| 1 | //===----RTLs/cuda/src/rtl.cpp - Target RTLs Implementation ------- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // RTL NextGen for CUDA machine |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include <cassert> |
| 14 | #include <cstddef> |
| 15 | #include <cuda.h> |
| 16 | #include <string> |
| 17 | #include <unordered_map> |
| 18 | |
| 19 | #include "Shared/APITypes.h" |
| 20 | #include "Shared/Debug.h" |
| 21 | #include "Shared/Environment.h" |
| 22 | |
| 23 | #include "GlobalHandler.h" |
| 24 | #include "OpenMP/OMPT/Callback.h" |
| 25 | #include "PluginInterface.h" |
| 26 | #include "Utils/ELF.h" |
| 27 | |
| 28 | #include "llvm/BinaryFormat/ELF.h" |
| 29 | #include "llvm/Frontend/OpenMP/OMPConstants.h" |
| 30 | #include "llvm/Frontend/OpenMP/OMPGridValues.h" |
| 31 | #include "llvm/Support/Error.h" |
| 32 | #include "llvm/Support/FileOutputBuffer.h" |
| 33 | #include "llvm/Support/FileSystem.h" |
| 34 | #include "llvm/Support/Program.h" |
| 35 | |
| 36 | using namespace error; |
| 37 | |
| 38 | namespace llvm { |
| 39 | namespace omp { |
| 40 | namespace target { |
| 41 | namespace plugin { |
| 42 | |
| 43 | /// Forward declarations for all specialized data structures. |
| 44 | struct CUDAKernelTy; |
| 45 | struct CUDADeviceTy; |
| 46 | struct CUDAPluginTy; |
| 47 | |
| 48 | #if (defined(CUDA_VERSION) && (CUDA_VERSION < 11000)) |
| 49 | /// Forward declarations for all Virtual Memory Management |
| 50 | /// related data structures and functions. This is necessary |
| 51 | /// for older cuda versions. |
| 52 | typedef void *CUmemGenericAllocationHandle; |
| 53 | typedef void *CUmemAllocationProp; |
| 54 | typedef void *CUmemAccessDesc; |
| 55 | typedef void *CUmemAllocationGranularity_flags; |
| 56 | CUresult cuMemAddressReserve(CUdeviceptr *ptr, size_t size, size_t alignment, |
| 57 | CUdeviceptr addr, unsigned long long flags) {} |
| 58 | CUresult cuMemMap(CUdeviceptr ptr, size_t size, size_t offset, |
| 59 | CUmemGenericAllocationHandle handle, |
| 60 | unsigned long long flags) {} |
| 61 | CUresult cuMemCreate(CUmemGenericAllocationHandle *handle, size_t size, |
| 62 | const CUmemAllocationProp *prop, |
| 63 | unsigned long long flags) {} |
| 64 | CUresult cuMemSetAccess(CUdeviceptr ptr, size_t size, |
| 65 | const CUmemAccessDesc *desc, size_t count) {} |
| 66 | CUresult |
| 67 | cuMemGetAllocationGranularity(size_t *granularity, |
| 68 | const CUmemAllocationProp *prop, |
| 69 | CUmemAllocationGranularity_flags option) {} |
| 70 | #endif |
| 71 | |
| 72 | #if (defined(CUDA_VERSION) && (CUDA_VERSION < 11020)) |
| 73 | // Forward declarations of asynchronous memory management functions. This is |
| 74 | // necessary for older versions of CUDA. |
| 75 | CUresult cuMemAllocAsync(CUdeviceptr *ptr, size_t, CUstream) { *ptr = 0; } |
| 76 | |
| 77 | CUresult cuMemFreeAsync(CUdeviceptr dptr, CUstream hStream) {} |
| 78 | #endif |
| 79 | |
| 80 | /// Class implementing the CUDA device images properties. |
| 81 | struct CUDADeviceImageTy : public DeviceImageTy { |
| 82 | /// Create the CUDA image with the id and the target image pointer. |
| 83 | CUDADeviceImageTy(int32_t ImageId, GenericDeviceTy &Device, |
| 84 | const __tgt_device_image *TgtImage) |
| 85 | : DeviceImageTy(ImageId, Device, TgtImage), Module(nullptr) {} |
| 86 | |
| 87 | /// Load the image as a CUDA module. |
| 88 | Error loadModule() { |
| 89 | assert(!Module && "Module already loaded" ); |
| 90 | |
| 91 | CUresult Res = cuModuleLoadDataEx(&Module, getStart(), 0, nullptr, nullptr); |
| 92 | if (auto Err = Plugin::check(Res, "error in cuModuleLoadDataEx: %s" )) |
| 93 | return Err; |
| 94 | |
| 95 | return Plugin::success(); |
| 96 | } |
| 97 | |
| 98 | /// Unload the CUDA module corresponding to the image. |
| 99 | Error unloadModule() { |
| 100 | assert(Module && "Module not loaded" ); |
| 101 | |
| 102 | CUresult Res = cuModuleUnload(Module); |
| 103 | if (auto Err = Plugin::check(Res, "error in cuModuleUnload: %s" )) |
| 104 | return Err; |
| 105 | |
| 106 | Module = nullptr; |
| 107 | |
| 108 | return Plugin::success(); |
| 109 | } |
| 110 | |
| 111 | /// Getter of the CUDA module. |
| 112 | CUmodule getModule() const { return Module; } |
| 113 | |
| 114 | private: |
| 115 | /// The CUDA module that loaded the image. |
| 116 | CUmodule Module; |
| 117 | }; |
| 118 | |
| 119 | /// Class implementing the CUDA kernel functionalities which derives from the |
| 120 | /// generic kernel class. |
| 121 | struct CUDAKernelTy : public GenericKernelTy { |
| 122 | /// Create a CUDA kernel with a name and an execution mode. |
| 123 | CUDAKernelTy(const char *Name) : GenericKernelTy(Name), Func(nullptr) {} |
| 124 | |
| 125 | /// Initialize the CUDA kernel. |
| 126 | Error initImpl(GenericDeviceTy &GenericDevice, |
| 127 | DeviceImageTy &Image) override { |
| 128 | CUresult Res; |
| 129 | CUDADeviceImageTy &CUDAImage = static_cast<CUDADeviceImageTy &>(Image); |
| 130 | |
| 131 | // Retrieve the function pointer of the kernel. |
| 132 | Res = cuModuleGetFunction(&Func, CUDAImage.getModule(), getName()); |
| 133 | if (auto Err = Plugin::check(Res, "error in cuModuleGetFunction('%s'): %s" , |
| 134 | getName())) |
| 135 | return Err; |
| 136 | |
| 137 | // Check that the function pointer is valid. |
| 138 | if (!Func) |
| 139 | return Plugin::error(ErrorCode::INVALID_BINARY, |
| 140 | "invalid function for kernel %s" , getName()); |
| 141 | |
| 142 | int MaxThreads; |
| 143 | Res = cuFuncGetAttribute(&MaxThreads, |
| 144 | CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK, Func); |
| 145 | if (auto Err = Plugin::check(Res, "error in cuFuncGetAttribute: %s" )) |
| 146 | return Err; |
| 147 | |
| 148 | // The maximum number of threads cannot exceed the maximum of the kernel. |
| 149 | MaxNumThreads = std::min(MaxNumThreads, (uint32_t)MaxThreads); |
| 150 | |
| 151 | return Plugin::success(); |
| 152 | } |
| 153 | |
| 154 | /// Launch the CUDA kernel function. |
| 155 | Error launchImpl(GenericDeviceTy &GenericDevice, uint32_t NumThreads[3], |
| 156 | uint32_t NumBlocks[3], KernelArgsTy &KernelArgs, |
| 157 | KernelLaunchParamsTy LaunchParams, |
| 158 | AsyncInfoWrapperTy &AsyncInfoWrapper) const override; |
| 159 | |
| 160 | private: |
| 161 | /// The CUDA kernel function to execute. |
| 162 | CUfunction Func; |
| 163 | }; |
| 164 | |
| 165 | /// Class wrapping a CUDA stream reference. These are the objects handled by the |
| 166 | /// Stream Manager for the CUDA plugin. |
| 167 | struct CUDAStreamRef final : public GenericDeviceResourceRef { |
| 168 | /// The underlying handle type for streams. |
| 169 | using HandleTy = CUstream; |
| 170 | |
| 171 | /// Create an empty reference to an invalid stream. |
| 172 | CUDAStreamRef() : Stream(nullptr) {} |
| 173 | |
| 174 | /// Create a reference to an existing stream. |
| 175 | CUDAStreamRef(HandleTy Stream) : Stream(Stream) {} |
| 176 | |
| 177 | /// Create a new stream and save the reference. The reference must be empty |
| 178 | /// before calling to this function. |
| 179 | Error create(GenericDeviceTy &Device) override { |
| 180 | if (Stream) |
| 181 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
| 182 | "creating an existing stream" ); |
| 183 | |
| 184 | CUresult Res = cuStreamCreate(&Stream, CU_STREAM_NON_BLOCKING); |
| 185 | if (auto Err = Plugin::check(Res, "error in cuStreamCreate: %s" )) |
| 186 | return Err; |
| 187 | |
| 188 | return Plugin::success(); |
| 189 | } |
| 190 | |
| 191 | /// Destroy the referenced stream and invalidate the reference. The reference |
| 192 | /// must be to a valid stream before calling to this function. |
| 193 | Error destroy(GenericDeviceTy &Device) override { |
| 194 | if (!Stream) |
| 195 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
| 196 | "destroying an invalid stream" ); |
| 197 | |
| 198 | CUresult Res = cuStreamDestroy(Stream); |
| 199 | if (auto Err = Plugin::check(Res, "error in cuStreamDestroy: %s" )) |
| 200 | return Err; |
| 201 | |
| 202 | Stream = nullptr; |
