresult Res = cuMemcpyHtoDAsync((CUdeviceptr)TgtPtr, HstPtr, Size, Stream); |
824 | return Plugin::check(Res, "error in cuMemcpyHtoDAsync: %s" ); |
825 | } |
826 | |
827 | /// Retrieve data from the device (device to host transfer). |
828 | Error dataRetrieveImpl(void *HstPtr, const void *TgtPtr, int64_t Size, |
829 | AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
830 | if (auto Err = setContext()) |
831 | return Err; |
832 | |
833 | CUstream Stream; |
834 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
835 | return Err; |
836 | |
837 | CUresult Res = cuMemcpyDtoHAsync(HstPtr, (CUdeviceptr)TgtPtr, Size, Stream); |
838 | return Plugin::check(Res, "error in cuMemcpyDtoHAsync: %s" ); |
839 | } |
840 | |
841 | /// Exchange data between two devices directly. We may use peer access if |
842 | /// the CUDA devices and driver allow them. |
843 | Error dataExchangeImpl(const void *SrcPtr, GenericDeviceTy &DstGenericDevice, |
844 | void *DstPtr, int64_t Size, |
845 | AsyncInfoWrapperTy &AsyncInfoWrapper) override; |
846 | |
847 | /// Initialize the async info for interoperability purposes. |
848 | Error initAsyncInfoImpl(AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
849 | if (auto Err = setContext()) |
850 | return Err; |
851 | |
852 | CUstream Stream; |
853 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
854 | return Err; |
855 | |
856 | return Plugin::success(); |
857 | } |
858 | |
859 | /// Initialize the device info for interoperability purposes. |
860 | Error initDeviceInfoImpl(__tgt_device_info *DeviceInfo) override { |
861 | assert(Context && "Context is null" ); |
862 | assert(Device != CU_DEVICE_INVALID && "Invalid CUDA device" ); |
863 | |
864 | if (auto Err = setContext()) |
865 | return Err; |
866 | |
867 | if (!DeviceInfo->Context) |
868 | DeviceInfo->Context = Context; |
869 | |
870 | if (!DeviceInfo->Device) |
871 | DeviceInfo->Device = reinterpret_cast<void *>(Device); |
872 | |
873 | return Plugin::success(); |
874 | } |
875 | |
876 | /// Create an event. |
877 | Error createEventImpl(void **EventPtrStorage) override { |
878 | CUevent *Event = reinterpret_cast<CUevent *>(EventPtrStorage); |
879 | return CUDAEventManager.getResource(*Event); |
880 | } |
881 | |
882 | /// Destroy a previously created event. |
883 | Error destroyEventImpl(void *EventPtr) override { |
884 | CUevent Event = reinterpret_cast<CUevent>(EventPtr); |
885 | return CUDAEventManager.returnResource(Event); |
886 | } |
887 | |
888 | /// Record the event. |
889 | Error recordEventImpl(void *EventPtr, |
890 | AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
891 | CUevent Event = reinterpret_cast<CUevent>(EventPtr); |
892 | |
893 | CUstream Stream; |
894 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
895 | return Err; |
896 | |
897 | CUresult Res = cuEventRecord(Event, Stream); |
898 | return Plugin::check(Res, "error in cuEventRecord: %s" ); |
899 | } |
900 | |
901 | /// Make the stream wait on the event. |
902 | Error waitEventImpl(void *EventPtr, |
903 | AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
904 | CUevent Event = reinterpret_cast<CUevent>(EventPtr); |
905 | |
906 | CUstream Stream; |
907 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
908 | return Err; |
909 | |
910 | // Do not use CU_EVENT_WAIT_DEFAULT here as it is only available from |
911 | // specific CUDA version, and defined as 0x0. In previous version, per CUDA |
912 | // API document, that argument has to be 0x0. |
913 | CUresult Res = cuStreamWaitEvent(Stream, Event, 0); |
914 | return Plugin::check(Res, "error in cuStreamWaitEvent: %s" ); |
915 | } |
916 | |
917 | /// Synchronize the current thread with the event. |
918 | Error syncEventImpl(void *EventPtr) override { |
