| 1 | /* |
| 2 | * Copyright 2012-2014 Ecole Normale Superieure |
| 3 | * Copyright 2014 INRIA Rocquencourt |
| 4 | * |
| 5 | * Use of this software is governed by the MIT license |
| 6 | * |
| 7 | * Written by Sven Verdoolaege, |
| 8 | * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France |
| 9 | * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, |
| 10 | * B.P. 105 - 78153 Le Chesnay, France |
| 11 | */ |
| 12 | |
| 13 | #include <isl/id.h> |
| 14 | #include <isl/space.h> |
| 15 | #include <isl/constraint.h> |
| 16 | #include <isl/ilp.h> |
| 17 | #include <isl/val.h> |
| 18 | #include <isl_ast_build_expr.h> |
| 19 | #include <isl_ast_private.h> |
| 20 | #include <isl_ast_build_private.h> |
| 21 | #include <isl_sort.h> |
| 22 | |
| 23 | /* Compute the "opposite" of the (numerator of the) argument of a div |
| 24 | * with denominator "d". |
| 25 | * |
| 26 | * In particular, compute |
| 27 | * |
| 28 | * -aff + (d - 1) |
| 29 | */ |
| 30 | static __isl_give isl_aff *oppose_div_arg(__isl_take isl_aff *aff, |
| 31 | __isl_take isl_val *d) |
| 32 | { |
| 33 | aff = isl_aff_neg(aff); |
| 34 | aff = isl_aff_add_constant_val(aff, v: d); |
| 35 | aff = isl_aff_add_constant_si(aff, v: -1); |
| 36 | |
| 37 | return aff; |
| 38 | } |
| 39 | |
| 40 | /* Internal data structure used inside isl_ast_expr_add_term. |
| 41 | * The domain of "build" is used to simplify the expressions. |
| 42 | * "build" needs to be set by the caller of isl_ast_expr_add_term. |
| 43 | * "ls" is the domain local space of the affine expression |
| 44 | * of which a term is being added. |
| 45 | * "cst" is the constant term of the expression in which the added term |
| 46 | * appears. It may be modified by isl_ast_expr_add_term. |
| 47 | * |
| 48 | * "v" is the coefficient of the term that is being constructed and |
| 49 | * is set internally by isl_ast_expr_add_term. |
| 50 | */ |
| 51 | struct isl_ast_add_term_data { |
| 52 | isl_ast_build *build; |
| 53 | isl_local_space *ls; |
| 54 | isl_val *cst; |
| 55 | isl_val *v; |
| 56 | }; |
| 57 | |
| 58 | /* Given the numerator "aff" of the argument of an integer division |
| 59 | * with denominator "d", check if it can be made non-negative over |
| 60 | * data->build->domain by stealing part of the constant term of |
| 61 | * the expression in which the integer division appears. |
| 62 | * |
| 63 | * In particular, the outer expression is of the form |
| 64 | * |
| 65 | * v * floor(aff/d) + cst |
| 66 | * |
| 67 | * We already know that "aff" itself may attain negative values. |
| 68 | * Here we check if aff + d*floor(cst/v) is non-negative, such |
| 69 | * that we could rewrite the expression to |
| 70 | * |
| 71 | * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v) |
| 72 | * |
| 73 | * Note that aff + d*floor(cst/v) can only possibly be non-negative |
| 74 | * if data->cst and data->v have the same sign. |
| 75 | * Similarly, if floor(cst/v) is zero, then there is no point in |
| 76 | * checking again. |
| 77 | */ |
| 78 | static isl_bool is_non_neg_after_stealing(__isl_keep isl_aff *aff, |
| 79 | __isl_keep isl_val *d, struct isl_ast_add_term_data *data) |
| 80 | { |
| 81 | isl_aff *shifted; |
| 82 | isl_val *shift; |
| 83 | isl_bool is_zero; |
| 84 | isl_bool non_neg; |
| 85 | |
| 86 | if (isl_val_sgn(v: data->cst) != isl_val_sgn(v: data->v)) |
| 87 | return isl_bool_false; |
| 88 | |
| 89 | shift = isl_val_div(v1: isl_val_copy(v: data->cst), v2: isl_val_copy(v: data->v)); |
| 90 | shift = isl_val_floor(v: shift); |
| 91 | is_zero = isl_val_is_zero(v: shift); |
| 92 | if (is_zero < 0 || is_zero) { |
| 93 | isl_val_free(v: shift); |
| 94 | return isl_bool_not(b: is_zero); |
| 95 | } |
| 96 | shift = isl_val_mul(v1: shift, v2: isl_val_copy(v: d)); |
| 97 | shifted = isl_aff_copy(aff); |
| 98 | shifted = isl_aff_add_constant_val(aff: shifted, v: shift); |
| 99 | non_neg = isl_ast_build_aff_is_nonneg(build: data->build, aff: shifted); |
| 100 | isl_aff_free(aff: shifted); |
| 101 | |
| 102 | return non_neg; |
| 103 | } |
| 104 | |
| 105 | /* Given the numerator "aff" of the argument of an integer division |
| 106 | * with denominator "d", steal part of the constant term of |
| 107 | * the expression in which the integer division appears to make it |
| 108 | * non-negative over data->build->domain. |
| 109 | * |
| 110 | * In particular, the outer expression is of the form |
| 111 | * |
| 112 | * v * floor(aff/d) + cst |
| 113 | * |
| 114 | * We know that "aff" itself may attain negative values, |
| 115 | * but that aff + d*floor(cst/v) is non-negative. |
| 116 | * Find the minimal positive value that we need to add to "aff" |
| 117 | * to make it positive and adjust data->cst accordingly. |
| 118 | * That is, compute the minimal value "m" of "aff" over |
| 119 | * data->build->domain and take |
| 120 | * |
| 121 | * s = ceil(-m/d) |
| 122 | * |
| 123 | * such that |
| 124 | * |
| 125 | * aff + d * s >= 0 |
| 126 | * |
| 127 | * and rewrite the expression to |
| 128 | * |
| 129 | * v * floor((aff + s*d)/d) + (cst - v*s) |
| 130 | */ |
| 131 | static __isl_give isl_aff *steal_from_cst(__isl_take isl_aff *aff, |
| 132 | __isl_keep isl_val *d, struct isl_ast_add_term_data *data) |
| 133 | { |
| 134 | isl_set *domain; |
| 135 | isl_val *shift, *t; |
| 136 | |
| 137 | domain = isl_ast_build_get_domain(build: data->build); |
| 138 | shift = isl_set_min_val(set: domain, obj: aff); |
| 139 | isl_set_free(set: domain); |
| 140 | |
| 141 | shift = isl_val_neg(v: shift); |
| 142 | shift = isl_val_div(v1: shift, v2: isl_val_copy(v: d)); |
| 143 | shift = isl_val_ceil(v: shift); |
| 144 | |
| 145 | t = isl_val_copy(v: shift); |
| 146 | t = isl_val_mul(v1: t, v2: isl_val_copy(v: data->v)); |
| 147 | data->cst = isl_val_sub(v1: data->cst, v2: t); |
| 148 | |
| 149 | shift = isl_val_mul(v1: shift, v2: isl_val_copy(v: d)); |
| 150 | return isl_aff_add_constant_val(aff, v: shift); |
| 151 | } |
| 152 | |
| 153 | /* Construct an expression representing the binary operation "type" |