| 203 | return Plugin::success(); |
| 204 | } |
| 205 | |
| 206 | /// Get the underlying CUDA stream. |
| 207 | operator HandleTy() const { return Stream; } |
| 208 | |
| 209 | private: |
| 210 | /// The reference to the CUDA stream. |
| 211 | HandleTy Stream; |
| 212 | }; |
| 213 | |
| 214 | /// Class wrapping a CUDA event reference. These are the objects handled by the |
| 215 | /// Event Manager for the CUDA plugin. |
| 216 | struct CUDAEventRef final : public GenericDeviceResourceRef { |
| 217 | /// The underlying handle type for events. |
| 218 | using HandleTy = CUevent; |
| 219 | |
| 220 | /// Create an empty reference to an invalid event. |
| 221 | CUDAEventRef() : Event(nullptr) {} |
| 222 | |
| 223 | /// Create a reference to an existing event. |
| 224 | CUDAEventRef(HandleTy Event) : Event(Event) {} |
| 225 | |
| 226 | /// Create a new event and save the reference. The reference must be empty |
| 227 | /// before calling to this function. |
| 228 | Error create(GenericDeviceTy &Device) override { |
| 229 | if (Event) |
| 230 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
| 231 | "creating an existing event" ); |
| 232 | |
| 233 | CUresult Res = cuEventCreate(&Event, CU_EVENT_DEFAULT); |
| 234 | if (auto Err = Plugin::check(Res, "error in cuEventCreate: %s" )) |
| 235 | return Err; |
| 236 | |
| 237 | return Plugin::success(); |
| 238 | } |
| 239 | |
| 240 | /// Destroy the referenced event and invalidate the reference. The reference |
| 241 | /// must be to a valid event before calling to this function. |
| 242 | Error destroy(GenericDeviceTy &Device) override { |
| 243 | if (!Event) |
| 244 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
| 245 | "destroying an invalid event" ); |
| 246 | |
| 247 | CUresult Res = cuEventDestroy(Event); |
| 248 | if (auto Err = Plugin::check(Res, "error in cuEventDestroy: %s" )) |
| 249 | return Err; |
| 250 | |
| 251 | Event = nullptr; |
| 252 | return Plugin::success(); |
| 253 | } |
| 254 | |
| 255 | /// Get the underlying CUevent. |
| 256 | operator HandleTy() const { return Event; } |
| 257 | |
| 258 | private: |
| 259 | /// The reference to the CUDA event. |
| 260 | HandleTy Event; |
| 261 | }; |
| 262 | |
| 263 | /// Class implementing the CUDA device functionalities which derives from the |
| 264 | /// generic device class. |
| 265 | struct CUDADeviceTy : public GenericDeviceTy { |
| 266 | // Create a CUDA device with a device id and the default CUDA grid values. |
| 267 | CUDADeviceTy(GenericPluginTy &Plugin, int32_t DeviceId, int32_t NumDevices) |
| 268 | : GenericDeviceTy(Plugin, DeviceId, NumDevices, NVPTXGridValues), |
| 269 | CUDAStreamManager(*this), CUDAEventManager(*this) {} |
| 270 | |
| 271 | ~CUDADeviceTy() {} |
| 272 | |
| 273 | /// Initialize the device, its resources and get its properties. |
| 274 | Error initImpl(GenericPluginTy &Plugin) override { |
| 275 | CUresult Res = cuDeviceGet(&Device, DeviceId); |
| 276 | if (auto Err = Plugin::check(Res, "error in cuDeviceGet: %s" )) |
| 277 | return Err; |
| 278 | |
| 279 | // Query the current flags of the primary context and set its flags if |
| 280 | // it is inactive. |
| 281 | unsigned int FormerPrimaryCtxFlags = 0; |
| 282 | int FormerPrimaryCtxIsActive = 0; |
| 283 | Res = cuDevicePrimaryCtxGetState(Device, &FormerPrimaryCtxFlags, |
| 284 | &FormerPrimaryCtxIsActive); |
| 285 | if (auto Err = |
| 286 | Plugin::check(Res, "error in cuDevicePrimaryCtxGetState: %s" )) |
| 287 | return Err; |
| 288 | |
| 289 | if (FormerPrimaryCtxIsActive) { |
| 290 | INFO(OMP_INFOTYPE_PLUGIN_KERNEL, DeviceId, |
| 291 | "The primary context is active, no change to its flags\n" ); |
| 292 | if ((FormerPrimaryCtxFlags & CU_CTX_SCHED_MASK) != |
| 293 | CU_CTX_SCHED_BLOCKING_SYNC) |
| 294 | INFO(OMP_INFOTYPE_PLUGIN_KERNEL, DeviceId, |
| 295 | "Warning: The current flags are not CU_CTX_SCHED_BLOCKING_SYNC\n" ); |
| 296 | } else { |
| 297 | INFO(OMP_INFOTYPE_PLUGIN_KERNEL, DeviceId, |
| 298 | "The primary context is inactive, set its flags to " |
| 299 | "CU_CTX_SCHED_BLOCKING_SYNC\n" ); |
| 300 | Res = cuDevicePrimaryCtxSetFlags(Device, CU_CTX_SCHED_BLOCKING_SYNC); |
| 301 | if (auto Err = |
| 302 | Plugin::check(Res, "error in cuDevicePrimaryCtxSetFlags: %s" )) |
| 303 | return Err; |
| 304 | } |
| 305 | |
| 306 | // Retain the per device primary context and save it to use whenever this |
| 307 | // device is selected. |
| 308 | Res = cuDevicePrimaryCtxRetain(&Context, Device); |
| 309 | if (auto Err = Plugin::check(Res, "error in cuDevicePrimaryCtxRetain: %s" )) |
| 310 | return Err; |
| 311 | |
| 312 | if (auto Err = setContext()) |
| 313 | return Err; |
| 314 | |
| 315 | // Initialize stream pool. |
| 316 | if (auto Err = CUDAStreamManager.init(OMPX_InitialNumStreams)) |
| 317 | return Err; |
| 318 | |
| 319 | // Initialize event pool. |
| 320 | if (auto Err = CUDAEventManager.init(OMPX_InitialNumEvents)) |
| 321 | return Err; |
| 322 | |
| 323 | // Query attributes to determine number of threads/block and blocks/grid. |
| 324 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, |
| 325 | GridValues.GV_Max_Teams)) |
| 326 | return Err; |
| 327 | |
| 328 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, |
| 329 | GridValues.GV_Max_WG_Size)) |
| 330 | return Err; |
| 331 | |
| 332 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_WARP_SIZE, |
| 333 | GridValues.GV_Warp_Size)) |
| 334 | return Err; |
| 335 | |
| 336 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, |
| 337 | ComputeCapability.Major)) |
| 338 | return Err; |
| 339 | |
| 340 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, |
| 341 | ComputeCapability.Minor)) |
| 342 | return Err; |
| 343 | |
| 344 | uint32_t NumMuliprocessors = 0; |
| 345 | uint32_t MaxThreadsPerSM = 0; |
| 346 | uint32_t WarpSize = 0; |
| 347 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, |
| 348 | NumMuliprocessors)) |
| 349 | return Err; |
| 350 | if (auto Err = |
| 351 | getDeviceAttr(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR, |
| 352 | MaxThreadsPerSM)) |
| 353 | return Err; |
| 354 | if (auto Err = getDeviceAttr(CU_DEVICE_ATTRIBUTE_WARP_SIZE, WarpSize)) |
| 355 | return Err; |
| 356 | HardwareParallelism = NumMuliprocessors * (MaxThreadsPerSM / WarpSize); |
| 357 | |
| 358 | return Plugin::success(); |
| 359 | } |
| 360 | |
| 361 | /// Deinitialize the device and release its resources. |
| 362 | Error deinitImpl() override { |
| 363 | if (Context) { |
| 364 | if (auto Err = setContext()) |
| 365 | return Err; |
| 366 | } |
| 367 | |
| 368 | // Deinitialize the stream manager. |
| 369 | if (auto Err = CUDAStreamManager.deinit()) |
| 370 | return Err; |
| 371 | |
| 372 | if (auto Err = CUDAEventManager.deinit()) |
| 373 | return Err; |
| 374 | |
| 375 | // Close modules if necessary. |
| 376 | if (!LoadedImages.empty()) { |
| 377 | assert(Context && "Invalid CUDA context" ); |
| 378 | |
| 379 | // Each image has its own module. |
| 380 | for (DeviceImageTy *Image : LoadedImages) { |
| 381 | CUDADeviceImageTy &CUDAImage = static_cast<CUDADeviceImageTy &>(*Image); |
| 382 | |
| 383 | // Unload the module of the image. |
| 384 | if (auto Err = CUDAImage.unloadModule()) |
| 385 | return Err; |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | if (Context) { |
| 390 | CUresult Res = cuDevicePrimaryCtxRelease(Device); |
| 391 | if (auto Err = |
| 392 | Plugin::check(Res, "error in cuDevicePrimaryCtxRelease: %s" )) |
| 393 | return Err; |
| 394 | } |
| 395 | |
| 396 | // Invalidate context and device references. |
| 397 | Context = nullptr; |
| 398 | Device = CU_DEVICE_INVALID; |
| 399 | |
| 400 | return Plugin::success(); |
| 401 | } |
| 402 | |
| 403 | virtual Error callGlobalConstructors(GenericPluginTy &Plugin, |
| 404 | DeviceImageTy &Image) override { |
| 405 | // Check for the presence of global destructors at initialization time. This |
| 406 | // is required when the image may be deallocated before destructors are run. |