919 | CUevent Event = reinterpret_cast<CUevent>(EventPtr); |
920 | CUresult Res = cuEventSynchronize(Event); |
921 | return Plugin::check(Res, "error in cuEventSynchronize: %s" ); |
922 | } |
923 | |
924 | /// Print information about the device. |
925 | Error obtainInfoImpl(InfoQueueTy &Info) override { |
926 | char TmpChar[1000]; |
927 | const char *TmpCharPtr; |
928 | size_t TmpSt; |
929 | int TmpInt; |
930 | |
931 | CUresult Res = cuDriverGetVersion(&TmpInt); |
932 | if (Res == CUDA_SUCCESS) |
933 | Info.add("CUDA Driver Version" , TmpInt); |
934 | |
935 | Info.add("CUDA OpenMP Device Number" , DeviceId); |
936 | |
937 | Res = cuDeviceGetName(TmpChar, 1000, Device); |
938 | if (Res == CUDA_SUCCESS) |
939 | Info.add("Device Name" , TmpChar); |
940 | |
941 | Res = cuDeviceTotalMem(&TmpSt, Device); |
942 | if (Res == CUDA_SUCCESS) |
943 | Info.add("Global Memory Size" , TmpSt, "bytes" ); |
944 | |
945 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, TmpInt); |
946 | if (Res == CUDA_SUCCESS) |
947 | Info.add("Number of Multiprocessors" , TmpInt); |
948 | |
949 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_GPU_OVERLAP, TmpInt); |
950 | if (Res == CUDA_SUCCESS) |
951 | Info.add("Concurrent Copy and Execution" , (bool)TmpInt); |
952 | |
953 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY, TmpInt); |
954 | if (Res == CUDA_SUCCESS) |
955 | Info.add("Total Constant Memory" , TmpInt, "bytes" ); |
956 | |
957 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK, |
958 | TmpInt); |
959 | if (Res == CUDA_SUCCESS) |
960 | Info.add("Max Shared Memory per Block" , TmpInt, "bytes" ); |
961 | |
962 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK, TmpInt); |
963 | if (Res == CUDA_SUCCESS) |
964 | Info.add("Registers per Block" , TmpInt); |
965 | |
966 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_WARP_SIZE, TmpInt); |
967 | if (Res == CUDA_SUCCESS) |
968 | Info.add("Warp Size" , TmpInt); |
969 | |
970 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, TmpInt); |
971 | if (Res == CUDA_SUCCESS) |
972 | Info.add("Maximum Threads per Block" , TmpInt); |
973 | |
974 | Info.add("Maximum Block Dimensions" , "" ); |
975 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, TmpInt); |
976 | if (Res == CUDA_SUCCESS) |
977 | Info.add<InfoLevel2>("x" , TmpInt); |
978 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y, TmpInt); |
979 | if (Res == CUDA_SUCCESS) |
980 | Info.add<InfoLevel2>("y" , TmpInt); |
981 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z, TmpInt); |
982 | if (Res == CUDA_SUCCESS) |
983 | Info.add<InfoLevel2>("z" , TmpInt); |
984 | |
985 | Info.add("Maximum Grid Dimensions" , "" ); |
986 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, TmpInt); |
987 | if (Res == CUDA_SUCCESS) |
988 | Info.add<InfoLevel2>("x" , TmpInt); |
989 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y, TmpInt); |
990 | if (Res == CUDA_SUCCESS) |
991 | Info.add<InfoLevel2>("y" , TmpInt); |
992 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z, TmpInt); |
993 | if (Res == CUDA_SUCCESS) |
994 | Info.add<InfoLevel2>("z" , TmpInt); |
995 | |
996 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_PITCH, TmpInt); |
997 | if (Res == CUDA_SUCCESS) |
998 | Info.add("Maximum Memory Pitch" , TmpInt, "bytes" ); |
999 | |
1000 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT, TmpInt); |
1001 | if (Res == CUDA_SUCCESS) |
1002 | Info.add("Texture Alignment" , TmpInt, "bytes" ); |
1003 | |
1004 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_CLOCK_RATE, TmpInt); |
1005 | if (Res == CUDA_SUCCESS) |
1006 | Info.add("Clock Rate" , TmpInt, "kHz" ); |
1007 | |
1008 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT, TmpInt); |