| 154 | * (some division or modulo) applied to the expressions |
| 155 | * constructed from "aff" and "v". |
| 156 | */ |
| 157 | static __isl_give isl_ast_expr *div_mod(enum isl_ast_expr_op_type type, |
| 158 | __isl_take isl_aff *aff, __isl_take isl_val *v, |
| 159 | __isl_keep isl_ast_build *build) |
| 160 | { |
| 161 | isl_ast_expr *expr1, *expr2; |
| 162 | |
| 163 | expr1 = isl_ast_expr_from_aff(aff, build); |
| 164 | expr2 = isl_ast_expr_from_val(v); |
| 165 | return isl_ast_expr_alloc_binary(type, expr1, expr2); |
| 166 | } |
| 167 | |
| 168 | /* Create an isl_ast_expr evaluating the div at position "pos" in data->ls. |
| 169 | * The result is simplified in terms of data->build->domain. |
| 170 | * This function may change (the sign of) data->v. |
| 171 | * |
| 172 | * data->ls is known to be non-NULL. |
| 173 | * |
| 174 | * Let the div be of the form floor(e/d). |
| 175 | * If the ast_build_prefer_pdiv option is set then we check if "e" |
| 176 | * is non-negative, so that we can generate |
| 177 | * |
| 178 | * (pdiv_q, expr(e), expr(d)) |
| 179 | * |
| 180 | * instead of |
| 181 | * |
| 182 | * (fdiv_q, expr(e), expr(d)) |
| 183 | * |
| 184 | * If the ast_build_prefer_pdiv option is set and |
| 185 | * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative. |
| 186 | * If so, we can rewrite |
| 187 | * |
| 188 | * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d) |
| 189 | * |
| 190 | * and still use pdiv_q, while changing the sign of data->v. |
| 191 | * |
| 192 | * Otherwise, we check if |
| 193 | * |
| 194 | * e + d*floor(cst/v) |
| 195 | * |
| 196 | * is non-negative and if so, replace floor(e/d) by |
| 197 | * |
| 198 | * floor((e + s*d)/d) - s |
| 199 | * |
| 200 | * with s the minimal shift that makes the argument non-negative. |
| 201 | */ |
| 202 | static __isl_give isl_ast_expr *var_div(struct isl_ast_add_term_data *data, |
| 203 | int pos) |
| 204 | { |
| 205 | isl_ctx *ctx = isl_local_space_get_ctx(ls: data->ls); |
| 206 | isl_aff *aff; |
| 207 | isl_val *d; |
| 208 | enum isl_ast_expr_op_type type; |
| 209 | |
| 210 | aff = isl_local_space_get_div(ls: data->ls, pos); |
| 211 | d = isl_aff_get_denominator_val(aff); |
| 212 | aff = isl_aff_scale_val(aff, v: isl_val_copy(v: d)); |
| 213 | |
| 214 | type = isl_ast_expr_op_fdiv_q; |
| 215 | if (isl_options_get_ast_build_prefer_pdiv(ctx)) { |
| 216 | isl_bool non_neg; |
| 217 | non_neg = isl_ast_build_aff_is_nonneg(build: data->build, aff); |
| 218 | if (non_neg >= 0 && !non_neg) { |
| 219 | isl_aff *opp = oppose_div_arg(aff: isl_aff_copy(aff), |
| 220 | d: isl_val_copy(v: d)); |
| 221 | non_neg = isl_ast_build_aff_is_nonneg(build: data->build, aff: opp); |
| 222 | if (non_neg >= 0 && non_neg) { |
| 223 | data->v = isl_val_neg(v: data->v); |
| 224 | isl_aff_free(aff); |
| 225 | aff = opp; |
| 226 | } else |
| 227 | isl_aff_free(aff: opp); |
| 228 | } |
| 229 | if (non_neg >= 0 && !non_neg) { |
| 230 | non_neg = is_non_neg_after_stealing(aff, d, data); |
| 231 | if (non_neg >= 0 && non_neg) |
| 232 | aff = steal_from_cst(aff, d, data); |
| 233 | } |
| 234 | if (non_neg < 0) |
| 235 | aff = isl_aff_free(aff); |
| 236 | else if (non_neg) |
| 237 | type = isl_ast_expr_op_pdiv_q; |
| 238 | } |
| 239 | |
| 240 | return div_mod(type, aff, v: d, build: data->build); |
| 241 | } |
| 242 | |
| 243 | /* Create an isl_ast_expr evaluating the specified dimension of data->ls. |
| 244 | * The result is simplified in terms of data->build->domain. |
| 245 | * This function may change (the sign of) data->v. |
| 246 | * |
| 247 | * The isl_ast_expr is constructed based on the type of the dimension. |
| 248 | * - divs are constructed by var_div |
| 249 | * - set variables are constructed from the iterator isl_ids in data->build |
| 250 | * - parameters are constructed from the isl_ids in data->ls |
| 251 | */ |
| 252 | static __isl_give isl_ast_expr *var(struct isl_ast_add_term_data *data, |
| 253 | enum isl_dim_type type, int pos) |
| 254 | { |
| 255 | isl_ctx *ctx = isl_local_space_get_ctx(ls: data->ls); |
| 256 | isl_id *id; |
| 257 | |
| 258 | if (type == isl_dim_div) |
| 259 | return var_div(data, pos); |
| 260 | |
| 261 | if (type == isl_dim_set) { |
| 262 | id = isl_ast_build_get_iterator_id(build: data->build, pos); |
| 263 | return isl_ast_expr_from_id(id); |
| 264 | } |
| 265 | |
| 266 | if (!isl_local_space_has_dim_id(ls: data->ls, type, pos)) |
| 267 | isl_die(ctx, isl_error_internal, "unnamed dimension" , |
| 268 | return NULL); |
| 269 | id = isl_local_space_get_dim_id(ls: data->ls, type, pos); |
| 270 | return isl_ast_expr_from_id(id); |
| 271 | } |
| 272 | |
| 273 | /* Does "expr" represent the zero integer? |
| 274 | */ |
| 275 | static isl_bool ast_expr_is_zero(__isl_keep isl_ast_expr *expr) |
| 276 | { |
| 277 | if (!expr) |
| 278 | return isl_bool_error; |
| 279 | if (expr->type != isl_ast_expr_int) |
| 280 | return isl_bool_false; |
| 281 | return isl_val_is_zero(v: expr->u.v); |
| 282 | } |
| 283 | |
| 284 | /* Create an expression representing the sum of "expr1" and "expr2", |
| 285 | * provided neither of the two expressions is identically zero. |
| 286 | */ |
| 287 | static __isl_give isl_ast_expr *ast_expr_add(__isl_take isl_ast_expr *expr1, |
| 288 | __isl_take isl_ast_expr *expr2) |
| 289 | { |
| 290 | if (!expr1 || !expr2) |
| 291 | goto error; |
| 292 | |
| 293 | if (ast_expr_is_zero(expr: expr1)) { |
| 294 | isl_ast_expr_free(expr: expr1); |
| 295 | return expr2; |
| 296 | } |
| 297 | |
| 298 | if (ast_expr_is_zero(expr: expr2)) { |
| 299 | isl_ast_expr_free(expr: expr2); |
| 300 | return expr1; |
| 301 | } |
| 302 | |
| 303 | return isl_ast_expr_add(expr1, expr2); |
| 304 | error: |
| 305 | isl_ast_expr_free(expr: expr1); |
| 306 | isl_ast_expr_free(expr: expr2); |
| 307 | return NULL; |
| 308 | } |
| 309 | |
| 310 | /* Subtract expr2 from expr1. |
| 311 | * |
| 312 | * If expr2 is zero, we simply return expr1. |
| 313 | * If expr1 is zero, we return |
| 314 | * |