| 407 | GenericGlobalHandlerTy &Handler = Plugin.getGlobalHandler(); |
| 408 | if (Handler.isSymbolInImage(*this, Image, "nvptx$device$fini" )) |
| 409 | Image.setPendingGlobalDtors(); |
| 410 | |
| 411 | return callGlobalCtorDtorCommon(Plugin, Image, /*IsCtor=*/true); |
| 412 | } |
| 413 | |
| 414 | virtual Error callGlobalDestructors(GenericPluginTy &Plugin, |
| 415 | DeviceImageTy &Image) override { |
| 416 | if (Image.hasPendingGlobalDtors()) |
| 417 | return callGlobalCtorDtorCommon(Plugin, Image, /*IsCtor=*/false); |
| 418 | return Plugin::success(); |
| 419 | } |
| 420 | |
| 421 | Expected<std::unique_ptr<MemoryBuffer>> |
| 422 | doJITPostProcessing(std::unique_ptr<MemoryBuffer> MB) const override { |
| 423 | // TODO: We should be able to use the 'nvidia-ptxjitcompiler' interface to |
| 424 | // avoid the call to 'ptxas'. |
| 425 | SmallString<128> PTXInputFilePath; |
| 426 | std::error_code EC = sys::fs::createTemporaryFile("nvptx-pre-link-jit" , "s" , |
| 427 | PTXInputFilePath); |
| 428 | if (EC) |
| 429 | return Plugin::error(ErrorCode::HOST_IO, |
| 430 | "failed to create temporary file for ptxas" ); |
| 431 | |
| 432 | // Write the file's contents to the output file. |
| 433 | Expected<std::unique_ptr<FileOutputBuffer>> OutputOrErr = |
| 434 | FileOutputBuffer::create(PTXInputFilePath, MB->getBuffer().size()); |
| 435 | if (!OutputOrErr) |
| 436 | return OutputOrErr.takeError(); |
| 437 | std::unique_ptr<FileOutputBuffer> Output = std::move(*OutputOrErr); |
| 438 | llvm::copy(MB->getBuffer(), Output->getBufferStart()); |
| 439 | if (Error E = Output->commit()) |
| 440 | return std::move(E); |
| 441 | |
| 442 | SmallString<128> PTXOutputFilePath; |
| 443 | EC = sys::fs::createTemporaryFile("nvptx-post-link-jit" , "cubin" , |
| 444 | PTXOutputFilePath); |
| 445 | if (EC) |
| 446 | return Plugin::error(ErrorCode::HOST_IO, |
| 447 | "failed to create temporary file for ptxas" ); |
| 448 | |
| 449 | // Try to find `ptxas` in the path to compile the PTX to a binary. |
| 450 | const auto ErrorOrPath = sys::findProgramByName("ptxas" ); |
| 451 | if (!ErrorOrPath) |
| 452 | return Plugin::error(ErrorCode::HOST_TOOL_NOT_FOUND, |
| 453 | "failed to find 'ptxas' on the PATH." ); |
| 454 | |
| 455 | std::string Arch = getComputeUnitKind(); |
| 456 | StringRef Args[] = {*ErrorOrPath, |
| 457 | "-m64" , |
| 458 | "-O2" , |
| 459 | "--gpu-name" , |
| 460 | Arch, |
| 461 | "--output-file" , |
| 462 | PTXOutputFilePath, |
| 463 | PTXInputFilePath}; |
| 464 | |
| 465 | std::string ErrMsg; |
| 466 | if (sys::ExecuteAndWait(*ErrorOrPath, Args, std::nullopt, {}, 0, 0, |
| 467 | &ErrMsg)) |
| 468 | return Plugin::error(ErrorCode::ASSEMBLE_FAILURE, |
| 469 | "running 'ptxas' failed: %s\n" , ErrMsg.c_str()); |
| 470 | |
| 471 | auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(PTXOutputFilePath.data()); |
| 472 | if (!BufferOrErr) |
| 473 | return Plugin::error(ErrorCode::HOST_IO, |
| 474 | "failed to open temporary file for ptxas" ); |
| 475 | |
| 476 | // Clean up the temporary files afterwards. |
| 477 | if (sys::fs::remove(PTXOutputFilePath)) |
| 478 | return Plugin::error(ErrorCode::HOST_IO, |
| 479 | "failed to remove temporary file for ptxas" ); |
| 480 | if (sys::fs::remove(PTXInputFilePath)) |
| 481 | return Plugin::error(ErrorCode::HOST_IO, |
| 482 | "failed to remove temporary file for ptxas" ); |
| 483 | |
| 484 | return std::move(*BufferOrErr); |
| 485 | } |
| 486 | |
| 487 | /// Allocate and construct a CUDA kernel. |
| 488 | Expected<GenericKernelTy &> constructKernel(const char *Name) override { |
| 489 | // Allocate and construct the CUDA kernel. |
| 490 | CUDAKernelTy *CUDAKernel = Plugin.allocate<CUDAKernelTy>(); |
| 491 | if (!CUDAKernel) |
| 492 | return Plugin::error(ErrorCode::OUT_OF_RESOURCES, |
| 493 | "failed to allocate memory for CUDA kernel" ); |
| 494 | |
| 495 | new (CUDAKernel) CUDAKernelTy(Name); |
| 496 | |
| 497 | return *CUDAKernel; |
| 498 | } |
| 499 | |
| 500 | /// Set the current context to this device's context. |
| 501 | Error setContext() override { |
| 502 | CUresult Res = cuCtxSetCurrent(Context); |
| 503 | return Plugin::check(Res, "error in cuCtxSetCurrent: %s" ); |
| 504 | } |
| 505 | |
| 506 | /// NVIDIA returns the product of the SM count and the number of warps that |
| 507 | /// fit if the maximum number of threads were scheduled on each SM. |
| 508 | uint64_t getHardwareParallelism() const override { |
| 509 | return HardwareParallelism; |
| 510 | } |
| 511 | |
| 512 | /// We want to set up the RPC server for host services to the GPU if it is |
| 513 | /// available. |
| 514 | bool shouldSetupRPCServer() const override { return true; } |
| 515 | |
| 516 | /// The RPC interface should have enough space for all available parallelism. |
| 517 | uint64_t requestedRPCPortCount() const override { |
| 518 | return getHardwareParallelism(); |
| 519 | } |
| 520 | |
| 521 | /// Get the stream of the asynchronous info structure or get a new one. |
| 522 | Error getStream(AsyncInfoWrapperTy &AsyncInfoWrapper, CUstream &Stream) { |
| 523 | // Get the stream (if any) from the async info. |
| 524 | Stream = AsyncInfoWrapper.getQueueAs<CUstream>(); |
| 525 | if (!Stream) { |
| 526 | // There was no stream; get an idle one. |
| 527 | if (auto Err = CUDAStreamManager.getResource(Stream)) |
| 528 | return Err; |
| 529 | |
| 530 | // Modify the async info's stream. |
| 531 | AsyncInfoWrapper.setQueueAs<CUstream>(Stream); |
| 532 | } |
| 533 | return Plugin::success(); |
| 534 | } |
| 535 | |
| 536 | /// Getters of CUDA references. |
| 537 | CUcontext getCUDAContext() const { return Context; } |
| 538 | CUdevice getCUDADevice() const { return Device; } |
| 539 | |
| 540 | /// Load the binary image into the device and allocate an image object. |
| 541 | Expected<DeviceImageTy *> loadBinaryImpl(const __tgt_device_image *TgtImage, |
| 542 | int32_t ImageId) override { |
| 543 | if (auto Err = setContext()) |
| 544 | return std::move(Err); |
| 545 | |
| 546 | // Allocate and initialize the image object. |
| 547 | CUDADeviceImageTy *CUDAImage = Plugin.allocate<CUDADeviceImageTy>(); |
| 548 | new (CUDAImage) CUDADeviceImageTy(ImageId, *this, TgtImage); |
| 549 | |
| 550 | // Load the CUDA module. |
| 551 | if (auto Err = CUDAImage->loadModule()) |
| 552 | return std::move(Err); |
| 553 | |
| 554 | return CUDAImage; |
| 555 | } |
| 556 | |
| 557 | /// Allocate memory on the device or related to the device. |
| 558 | void *allocate(size_t Size, void *, TargetAllocTy Kind) override { |
| 559 | if (Size == 0) |
| 560 | return nullptr; |
| 561 | |
| 562 | if (auto Err = setContext()) { |
| 563 | REPORT("Failure to alloc memory: %s\n" , toString(E: std::move(Err)).data()); |
| 564 | return nullptr; |
| 565 | } |
| 566 | |
| 567 | void *MemAlloc = nullptr; |
| 568 | CUdeviceptr DevicePtr; |
| 569 | CUresult Res; |
| 570 | |
| 571 | switch (Kind) { |
| 572 | case TARGET_ALLOC_DEFAULT: |
| 573 | case TARGET_ALLOC_DEVICE: |
| 574 | Res = cuMemAlloc(&DevicePtr, Size); |
| 575 | MemAlloc = (void *)DevicePtr; |
| 576 | break; |
| 577 | case TARGET_ALLOC_HOST: |
| 578 | Res = cuMemAllocHost(&MemAlloc, Size); |
| 579 | break; |
| 580 | case TARGET_ALLOC_SHARED: |
| 581 | Res = cuMemAllocManaged(&DevicePtr, Size, CU_MEM_ATTACH_GLOBAL); |
| 582 | MemAlloc = (void *)DevicePtr; |
| 583 | break; |
| 584 | case TARGET_ALLOC_DEVICE_NON_BLOCKING: { |
| 585 | CUstream Stream; |
| 586 | if ((Res = cuStreamCreate(&Stream, CU_STREAM_NON_BLOCKING))) |
| 587 | break; |
| 588 | if ((Res = cuMemAllocAsync(&DevicePtr, Size, Stream))) |
| 589 | break; |
| 590 | cuStreamSynchronize(Stream); |
| 591 | Res = cuStreamDestroy(Stream); |
| 592 | MemAlloc = (void *)DevicePtr; |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | if (auto Err = |
| 597 | Plugin::check(Res, "error in cuMemAlloc[Host|Managed]: %s" )) { |
| 598 | REPORT("Failure to alloc memory: %s\n" , toString(std::move(Err)).data()); |
| 599 | return nullptr; |
| 600 | } |
| 601 | return MemAlloc; |
| 602 | } |
| 603 | |