1009 | if (Res == CUDA_SUCCESS) |
1010 | Info.add("Execution Timeout" , (bool)TmpInt); |
1011 | |
1012 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_INTEGRATED, TmpInt); |
1013 | if (Res == CUDA_SUCCESS) |
1014 | Info.add("Integrated Device" , (bool)TmpInt); |
1015 | |
1016 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, TmpInt); |
1017 | if (Res == CUDA_SUCCESS) |
1018 | Info.add("Can Map Host Memory" , (bool)TmpInt); |
1019 | |
1020 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_COMPUTE_MODE, TmpInt); |
1021 | if (Res == CUDA_SUCCESS) { |
1022 | if (TmpInt == CU_COMPUTEMODE_DEFAULT) |
1023 | TmpCharPtr = "Default" ; |
1024 | else if (TmpInt == CU_COMPUTEMODE_PROHIBITED) |
1025 | TmpCharPtr = "Prohibited" ; |
1026 | else if (TmpInt == CU_COMPUTEMODE_EXCLUSIVE_PROCESS) |
1027 | TmpCharPtr = "Exclusive process" ; |
1028 | else |
1029 | TmpCharPtr = "Unknown" ; |
1030 | Info.add("Compute Mode" , TmpCharPtr); |
1031 | } |
1032 | |
1033 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS, TmpInt); |
1034 | if (Res == CUDA_SUCCESS) |
1035 | Info.add("Concurrent Kernels" , (bool)TmpInt); |
1036 | |
1037 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_ECC_ENABLED, TmpInt); |
1038 | if (Res == CUDA_SUCCESS) |
1039 | Info.add("ECC Enabled" , (bool)TmpInt); |
1040 | |
1041 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, TmpInt); |
1042 | if (Res == CUDA_SUCCESS) |
1043 | Info.add("Memory Clock Rate" , TmpInt, "kHz" ); |
1044 | |
1045 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, TmpInt); |
1046 | if (Res == CUDA_SUCCESS) |
1047 | Info.add("Memory Bus Width" , TmpInt, "bits" ); |
1048 | |
1049 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, TmpInt); |
1050 | if (Res == CUDA_SUCCESS) |
1051 | Info.add("L2 Cache Size" , TmpInt, "bytes" ); |
1052 | |
1053 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR, |
1054 | TmpInt); |
1055 | if (Res == CUDA_SUCCESS) |
1056 | Info.add("Max Threads Per SMP" , TmpInt); |
1057 | |
1058 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT, TmpInt); |
1059 | if (Res == CUDA_SUCCESS) |
1060 | Info.add("Async Engines" , TmpInt); |
1061 | |
1062 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING, TmpInt); |
1063 | if (Res == CUDA_SUCCESS) |
1064 | Info.add("Unified Addressing" , (bool)TmpInt); |
1065 | |
1066 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY, TmpInt); |
1067 | if (Res == CUDA_SUCCESS) |
1068 | Info.add("Managed Memory" , (bool)TmpInt); |
1069 | |
1070 | Res = |
1071 | getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS, TmpInt); |
1072 | if (Res == CUDA_SUCCESS) |
1073 | Info.add("Concurrent Managed Memory" , (bool)TmpInt); |
1074 | |
1075 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED, |
1076 | TmpInt); |
1077 | if (Res == CUDA_SUCCESS) |
1078 | Info.add("Preemption Supported" , (bool)TmpInt); |
1079 | |
1080 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_COOPERATIVE_LAUNCH, TmpInt); |
1081 | if (Res == CUDA_SUCCESS) |
1082 | Info.add("Cooperative Launch" , (bool)TmpInt); |
1083 | |
1084 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD, TmpInt); |
1085 | if (Res == CUDA_SUCCESS) |
1086 | Info.add("Multi-Device Boars" , (bool)TmpInt); |
1087 | |
1088 | Info.add("Compute Capabilities" , ComputeCapability.str()); |
1089 | |
1090 | return Plugin::success(); |
1091 | } |
1092 | |
1093 | virtual bool shouldSetupDeviceMemoryPool() const override { |
1094 | /// We use the CUDA malloc for now. |
1095 | return false; |
1096 | } |
1097 | |
1098 | /// Getters and setters for stack and heap sizes. |
1099 | Error getDeviceStackSize(uint64_t &Value) override { |
1100 | return getCtxLimit(CU_LIMIT_STACK_SIZE, Value); |