| 315 | * (isl_ast_expr_op_minus, expr2) |
| 316 | * |
| 317 | * Otherwise, we return |
| 318 | * |
| 319 | * (isl_ast_expr_op_sub, expr1, expr2) |
| 320 | */ |
| 321 | static __isl_give isl_ast_expr *ast_expr_sub(__isl_take isl_ast_expr *expr1, |
| 322 | __isl_take isl_ast_expr *expr2) |
| 323 | { |
| 324 | if (!expr1 || !expr2) |
| 325 | goto error; |
| 326 | |
| 327 | if (ast_expr_is_zero(expr: expr2)) { |
| 328 | isl_ast_expr_free(expr: expr2); |
| 329 | return expr1; |
| 330 | } |
| 331 | |
| 332 | if (ast_expr_is_zero(expr: expr1)) { |
| 333 | isl_ast_expr_free(expr: expr1); |
| 334 | return isl_ast_expr_neg(expr: expr2); |
| 335 | } |
| 336 | |
| 337 | return isl_ast_expr_sub(expr1, expr2); |
| 338 | error: |
| 339 | isl_ast_expr_free(expr: expr1); |
| 340 | isl_ast_expr_free(expr: expr2); |
| 341 | return NULL; |
| 342 | } |
| 343 | |
| 344 | /* Return an isl_ast_expr that represents |
| 345 | * |
| 346 | * v * (aff mod d) |
| 347 | * |
| 348 | * v is assumed to be non-negative. |
| 349 | * The result is simplified in terms of build->domain. |
| 350 | */ |
| 351 | static __isl_give isl_ast_expr *isl_ast_expr_mod(__isl_keep isl_val *v, |
| 352 | __isl_keep isl_aff *aff, __isl_keep isl_val *d, |
| 353 | __isl_keep isl_ast_build *build) |
| 354 | { |
| 355 | isl_ast_expr *expr; |
| 356 | isl_ast_expr *c; |
| 357 | |
| 358 | if (!aff) |
| 359 | return NULL; |
| 360 | |
| 361 | expr = div_mod(type: isl_ast_expr_op_pdiv_r, |
| 362 | aff: isl_aff_copy(aff), v: isl_val_copy(v: d), build); |
| 363 | |
| 364 | if (!isl_val_is_one(v)) { |
| 365 | c = isl_ast_expr_from_val(v: isl_val_copy(v)); |
| 366 | expr = isl_ast_expr_mul(expr1: c, expr2: expr); |
| 367 | } |
| 368 | |
| 369 | return expr; |
| 370 | } |
| 371 | |
| 372 | /* Create an isl_ast_expr that scales "expr" by "v". |
| 373 | * |
| 374 | * If v is 1, we simply return expr. |
| 375 | * If v is -1, we return |
| 376 | * |
| 377 | * (isl_ast_expr_op_minus, expr) |
| 378 | * |
| 379 | * Otherwise, we return |
| 380 | * |
| 381 | * (isl_ast_expr_op_mul, expr(v), expr) |
| 382 | */ |
| 383 | static __isl_give isl_ast_expr *scale(__isl_take isl_ast_expr *expr, |
| 384 | __isl_take isl_val *v) |
| 385 | { |
| 386 | isl_ast_expr *c; |
| 387 | |
| 388 | if (!expr || !v) |
| 389 | goto error; |
| 390 | if (isl_val_is_one(v)) { |
| 391 | isl_val_free(v); |
| 392 | return expr; |
| 393 | } |
| 394 | |
| 395 | if (isl_val_is_negone(v)) { |
| 396 | isl_val_free(v); |
| 397 | expr = isl_ast_expr_neg(expr); |
| 398 | } else { |
| 399 | c = isl_ast_expr_from_val(v); |
| 400 | expr = isl_ast_expr_mul(expr1: c, expr2: expr); |
| 401 | } |
| 402 | |
| 403 | return expr; |
| 404 | error: |
| 405 | isl_val_free(v); |
| 406 | isl_ast_expr_free(expr); |
| 407 | return NULL; |
| 408 | } |
| 409 | |
| 410 | /* Add an expression for "*v" times the specified dimension of data->ls |
| 411 | * to expr. |
| 412 | * If the dimension is an integer division, then this function |
| 413 | * may modify data->cst in order to make the numerator non-negative. |
| 414 | * The result is simplified in terms of data->build->domain. |
| 415 | * |
| 416 | * Let e be the expression for the specified dimension, |
| 417 | * multiplied by the absolute value of "*v". |
| 418 | * If "*v" is negative, we create |
| 419 | * |
| 420 | * (isl_ast_expr_op_sub, expr, e) |
| 421 | * |
| 422 | * except when expr is trivially zero, in which case we create |
| 423 | * |
| 424 | * (isl_ast_expr_op_minus, e) |
| 425 | * |
| 426 | * instead. |
| 427 | * |
| 428 | * If "*v" is positive, we simply create |
| 429 | * |
| 430 | * (isl_ast_expr_op_add, expr, e) |
| 431 | * |
| 432 | */ |
| 433 | static __isl_give isl_ast_expr *isl_ast_expr_add_term( |
| 434 | __isl_take isl_ast_expr *expr, enum isl_dim_type type, int pos, |
| 435 | __isl_take isl_val *v, struct isl_ast_add_term_data *data) |
| 436 | { |
| 437 | isl_ast_expr *term; |
| 438 | |
| 439 | if (!expr) |
| 440 | return NULL; |
| 441 | |
| 442 | data->v = v; |
| 443 | term = var(data, type, pos); |
| 444 | v = data->v; |
| 445 | |
| 446 | if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) { |
| 447 | v = isl_val_neg(v); |
| 448 | term = scale(expr: term, v); |
| 449 | return ast_expr_sub(expr1: expr, expr2: term); |
| 450 | } else { |
| 451 | term = scale(expr: term, v); |
| 452 | return ast_expr_add(expr1: expr, expr2: term); |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | /* Add an expression for "v" to expr. |
| 457 | */ |
| 458 | static __isl_give isl_ast_expr *isl_ast_expr_add_int( |
| 459 | __isl_take isl_ast_expr *expr, __isl_take isl_val *v) |
| 460 | { |
| 461 | isl_ast_expr *expr_int; |
| 462 | |
| 463 | if (!expr || !v) |
| 464 | goto error; |
| 465 | |
| 466 | if (isl_val_is_zero(v)) { |
| 467 | isl_val_free(v); |
| 468 | return expr; |
| 469 | } |
| 470 | |
| 471 | if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) { |
| 472 | v = isl_val_neg(v); |
| 473 | expr_int = isl_ast_expr_from_val(v); |
| 474 | return ast_expr_sub(expr1: expr, expr2: expr_int); |
| 475 | } else { |
| 476 | expr_int = isl_ast_expr_from_val(v); |
| 477 | return ast_expr_add(expr1: expr, expr2: expr_int); |
| 478 | } |
| 479 | error: |
| 480 | isl_ast_expr_free(expr); |
| 481 | isl_val_free(v); |
| 482 | return NULL; |
| 483 | } |
| 484 | |
| 485 | /* Internal data structure used inside extract_modulos. |
| 486 | * |
| 487 | * If any modulo expressions are detected in "aff", then the |
| 488 | * expression is removed from "aff" and added to either "pos" or "neg" |
| 489 | * depending on the sign of the coefficient of the modulo expression |
| 490 | * inside "aff". |
| 491 | * |
| 492 | * "add" is an expression that needs to be added to "aff" at the end of |
| 493 | * the computation. It is NULL as long as no modulos have been extracted. |
| 494 | * |
| 495 | * "i" is the position in "aff" of the div under investigation |
| 496 | * "v" is the coefficient in "aff" of the div |
| 497 | * "div" is the argument of the div, with the denominator removed |
