| 1 | /* |
| 2 | Name: imath.h |
| 3 | Purpose: Arbitrary precision integer arithmetic routines. |
| 4 | Author: M. J. Fromberger |
| 5 | |
| 6 | Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved. |
| 7 | |
| 8 | Permission is hereby granted, free of charge, to any person obtaining a copy |
| 9 | of this software and associated documentation files (the "Software"), to deal |
| 10 | in the Software without restriction, including without limitation the rights |
| 11 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 12 | copies of the Software, and to permit persons to whom the Software is |
| 13 | furnished to do so, subject to the following conditions: |
| 14 | |
| 15 | The above copyright notice and this permission notice shall be included in |
| 16 | all copies or substantial portions of the Software. |
| 17 | |
| 18 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 19 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 20 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 21 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 22 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 23 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 24 | SOFTWARE. |
| 25 | */ |
| 26 | |
| 27 | #ifndef IMATH_H_ |
| 28 | #define IMATH_H_ |
| 29 | |
| 30 | #include <limits.h> |
| 31 | #include <stdbool.h> |
| 32 | #include <stdint.h> |
| 33 | |
| 34 | #ifdef __cplusplus |
| 35 | extern "C" { |
| 36 | #endif |
| 37 | |
| 38 | typedef unsigned char mp_sign; |
| 39 | typedef unsigned int mp_size; |
| 40 | typedef int mp_result; |
| 41 | typedef long mp_small; /* must be a signed type */ |
| 42 | typedef unsigned long mp_usmall; /* must be an unsigned type */ |
| 43 | |
| 44 | |
| 45 | /* Build with words as uint64_t by default. */ |
| 46 | #ifdef USE_32BIT_WORDS |
| 47 | typedef uint16_t mp_digit; |
| 48 | typedef uint32_t mp_word; |
| 49 | # define MP_DIGIT_MAX (UINT16_MAX * 1UL) |
| 50 | # define MP_WORD_MAX (UINT32_MAX * 1UL) |
| 51 | #else |
| 52 | typedef uint32_t mp_digit; |
| 53 | typedef uint64_t mp_word; |
| 54 | # define MP_DIGIT_MAX (UINT32_MAX * UINT64_C(1)) |
| 55 | # define MP_WORD_MAX (UINT64_MAX) |
| 56 | #endif |
| 57 | |
| 58 | typedef struct { |
| 59 | mp_digit single; |
| 60 | mp_digit* digits; |
| 61 | mp_size alloc; |
| 62 | mp_size used; |
| 63 | mp_sign sign; |
| 64 | } mpz_t, *mp_int; |
| 65 | |
| 66 | static inline mp_digit* MP_DIGITS(mp_int Z) { return Z->digits; } |
| 67 | static inline mp_size MP_ALLOC(mp_int Z) { return Z->alloc; } |
| 68 | static inline mp_size MP_USED(mp_int Z) { return Z->used; } |
| 69 | static inline mp_sign MP_SIGN(mp_int Z) { return Z->sign; } |
| 70 | |
| 71 | extern const mp_result MP_OK; |
| 72 | extern const mp_result MP_FALSE; |
| 73 | extern const mp_result MP_TRUE; |
| 74 | extern const mp_result MP_MEMORY; |
| 75 | extern const mp_result MP_RANGE; |
| 76 | extern const mp_result MP_UNDEF; |
| 77 | extern const mp_result MP_TRUNC; |
| 78 | extern const mp_result MP_BADARG; |
| 79 | extern const mp_result MP_MINERR; |
| 80 | |
| 81 | #define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT) |
| 82 | #define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT) |
| 83 | #define MP_SMALL_MIN LONG_MIN |
| 84 | #define MP_SMALL_MAX LONG_MAX |
| 85 | #define MP_USMALL_MAX ULONG_MAX |
| 86 | |
| 87 | #define MP_MIN_RADIX 2 |
| 88 | #define MP_MAX_RADIX 36 |
| 89 | |
| 90 | /** Sets the default number of digits allocated to an `mp_int` constructed by |
| 91 | `mp_int_init_size()` with `prec == 0`. Allocations are rounded up to |
| 92 | multiples of this value. `MP_DEFAULT_PREC` is the default value. Requires |
| 93 | `ndigits > 0`. */ |
| 94 | void mp_int_default_precision(mp_size ndigits); |
| 95 | |
| 96 | /** Sets the number of digits below which multiplication will use the standard |
| 97 | quadratic "schoolbook" multiplication algorithm rather than Karatsuba-Ofman. |
| 98 | Requires `ndigits >= sizeof(mp_word)`. */ |
| 99 | void mp_int_multiply_threshold(mp_size ndigits); |
| 100 | |
| 101 | /** A sign indicating a (strictly) negative value. */ |
| 102 | extern const mp_sign MP_NEG; |
| 103 | |