1101 | } |
1102 | Error setDeviceStackSize(uint64_t Value) override { |
1103 | return setCtxLimit(CU_LIMIT_STACK_SIZE, Value); |
1104 | } |
1105 | Error getDeviceHeapSize(uint64_t &Value) override { |
1106 | return getCtxLimit(CU_LIMIT_MALLOC_HEAP_SIZE, Value); |
1107 | } |
1108 | Error setDeviceHeapSize(uint64_t Value) override { |
1109 | return setCtxLimit(CU_LIMIT_MALLOC_HEAP_SIZE, Value); |
1110 | } |
1111 | Error getDeviceMemorySize(uint64_t &Value) override { |
1112 | CUresult Res = cuDeviceTotalMem(&Value, Device); |
1113 | return Plugin::check(Res, "error in getDeviceMemorySize %s" ); |
1114 | } |
1115 | |
1116 | /// CUDA-specific functions for getting and setting context limits. |
1117 | Error setCtxLimit(CUlimit Kind, uint64_t Value) { |
1118 | CUresult Res = cuCtxSetLimit(Kind, Value); |
1119 | return Plugin::check(Res, "error in cuCtxSetLimit: %s" ); |
1120 | } |
1121 | Error getCtxLimit(CUlimit Kind, uint64_t &Value) { |
1122 | CUresult Res = cuCtxGetLimit(&Value, Kind); |
1123 | return Plugin::check(Res, "error in cuCtxGetLimit: %s" ); |
1124 | } |
1125 | |
1126 | /// CUDA-specific function to get device attributes. |
1127 | Error getDeviceAttr(uint32_t Kind, uint32_t &Value) { |
1128 | // TODO: Warn if the new value is larger than the old. |
1129 | CUresult Res = |
1130 | cuDeviceGetAttribute((int *)&Value, (CUdevice_attribute)Kind, Device); |
1131 | return Plugin::check(Res, "error in cuDeviceGetAttribute: %s" ); |
1132 | } |
1133 | |
1134 | CUresult getDeviceAttrRaw(uint32_t Kind, int &Value) { |
1135 | return cuDeviceGetAttribute(&Value, (CUdevice_attribute)Kind, Device); |
1136 | } |
1137 | |
1138 | /// See GenericDeviceTy::getComputeUnitKind(). |
1139 | std::string getComputeUnitKind() const override { |
1140 | return ComputeCapability.str(); |
1141 | } |
1142 | |
1143 | /// Returns the clock frequency for the given NVPTX device. |
1144 | uint64_t getClockFrequency() const override { return 1000000000; } |
1145 | |
1146 | private: |
1147 | using CUDAStreamManagerTy = GenericDeviceResourceManagerTy<CUDAStreamRef>; |
1148 | using CUDAEventManagerTy = GenericDeviceResourceManagerTy<CUDAEventRef>; |
1149 | |
1150 | Error callGlobalCtorDtorCommon(GenericPluginTy &Plugin, DeviceImageTy &Image, |
1151 | bool IsCtor) { |
1152 | const char *KernelName = IsCtor ? "nvptx$device$init" : "nvptx$device$fini" ; |
1153 | // Perform a quick check for the named kernel in the image. The kernel |
1154 | // should be created by the 'nvptx-lower-ctor-dtor' pass. |
1155 | GenericGlobalHandlerTy &Handler = Plugin.getGlobalHandler(); |
1156 | if (IsCtor && !Handler.isSymbolInImage(*this, Image, KernelName)) |
1157 | return Plugin::success(); |
1158 | |
1159 | // The Nvidia backend cannot handle creating the ctor / dtor array |
1160 | // automatically so we must create it ourselves. The backend will emit |
1161 | // several globals that contain function pointers we can call. These are |
1162 | // prefixed with a known name due to Nvidia's lack of section support. |
1163 | auto ELFObjOrErr = Handler.getELFObjectFile(Image); |
1164 | if (!ELFObjOrErr) |
1165 | return ELFObjOrErr.takeError(); |
1166 | |
1167 | // Search for all symbols that contain a constructor or destructor. |
1168 | SmallVector<std::pair<StringRef, uint16_t>> Funcs; |
1169 | for (ELFSymbolRef Sym : (*ELFObjOrErr)->symbols()) { |
1170 | auto NameOrErr = Sym.getName(); |
1171 | if (!NameOrErr) |
1172 | return NameOrErr.takeError(); |
1173 | |
1174 | if (!NameOrErr->starts_with(IsCtor ? "__init_array_object_" |
1175 | : "__fini_array_object_" )) |
1176 | continue; |
1177 | |
1178 | uint16_t Priority; |
1179 | if (NameOrErr->rsplit('_').second.getAsInteger(10, Priority)) |