| 604 | /// Deallocate memory on the device or related to the device. |
| 605 | int free(void *TgtPtr, TargetAllocTy Kind) override { |
| 606 | if (TgtPtr == nullptr) |
| 607 | return OFFLOAD_SUCCESS; |
| 608 | |
| 609 | if (auto Err = setContext()) { |
| 610 | REPORT("Failure to free memory: %s\n" , toString(E: std::move(Err)).data()); |
| 611 | return OFFLOAD_FAIL; |
| 612 | } |
| 613 | |
| 614 | CUresult Res; |
| 615 | switch (Kind) { |
| 616 | case TARGET_ALLOC_DEFAULT: |
| 617 | case TARGET_ALLOC_DEVICE: |
| 618 | case TARGET_ALLOC_SHARED: |
| 619 | Res = cuMemFree((CUdeviceptr)TgtPtr); |
| 620 | break; |
| 621 | case TARGET_ALLOC_HOST: |
| 622 | Res = cuMemFreeHost(TgtPtr); |
| 623 | break; |
| 624 | case TARGET_ALLOC_DEVICE_NON_BLOCKING: { |
| 625 | CUstream Stream; |
| 626 | if ((Res = cuStreamCreate(&Stream, CU_STREAM_NON_BLOCKING))) |
| 627 | break; |
| 628 | cuMemFreeAsync(reinterpret_cast<CUdeviceptr>(TgtPtr), Stream); |
| 629 | cuStreamSynchronize(Stream); |
| 630 | if ((Res = cuStreamDestroy(Stream))) |
| 631 | break; |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | if (auto Err = Plugin::check(Res, "error in cuMemFree[Host]: %s" )) { |
| 636 | REPORT("Failure to free memory: %s\n" , toString(std::move(Err)).data()); |
| 637 | return OFFLOAD_FAIL; |
| 638 | } |
| 639 | return OFFLOAD_SUCCESS; |
| 640 | } |
| 641 | |
| 642 | /// Synchronize current thread with the pending operations on the async info. |
| 643 | Error synchronizeImpl(__tgt_async_info &AsyncInfo) override { |
| 644 | CUstream Stream = reinterpret_cast<CUstream>(AsyncInfo.Queue); |
| 645 | CUresult Res; |
| 646 | Res = cuStreamSynchronize(Stream); |
| 647 | |
| 648 | // Once the stream is synchronized, return it to stream pool and reset |
| 649 | // AsyncInfo. This is to make sure the synchronization only works for its |
| 650 | // own tasks. |
| 651 | AsyncInfo.Queue = nullptr; |
| 652 | if (auto Err = CUDAStreamManager.returnResource(Stream)) |
| 653 | return Err; |
| 654 | |
| 655 | return Plugin::check(Res, "error in cuStreamSynchronize: %s" ); |
| 656 | } |
| 657 | |
| 658 | /// CUDA support VA management |
| 659 | bool supportVAManagement() const override { |
| 660 | #if (defined(CUDA_VERSION) && (CUDA_VERSION >= 11000)) |
| 661 | return true; |
| 662 | #else |
| 663 | return false; |
| 664 | #endif |
| 665 | } |
| 666 | |
| 667 | /// Allocates \p RSize bytes (rounded up to page size) and hints the cuda |
| 668 | /// driver to map it to \p VAddr. The obtained address is stored in \p Addr. |
| 669 | /// At return \p RSize contains the actual size |
| 670 | Error memoryVAMap(void **Addr, void *VAddr, size_t *RSize) override { |
| 671 | CUdeviceptr DVAddr = reinterpret_cast<CUdeviceptr>(VAddr); |
| 672 | auto IHandle = DeviceMMaps.find(DVAddr); |
| 673 | size_t Size = *RSize; |
| 674 | |
| 675 | if (Size == 0) |
| 676 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
| 677 | "memory Map Size must be larger than 0" ); |
| 678 | |
| 679 | // Check if we have already mapped this address |
| 680 | if (IHandle != DeviceMMaps.end()) |
| 681 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
| 682 | "address already memory mapped" ); |
| 683 | |
| 684 | CUmemAllocationProp Prop = {}; |
| 685 | size_t Granularity = 0; |
| 686 | |
| 687 | size_t Free, Total; |
| 688 | CUresult Res = cuMemGetInfo(&Free, &Total); |
| 689 | if (auto Err = Plugin::check(Res, "Error in cuMemGetInfo: %s" )) |
| 690 | return Err; |
| 691 | |
| 692 | if (Size >= Free) { |
| 693 | *Addr = nullptr; |
| 694 | return Plugin::error( |
| 695 | ErrorCode::OUT_OF_RESOURCES, |
| 696 | "cannot map memory size larger than the available device memory" ); |
| 697 | } |
| 698 | |
| 699 | // currently NVidia only supports pinned device types |
| 700 | Prop.type = CU_MEM_ALLOCATION_TYPE_PINNED; |
| 701 | Prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE; |
| 702 | |
| 703 | Prop.location.id = DeviceId; |
| 704 | cuMemGetAllocationGranularity(&Granularity, &Prop, |
| 705 | CU_MEM_ALLOC_GRANULARITY_MINIMUM); |
| 706 | if (auto Err = |
| 707 | Plugin::check(Res, "error in cuMemGetAllocationGranularity: %s" )) |
| 708 | return Err; |
| 709 | |
| 710 | if (Granularity == 0) |
| 711 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
| 712 | "wrong device Page size" ); |
| 713 | |
| 714 | // Ceil to page size. |
| 715 | Size = utils::roundUp(Size, Granularity); |
| 716 | |
| 717 | // Create a handler of our allocation |
| 718 | CUmemGenericAllocationHandle AHandle; |
| 719 | Res = cuMemCreate(&AHandle, Size, &Prop, 0); |
| 720 | if (auto Err = Plugin::check(Res, "error in cuMemCreate: %s" )) |
| 721 | return Err; |
| 722 | |
| 723 | CUdeviceptr DevPtr = 0; |
| 724 | Res = cuMemAddressReserve(&DevPtr, Size, 0, DVAddr, 0); |
| 725 | if (auto Err = Plugin::check(Res, "error in cuMemAddressReserve: %s" )) |
| 726 | return Err; |
| 727 | |
| 728 | Res = cuMemMap(DevPtr, Size, 0, AHandle, 0); |
| 729 | if (auto Err = Plugin::check(Res, "error in cuMemMap: %s" )) |
| 730 | return Err; |
| 731 | |
| 732 | CUmemAccessDesc ADesc = {}; |
| 733 | ADesc.location.type = CU_MEM_LOCATION_TYPE_DEVICE; |
| 734 | ADesc.location.id = DeviceId; |
| 735 | ADesc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE; |
| 736 | |
| 737 | // Sets address |
| 738 | Res = cuMemSetAccess(DevPtr, Size, &ADesc, 1); |
| 739 | if (auto Err = Plugin::check(Res, "error in cuMemSetAccess: %s" )) |
| 740 | return Err; |
| 741 | |
| 742 | *Addr = reinterpret_cast<void *>(DevPtr); |
| 743 | *RSize = Size; |
| 744 | DeviceMMaps.insert({DevPtr, AHandle}); |
| 745 | return Plugin::success(); |
| 746 | } |
| 747 | |
| 748 | /// De-allocates device memory and Unmaps the Virtual Addr |
| 749 | Error memoryVAUnMap(void *VAddr, size_t Size) override { |
| 750 | CUdeviceptr DVAddr = reinterpret_cast<CUdeviceptr>(VAddr); |
| 751 | auto IHandle = DeviceMMaps.find(DVAddr); |
| 752 | // Mapping does not exist |
| 753 | if (IHandle == DeviceMMaps.end()) { |
| 754 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
| 755 | "addr is not MemoryMapped" ); |
| 756 | } |
| 757 | |
| 758 | if (IHandle == DeviceMMaps.end()) |
| 759 | return Plugin::error(ErrorCode::INVALID_ARGUMENT, |
| 760 | "addr is not MemoryMapped" ); |
| 761 | |
| 762 | CUmemGenericAllocationHandle &AllocHandle = IHandle->second; |
| 763 | |
| 764 | CUresult Res = cuMemUnmap(DVAddr, Size); |
| 765 | if (auto Err = Plugin::check(Res, "error in cuMemUnmap: %s" )) |
| 766 | return Err; |
| 767 | |
| 768 | Res = cuMemRelease(AllocHandle); |
| 769 | if (auto Err = Plugin::check(Res, "error in cuMemRelease: %s" )) |
| 770 | return Err; |
| 771 | |
| 772 | Res = cuMemAddressFree(DVAddr, Size); |
| 773 | if (auto Err = Plugin::check(Res, "error in cuMemAddressFree: %s" )) |
| 774 | return Err; |
| 775 | |
| 776 | DeviceMMaps.erase(IHandle); |
| 777 | return Plugin::success(); |
| 778 | } |
| 779 | |
| 780 | /// Query for the completion of the pending operations on the async info. |
| 781 | Error queryAsyncImpl(__tgt_async_info &AsyncInfo) override { |
| 782 | CUstream Stream = reinterpret_cast<CUstream>(AsyncInfo.Queue); |
| 783 | CUresult Res = cuStreamQuery(Stream); |
| 784 | |
| 785 | // Not ready streams must be considered as successful operations. |
| 786 | if (Res == CUDA_ERROR_NOT_READY) |
| 787 | return Plugin::success(); |
| 788 | |
| 789 | // Once the stream is synchronized and the operations completed (or an error |
| 790 | // occurs), return it to stream pool and reset AsyncInfo. This is to make |
| 791 | // sure the synchronization only works for its own tasks. |
| 792 | AsyncInfo.Queue = nullptr; |
| 793 | if (auto Err = CUDAStreamManager.returnResource(Stream)) |
| 794 | return Err; |
| 795 | |
| 796 | return Plugin::check(Res, "error in cuStreamQuery: %s" ); |
| 797 | } |
| 798 | |
| 799 | Expected<void *> dataLockImpl(void *HstPtr, int64_t Size) override { |
| 800 | // TODO: Register the buffer as CUDA host memory. |
| 801 | return HstPtr; |
| 802 | } |
| 803 | |