| 104 | /** A sign indicating a zero or positive value. */ |
| 105 | extern const mp_sign MP_ZPOS; |
| 106 | |
| 107 | /** Reports whether `z` is odd, having remainder 1 when divided by 2. */ |
| 108 | static inline bool mp_int_is_odd(mp_int z) { return (z->digits[0] & 1) != 0; } |
| 109 | |
| 110 | /** Reports whether `z` is even, having remainder 0 when divided by 2. */ |
| 111 | static inline bool mp_int_is_even(mp_int z) { return (z->digits[0] & 1) == 0; } |
| 112 | |
| 113 | /** Initializes `z` with 1-digit precision and sets it to zero. This function |
| 114 | cannot fail unless `z == NULL`. */ |
| 115 | mp_result mp_int_init(mp_int z); |
| 116 | |
| 117 | /** Allocates a fresh zero-valued `mpz_t` on the heap, returning NULL in case |
| 118 | of error. The only possible error is out-of-memory. */ |
| 119 | mp_int mp_int_alloc(void); |
| 120 | |
| 121 | /** Initializes `z` with at least `prec` digits of storage, and sets it to |
| 122 | zero. If `prec` is zero, the default precision is used. In either case the |
| 123 | size is rounded up to the nearest multiple of the word size. */ |
| 124 | mp_result mp_int_init_size(mp_int z, mp_size prec); |
| 125 | |
| 126 | /** Initializes `z` to be a copy of an already-initialized value in `old`. The |
| 127 | new copy does not share storage with the original. */ |
| 128 | mp_result mp_int_init_copy(mp_int z, mp_int old); |
| 129 | |
| 130 | /** Initializes `z` to the specified signed `value` at default precision. */ |
| 131 | mp_result mp_int_init_value(mp_int z, mp_small value); |
| 132 | |
| 133 | /** Initializes `z` to the specified unsigned `value` at default precision. */ |
| 134 | mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue); |
| 135 | |
| 136 | /** Sets `z` to the value of the specified signed `value`. */ |
| 137 | mp_result mp_int_set_value(mp_int z, mp_small value); |
| 138 | |
| 139 | /** Sets `z` to the value of the specified unsigned `value`. */ |
| 140 | mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue); |
| 141 | |
| 142 | /** Releases the storage used by `z`. */ |
| 143 | void mp_int_clear(mp_int z); |
| 144 | |
| 145 | /** Releases the storage used by `z` and also `z` itself. |
| 146 | This should only be used for `z` allocated by `mp_int_alloc()`. */ |
| 147 | void mp_int_free(mp_int z); |
| 148 | |
| 149 | /** Replaces the value of `c` with a copy of the value of `a`. No new memory is |
| 150 | allocated unless `a` has more significant digits than `c` has allocated. */ |
| 151 | mp_result mp_int_copy(mp_int a, mp_int c); |
| 152 | |
| 153 | /** Swaps the values and storage between `a` and `c`. */ |
| 154 | void mp_int_swap(mp_int a, mp_int c); |
| 155 | |
| 156 | /** Sets `z` to zero. The allocated storage of `z` is not changed. */ |
| 157 | void mp_int_zero(mp_int z); |
| 158 | |
| 159 | /** Sets `c` to the absolute value of `a`. */ |
| 160 | mp_result mp_int_abs(mp_int a, mp_int c); |
| 161 | |
| 162 | /** Sets `c` to the additive inverse (negation) of `a`. */ |
| 163 | mp_result mp_int_neg(mp_int a, mp_int c); |
| 164 | |
| 165 | /** Sets `c` to the sum of `a` and `b`. */ |
| 166 | mp_result mp_int_add(mp_int a, mp_int b, mp_int c); |
| 167 | |
| 168 | /** Sets `c` to the sum of `a` and `value`. */ |
| 169 | mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c); |
| 170 | |
| 171 | /** Sets `c` to the difference of `a` less `b`. */ |
| 172 | mp_result mp_int_sub(mp_int a, mp_int b, mp_int c); |
| 173 | |
| 174 | /** Sets `c` to the difference of `a` less `value`. */ |
| 175 | mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c); |
| 176 | |
| 177 | /** Sets `c` to the product of `a` and `b`. */ |
| 178 | mp_result mp_int_mul(mp_int a, mp_int b, mp_int c); |
| 179 | |
| 180 | /** Sets `c` to the product of `a` and `value`. */ |
| 181 | mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c); |
| 182 | |
| 183 | /** Sets `c` to the product of `a` and `2^p2`. Requires `p2 >= 0`. */ |
| 184 | mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c); |
| 185 | |
| 186 | /** Sets `c` to the square of `a`. */ |
| 187 | mp_result mp_int_sqr(mp_int a, mp_int c); |
| 188 | |