1180 | return Plugin::error(ErrorCode::INVALID_BINARY, |
1181 | "invalid priority for constructor or destructor" ); |
1182 | |
1183 | Funcs.emplace_back(*NameOrErr, Priority); |
1184 | } |
1185 | |
1186 | // Sort the created array to be in priority order. |
1187 | llvm::sort(Funcs, [=](auto X, auto Y) { return X.second < Y.second; }); |
1188 | |
1189 | // Allocate a buffer to store all of the known constructor / destructor |
1190 | // functions in so we can iterate them on the device. |
1191 | void *Buffer = |
1192 | allocate(Funcs.size() * sizeof(void *), nullptr, TARGET_ALLOC_DEVICE); |
1193 | if (!Buffer) |
1194 | return Plugin::error(ErrorCode::OUT_OF_RESOURCES, |
1195 | "failed to allocate memory for global buffer" ); |
1196 | |
1197 | auto *GlobalPtrStart = reinterpret_cast<uintptr_t *>(Buffer); |
1198 | auto *GlobalPtrStop = reinterpret_cast<uintptr_t *>(Buffer) + Funcs.size(); |
1199 | |
1200 | SmallVector<void *> FunctionPtrs(Funcs.size()); |
1201 | std::size_t Idx = 0; |
1202 | for (auto [Name, Priority] : Funcs) { |
1203 | GlobalTy FunctionAddr(Name.str(), sizeof(void *), &FunctionPtrs[Idx++]); |
1204 | if (auto Err = Handler.readGlobalFromDevice(*this, Image, FunctionAddr)) |
1205 | return Err; |
1206 | } |
1207 | |
1208 | // Copy the local buffer to the device. |
1209 | if (auto Err = dataSubmit(GlobalPtrStart, FunctionPtrs.data(), |
1210 | FunctionPtrs.size() * sizeof(void *), nullptr)) |
1211 | return Err; |
1212 | |
1213 | // Copy the created buffer to the appropriate symbols so the kernel can |
1214 | // iterate through them. |
1215 | GlobalTy StartGlobal(IsCtor ? "__init_array_start" : "__fini_array_start" , |
1216 | sizeof(void *), &GlobalPtrStart); |
1217 | if (auto Err = Handler.writeGlobalToDevice(*this, Image, StartGlobal)) |
1218 | return Err; |
1219 | |
1220 | GlobalTy StopGlobal(IsCtor ? "__init_array_end" : "__fini_array_end" , |
1221 | sizeof(void *), &GlobalPtrStop); |
1222 | if (auto Err = Handler.writeGlobalToDevice(*this, Image, StopGlobal)) |
1223 | return Err; |
1224 | |
1225 | CUDAKernelTy CUDAKernel(KernelName); |
1226 | |
1227 | if (auto Err = CUDAKernel.init(*this, Image)) |
1228 | return Err; |
1229 | |
1230 | AsyncInfoWrapperTy AsyncInfoWrapper(*this, nullptr); |
1231 | |
1232 | KernelArgsTy KernelArgs = {}; |
1233 | uint32_t NumBlocksAndThreads[3] = {1u, 1u, 1u}; |
1234 | if (auto Err = CUDAKernel.launchImpl( |
1235 | *this, NumBlocksAndThreads, NumBlocksAndThreads, KernelArgs, |
1236 | KernelLaunchParamsTy{}, AsyncInfoWrapper)) |
1237 | return Err; |
1238 | |
1239 | Error Err = Plugin::success(); |
1240 | AsyncInfoWrapper.finalize(Err); |
1241 | |
1242 | if (free(Buffer, TARGET_ALLOC_DEVICE) != OFFLOAD_SUCCESS) |
1243 | return Plugin::error(ErrorCode::UNKNOWN, |
1244 | "failed to free memory for global buffer" ); |
1245 | |
1246 | return Err; |
1247 | } |
1248 | |
1249 | /// Stream manager for CUDA streams. |
1250 | CUDAStreamManagerTy CUDAStreamManager; |
1251 | |
1252 | /// Event manager for CUDA events. |
1253 | CUDAEventManagerTy CUDAEventManager; |
1254 | |
1255 | /// The device's context. This context should be set before performing |
1256 | /// operations on the device. |
1257 | CUcontext Context = nullptr; |
1258 | |
1259 | /// The CUDA device handler. |
1260 | CUdevice Device = CU_DEVICE_INVALID; |
1261 | |
1262 | /// The memory mapped addresses and their handles |
1263 | std::unordered_map<CUdeviceptr, CUmemGenericAllocationHandle> DeviceMMaps; |
1264 | |
1265 | /// The compute capability of the corresponding CUDA device. |
1266 | struct ComputeCapabilityTy { |
1267 | uint32_t Major; |
1268 | uint32_t Minor; |
1269 | std::string str() const { |
1270 | return "sm_" + std::to_string(val: Major * 10 + Minor); |
1271 | } |