| 804 | Error dataUnlockImpl(void *HstPtr) override { return Plugin::success(); } |
| 805 | |
| 806 | Expected<bool> isPinnedPtrImpl(void *HstPtr, void *&BaseHstPtr, |
| 807 | void *&BaseDevAccessiblePtr, |
| 808 | size_t &BaseSize) const override { |
| 809 | // TODO: Implement pinning feature for CUDA. |
| 810 | return false; |
| 811 | } |
| 812 | |
| 813 | /// Submit data to the device (host to device transfer). |
| 814 | Error dataSubmitImpl(void *TgtPtr, const void *HstPtr, int64_t Size, |
| 815 | AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
| 816 | if (auto Err = setContext()) |
| 817 | return Err; |
| 818 | |
| 819 | CUstream Stream; |
| 820 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
| 821 | return Err; |
| 822 | |
| 823 | CUresult Res = cuMemcpyHtoDAsync((CUdeviceptr)TgtPtr, HstPtr, Size, Stream); |
| 824 | return Plugin::check(Res, "error in cuMemcpyHtoDAsync: %s" ); |
| 825 | } |
| 826 | |
| 827 | /// Retrieve data from the device (device to host transfer). |
| 828 | Error dataRetrieveImpl(void *HstPtr, const void *TgtPtr, int64_t Size, |
| 829 | AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
| 830 | if (auto Err = setContext()) |
| 831 | return Err; |
| 832 | |
| 833 | CUstream Stream; |
| 834 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
| 835 | return Err; |
| 836 | |
| 837 | CUresult Res = cuMemcpyDtoHAsync(HstPtr, (CUdeviceptr)TgtPtr, Size, Stream); |
| 838 | return Plugin::check(Res, "error in cuMemcpyDtoHAsync: %s" ); |
| 839 | } |
| 840 | |
| 841 | /// Exchange data between two devices directly. We may use peer access if |
| 842 | /// the CUDA devices and driver allow them. |
| 843 | Error dataExchangeImpl(const void *SrcPtr, GenericDeviceTy &DstGenericDevice, |
| 844 | void *DstPtr, int64_t Size, |
| 845 | AsyncInfoWrapperTy &AsyncInfoWrapper) override; |
| 846 | |
| 847 | /// Initialize the async info for interoperability purposes. |
| 848 | Error initAsyncInfoImpl(AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
| 849 | if (auto Err = setContext()) |
| 850 | return Err; |
| 851 | |
| 852 | CUstream Stream; |
| 853 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
| 854 | return Err; |
| 855 | |
| 856 | return Plugin::success(); |
| 857 | } |
| 858 | |
| 859 | /// Initialize the device info for interoperability purposes. |
| 860 | Error initDeviceInfoImpl(__tgt_device_info *DeviceInfo) override { |
| 861 | assert(Context && "Context is null" ); |
| 862 | assert(Device != CU_DEVICE_INVALID && "Invalid CUDA device" ); |
| 863 | |
| 864 | if (auto Err = setContext()) |
| 865 | return Err; |
| 866 | |
| 867 | if (!DeviceInfo->Context) |
| 868 | DeviceInfo->Context = Context; |
| 869 | |
| 870 | if (!DeviceInfo->Device) |
| 871 | DeviceInfo->Device = reinterpret_cast<void *>(Device); |
| 872 | |
| 873 | return Plugin::success(); |
| 874 | } |
| 875 | |
| 876 | /// Create an event. |
| 877 | Error createEventImpl(void **EventPtrStorage) override { |
| 878 | CUevent *Event = reinterpret_cast<CUevent *>(EventPtrStorage); |
| 879 | return CUDAEventManager.getResource(*Event); |
| 880 | } |
| 881 | |
| 882 | /// Destroy a previously created event. |
| 883 | Error destroyEventImpl(void *EventPtr) override { |
| 884 | CUevent Event = reinterpret_cast<CUevent>(EventPtr); |
| 885 | return CUDAEventManager.returnResource(Event); |
| 886 | } |
| 887 | |
| 888 | /// Record the event. |
| 889 | Error recordEventImpl(void *EventPtr, |
| 890 | AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
| 891 | CUevent Event = reinterpret_cast<CUevent>(EventPtr); |
| 892 | |
| 893 | CUstream Stream; |
| 894 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
| 895 | return Err; |
| 896 | |
| 897 | CUresult Res = cuEventRecord(Event, Stream); |
| 898 | return Plugin::check(Res, "error in cuEventRecord: %s" ); |
| 899 | } |
| 900 | |
| 901 | /// Make the stream wait on the event. |
| 902 | Error waitEventImpl(void *EventPtr, |
| 903 | AsyncInfoWrapperTy &AsyncInfoWrapper) override { |
| 904 | CUevent Event = reinterpret_cast<CUevent>(EventPtr); |
| 905 | |
| 906 | CUstream Stream; |
| 907 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
| 908 | return Err; |
| 909 | |
| 910 | // Do not use CU_EVENT_WAIT_DEFAULT here as it is only available from |
| 911 | // specific CUDA version, and defined as 0x0. In previous version, per CUDA |
| 912 | // API document, that argument has to be 0x0. |
| 913 | CUresult Res = cuStreamWaitEvent(Stream, Event, 0); |
| 914 | return Plugin::check(Res, "error in cuStreamWaitEvent: %s" ); |
| 915 | } |
| 916 | |
| 917 | /// Synchronize the current thread with the event. |
| 918 | Error syncEventImpl(void *EventPtr) override { |
| 919 | CUevent Event = reinterpret_cast<CUevent>(EventPtr); |
| 920 | CUresult Res = cuEventSynchronize(Event); |
| 921 | return Plugin::check(Res, "error in cuEventSynchronize: %s" ); |
| 922 | } |
| 923 | |
| 924 | /// Print information about the device. |
| 925 | Error obtainInfoImpl(InfoQueueTy &Info) override { |
| 926 | char TmpChar[1000]; |
| 927 | const char *TmpCharPtr; |
| 928 | size_t TmpSt; |
| 929 | int TmpInt; |
| 930 | |
| 931 | CUresult Res = cuDriverGetVersion(&TmpInt); |
| 932 | if (Res == CUDA_SUCCESS) |
| 933 | Info.add("CUDA Driver Version" , TmpInt); |
| 934 | |
| 935 | Info.add("CUDA OpenMP Device Number" , DeviceId); |
| 936 | |
| 937 | Res = cuDeviceGetName(TmpChar, 1000, Device); |
| 938 | if (Res == CUDA_SUCCESS) |
| 939 | Info.add("Device Name" , TmpChar); |
| 940 | |
| 941 | Res = cuDeviceTotalMem(&TmpSt, Device); |
| 942 | if (Res == CUDA_SUCCESS) |
| 943 | Info.add("Global Memory Size" , TmpSt, "bytes" ); |
| 944 | |
| 945 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, TmpInt); |
| 946 | if (Res == CUDA_SUCCESS) |
| 947 | Info.add("Number of Multiprocessors" , TmpInt); |
| 948 | |
| 949 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_GPU_OVERLAP, TmpInt); |
| 950 | if (Res == CUDA_SUCCESS) |
| 951 | Info.add("Concurrent Copy and Execution" , (bool)TmpInt); |
| 952 | |
| 953 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY, TmpInt); |
| 954 | if (Res == CUDA_SUCCESS) |
| 955 | Info.add("Total Constant Memory" , TmpInt, "bytes" ); |
| 956 | |
| 957 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK, |
| 958 | TmpInt); |
| 959 | if (Res == CUDA_SUCCESS) |
| 960 | Info.add("Max Shared Memory per Block" , TmpInt, "bytes" ); |
| 961 | |
| 962 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK, TmpInt); |
| 963 | if (Res == CUDA_SUCCESS) |
| 964 | Info.add("Registers per Block" , TmpInt); |
| 965 | |
| 966 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_WARP_SIZE, TmpInt); |
| 967 | if (Res == CUDA_SUCCESS) |
| 968 | Info.add("Warp Size" , TmpInt); |
| 969 | |
| 970 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, TmpInt); |
| 971 | if (Res == CUDA_SUCCESS) |
| 972 | Info.add("Maximum Threads per Block" , TmpInt); |
| 973 | |
| 974 | Info.add("Maximum Block Dimensions" , "" ); |
| 975 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, TmpInt); |
| 976 | if (Res == CUDA_SUCCESS) |
| 977 | Info.add<InfoLevel2>("x" , TmpInt); |
| 978 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y, TmpInt); |
| 979 | if (Res == CUDA_SUCCESS) |
| 980 | Info.add<InfoLevel2>("y" , TmpInt); |
| 981 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z, TmpInt); |
| 982 | if (Res == CUDA_SUCCESS) |
| 983 | Info.add<InfoLevel2>("z" , TmpInt); |
| 984 | |
| 985 | Info.add("Maximum Grid Dimensions" , "" ); |
| 986 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, TmpInt); |
| 987 | if (Res == CUDA_SUCCESS) |
| 988 | Info.add<InfoLevel2>("x" , TmpInt); |
| 989 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y, TmpInt); |
| 990 | if (Res == CUDA_SUCCESS) |
| 991 | Info.add<InfoLevel2>("y" , TmpInt); |
| 992 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z, TmpInt); |
| 993 | if (Res == CUDA_SUCCESS) |
| 994 | Info.add<InfoLevel2>("z" , TmpInt); |
| 995 | |
| 996 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_PITCH, TmpInt); |