| 498 | * "d" is the original denominator of the argument of the div |
| 499 | * |
| 500 | * "nonneg" is an affine expression that is non-negative over "build" |
| 501 | * and that can be used to extract a modulo expression from "div". |
| 502 | * In particular, if "sign" is 1, then the coefficients of "nonneg" |
| 503 | * are equal to those of "div" modulo "d". If "sign" is -1, then |
| 504 | * the coefficients of "nonneg" are opposite to those of "div" modulo "d". |
| 505 | * If "sign" is 0, then no such affine expression has been found (yet). |
| 506 | */ |
| 507 | struct { |
| 508 | isl_ast_build *; |
| 509 | isl_aff *; |
| 510 | |
| 511 | isl_ast_expr *; |
| 512 | isl_ast_expr *; |
| 513 | |
| 514 | isl_aff *; |
| 515 | |
| 516 | int ; |
| 517 | isl_val *; |
| 518 | isl_val *; |
| 519 | isl_aff *; |
| 520 | |
| 521 | isl_aff *; |
| 522 | int ; |
| 523 | }; |
| 524 | |
| 525 | /* Does |
| 526 | * |
| 527 | * arg mod data->d |
| 528 | * |
| 529 | * represent (a special case of) a test for some linear expression |
| 530 | * being even? |
| 531 | * |
| 532 | * In particular, is it of the form |
| 533 | * |
| 534 | * (lin - 1) mod 2 |
| 535 | * |
| 536 | * ? |
| 537 | */ |
| 538 | static isl_bool is_even_test(struct isl_extract_mod_data *data, |
| 539 | __isl_keep isl_aff *arg) |
| 540 | { |
| 541 | isl_bool res; |
| 542 | isl_val *cst; |
| 543 | |
| 544 | res = isl_val_eq_si(v: data->d, i: 2); |
| 545 | if (res < 0 || !res) |
| 546 | return res; |
| 547 | |
| 548 | cst = isl_aff_get_constant_val(aff: arg); |
| 549 | res = isl_val_eq_si(v: cst, i: -1); |
| 550 | isl_val_free(v: cst); |
| 551 | |
| 552 | return res; |
| 553 | } |
| 554 | |
| 555 | /* Given that data->v * div_i in data->aff is equal to |
| 556 | * |
| 557 | * f * (term - (arg mod d)) |
| 558 | * |
| 559 | * with data->d * f = data->v and "arg" non-negative on data->build, add |
| 560 | * |
| 561 | * f * term |
| 562 | * |
| 563 | * to data->add and |
| 564 | * |
| 565 | * abs(f) * (arg mod d) |
| 566 | * |
| 567 | * to data->neg or data->pos depending on the sign of -f. |
| 568 | * |
| 569 | * In the special case that "arg mod d" is of the form "(lin - 1) mod 2", |
| 570 | * with "lin" some linear expression, first replace |
| 571 | * |
| 572 | * f * (term - ((lin - 1) mod 2)) |
| 573 | * |
| 574 | * by |
| 575 | * |
| 576 | * -f * (1 - term - (lin mod 2)) |
| 577 | * |
| 578 | * These two are equal because |
| 579 | * |
| 580 | * ((lin - 1) mod 2) + (lin mod 2) = 1 |
| 581 | * |
| 582 | * Also, if "lin - 1" is non-negative, then "lin" is non-negative too. |
| 583 | */ |
| 584 | static isl_stat extract_term_and_mod(struct isl_extract_mod_data *data, |
| 585 | __isl_take isl_aff *term, __isl_take isl_aff *arg) |
| 586 | { |
| 587 | isl_bool even; |
| 588 | isl_ast_expr *expr; |
| 589 | int s; |
| 590 | |
| 591 | even = is_even_test(data, arg); |
| 592 | if (even < 0) { |
| 593 | arg = isl_aff_free(aff: arg); |
| 594 | } else if (even) { |
| 595 | term = oppose_div_arg(aff: term, d: isl_val_copy(v: data->d)); |
| 596 | data->v = isl_val_neg(v: data->v); |
| 597 | arg = isl_aff_set_constant_si(aff: arg, v: 0); |
| 598 | } |
| 599 | |
| 600 | data->v = isl_val_div(v1: data->v, v2: isl_val_copy(v: data->d)); |
| 601 | s = isl_val_sgn(v: data->v); |
| 602 | data->v = isl_val_abs(v: data->v); |
| 603 | expr = isl_ast_expr_mod(v: data->v, aff: arg, d: data->d, build: data->build); |
| 604 | isl_aff_free(aff: arg); |
| 605 | if (s > 0) |
| 606 | data->neg = ast_expr_add(expr1: data->neg, expr2: expr); |
| 607 | else |
| 608 | data->pos = ast_expr_add(expr1: data->pos, expr2: expr); |
| 609 | data->aff = isl_aff_set_coefficient_si(aff: data->aff, |
| 610 | type: isl_dim_div, pos: data->i, v: 0); |
| 611 | if (s < 0) |
| 612 | data->v = isl_val_neg(v: data->v); |
| 613 | term = isl_aff_scale_val(aff: term, v: isl_val_copy(v: data->v)); |
| 614 | |
| 615 | if (!data->add) |
| 616 | data->add = term; |
| 617 | else |
| 618 | data->add = isl_aff_add(aff1: data->add, aff2: term); |
| 619 | if (!data->add) |
| 620 | return isl_stat_error; |
| 621 | |
| 622 | return isl_stat_ok; |
| 623 | } |
| 624 | |
| 625 | /* Given that data->v * div_i in data->aff is of the form |
| 626 | * |
| 627 | * f * d * floor(div/d) |
| 628 | * |
| 629 | * with div nonnegative on data->build, rewrite it as |
| 630 | * |
| 631 | * f * (div - (div mod d)) = f * div - f * (div mod d) |
| 632 | * |
| 633 | * and add |
| 634 | * |
| 635 | * f * div |
| 636 | * |
| 637 | * to data->add and |
| 638 | * |
| 639 | * abs(f) * (div mod d) |
| 640 | * |
| 641 | * to data->neg or data->pos depending on the sign of -f. |
| 642 | */ |
| 643 | static isl_stat (struct isl_extract_mod_data *data) |
| 644 | { |
| 645 | return extract_term_and_mod(data, term: isl_aff_copy(aff: data->div), |
| 646 | arg: isl_aff_copy(aff: data->div)); |
| 647 | } |
| 648 | |
| 649 | /* Given that data->v * div_i in data->aff is of the form |
| 650 | * |
| 651 | * f * d * floor(div/d) (1) |
| 652 | * |
| 653 | * check if div is non-negative on data->build and, if so, |
| 654 | * extract the corresponding modulo from data->aff. |
| 655 | * If not, then check if |
| 656 | * |
| 657 | * -div + d - 1 |
| 658 | * |
| 659 | * is non-negative on data->build. If so, replace (1) by |
| 660 | * |
| 661 | * -f * d * floor((-div + d - 1)/d) |
| 662 | * |
| 663 | * and extract the corresponding modulo from data->aff. |
| 664 | * |
| 665 | * This function may modify data->div. |
| 666 | */ |
| 667 | static isl_stat (struct isl_extract_mod_data *data) |
| 668 | { |
| 669 | isl_bool mod; |
| 670 | |
| 671 | mod = isl_ast_build_aff_is_nonneg(build: data->build, aff: data->div); |
| 672 | if (mod < 0) |
| 673 | goto error; |
| 674 | if (mod) |
| 675 | return extract_mod(data); |
| 676 | |
| 677 | data->div = oppose_div_arg(aff: data->div, d: isl_val_copy(v: data->d)); |
| 678 | mod = isl_ast_build_aff_is_nonneg(build: data->build, aff: data->div); |
| 679 | if (mod < 0) |