| 189 | /** Sets `q` and `r` to the quotent and remainder of `a / b`. Division by |
| 190 | powers of 2 is detected and handled efficiently. The remainder is pinned |
| 191 | to `0 <= r < b`. |
| 192 | |
| 193 | Either of `q` or `r` may be NULL, but not both, and `q` and `r` may not |
| 194 | point to the same value. */ |
| 195 | mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r); |
| 196 | |
| 197 | /** Sets `q` and `*r` to the quotent and remainder of `a / value`. Division by |
| 198 | powers of 2 is detected and handled efficiently. The remainder is pinned to |
| 199 | `0 <= *r < b`. Either of `q` or `r` may be NULL. */ |
| 200 | mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r); |
| 201 | |
| 202 | /** Sets `q` and `r` to the quotient and remainder of `a / 2^p2`. This is a |
| 203 | special case for division by powers of two that is more efficient than |
| 204 | using ordinary division. Note that `mp_int_div()` will automatically handle |
| 205 | this case, this function is for cases where you have only the exponent. */ |
| 206 | mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r); |
| 207 | |
| 208 | /** Sets `c` to the remainder of `a / m`. |
| 209 | The remainder is pinned to `0 <= c < m`. */ |
| 210 | mp_result mp_int_mod(mp_int a, mp_int m, mp_int c); |
| 211 | |
| 212 | /** Sets `c` to the value of `a` raised to the `b` power. |
| 213 | It returns `MP_RANGE` if `b < 0`. */ |
| 214 | mp_result mp_int_expt(mp_int a, mp_small b, mp_int c); |
| 215 | |
| 216 | /** Sets `c` to the value of `a` raised to the `b` power. |
| 217 | It returns `MP_RANGE` if `b < 0`. */ |
| 218 | mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c); |
| 219 | |
| 220 | /** Sets `c` to the value of `a` raised to the `b` power. |
| 221 | It returns `MP_RANGE`) if `b < 0`. */ |
| 222 | mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c); |
| 223 | |
| 224 | /** Sets `*r` to the remainder of `a / value`. |
| 225 | The remainder is pinned to `0 <= r < value`. */ |
| 226 | static inline |
| 227 | mp_result mp_int_mod_value(mp_int a, mp_small value, mp_small* r) { |
| 228 | return mp_int_div_value(a, value, q: 0, r); |
| 229 | } |
| 230 | |
| 231 | /** Returns the comparator of `a` and `b`. */ |
| 232 | int mp_int_compare(mp_int a, mp_int b); |
| 233 | |
| 234 | /** Returns the comparator of the magnitudes of `a` and `b`, disregarding their |
| 235 | signs. Neither `a` nor `b` is modified by the comparison. */ |
| 236 | int mp_int_compare_unsigned(mp_int a, mp_int b); |
| 237 | |
| 238 | /** Returns the comparator of `z` and zero. */ |
| 239 | int mp_int_compare_zero(mp_int z); |
| 240 | |
| 241 | /** Returns the comparator of `z` and the signed value `v`. */ |
| 242 | int mp_int_compare_value(mp_int z, mp_small v); |
| 243 | |
| 244 | /** Returns the comparator of `z` and the unsigned value `uv`. */ |
| 245 | int mp_int_compare_uvalue(mp_int z, mp_usmall uv); |
| 246 | |
| 247 | /** Reports whether `a` is divisible by `v`. */ |
| 248 | bool mp_int_divisible_value(mp_int a, mp_small v); |
| 249 | |
| 250 | /** Returns `k >= 0` such that `z` is `2^k`, if such a `k` exists. If no such |
| 251 | `k` exists, the function returns -1. */ |
| 252 | int mp_int_is_pow2(mp_int z); |
| 253 | |
| 254 | /** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`. |
| 255 | It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */ |
| 256 | mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c); |
| 257 | |
| 258 | /** Sets `c` to the value of `a` raised to the `value` power, modulo `m`. |
| 259 | It returns `MP_RANGE` if `value < 0` or `MP_UNDEF` if `m == 0`. */ |
| 260 | mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c); |
| 261 | |
| 262 | /** Sets `c` to the value of `value` raised to the `b` power, modulo `m`. |
| 263 | It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */ |
| 264 | mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c); |
| 265 | |
| 266 | /** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`, |
| 267 | given a precomputed reduction constant `mu` defined for Barrett's modular |
| 268 | reduction algorithm. |
| 269 | |