| 997 | if (Res == CUDA_SUCCESS) |
| 998 | Info.add("Maximum Memory Pitch" , TmpInt, "bytes" ); |
| 999 | |
| 1000 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT, TmpInt); |
| 1001 | if (Res == CUDA_SUCCESS) |
| 1002 | Info.add("Texture Alignment" , TmpInt, "bytes" ); |
| 1003 | |
| 1004 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_CLOCK_RATE, TmpInt); |
| 1005 | if (Res == CUDA_SUCCESS) |
| 1006 | Info.add("Clock Rate" , TmpInt, "kHz" ); |
| 1007 | |
| 1008 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT, TmpInt); |
| 1009 | if (Res == CUDA_SUCCESS) |
| 1010 | Info.add("Execution Timeout" , (bool)TmpInt); |
| 1011 | |
| 1012 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_INTEGRATED, TmpInt); |
| 1013 | if (Res == CUDA_SUCCESS) |
| 1014 | Info.add("Integrated Device" , (bool)TmpInt); |
| 1015 | |
| 1016 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, TmpInt); |
| 1017 | if (Res == CUDA_SUCCESS) |
| 1018 | Info.add("Can Map Host Memory" , (bool)TmpInt); |
| 1019 | |
| 1020 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_COMPUTE_MODE, TmpInt); |
| 1021 | if (Res == CUDA_SUCCESS) { |
| 1022 | if (TmpInt == CU_COMPUTEMODE_DEFAULT) |
| 1023 | TmpCharPtr = "Default" ; |
| 1024 | else if (TmpInt == CU_COMPUTEMODE_PROHIBITED) |
| 1025 | TmpCharPtr = "Prohibited" ; |
| 1026 | else if (TmpInt == CU_COMPUTEMODE_EXCLUSIVE_PROCESS) |
| 1027 | TmpCharPtr = "Exclusive process" ; |
| 1028 | else |
| 1029 | TmpCharPtr = "Unknown" ; |
| 1030 | Info.add("Compute Mode" , TmpCharPtr); |
| 1031 | } |
| 1032 | |
| 1033 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS, TmpInt); |
| 1034 | if (Res == CUDA_SUCCESS) |
| 1035 | Info.add("Concurrent Kernels" , (bool)TmpInt); |
| 1036 | |
| 1037 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_ECC_ENABLED, TmpInt); |
| 1038 | if (Res == CUDA_SUCCESS) |
| 1039 | Info.add("ECC Enabled" , (bool)TmpInt); |
| 1040 | |
| 1041 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, TmpInt); |
| 1042 | if (Res == CUDA_SUCCESS) |
| 1043 | Info.add("Memory Clock Rate" , TmpInt, "kHz" ); |
| 1044 | |
| 1045 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, TmpInt); |
| 1046 | if (Res == CUDA_SUCCESS) |
| 1047 | Info.add("Memory Bus Width" , TmpInt, "bits" ); |
| 1048 | |
| 1049 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, TmpInt); |
| 1050 | if (Res == CUDA_SUCCESS) |
| 1051 | Info.add("L2 Cache Size" , TmpInt, "bytes" ); |
| 1052 | |
| 1053 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR, |
| 1054 | TmpInt); |
| 1055 | if (Res == CUDA_SUCCESS) |
| 1056 | Info.add("Max Threads Per SMP" , TmpInt); |
| 1057 | |
| 1058 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT, TmpInt); |
| 1059 | if (Res == CUDA_SUCCESS) |
| 1060 | Info.add("Async Engines" , TmpInt); |
| 1061 | |
| 1062 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING, TmpInt); |
| 1063 | if (Res == CUDA_SUCCESS) |
| 1064 | Info.add("Unified Addressing" , (bool)TmpInt); |
| 1065 | |
| 1066 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY, TmpInt); |
| 1067 | if (Res == CUDA_SUCCESS) |
| 1068 | Info.add("Managed Memory" , (bool)TmpInt); |
| 1069 | |
| 1070 | Res = |
| 1071 | getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS, TmpInt); |
| 1072 | if (Res == CUDA_SUCCESS) |
| 1073 | Info.add("Concurrent Managed Memory" , (bool)TmpInt); |
| 1074 | |
| 1075 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED, |
| 1076 | TmpInt); |
| 1077 | if (Res == CUDA_SUCCESS) |
| 1078 | Info.add("Preemption Supported" , (bool)TmpInt); |
| 1079 | |
| 1080 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_COOPERATIVE_LAUNCH, TmpInt); |
| 1081 | if (Res == CUDA_SUCCESS) |
| 1082 | Info.add("Cooperative Launch" , (bool)TmpInt); |
| 1083 | |
| 1084 | Res = getDeviceAttrRaw(CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD, TmpInt); |
| 1085 | if (Res == CUDA_SUCCESS) |
| 1086 | Info.add("Multi-Device Boars" , (bool)TmpInt); |
| 1087 | |
| 1088 | Info.add("Compute Capabilities" , ComputeCapability.str()); |
| 1089 | |
| 1090 | return Plugin::success(); |
| 1091 | } |
| 1092 | |
| 1093 | virtual bool shouldSetupDeviceMemoryPool() const override { |
| 1094 | /// We use the CUDA malloc for now. |
| 1095 | return false; |
| 1096 | } |
| 1097 | |
| 1098 | /// Getters and setters for stack and heap sizes. |
| 1099 | Error getDeviceStackSize(uint64_t &Value) override { |
| 1100 | return getCtxLimit(CU_LIMIT_STACK_SIZE, Value); |
| 1101 | } |
| 1102 | Error setDeviceStackSize(uint64_t Value) override { |
| 1103 | return setCtxLimit(CU_LIMIT_STACK_SIZE, Value); |
| 1104 | } |
| 1105 | Error getDeviceHeapSize(uint64_t &Value) override { |
| 1106 | return getCtxLimit(CU_LIMIT_MALLOC_HEAP_SIZE, Value); |
| 1107 | } |
| 1108 | Error setDeviceHeapSize(uint64_t Value) override { |
| 1109 | return setCtxLimit(CU_LIMIT_MALLOC_HEAP_SIZE, Value); |
| 1110 | } |
| 1111 | Error getDeviceMemorySize(uint64_t &Value) override { |
| 1112 | CUresult Res = cuDeviceTotalMem(&Value, Device); |
| 1113 | return Plugin::check(Res, "error in getDeviceMemorySize %s" ); |
| 1114 | } |
| 1115 | |
| 1116 | /// CUDA-specific functions for getting and setting context limits. |
| 1117 | Error setCtxLimit(CUlimit Kind, uint64_t Value) { |
| 1118 | CUresult Res = cuCtxSetLimit(Kind, Value); |
| 1119 | return Plugin::check(Res, "error in cuCtxSetLimit: %s" ); |
| 1120 | } |
| 1121 | Error getCtxLimit(CUlimit Kind, uint64_t &Value) { |
| 1122 | CUresult Res = cuCtxGetLimit(&Value, Kind); |
| 1123 | return Plugin::check(Res, "error in cuCtxGetLimit: %s" ); |
| 1124 | } |
| 1125 | |
| 1126 | /// CUDA-specific function to get device attributes. |
| 1127 | Error getDeviceAttr(uint32_t Kind, uint32_t &Value) { |
| 1128 | // TODO: Warn if the new value is larger than the old. |
| 1129 | CUresult Res = |
| 1130 | cuDeviceGetAttribute((int *)&Value, (CUdevice_attribute)Kind, Device); |
| 1131 | return Plugin::check(Res, "error in cuDeviceGetAttribute: %s" ); |
| 1132 | } |
| 1133 | |
| 1134 | CUresult getDeviceAttrRaw(uint32_t Kind, int &Value) { |
| 1135 | return cuDeviceGetAttribute(&Value, (CUdevice_attribute)Kind, Device); |
| 1136 | } |
| 1137 | |
| 1138 | /// See GenericDeviceTy::getComputeUnitKind(). |
| 1139 | std::string getComputeUnitKind() const override { |
| 1140 | return ComputeCapability.str(); |
| 1141 | } |
| 1142 | |
| 1143 | /// Returns the clock frequency for the given NVPTX device. |
| 1144 | uint64_t getClockFrequency() const override { return 1000000000; } |
| 1145 | |
| 1146 | private: |
| 1147 | using CUDAStreamManagerTy = GenericDeviceResourceManagerTy<CUDAStreamRef>; |
| 1148 | using CUDAEventManagerTy = GenericDeviceResourceManagerTy<CUDAEventRef>; |
| 1149 | |
| 1150 | Error callGlobalCtorDtorCommon(GenericPluginTy &Plugin, DeviceImageTy &Image, |
| 1151 | bool IsCtor) { |
| 1152 | const char *KernelName = IsCtor ? "nvptx$device$init" : "nvptx$device$fini" ; |
| 1153 | // Perform a quick check for the named kernel in the image. The kernel |
| 1154 | // should be created by the 'nvptx-lower-ctor-dtor' pass. |
| 1155 | GenericGlobalHandlerTy &Handler = Plugin.getGlobalHandler(); |
| 1156 | if (IsCtor && !Handler.isSymbolInImage(*this, Image, KernelName)) |
| 1157 | return Plugin::success(); |
| 1158 | |
| 1159 | // The Nvidia backend cannot handle creating the ctor / dtor array |
| 1160 | // automatically so we must create it ourselves. The backend will emit |
| 1161 | // several globals that contain function pointers we can call. These are |
| 1162 | // prefixed with a known name due to Nvidia's lack of section support. |
| 1163 | auto ELFObjOrErr = Handler.getELFObjectFile(Image); |
| 1164 | if (!ELFObjOrErr) |
| 1165 | return ELFObjOrErr.takeError(); |
| 1166 | |
| 1167 | // Search for all symbols that contain a constructor or destructor. |
| 1168 | SmallVector<std::pair<StringRef, uint16_t>> Funcs; |
| 1169 | for (ELFSymbolRef Sym : (*ELFObjOrErr)->symbols()) { |
| 1170 | auto NameOrErr = Sym.getName(); |