| 680 | goto error; |
| 681 | if (mod) { |
| 682 | data->v = isl_val_neg(v: data->v); |
| 683 | return extract_mod(data); |
| 684 | } |
| 685 | |
| 686 | return isl_stat_ok; |
| 687 | error: |
| 688 | data->aff = isl_aff_free(aff: data->aff); |
| 689 | return isl_stat_error; |
| 690 | } |
| 691 | |
| 692 | /* Is the affine expression of constraint "c" "simpler" than data->nonneg |
| 693 | * for use in extracting a modulo expression? |
| 694 | * |
| 695 | * We currently only consider the constant term of the affine expression. |
| 696 | * In particular, we prefer the affine expression with the smallest constant |
| 697 | * term. |
| 698 | * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0, |
| 699 | * then we would pick x >= 0 |
| 700 | * |
| 701 | * More detailed heuristics could be used if it turns out that there is a need. |
| 702 | */ |
| 703 | static int mod_constraint_is_simpler(struct isl_extract_mod_data *data, |
| 704 | __isl_keep isl_constraint *c) |
| 705 | { |
| 706 | isl_val *v1, *v2; |
| 707 | int simpler; |
| 708 | |
| 709 | if (!data->nonneg) |
| 710 | return 1; |
| 711 | |
| 712 | v1 = isl_val_abs(v: isl_constraint_get_constant_val(constraint: c)); |
| 713 | v2 = isl_val_abs(v: isl_aff_get_constant_val(aff: data->nonneg)); |
| 714 | simpler = isl_val_lt(v1, v2); |
| 715 | isl_val_free(v: v1); |
| 716 | isl_val_free(v: v2); |
| 717 | |
| 718 | return simpler; |
| 719 | } |
| 720 | |
| 721 | /* Check if the coefficients of "c" are either equal or opposite to those |
| 722 | * of data->div modulo data->d. If so, and if "c" is "simpler" than |
| 723 | * data->nonneg, then replace data->nonneg by the affine expression of "c" |
| 724 | * and set data->sign accordingly. |
| 725 | * |
| 726 | * Both "c" and data->div are assumed not to involve any integer divisions. |
| 727 | * |
| 728 | * Before we start the actual comparison, we first quickly check if |
| 729 | * "c" and data->div have the same non-zero coefficients. |
| 730 | * If not, then we assume that "c" is not of the desired form. |
| 731 | * Note that while the coefficients of data->div can be reasonably expected |
| 732 | * not to involve any coefficients that are multiples of d, "c" may |
| 733 | * very well involve such coefficients. This means that we may actually |
| 734 | * miss some cases. |
| 735 | * |
| 736 | * If the constant term is "too large", then the constraint is rejected, |
| 737 | * where "too large" is fairly arbitrarily set to 1 << 15. |
| 738 | * We do this to avoid picking up constraints that bound a variable |
| 739 | * by a very large number, say the largest or smallest possible |
| 740 | * variable in the representation of some integer type. |
| 741 | */ |
| 742 | static isl_stat check_parallel_or_opposite(__isl_take isl_constraint *c, |
| 743 | void *user) |
| 744 | { |
| 745 | struct isl_extract_mod_data *data = user; |
| 746 | enum isl_dim_type c_type[2] = { isl_dim_param, isl_dim_set }; |
| 747 | enum isl_dim_type a_type[2] = { isl_dim_param, isl_dim_in }; |
| 748 | int i, t; |
| 749 | isl_size n[2]; |
| 750 | isl_bool parallel = isl_bool_true, opposite = isl_bool_true; |
| 751 | |
| 752 | for (t = 0; t < 2; ++t) { |
| 753 | n[t] = isl_constraint_dim(constraint: c, type: c_type[t]); |
| 754 | if (n[t] < 0) |
| 755 | goto error; |
| 756 | for (i = 0; i < n[t]; ++i) { |
| 757 | isl_bool a, b; |
| 758 | |
| 759 | a = isl_constraint_involves_dims(constraint: c, type: c_type[t], first: i, n: 1); |
| 760 | b = isl_aff_involves_dims(aff: data->div, type: a_type[t], first: i, n: 1); |
| 761 | if (a < 0 || b < 0) |
| 762 | goto error; |
| 763 | if (a != b) |
| 764 | parallel = opposite = isl_bool_false; |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | if (parallel || opposite) { |
| 769 | isl_val *v; |
| 770 | |
| 771 | v = isl_val_abs(v: isl_constraint_get_constant_val(constraint: c)); |
| 772 | if (isl_val_cmp_si(v, i: 1 << 15) > 0) |
| 773 | parallel = opposite = isl_bool_false; |
| 774 | isl_val_free(v); |
| 775 | } |
| 776 | |
| 777 | for (t = 0; t < 2; ++t) { |
| 778 | for (i = 0; i < n[t]; ++i) { |
| 779 | isl_val *v1, *v2; |
| 780 | |
| 781 | if (!parallel && !opposite) |
| 782 | break; |
| 783 | v1 = isl_constraint_get_coefficient_val(constraint: c, |
| 784 | type: c_type[t], pos: i); |
| 785 | v2 = isl_aff_get_coefficient_val(aff: data->div, |
| 786 | type: a_type[t], pos: i); |
| 787 | if (parallel) { |
| 788 | v1 = isl_val_sub(v1, v2: isl_val_copy(v: v2)); |
| 789 | parallel = isl_val_is_divisible_by(v1, v2: data->d); |
| 790 | v1 = isl_val_add(v1, v2: isl_val_copy(v: v2)); |
| 791 | } |
| 792 | if (opposite) { |
| 793 | v1 = isl_val_add(v1, v2: isl_val_copy(v: v2)); |
| 794 | opposite = isl_val_is_divisible_by(v1, v2: data->d); |
| 795 | } |
| 796 | isl_val_free(v: v1); |
| 797 | isl_val_free(v: v2); |
| 798 | if (parallel < 0 || opposite < 0) |
| 799 | goto error; |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | if ((parallel || opposite) && mod_constraint_is_simpler(data, c)) { |
| 804 | isl_aff_free(aff: data->nonneg); |
| 805 | data->nonneg = isl_constraint_get_aff(constraint: c); |
| 806 | data->sign = parallel ? 1 : -1; |
| 807 | } |
| 808 | |
| 809 | isl_constraint_free(c); |
| 810 | |
| 811 | if (data->sign != 0 && data->nonneg == NULL) |
| 812 | return isl_stat_error; |
| 813 | |
| 814 | return isl_stat_ok; |
| 815 | error: |
| 816 | isl_constraint_free(c); |
| 817 | return isl_stat_error; |
| 818 | } |
| 819 | |
| 820 | /* Given that data->v * div_i in data->aff is of the form |
| 821 | * |
| 822 | * f * d * floor(div/d) (1) |
| 823 | * |
| 824 | * see if we can find an expression div' that is non-negative over data->build |
| 825 | * and that is related to div through |
| 826 | * |
| 827 | * div' = div + d * e |
| 828 | * |
| 829 | * or |
| 830 | * |
| 831 | * div' = -div + d - 1 + d * e |
| 832 | * |
| 833 | * with e some affine expression. |
| 834 | * If so, we write (1) as |
| 835 | * |
| 836 | * f * div + f * (div' mod d) |
| 837 | * |