1272 | } ComputeCapability; |
1273 | |
1274 | /// The maximum number of warps that can be resident on all the SMs |
1275 | /// simultaneously. |
1276 | uint32_t HardwareParallelism = 0; |
1277 | }; |
1278 | |
1279 | Error CUDAKernelTy::launchImpl(GenericDeviceTy &GenericDevice, |
1280 | uint32_t NumThreads[3], uint32_t NumBlocks[3], |
1281 | KernelArgsTy &KernelArgs, |
1282 | KernelLaunchParamsTy LaunchParams, |
1283 | AsyncInfoWrapperTy &AsyncInfoWrapper) const { |
1284 | CUDADeviceTy &CUDADevice = static_cast<CUDADeviceTy &>(GenericDevice); |
1285 | |
1286 | CUstream Stream; |
1287 | if (auto Err = CUDADevice.getStream(AsyncInfoWrapper, Stream)) |
1288 | return Err; |
1289 | |
1290 | uint32_t MaxDynCGroupMem = |
1291 | std::max(KernelArgs.DynCGroupMem, GenericDevice.getDynamicMemorySize()); |
1292 | |
1293 | void *Config[] = {CU_LAUNCH_PARAM_BUFFER_POINTER, LaunchParams.Data, |
1294 | CU_LAUNCH_PARAM_BUFFER_SIZE, |
1295 | reinterpret_cast<void *>(&LaunchParams.Size), |
1296 | CU_LAUNCH_PARAM_END}; |
1297 | |
1298 | // If we are running an RPC server we want to wake up the server thread |
1299 | // whenever there is a kernel running and let it sleep otherwise. |
1300 | if (GenericDevice.getRPCServer()) |
1301 | GenericDevice.Plugin.getRPCServer().Thread->notify(); |
1302 | |
1303 | CUresult Res = cuLaunchKernel(Func, NumBlocks[0], NumBlocks[1], NumBlocks[2], |
1304 | NumThreads[0], NumThreads[1], NumThreads[2], |
1305 | MaxDynCGroupMem, Stream, nullptr, Config); |
1306 | |
1307 | // Register a callback to indicate when the kernel is complete. |
1308 | if (GenericDevice.getRPCServer()) |
1309 | cuLaunchHostFunc( |
1310 | Stream, |
1311 | [](void *Data) { |
1312 | GenericPluginTy &Plugin = *reinterpret_cast<GenericPluginTy *>(Data); |
1313 | Plugin.getRPCServer().Thread->finish(); |
1314 | }, |
1315 | &GenericDevice.Plugin); |
1316 | |
1317 | return Plugin::check(Res, "error in cuLaunchKernel for '%s': %s" , getName()); |
1318 | } |
1319 | |
1320 | /// Class implementing the CUDA-specific functionalities of the global handler. |
1321 | class CUDAGlobalHandlerTy final : public GenericGlobalHandlerTy { |
1322 | public: |
1323 | /// Get the metadata of a global from the device. The name and size of the |
1324 | /// global is read from DeviceGlobal and the address of the global is written |
1325 | /// to DeviceGlobal. |
1326 | Error getGlobalMetadataFromDevice(GenericDeviceTy &Device, |
1327 | DeviceImageTy &Image, |
1328 | GlobalTy &DeviceGlobal) override { |
1329 | CUDADeviceImageTy &CUDAImage = static_cast<CUDADeviceImageTy &>(Image); |
1330 | |
1331 | const char *GlobalName = DeviceGlobal.getName().data(); |
1332 | |
1333 | size_t CUSize; |
1334 | CUdeviceptr CUPtr; |
1335 | CUresult Res = |
1336 | cuModuleGetGlobal(&CUPtr, &CUSize, CUDAImage.getModule(), GlobalName); |
1337 | if (auto Err = Plugin::check(Res, "error in cuModuleGetGlobal for '%s': %s" , |
1338 | GlobalName)) |
1339 | return Err; |
1340 | |
1341 | if (CUSize != DeviceGlobal.getSize()) |
1342 | return Plugin::error( |
1343 | ErrorCode::INVALID_BINARY, |
1344 | "failed to load global '%s' due to size mismatch (%zu != %zu)" , |
1345 | GlobalName, CUSize, (size_t)DeviceGlobal.getSize()); |
1346 | |
1347 | DeviceGlobal.setPtr(reinterpret_cast<void *>(CUPtr)); |
1348 | return Plugin::success(); |
1349 | } |
1350 | }; |
1351 | |
1352 | /// Class implementing the CUDA-specific functionalities of the plugin. |
1353 | struct CUDAPluginTy final : public GenericPluginTy { |
1354 | /// Create a CUDA plugin. |
1355 | CUDAPluginTy() : GenericPluginTy(getTripleArch()) {} |
1356 | |
1357 | /// This class should not be copied. |
1358 | CUDAPluginTy(const CUDAPluginTy &) = delete; |
1359 | CUDAPluginTy(CUDAPluginTy &&) = delete; |