| 1171 | if (!NameOrErr) |
| 1172 | return NameOrErr.takeError(); |
| 1173 | |
| 1174 | if (!NameOrErr->starts_with(IsCtor ? "__init_array_object_" |
| 1175 | : "__fini_array_object_" )) |
| 1176 | continue; |
| 1177 | |
| 1178 | uint16_t Priority; |
| 1179 | if (NameOrErr->rsplit('_').second.getAsInteger(10, Priority)) |
| 1180 | return Plugin::error(ErrorCode::INVALID_BINARY, |
| 1181 | "invalid priority for constructor or destructor" ); |
| 1182 | |
| 1183 | Funcs.emplace_back(*NameOrErr, Priority); |
| 1184 | } |
| 1185 | |
| 1186 | // Sort the created array to be in priority order. |
| 1187 | llvm::sort(Funcs, [=](auto X, auto Y) { return X.second < Y.second; }); |
| 1188 | |
| 1189 | // Allocate a buffer to store all of the known constructor / destructor |
| 1190 | // functions in so we can iterate them on the device. |
| 1191 | void *Buffer = |
| 1192 | allocate(Funcs.size() * sizeof(void *), nullptr, TARGET_ALLOC_DEVICE); |
| 1193 | if (!Buffer) |
| 1194 | return Plugin::error(ErrorCode::OUT_OF_RESOURCES, |
| 1195 | "failed to allocate memory for global buffer" ); |
| 1196 | |
| 1197 | auto *GlobalPtrStart = reinterpret_cast<uintptr_t *>(Buffer); |
| 1198 | auto *GlobalPtrStop = reinterpret_cast<uintptr_t *>(Buffer) + Funcs.size(); |
| 1199 | |
| 1200 | SmallVector<void *> FunctionPtrs(Funcs.size()); |
| 1201 | std::size_t Idx = 0; |
| 1202 | for (auto [Name, Priority] : Funcs) { |
| 1203 | GlobalTy FunctionAddr(Name.str(), sizeof(void *), &FunctionPtrs[Idx++]); |
| 1204 | if (auto Err = Handler.readGlobalFromDevice(*this, Image, FunctionAddr)) |
| 1205 | return Err; |
| 1206 | } |
| 1207 | |
| 1208 | // Copy the local buffer to the device. |
| 1209 | if (auto Err = dataSubmit(GlobalPtrStart, FunctionPtrs.data(), |
| 1210 | FunctionPtrs.size() * sizeof(void *), nullptr)) |
| 1211 | return Err; |
| 1212 | |
| 1213 | // Copy the created buffer to the appropriate symbols so the kernel can |
| 1214 | // iterate through them. |
| 1215 | GlobalTy StartGlobal(IsCtor ? "__init_array_start" : "__fini_array_start" , |
| 1216 | sizeof(void *), &GlobalPtrStart); |
| 1217 | if (auto Err = Handler.writeGlobalToDevice(*this, Image, StartGlobal)) |
| 1218 | return Err; |
| 1219 | |
| 1220 | GlobalTy StopGlobal(IsCtor ? "__init_array_end" : "__fini_array_end" , |
| 1221 | sizeof(void *), &GlobalPtrStop); |
| 1222 | if (auto Err = Handler.writeGlobalToDevice(*this, Image, StopGlobal)) |
| 1223 | return Err; |
| 1224 | |
| 1225 | CUDAKernelTy CUDAKernel(KernelName); |
| 1226 | |
| 1227 | if (auto Err = CUDAKernel.init(*this, Image)) |
| 1228 | return Err; |
| 1229 | |
| 1230 | AsyncInfoWrapperTy AsyncInfoWrapper(*this, nullptr); |
| 1231 | |
| 1232 | KernelArgsTy KernelArgs = {}; |
| 1233 | uint32_t NumBlocksAndThreads[3] = {1u, 1u, 1u}; |
| 1234 | if (auto Err = CUDAKernel.launchImpl( |
| 1235 | *this, NumBlocksAndThreads, NumBlocksAndThreads, KernelArgs, |
| 1236 | KernelLaunchParamsTy{}, AsyncInfoWrapper)) |
| 1237 | return Err; |
| 1238 | |
| 1239 | Error Err = Plugin::success(); |
| 1240 | AsyncInfoWrapper.finalize(Err); |
| 1241 | |
| 1242 | if (free(Buffer, TARGET_ALLOC_DEVICE) != OFFLOAD_SUCCESS) |
| 1243 | return Plugin::error(ErrorCode::UNKNOWN, |
| 1244 | "failed to free memory for global buffer" ); |
| 1245 | |
| 1246 | return Err; |
| 1247 | } |
| 1248 | |
| 1249 | /// Stream manager for CUDA streams. |
| 1250 | CUDAStreamManagerTy CUDAStreamManager; |
| 1251 | |
| 1252 | /// Event manager for CUDA events. |
| 1253 | CUDAEventManagerTy CUDAEventManager; |
| 1254 | |
| 1255 | /// The device's context. This context should be set before performing |
| 1256 | /// operations on the device. |
| 1257 | CUcontext Context = nullptr; |
| 1258 | |
| 1259 | /// The CUDA device handler. |
| 1260 | CUdevice Device = CU_DEVICE_INVALID; |
| 1261 | |
| 1262 | /// The memory mapped addresses and their handles |
| 1263 | std::unordered_map<CUdeviceptr, CUmemGenericAllocationHandle> DeviceMMaps; |
| 1264 | |
| 1265 | /// The compute capability of the corresponding CUDA device. |
| 1266 | struct ComputeCapabilityTy { |
| 1267 | uint32_t Major; |
| 1268 | uint32_t Minor; |
| 1269 | std::string str() const { |
| 1270 | return "sm_" + std::to_string(val: Major * 10 + Minor); |
| 1271 | } |
| 1272 | } ComputeCapability; |
| 1273 | |
| 1274 | /// The maximum number of warps that can be resident on all the SMs |
| 1275 | /// simultaneously. |
| 1276 | uint32_t HardwareParallelism = 0; |
| 1277 | }; |
| 1278 | |
| 1279 | Error CUDAKernelTy::launchImpl(GenericDeviceTy &GenericDevice, |
| 1280 | uint32_t NumThreads[3], uint32_t NumBlocks[3], |
| 1281 | KernelArgsTy &KernelArgs, |
| 1282 | KernelLaunchParamsTy LaunchParams, |
| 1283 | AsyncInfoWrapperTy &AsyncInfoWrapper) const { |
| 1284 | CUDADeviceTy &CUDADevice = static_cast<CUDADeviceTy &>(GenericDevice); |
| 1285 | |
| 1286 | CUstream Stream; |
| 1287 | if (auto Err = CUDADevice.getStream(AsyncInfoWrapper, Stream)) |
| 1288 | return Err; |
| 1289 | |
| 1290 | uint32_t MaxDynCGroupMem = |
| 1291 | std::max(KernelArgs.DynCGroupMem, GenericDevice.getDynamicMemorySize()); |
| 1292 | |
| 1293 | void *Config[] = {CU_LAUNCH_PARAM_BUFFER_POINTER, LaunchParams.Data, |
| 1294 | CU_LAUNCH_PARAM_BUFFER_SIZE, |
| 1295 | reinterpret_cast<void *>(&LaunchParams.Size), |
| 1296 | CU_LAUNCH_PARAM_END}; |
| 1297 | |
| 1298 | // If we are running an RPC server we want to wake up the server thread |
| 1299 | // whenever there is a kernel running and let it sleep otherwise. |
| 1300 | if (GenericDevice.getRPCServer()) |
| 1301 | GenericDevice.Plugin.getRPCServer().Thread->notify(); |
| 1302 | |
| 1303 | CUresult Res = cuLaunchKernel(Func, NumBlocks[0], NumBlocks[1], NumBlocks[2], |
| 1304 | NumThreads[0], NumThreads[1], NumThreads[2], |
| 1305 | MaxDynCGroupMem, Stream, nullptr, Config); |
| 1306 | |
| 1307 | // Register a callback to indicate when the kernel is complete. |
| 1308 | if (GenericDevice.getRPCServer()) |
| 1309 | cuLaunchHostFunc( |
| 1310 | Stream, |
| 1311 | [](void *Data) { |
| 1312 | GenericPluginTy &Plugin = *reinterpret_cast<GenericPluginTy *>(Data); |
| 1313 | Plugin.getRPCServer().Thread->finish(); |
| 1314 | }, |
| 1315 | &GenericDevice.Plugin); |
| 1316 | |
| 1317 | return Plugin::check(Res, "error in cuLaunchKernel for '%s': %s" , getName()); |
| 1318 | } |
| 1319 | |
| 1320 | /// Class implementing the CUDA-specific functionalities of the global handler. |
| 1321 | class CUDAGlobalHandlerTy final : public GenericGlobalHandlerTy { |
| 1322 | public: |
| 1323 | /// Get the metadata of a global from the device. The name and size of the |
| 1324 | /// global is read from DeviceGlobal and the address of the global is written |
| 1325 | /// to DeviceGlobal. |
| 1326 | Error getGlobalMetadataFromDevice(GenericDeviceTy &Device, |
| 1327 | DeviceImageTy &Image, |
| 1328 | GlobalTy &DeviceGlobal) override { |
| 1329 | CUDADeviceImageTy &CUDAImage = static_cast<CUDADeviceImageTy &>(Image); |
| 1330 | |
| 1331 | const char *GlobalName = DeviceGlobal.getName().data(); |
| 1332 | |
| 1333 | size_t CUSize; |
| 1334 | CUdeviceptr CUPtr; |
| 1335 | CUresult Res = |
| 1336 | cuModuleGetGlobal(&CUPtr, &CUSize, CUDAImage.getModule(), GlobalName); |
| 1337 | if (auto Err = Plugin::check(Res, "error in cuModuleGetGlobal for '%s': %s" , |
| 1338 | GlobalName)) |
| 1339 | return Err; |
| 1340 | |
| 1341 | if (CUSize != DeviceGlobal.getSize()) |
| 1342 | return Plugin::error( |
| 1343 | ErrorCode::INVALID_BINARY, |
| 1344 | "failed to load global '%s' due to size mismatch (%zu != %zu)" , |
| 1345 | GlobalName, CUSize, (size_t)DeviceGlobal.getSize()); |
| 1346 | |
| 1347 | DeviceGlobal.setPtr(reinterpret_cast<void *>(CUPtr)); |
| 1348 | return Plugin::success(); |
| 1349 | } |
| 1350 | }; |
| 1351 | |
| 1352 | /// Class implementing the CUDA-specific functionalities of the plugin. |
| 1353 | struct CUDAPluginTy final : public GenericPluginTy { |
| 1354 | /// Create a CUDA plugin. |
| 1355 | CUDAPluginTy() : GenericPluginTy(getTripleArch()) {} |