| 838 | * or |
| 839 | * |
| 840 | * -f * (-div + d - 1) - f * (div' mod d) |
| 841 | * |
| 842 | * exploiting (in the second case) the fact that |
| 843 | * |
| 844 | * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d) |
| 845 | * |
| 846 | * |
| 847 | * We first try to find an appropriate expression for div' |
| 848 | * from the constraints of data->build->domain (which is therefore |
| 849 | * guaranteed to be non-negative on data->build), where we remove |
| 850 | * any integer divisions from the constraints and skip this step |
| 851 | * if "div" itself involves any integer divisions. |
| 852 | * If we cannot find an appropriate expression this way, then |
| 853 | * we pass control to extract_nonneg_mod where check |
| 854 | * if div or "-div + d -1" themselves happen to be |
| 855 | * non-negative on data->build. |
| 856 | * |
| 857 | * While looking for an appropriate constraint in data->build->domain, |
| 858 | * we ignore the constant term, so after finding such a constraint, |
| 859 | * we still need to fix up the constant term. |
| 860 | * In particular, if a is the constant term of "div" |
| 861 | * (or d - 1 - the constant term of "div" if data->sign < 0) |
| 862 | * and b is the constant term of the constraint, then we need to find |
| 863 | * a non-negative constant c such that |
| 864 | * |
| 865 | * b + c \equiv a mod d |
| 866 | * |
| 867 | * We therefore take |
| 868 | * |
| 869 | * c = (a - b) mod d |
| 870 | * |
| 871 | * and add it to b to obtain the constant term of div'. |
| 872 | * If this constant term is "too negative", then we add an appropriate |
| 873 | * multiple of d to make it positive. |
| 874 | * |
| 875 | * |
| 876 | * Note that the above is only a very simple heuristic for finding an |
| 877 | * appropriate expression. We could try a bit harder by also considering |
| 878 | * sums of constraints that involve disjoint sets of variables or |
| 879 | * we could consider arbitrary linear combinations of constraints, |
| 880 | * although that could potentially be much more expensive as it involves |
| 881 | * the solution of an LP problem. |
| 882 | * |
| 883 | * In particular, if v_i is a column vector representing constraint i, |
| 884 | * w represents div and e_i is the i-th unit vector, then we are looking |
| 885 | * for a solution of the constraints |
| 886 | * |
| 887 | * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i |
| 888 | * |
| 889 | * with \lambda_i >= 0 and alpha_i of unrestricted sign. |
| 890 | * If we are not just interested in a non-negative expression, but |
| 891 | * also in one with a minimal range, then we don't just want |
| 892 | * c = \sum_i lambda_i v_i to be non-negative over the domain, |
| 893 | * but also beta - c = \sum_i mu_i v_i, where beta is a scalar |
| 894 | * that we want to minimize and we now also have to take into account |
| 895 | * the constant terms of the constraints. |
| 896 | * Alternatively, we could first compute the dual of the domain |
| 897 | * and plug in the constraints on the coefficients. |
| 898 | */ |
| 899 | static isl_stat (struct isl_extract_mod_data *data) |
| 900 | { |
| 901 | isl_basic_set *hull; |
| 902 | isl_val *v1, *v2; |
| 903 | isl_stat r; |
| 904 | isl_size n; |
| 905 | |
| 906 | if (!data->build) |
| 907 | goto error; |
| 908 | |
| 909 | n = isl_aff_dim(aff: data->div, type: isl_dim_div); |
| 910 | if (n < 0) |
| 911 | goto error; |
| 912 | |
| 913 | if (isl_aff_involves_dims(aff: data->div, type: isl_dim_div, first: 0, n)) |
| 914 | return extract_nonneg_mod(data); |
| 915 | |
| 916 | hull = isl_set_simple_hull(set: isl_set_copy(set: data->build->domain)); |
| 917 | hull = isl_basic_set_remove_divs(bset: hull); |
| 918 | data->sign = 0; |
| 919 | data->nonneg = NULL; |
| 920 | r = isl_basic_set_foreach_constraint(bset: hull, fn: &check_parallel_or_opposite, |
| 921 | user: data); |
| 922 | isl_basic_set_free(bset: hull); |
| 923 | |
| 924 | if (!data->sign || r < 0) { |
| 925 | isl_aff_free(aff: data->nonneg); |
| 926 | if (r < 0) |
| 927 | goto error; |
| 928 | return extract_nonneg_mod(data); |
| 929 | } |
| 930 | |
| 931 | v1 = isl_aff_get_constant_val(aff: data->div); |
| 932 | v2 = isl_aff_get_constant_val(aff: data->nonneg); |
| 933 | if (data->sign < 0) { |
| 934 | v1 = isl_val_neg(v: v1); |
| 935 | v1 = isl_val_add(v1, v2: isl_val_copy(v: data->d)); |
| 936 | v1 = isl_val_sub_ui(v1, v2: 1); |
| 937 | } |
| 938 | v1 = isl_val_sub(v1, v2: isl_val_copy(v: v2)); |
| 939 | v1 = isl_val_mod(v1, v2: isl_val_copy(v: data->d)); |
| 940 | v1 = isl_val_add(v1, v2); |
| 941 | v2 = isl_val_div(v1: isl_val_copy(v: v1), v2: isl_val_copy(v: data->d)); |
| 942 | v2 = isl_val_ceil(v: v2); |
| 943 | if (isl_val_is_neg(v: v2)) { |
| 944 | v2 = isl_val_mul(v1: v2, v2: isl_val_copy(v: data->d)); |
| 945 | v1 = isl_val_sub(v1, v2: isl_val_copy(v: v2)); |
| 946 | } |
| 947 | data->nonneg = isl_aff_set_constant_val(aff: data->nonneg, v: v1); |
| 948 | isl_val_free(v: v2); |
| 949 | |
| 950 | if (data->sign < 0) { |
| 951 | data->div = oppose_div_arg(aff: data->div, d: isl_val_copy(v: data->d)); |
| 952 | data->v = isl_val_neg(v: data->v); |
| 953 | } |
| 954 | |
| 955 | return extract_term_and_mod(data, |
| 956 | term: isl_aff_copy(aff: data->div), arg: data->nonneg); |
| 957 | error: |
| 958 | data->aff = isl_aff_free(aff: data->aff); |
| 959 | return isl_stat_error; |
| 960 | } |
| 961 | |
| 962 | /* Check if "data->aff" involves any (implicit) modulo computations based |
| 963 | * on div "data->i". |
| 964 | * If so, remove them from aff and add expressions corresponding |
| 965 | * to those modulo computations to data->pos and/or data->neg. |
| 966 | * |
| 967 | * "aff" is assumed to be an integer affine expression. |
| 968 | * |
| 969 | * In particular, check if (v * div_j) is of the form |
| 970 | * |
| 971 | * f * m * floor(a / m) |
| 972 | * |
| 973 | * and, if so, rewrite it as |
| 974 | * |
| 975 | * f * (a - (a mod m)) = f * a - f * (a mod m) |
| 976 | * |