1360 | |
1361 | /// Initialize the plugin and return the number of devices. |
1362 | Expected<int32_t> initImpl() override { |
1363 | CUresult Res = cuInit(0); |
1364 | if (Res == CUDA_ERROR_INVALID_HANDLE) { |
1365 | // Cannot call cuGetErrorString if dlsym failed. |
1366 | DP("Failed to load CUDA shared library\n" ); |
1367 | return 0; |
1368 | } |
1369 | |
1370 | if (Res == CUDA_ERROR_NO_DEVICE) { |
1371 | // Do not initialize if there are no devices. |
1372 | DP("There are no devices supporting CUDA.\n" ); |
1373 | return 0; |
1374 | } |
1375 | |
1376 | if (auto Err = Plugin::check(Res, "error in cuInit: %s" )) |
1377 | return std::move(Err); |
1378 | |
1379 | // Get the number of devices. |
1380 | int NumDevices; |
1381 | Res = cuDeviceGetCount(&NumDevices); |
1382 | if (auto Err = Plugin::check(Res, "error in cuDeviceGetCount: %s" )) |
1383 | return std::move(Err); |
1384 | |
1385 | // Do not initialize if there are no devices. |
1386 | if (NumDevices == 0) |
1387 | DP("There are no devices supporting CUDA.\n" ); |
1388 | |
1389 | return NumDevices; |
1390 | } |
1391 | |
1392 | /// Deinitialize the plugin. |
1393 | Error deinitImpl() override { return Plugin::success(); } |
1394 | |
1395 | /// Creates a CUDA device to use for offloading. |
1396 | GenericDeviceTy *createDevice(GenericPluginTy &Plugin, int32_t DeviceId, |
1397 | int32_t NumDevices) override { |
1398 | return new CUDADeviceTy(Plugin, DeviceId, NumDevices); |
1399 | } |
1400 | |
1401 | /// Creates a CUDA global handler. |
1402 | GenericGlobalHandlerTy *createGlobalHandler() override { |
1403 | return new CUDAGlobalHandlerTy(); |
1404 | } |
1405 | |
1406 | /// Get the ELF code for recognizing the compatible image binary. |
1407 | uint16_t getMagicElfBits() const override { return ELF::EM_CUDA; } |
1408 | |
1409 | Triple::ArchType getTripleArch() const override { |
1410 | // TODO: I think we can drop the support for 32-bit NVPTX devices. |
1411 | return Triple::nvptx64; |
1412 | } |
1413 | |
1414 | const char *getName() const override { return GETNAME(TARGET_NAME); } |
1415 | |
1416 | /// Check whether the image is compatible with a CUDA device. |
1417 | Expected<bool> isELFCompatible(uint32_t DeviceId, |
1418 | StringRef Image) const override { |
1419 | auto ElfOrErr = |
1420 | ELF64LEObjectFile::create(MemoryBufferRef(Image, /*Identifier=*/"" ), |
1421 | /*InitContent=*/false); |
1422 | if (!ElfOrErr) |
1423 | return ElfOrErr.takeError(); |
1424 | |
1425 | // Get the numeric value for the image's `sm_` value. |
1426 | auto SM = ElfOrErr->getPlatformFlags() & ELF::EF_CUDA_SM; |
1427 | |
1428 | CUdevice Device; |
1429 | CUresult Res = cuDeviceGet(&Device, DeviceId); |
1430 | if (auto Err = Plugin::check(Res, "error in cuDeviceGet: %s" )) |
1431 | return std::move(Err); |
1432 | |
1433 | int32_t Major, Minor; |
1434 | Res = cuDeviceGetAttribute( |
1435 | &Major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, Device); |
1436 | if (auto Err = Plugin::check(Res, "error in cuDeviceGetAttribute: %s" )) |
1437 | return std::move(Err); |
1438 | |
1439 | Res = cuDeviceGetAttribute( |
1440 | &Minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, Device); |
1441 | if (auto Err = Plugin::check(Res, "error in cuDeviceGetAttribute: %s" )) |
1442 | return std::move(Err); |
1443 | |
1444 | int32_t ImageMajor = SM / 10; |
1445 | int32_t ImageMinor = SM % 10; |
1446 | |
1447 | // A cubin generated for a certain compute capability is supported to |
1448 | // run on any GPU with the same major revision and same or higher minor |
1449 | // revision. |
1450 | return Major == ImageMajor && Minor >= ImageMinor; |
1451 | } |
1452 | }; |
1453 | |
1454 | Error CUDADeviceTy::dataExchangeImpl(const void *SrcPtr, |