| 1356 | |
| 1357 | /// This class should not be copied. |
| 1358 | CUDAPluginTy(const CUDAPluginTy &) = delete; |
| 1359 | CUDAPluginTy(CUDAPluginTy &&) = delete; |
| 1360 | |
| 1361 | /// Initialize the plugin and return the number of devices. |
| 1362 | Expected<int32_t> initImpl() override { |
| 1363 | CUresult Res = cuInit(0); |
| 1364 | if (Res == CUDA_ERROR_INVALID_HANDLE) { |
| 1365 | // Cannot call cuGetErrorString if dlsym failed. |
| 1366 | DP("Failed to load CUDA shared library\n" ); |
| 1367 | return 0; |
| 1368 | } |
| 1369 | |
| 1370 | if (Res == CUDA_ERROR_NO_DEVICE) { |
| 1371 | // Do not initialize if there are no devices. |
| 1372 | DP("There are no devices supporting CUDA.\n" ); |
| 1373 | return 0; |
| 1374 | } |
| 1375 | |
| 1376 | if (auto Err = Plugin::check(Res, "error in cuInit: %s" )) |
| 1377 | return std::move(Err); |
| 1378 | |
| 1379 | // Get the number of devices. |
| 1380 | int NumDevices; |
| 1381 | Res = cuDeviceGetCount(&NumDevices); |
| 1382 | if (auto Err = Plugin::check(Res, "error in cuDeviceGetCount: %s" )) |
| 1383 | return std::move(Err); |
| 1384 | |
| 1385 | // Do not initialize if there are no devices. |
| 1386 | if (NumDevices == 0) |
| 1387 | DP("There are no devices supporting CUDA.\n" ); |
| 1388 | |
| 1389 | return NumDevices; |
| 1390 | } |
| 1391 | |
| 1392 | /// Deinitialize the plugin. |
| 1393 | Error deinitImpl() override { return Plugin::success(); } |
| 1394 | |
| 1395 | /// Creates a CUDA device to use for offloading. |
| 1396 | GenericDeviceTy *createDevice(GenericPluginTy &Plugin, int32_t DeviceId, |
| 1397 | int32_t NumDevices) override { |
| 1398 | return new CUDADeviceTy(Plugin, DeviceId, NumDevices); |
| 1399 | } |
| 1400 | |
| 1401 | /// Creates a CUDA global handler. |
| 1402 | GenericGlobalHandlerTy *createGlobalHandler() override { |
| 1403 | return new CUDAGlobalHandlerTy(); |
| 1404 | } |
| 1405 | |
| 1406 | /// Get the ELF code for recognizing the compatible image binary. |
| 1407 | uint16_t getMagicElfBits() const override { return ELF::EM_CUDA; } |
| 1408 | |
| 1409 | Triple::ArchType getTripleArch() const override { |
| 1410 | // TODO: I think we can drop the support for 32-bit NVPTX devices. |
| 1411 | return Triple::nvptx64; |
| 1412 | } |
| 1413 | |
| 1414 | const char *getName() const override { return GETNAME(TARGET_NAME); } |
| 1415 | |
| 1416 | /// Check whether the image is compatible with a CUDA device. |
| 1417 | Expected<bool> isELFCompatible(uint32_t DeviceId, |
| 1418 | StringRef Image) const override { |
| 1419 | auto ElfOrErr = |
| 1420 | ELF64LEObjectFile::create(MemoryBufferRef(Image, /*Identifier=*/"" ), |
| 1421 | /*InitContent=*/false); |
| 1422 | if (!ElfOrErr) |
| 1423 | return ElfOrErr.takeError(); |
| 1424 | |
| 1425 | // Get the numeric value for the image's `sm_` value. |
| 1426 | auto SM = ElfOrErr->getPlatformFlags() & ELF::EF_CUDA_SM; |
| 1427 | |
| 1428 | CUdevice Device; |
| 1429 | CUresult Res = cuDeviceGet(&Device, DeviceId); |
| 1430 | if (auto Err = Plugin::check(Res, "error in cuDeviceGet: %s" )) |
| 1431 | return std::move(Err); |
| 1432 | |
| 1433 | int32_t Major, Minor; |
| 1434 | Res = cuDeviceGetAttribute( |
| 1435 | &Major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, Device); |
| 1436 | if (auto Err = Plugin::check(Res, "error in cuDeviceGetAttribute: %s" )) |
| 1437 | return std::move(Err); |
| 1438 | |
| 1439 | Res = cuDeviceGetAttribute( |
| 1440 | &Minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, Device); |
| 1441 | if (auto Err = Plugin::check(Res, "error in cuDeviceGetAttribute: %s" )) |
| 1442 | return std::move(Err); |
| 1443 | |
| 1444 | int32_t ImageMajor = SM / 10; |
| 1445 | int32_t ImageMinor = SM % 10; |
| 1446 | |
| 1447 | // A cubin generated for a certain compute capability is supported to |
| 1448 | // run on any GPU with the same major revision and same or higher minor |
| 1449 | // revision. |
| 1450 | return Major == ImageMajor && Minor >= ImageMinor; |
| 1451 | } |
| 1452 | }; |
| 1453 | |
| 1454 | Error CUDADeviceTy::dataExchangeImpl(const void *SrcPtr, |
| 1455 | GenericDeviceTy &DstGenericDevice, |
| 1456 | void *DstPtr, int64_t Size, |
| 1457 | AsyncInfoWrapperTy &AsyncInfoWrapper) { |
| 1458 | if (auto Err = setContext()) |
| 1459 | return Err; |
| 1460 | |
| 1461 | CUDADeviceTy &DstDevice = static_cast<CUDADeviceTy &>(DstGenericDevice); |
| 1462 | |
| 1463 | CUresult Res; |
| 1464 | int32_t DstDeviceId = DstDevice.DeviceId; |
| 1465 | CUdeviceptr CUSrcPtr = (CUdeviceptr)SrcPtr; |
| 1466 | CUdeviceptr CUDstPtr = (CUdeviceptr)DstPtr; |
| 1467 | |
| 1468 | int CanAccessPeer = 0; |
| 1469 | if (DeviceId != DstDeviceId) { |
| 1470 | // Make sure the lock is released before performing the copies. |
| 1471 | std::lock_guard<std::mutex> Lock(PeerAccessesLock); |
| 1472 | |
| 1473 | switch (PeerAccesses[DstDeviceId]) { |
| 1474 | case PeerAccessState::AVAILABLE: |
| 1475 | CanAccessPeer = 1; |
| 1476 | break; |
| 1477 | case PeerAccessState::UNAVAILABLE: |
| 1478 | CanAccessPeer = 0; |
| 1479 | break; |
| 1480 | case PeerAccessState::PENDING: |
| 1481 | // Check whether the source device can access the destination device. |
| 1482 | Res = cuDeviceCanAccessPeer(&CanAccessPeer, Device, DstDevice.Device); |
| 1483 | if (auto Err = Plugin::check(Res, "Error in cuDeviceCanAccessPeer: %s" )) |
| 1484 | return Err; |
| 1485 | |
| 1486 | if (CanAccessPeer) { |
| 1487 | Res = cuCtxEnablePeerAccess(DstDevice.Context, 0); |
| 1488 | if (Res == CUDA_ERROR_TOO_MANY_PEERS) { |
| 1489 | // Resources may be exhausted due to many P2P links. |
| 1490 | CanAccessPeer = 0; |
| 1491 | DP("Too many P2P so fall back to D2D memcpy" ); |
| 1492 | } else if (auto Err = |
| 1493 | Plugin::check(Res, "error in cuCtxEnablePeerAccess: %s" )) |
| 1494 | return Err; |
| 1495 | } |
| 1496 | PeerAccesses[DstDeviceId] = (CanAccessPeer) |
| 1497 | ? PeerAccessState::AVAILABLE |
| 1498 | : PeerAccessState::UNAVAILABLE; |
| 1499 | } |
| 1500 | } |
| 1501 | |
| 1502 | CUstream Stream; |
| 1503 | if (auto Err = getStream(AsyncInfoWrapper, Stream)) |
| 1504 | return Err; |
| 1505 | |
| 1506 | if (CanAccessPeer) { |
| 1507 | // TODO: Should we fallback to D2D if peer access fails? |
| 1508 | Res = cuMemcpyPeerAsync(CUDstPtr, Context, CUSrcPtr, DstDevice.Context, |
| 1509 | Size, Stream); |
| 1510 | return Plugin::check(Res, "error in cuMemcpyPeerAsync: %s" ); |
| 1511 | } |
| 1512 | |
| 1513 | // Fallback to D2D copy. |
| 1514 | Res = cuMemcpyDtoDAsync(CUDstPtr, CUSrcPtr, Size, Stream); |
| 1515 | return Plugin::check(Res, "error in cuMemcpyDtoDAsync: %s" ); |
| 1516 | } |
| 1517 | |
| 1518 | template <typename... ArgsTy> |
| 1519 | static Error Plugin::check(int32_t Code, const char *ErrFmt, ArgsTy... Args) { |
| 1520 | CUresult ResultCode = static_cast<CUresult>(Code); |
| 1521 | if (ResultCode == CUDA_SUCCESS) |
| 1522 | return Plugin::success(); |
| 1523 | |
| 1524 | const char *Desc = "Unknown error" ; |
| 1525 | CUresult Ret = cuGetErrorString(ResultCode, &Desc); |
| 1526 | if (Ret != CUDA_SUCCESS) |
| 1527 | REPORT("Unrecognized " GETNAME(TARGET_NAME) " error code %d\n" , Code); |
| 1528 | |
| 1529 | // TODO: Add more entries to this switch |
| 1530 | ErrorCode OffloadErrCode; |
| 1531 | switch (ResultCode) { |
| 1532 | case CUDA_ERROR_NOT_FOUND: |
| 1533 | OffloadErrCode = ErrorCode::NOT_FOUND; |
| 1534 | break; |
| 1535 | default: |
| 1536 | OffloadErrCode = ErrorCode::UNKNOWN; |
| 1537 | } |
| 1538 | |
| 1539 | // TODO: Create a map for CUDA error codes to Offload error codes |
| 1540 | return Plugin::error(OffloadErrCode, ErrFmt, Args..., Desc); |
| 1541 | } |
| 1542 | |
| 1543 | } // namespace plugin |
| 1544 | } // namespace target |
| 1545 | } // namespace omp |
| 1546 | } // namespace llvm |
| 1547 | |
| 1548 | extern "C" { |
| 1549 | llvm::omp::target::plugin::GenericPluginTy *createPlugin_cuda() { |
| 1550 | return new llvm::omp::target::plugin::CUDAPluginTy(); |
| 1551 | } |
| 1552 | } |
| 1553 | |