| 977 | * and extract out -f * (a mod m). |
| 978 | * In particular, if f > 0, we add (f * (a mod m)) to *neg. |
| 979 | * If f < 0, we add ((-f) * (a mod m)) to *pos. |
| 980 | * |
| 981 | * Note that in order to represent "a mod m" as |
| 982 | * |
| 983 | * (isl_ast_expr_op_pdiv_r, a, m) |
| 984 | * |
| 985 | * we need to make sure that a is non-negative. |
| 986 | * If not, we check if "-a + m - 1" is non-negative. |
| 987 | * If so, we can rewrite |
| 988 | * |
| 989 | * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m) |
| 990 | * |
| 991 | * and still extract a modulo. |
| 992 | */ |
| 993 | static int (struct isl_extract_mod_data *data) |
| 994 | { |
| 995 | data->div = isl_aff_get_div(aff: data->aff, pos: data->i); |
| 996 | data->d = isl_aff_get_denominator_val(aff: data->div); |
| 997 | if (isl_val_is_divisible_by(v1: data->v, v2: data->d)) { |
| 998 | data->div = isl_aff_scale_val(aff: data->div, v: isl_val_copy(v: data->d)); |
| 999 | if (try_extract_mod(data) < 0) |
| 1000 | data->aff = isl_aff_free(aff: data->aff); |
| 1001 | } |
| 1002 | isl_aff_free(aff: data->div); |
| 1003 | isl_val_free(v: data->d); |
| 1004 | return 0; |
| 1005 | } |
| 1006 | |
| 1007 | /* Check if "aff" involves any (implicit) modulo computations. |
| 1008 | * If so, remove them from aff and add expressions corresponding |
| 1009 | * to those modulo computations to *pos and/or *neg. |
| 1010 | * We only do this if the option ast_build_prefer_pdiv is set. |
| 1011 | * |
| 1012 | * "aff" is assumed to be an integer affine expression. |
| 1013 | * |
| 1014 | * A modulo expression is of the form |
| 1015 | * |
| 1016 | * a mod m = a - m * floor(a / m) |
| 1017 | * |
| 1018 | * To detect them in aff, we look for terms of the form |
| 1019 | * |
| 1020 | * f * m * floor(a / m) |
| 1021 | * |
| 1022 | * rewrite them as |
| 1023 | * |
| 1024 | * f * (a - (a mod m)) = f * a - f * (a mod m) |
| 1025 | * |
| 1026 | * and extract out -f * (a mod m). |
| 1027 | * In particular, if f > 0, we add (f * (a mod m)) to *neg. |
| 1028 | * If f < 0, we add ((-f) * (a mod m)) to *pos. |
| 1029 | */ |
| 1030 | static __isl_give isl_aff *(__isl_take isl_aff *aff, |
| 1031 | __isl_keep isl_ast_expr **pos, __isl_keep isl_ast_expr **neg, |
| 1032 | __isl_keep isl_ast_build *build) |
| 1033 | { |
| 1034 | struct isl_extract_mod_data data = { build, aff, *pos, *neg }; |
| 1035 | isl_ctx *ctx; |
| 1036 | isl_size n; |
| 1037 | |
| 1038 | if (!aff) |
| 1039 | return NULL; |
| 1040 | |
| 1041 | ctx = isl_aff_get_ctx(aff); |
| 1042 | if (!isl_options_get_ast_build_prefer_pdiv(ctx)) |
| 1043 | return aff; |
| 1044 | |
| 1045 | n = isl_aff_dim(aff: data.aff, type: isl_dim_div); |
| 1046 | if (n < 0) |
| 1047 | return isl_aff_free(aff); |
| 1048 | for (data.i = 0; data.i < n; ++data.i) { |
| 1049 | data.v = isl_aff_get_coefficient_val(aff: data.aff, |
| 1050 | type: isl_dim_div, pos: data.i); |
| 1051 | if (!data.v) |
| 1052 | return isl_aff_free(aff); |
| 1053 | if (isl_val_is_zero(v: data.v) || |
| 1054 | isl_val_is_one(v: data.v) || isl_val_is_negone(v: data.v)) { |
| 1055 | isl_val_free(v: data.v); |
| 1056 | continue; |
| 1057 | } |
| 1058 | if (extract_modulo(data: &data) < 0) |
| 1059 | data.aff = isl_aff_free(aff: data.aff); |
| 1060 | isl_val_free(v: data.v); |
| 1061 | if (!data.aff) |
| 1062 | break; |
| 1063 | } |
| 1064 | |
| 1065 | if (data.add) |
| 1066 | data.aff = isl_aff_add(aff1: data.aff, aff2: data.add); |
| 1067 | |
| 1068 | *pos = data.pos; |
| 1069 | *neg = data.neg; |
| 1070 | return data.aff; |
| 1071 | } |
| 1072 | |
| 1073 | /* Call "fn" on every non-zero coefficient of "aff", |
| 1074 | * passing it in the type of dimension (in terms of the domain), |
| 1075 | * the position and the value, as long as "fn" returns isl_bool_true. |
| 1076 | * If "reverse" is set, then the coefficients are considered in reverse order |
| 1077 | * within each type. |
| 1078 | */ |
| 1079 | static isl_bool every_non_zero_coefficient(__isl_keep isl_aff *aff, |
| 1080 | int reverse, |
| 1081 | isl_bool (*fn)(enum isl_dim_type type, int pos, __isl_take isl_val *v, |
| 1082 | void *user), |
| 1083 | void *user) |
| 1084 | { |
| 1085 | int i, j; |
| 1086 | enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div }; |
| 1087 | enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div }; |
| 1088 | isl_val *v; |
| 1089 | |
| 1090 | for (i = 0; i < 3; ++i) { |
| 1091 | isl_size n; |
| 1092 | |
| 1093 | n = isl_aff_dim(aff, type: t[i]); |
| 1094 | if (n < 0) |
| 1095 | return isl_bool_error; |
| 1096 | for (j = 0; j < n; ++j) { |
| 1097 | isl_bool ok; |
| 1098 | int pos; |
| 1099 | |
| 1100 | pos = reverse ? n - 1 - j : j; |
| 1101 | v = isl_aff_get_coefficient_val(aff, type: t[i], pos); |
| 1102 | ok = isl_val_is_zero(v); |
| 1103 | if (ok >= 0 && !ok) |
| 1104 | ok = fn(l[i], pos, v, user); |
| 1105 | else |
| 1106 | isl_val_free(v); |
| 1107 | if (ok < 0 || !ok) |
| 1108 | return ok; |
| 1109 | } |
| 1110 | } |
| 1111 | |
| 1112 | return isl_bool_true; |
| 1113 | } |
| 1114 | |
| 1115 | /* Internal data structure for extract_rational. |
| 1116 | * |
| 1117 | * "d" is the denominator of the original affine expression. |
| 1118 | * "ls" is its domain local space. |
| 1119 | * "rat" collects the rational part. |
| 1120 | */ |
| 1121 | struct { |
| 1122 | isl_val *; |
| 1123 | isl_local_space *; |
| 1124 | |
| 1125 | isl_aff *; |
| 1126 | }; |
| 1127 | |
| 1128 | /* Given a non-zero term in an affine expression equal to "v" times |
| 1129 | * the variable of type "type" at position "pos", |
| 1130 | * add it to data->rat if "v" is not a multiple of data->d. |
| 1131 | */ |
| 1132 | static isl_bool add_rational(enum isl_dim_type type, int pos, |
| 1133 | __isl_take isl_val *v, void *user) |
| 1134 | { |
| 1135 | struct isl_ast_extract_rational_data *data = user; |
| 1136 | isl_aff *rat; |
| 1137 | |
| 1138 | if (isl_val_is_divisible_by(v1: v, v2: data->d)) { |
| 1139 | isl_val_free(v); |
| 1140 | return isl_bool_true; |