1455 | GenericDeviceTy &DstGenericDevice, |
1456 | void *DstPtr, int64_t Size, |
1457 | AsyncInfoWrapperTy &AsyncInfoWrapper) { |
1458 | if (auto Err = setContext()) |
1459 | return Err; |
1460 | |
1461 | CUDADeviceTy &DstDevice = static_cast<CUDADeviceTy &>(DstGenericDevice); |
1462 | |
1463 | CUresult Res; |
1464 | int32_t DstDeviceId = DstDevice.DeviceId; |
1465 | CUdeviceptr CUSrcPtr = (CUdeviceptr)SrcPtr; |
1466 | CUdeviceptr CUDstPtr = (CUdeviceptr)DstPtr; |
1467 | |
1468 | int CanAccessPeer = 0; |
1469 | if (DeviceId != DstDeviceId) { |
1470 | // Make sure the lock is released before performing the copies. |
1471 | std::lock_guard<std::mutex> Lock(PeerAccessesLock); |
1472 | |
1473 | switch (PeerAccesses[DstDeviceId]) { |
1474 | case PeerAccessState::AVAILABLE: |
1475 | CanAccessPeer = 1; |
1476 | break; |
1477 | case PeerAccessState::UNAVAILABLE: |
1478 | CanAccessPeer = 0; |
1479 | break; |
1480 | case PeerAccessState::PENDING: |
1481 | // Check whether the source device can access the destination device. |
1482 | Res = cuDeviceCanAccessPeer(&CanAccessPeer, Device, DstDevice.Device); |
1483 | if (auto Err = Plugin::check(Res, "Error in cuDeviceCanAccessPeer: %s" )) |
1484 | return Err; |
1485 | |
1486 | if (CanAccessPeer) { |
1487 | Res = cuCtxEnablePeerAccess(DstDevice.Context, 0); |
1488 | if (Res == CUDA_ERROR_TOO_MANY_PEERS) { |
1489 | // Resources may be exhausted due to many P2P links. |
1490 | CanAccessPeer = 0; |
1491 | DP("Too many P2P so fall back to D2D memcpy" ); |
1492 | } else if (auto Err = |
1493 | Plugin::check(Res, "error in cuCtxEnablePeerAccess: %s" )) |
1494 | return Err; |
1495 | } |
1496 | PeerAccesses[DstDeviceId] = (CanAccessPeer) |
1497 | ? PeerAccessState::AVAILABLE |
1498 | : PeerAccessState::UNAVAILABLE; |
1499 | } |
1500 | } |
1501 | |
1502 | CUstream Stream; |
1503 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
1504 | return Err; |
1505 | |
1506 | if (CanAccessPeer) { |
1507 | // TODO: Should we fallback to D2D if peer access fails? |
1508 | Res = cuMemcpyPeerAsync(CUDstPtr, Context, CUSrcPtr, DstDevice.Context, |
1509 | Size, Stream); |
1510 | return Plugin::check(Res, "error in cuMemcpyPeerAsync: %s" ); |
1511 | } |
1512 | |
1513 | // Fallback to D2D copy. |
1514 | Res = cuMemcpyDtoDAsync(CUDstPtr, CUSrcPtr, Size, Stream); |
1515 | return Plugin::check(Res, "error in cuMemcpyDtoDAsync: %s" ); |
1516 | } |
1517 | |
1518 | template <typename... ArgsTy> |
1519 | static Error Plugin::check(int32_t Code, const char *ErrFmt, ArgsTy... Args) { |
1520 | CUresult ResultCode = static_cast<CUresult>(Code); |
1521 | if (ResultCode == CUDA_SUCCESS) |
1522 | return Plugin::success(); |
1523 | |
1524 | const char *Desc = "Unknown error" ; |
1525 | CUresult Ret = cuGetErrorString(ResultCode, &Desc); |
1526 | if (Ret != CUDA_SUCCESS) |
1527 | REPORT("Unrecognized " GETNAME(TARGET_NAME) " error code %d\n" , Code); |
1528 | |
1529 | // TODO: Add more entries to this switch |
1530 | ErrorCode OffloadErrCode; |
1531 | switch (ResultCode) { |
1532 | case CUDA_ERROR_NOT_FOUND: |
1533 | OffloadErrCode = ErrorCode::NOT_FOUND; |
1534 | break; |
1535 | default: |
1536 | OffloadErrCode = ErrorCode::UNKNOWN; |
1537 | } |
1538 | |
1539 | // TODO: Create a map for CUDA error codes to Offload error codes |
1540 | return Plugin::error(OffloadErrCode, ErrFmt, Args..., Desc); |
1541 | } |
1542 | |
1543 | } // namespace plugin |
1544 | } // namespace target |
1545 | } // namespace omp |
1546 | } // namespace llvm |
1547 | |
1548 | extern "C" { |
1549 | llvm::omp::target::plugin::GenericPluginTy *createPlugin_cuda() { |
1550 | return new llvm::omp::target::plugin::CUDAPluginTy(); |
1551 | } |
1552 | } |
1553 | |