| 270 | It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */ |
| 271 | mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c); |
| 272 | |
| 273 | /** Sets `c` to the reduction constant for Barrett reduction by modulus `m`. |
| 274 | Requires that `c` and `m` point to distinct locations. */ |
| 275 | mp_result mp_int_redux_const(mp_int m, mp_int c); |
| 276 | |
| 277 | /** Sets `c` to the multiplicative inverse of `a` modulo `m`, if it exists. |
| 278 | The least non-negative representative of the congruence class is computed. |
| 279 | |
| 280 | It returns `MP_UNDEF` if the inverse does not exist, or `MP_RANGE` if `a == |
| 281 | 0` or `m <= 0`. */ |
| 282 | mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c); |
| 283 | |
| 284 | /** Sets `c` to the greatest common divisor of `a` and `b`. |
| 285 | |
| 286 | It returns `MP_UNDEF` if the GCD is undefined, such as for example if `a` |
| 287 | and `b` are both zero. */ |
| 288 | mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c); |
| 289 | |
| 290 | /** Sets `c` to the greatest common divisor of `a` and `b`, and sets `x` and |
| 291 | `y` to values satisfying Bezout's identity `gcd(a, b) = ax + by`. |
| 292 | |
| 293 | It returns `MP_UNDEF` if the GCD is undefined, such as for example if `a` |
| 294 | and `b` are both zero. */ |
| 295 | mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y); |
| 296 | |
| 297 | /** Sets `c` to the least common multiple of `a` and `b`. |
| 298 | |
| 299 | It returns `MP_UNDEF` if the LCM is undefined, such as for example if `a` |
| 300 | and `b` are both zero. */ |
| 301 | mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c); |
| 302 | |
| 303 | /** Sets `c` to the greatest integer not less than the `b`th root of `a`, |
| 304 | using Newton's root-finding algorithm. |
| 305 | It returns `MP_UNDEF` if `a < 0` and `b` is even. */ |
| 306 | mp_result mp_int_root(mp_int a, mp_small b, mp_int c); |
| 307 | |
| 308 | /** Sets `c` to the greatest integer not less than the square root of `a`. |
| 309 | This is a special case of `mp_int_root()`. */ |
| 310 | static inline |
| 311 | mp_result mp_int_sqrt(mp_int a, mp_int c) { return mp_int_root(a, b: 2, c); } |
| 312 | |
| 313 | /** Returns `MP_OK` if `z` is representable as `mp_small`, else `MP_RANGE`. |
| 314 | If `out` is not NULL, `*out` is set to the value of `z` when `MP_OK`. */ |
| 315 | mp_result mp_int_to_int(mp_int z, mp_small *out); |
| 316 | |
| 317 | /** Returns `MP_OK` if `z` is representable as `mp_usmall`, or `MP_RANGE`. |
| 318 | If `out` is not NULL, `*out` is set to the value of `z` when `MP_OK`. */ |
| 319 | mp_result mp_int_to_uint(mp_int z, mp_usmall *out); |
| 320 | |
| 321 | /** Converts `z` to a zero-terminated string of characters in the specified |
| 322 | `radix`, writing at most `limit` characters to `str` including the |
| 323 | terminating NUL value. A leading `-` is used to indicate a negative value. |
| 324 | |
| 325 | Returns `MP_TRUNC` if `limit` was to small to write all of `z`. |
| 326 | Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */ |
| 327 | mp_result mp_int_to_string(mp_int z, mp_size radix, char *str, int limit); |
| 328 | |
| 329 | /** Reports the minimum number of characters required to represent `z` as a |
| 330 | zero-terminated string in the given `radix`. |
| 331 | Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */ |
| 332 | mp_result mp_int_string_len(mp_int z, mp_size radix); |
| 333 | |
| 334 | /** Reads a string of ASCII digits in the specified `radix` from the zero |
| 335 | terminated `str` provided into `z`. For values of `radix > 10`, the letters |
| 336 | `A`..`Z` or `a`..`z` are accepted. Letters are interpreted without respect |
| 337 | to case. |
| 338 | |
| 339 | Leading whitespace is ignored, and a leading `+` or `-` is interpreted as a |
| 340 | sign flag. Processing stops when a NUL or any other character out of range |
| 341 | for a digit in the given radix is encountered. |
| 342 | |
| 343 | If the whole string was consumed, `MP_OK` is returned; otherwise |
| 344 | `MP_TRUNC`. is returned. |
| 345 | |
| 346 | Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */ |
| 347 | mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str); |
| 348 | |
| 349 | /** Reads a string of ASCII digits in the specified `radix` from the zero |
| 350 | terminated `str` provided into `z`. For values of `radix > 10`, the letters |
| 351 | `A`..`Z` or `a`..`z` are accepted. Letters are interpreted without respect |
| 352 | to case. |
| 353 | |
| 354 | Leading whitespace is ignored, and a leading `+` or `-` is interpreted as a |
| 355 | sign flag. Processing stops when a NUL or any other character out of range |
| 356 | for a digit in the given radix is encountered. |
| 357 | |
| 358 | If the whole string was consumed, `MP_OK` is returned; otherwise |
| 359 | `MP_TRUNC`. is returned. If `end` is not NULL, `*end` is set to point to |
| 360 | the first unconsumed byte of the input string (the NUL byte if the whole |
| 361 | string was consumed). This emulates the behavior of the standard C |
| 362 | `strtol()` function. |
| 363 | |
| 364 | Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */ |
| 365 | mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end); |
| 366 | |
| 367 | /** Returns the number of significant bits in `z`. */ |
| 368 | mp_result mp_int_count_bits(mp_int z); |
| 369 | |
| 370 | /** Converts `z` to 2's complement binary, writing at most `limit` bytes into |
| 371 | the given `buf`. Returns `MP_TRUNC` if the buffer limit was too small to |
| 372 | contain the whole value. If this occurs, the contents of buf will be |
| 373 | effectively garbage, as the function uses the buffer as scratch space. |
| 374 | |
| 375 | The binary representation of `z` is in base-256 with digits ordered from |
| 376 | most significant to least significant (network byte ordering). The |
| 377 | high-order bit of the first byte is set for negative values, clear for |
| 378 | non-negative values. |
| 379 | |
| 380 | As a result, non-negative values will be padded with a leading zero byte if |
| 381 | the high-order byte of the base-256 magnitude is set. This extra byte is |
| 382 | accounted for by the `mp_int_binary_len()` function. */ |
| 383 | mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit); |
| 384 | |
| 385 | /** Reads a 2's complement binary value from `buf` into `z`, where `len` is the |
| 386 | length of the buffer. The contents of `buf` may be overwritten during |
| 387 | processing, although they will be restored when the function returns. */ |
| 388 | mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len); |
| 389 | |
| 390 | /** Returns the number of bytes to represent `z` in 2's complement binary. */ |
| 391 | mp_result mp_int_binary_len(mp_int z); |
| 392 | |
| 393 | /** Converts the magnitude of `z` to unsigned binary, writing at most `limit` |
| 394 | bytes into the given `buf`. The sign of `z` is ignored, but `z` is not |
| 395 | modified. Returns `MP_TRUNC` if the buffer limit was too small to contain |
| 396 | the whole value. If this occurs, the contents of `buf` will be effectively |
| 397 | garbage, as the function uses the buffer as scratch space during |
| 398 | conversion. |
| 399 | |
| 400 | The binary representation of `z` is in base-256 with digits ordered from |
| 401 | most significant to least significant (network byte ordering). */ |
| 402 | mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit); |
| 403 | |
| 404 | /** Reads an unsigned binary value from `buf` into `z`, where `len` is the |
| 405 | length of the buffer. The contents of `buf` are not modified during |
| 406 | processing. */ |
| 407 | mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len); |
| 408 | |
| 409 | /** Returns the number of bytes required to represent `z` as an unsigned binary |
| 410 | value in base 256. */ |
| 411 | mp_result mp_int_unsigned_len(mp_int z); |
| 412 | |
| 413 | /** Returns a pointer to a brief, human-readable, zero-terminated string |
| 414 | describing `res`. The returned string is statically allocated and must not |
| 415 | be freed by the caller. */ |
| 416 | const char *mp_error_string(mp_result res); |
| 417 | |
| 418 | #ifdef __cplusplus |
| 419 | } |
| 420 | #endif |
| 421 | #endif /* end IMATH_H_ */ |
| 422 | |