| 1141 | } |
| 1142 | rat = isl_aff_var_on_domain(ls: isl_local_space_copy(ls: data->ls), type, pos); |
| 1143 | rat = isl_aff_scale_val(aff: rat, v); |
| 1144 | data->rat = isl_aff_add(aff1: data->rat, aff2: rat); |
| 1145 | return isl_bool_true; |
| 1146 | } |
| 1147 | |
| 1148 | /* Check if aff involves any non-integer coefficients. |
| 1149 | * If so, split aff into |
| 1150 | * |
| 1151 | * aff = aff1 + (aff2 / d) |
| 1152 | * |
| 1153 | * with both aff1 and aff2 having only integer coefficients. |
| 1154 | * Return aff1 and add (aff2 / d) to *expr. |
| 1155 | */ |
| 1156 | static __isl_give isl_aff *(__isl_take isl_aff *aff, |
| 1157 | __isl_keep isl_ast_expr **expr, __isl_keep isl_ast_build *build) |
| 1158 | { |
| 1159 | struct isl_ast_extract_rational_data data = { NULL }; |
| 1160 | isl_ast_expr *rat_expr; |
| 1161 | isl_val *v; |
| 1162 | |
| 1163 | if (!aff) |
| 1164 | return NULL; |
| 1165 | data.d = isl_aff_get_denominator_val(aff); |
| 1166 | if (!data.d) |
| 1167 | goto error; |
| 1168 | if (isl_val_is_one(v: data.d)) { |
| 1169 | isl_val_free(v: data.d); |
| 1170 | return aff; |
| 1171 | } |
| 1172 | |
| 1173 | aff = isl_aff_scale_val(aff, v: isl_val_copy(v: data.d)); |
| 1174 | |
| 1175 | data.ls = isl_aff_get_domain_local_space(aff); |
| 1176 | data.rat = isl_aff_zero_on_domain(ls: isl_local_space_copy(ls: data.ls)); |
| 1177 | |
| 1178 | if (every_non_zero_coefficient(aff, reverse: 0, fn: &add_rational, user: &data) < 0) |
| 1179 | goto error; |
| 1180 | |
| 1181 | v = isl_aff_get_constant_val(aff); |
| 1182 | if (isl_val_is_divisible_by(v1: v, v2: data.d)) { |
| 1183 | isl_val_free(v); |
| 1184 | } else { |
| 1185 | isl_aff *rat_0; |
| 1186 | |
| 1187 | rat_0 = isl_aff_val_on_domain(ls: isl_local_space_copy(ls: data.ls), val: v); |
| 1188 | data.rat = isl_aff_add(aff1: data.rat, aff2: rat_0); |
| 1189 | } |
| 1190 | |
| 1191 | isl_local_space_free(ls: data.ls); |
| 1192 | |
| 1193 | aff = isl_aff_sub(aff1: aff, aff2: isl_aff_copy(aff: data.rat)); |
| 1194 | aff = isl_aff_scale_down_val(aff, v: isl_val_copy(v: data.d)); |
| 1195 | |
| 1196 | rat_expr = div_mod(type: isl_ast_expr_op_div, aff: data.rat, v: data.d, build); |
| 1197 | *expr = ast_expr_add(expr1: *expr, expr2: rat_expr); |
| 1198 | |
| 1199 | return aff; |
| 1200 | error: |
| 1201 | isl_aff_free(aff: data.rat); |
| 1202 | isl_local_space_free(ls: data.ls); |
| 1203 | isl_aff_free(aff); |
| 1204 | isl_val_free(v: data.d); |
| 1205 | return NULL; |
| 1206 | } |
| 1207 | |
| 1208 | /* Internal data structure for isl_ast_expr_from_aff. |
| 1209 | * |
| 1210 | * "term" contains the information for adding a term. |
| 1211 | * "expr" collects the results. |
| 1212 | */ |
| 1213 | struct isl_ast_add_terms_data { |
| 1214 | struct isl_ast_add_term_data *term; |
| 1215 | isl_ast_expr *expr; |
| 1216 | }; |
| 1217 | |
| 1218 | /* Given a non-zero term in an affine expression equal to "v" times |
| 1219 | * the variable of type "type" at position "pos", |
| 1220 | * add the corresponding AST expression to data->expr. |
| 1221 | */ |
| 1222 | static isl_bool add_term(enum isl_dim_type type, int pos, |
| 1223 | __isl_take isl_val *v, void *user) |
| 1224 | { |
| 1225 | struct isl_ast_add_terms_data *data = user; |
| 1226 | |
| 1227 | data->expr = |
| 1228 | isl_ast_expr_add_term(expr: data->expr, type, pos, v, data: data->term); |
| 1229 | |
| 1230 | return isl_bool_true; |
| 1231 | } |
| 1232 | |
| 1233 | /* Add terms to "expr" for each variable in "aff". |
| 1234 | * The result is simplified in terms of data->build->domain. |
| 1235 | */ |
| 1236 | static __isl_give isl_ast_expr *add_terms(__isl_take isl_ast_expr *expr, |
| 1237 | __isl_keep isl_aff *aff, struct isl_ast_add_term_data *data) |
| 1238 | { |
| 1239 | struct isl_ast_add_terms_data terms_data = { data, expr }; |
| 1240 | |
| 1241 | if (every_non_zero_coefficient(aff, reverse: 0, fn: &add_term, user: &terms_data) < 0) |
| 1242 | return isl_ast_expr_free(expr: terms_data.expr); |
| 1243 | |
| 1244 | return terms_data.expr; |
| 1245 | } |
| 1246 | |
| 1247 | /* Construct an isl_ast_expr that evaluates the affine expression "aff". |
| 1248 | * The result is simplified in terms of build->domain. |
| 1249 | * |
| 1250 | * We first extract hidden modulo computations from the affine expression |
| 1251 | * and then add terms for each variable with a non-zero coefficient. |
| 1252 | * Finally, if the affine expression has a non-trivial denominator, |
| 1253 | * we divide the resulting isl_ast_expr by this denominator. |
| 1254 | */ |
| 1255 | __isl_give isl_ast_expr *isl_ast_expr_from_aff(__isl_take isl_aff *aff, |
| 1256 | __isl_keep isl_ast_build *build) |
| 1257 | { |
| 1258 | isl_ctx *ctx = isl_aff_get_ctx(aff); |
| 1259 | isl_ast_expr *expr, *expr_neg; |
| 1260 | struct isl_ast_add_term_data term_data; |
| 1261 | |
| 1262 | if (!aff) |
| 1263 | return NULL; |
| 1264 | |
| 1265 | expr = isl_ast_expr_alloc_int_si(ctx, i: 0); |
| 1266 | expr_neg = isl_ast_expr_alloc_int_si(ctx, i: 0); |
| 1267 | |
| 1268 | aff = extract_rational(aff, expr: &expr, build); |
| 1269 | |
| 1270 | aff = extract_modulos(aff, pos: &expr, neg: &expr_neg, build); |
| 1271 | expr = ast_expr_sub(expr1: expr, expr2: expr_neg); |
| 1272 | |
| 1273 | term_data.build = build; |
| 1274 | term_data.ls = isl_aff_get_domain_local_space(aff); |
| 1275 | term_data.cst = isl_aff_get_constant_val(aff); |
| 1276 | expr = add_terms(expr, aff, data: &term_data); |
| 1277 | |
| 1278 | expr = isl_ast_expr_add_int(expr, v: term_data.cst); |
| 1279 | isl_local_space_free(ls: term_data.ls); |
| 1280 | |
| 1281 | isl_aff_free(aff); |
| 1282 | return expr; |
| 1283 | } |
| 1284 | |
| 1285 | /* Internal data structure for coefficients_of_sign. |
| 1286 | * |
| 1287 | * "sign" is the sign of the coefficients that should be retained. |
| 1288 | * "aff" is the affine expression of which some coefficients are zeroed out. |
| 1289 | */ |
| 1290 | struct isl_ast_coefficients_of_sign_data { |
| 1291 | int sign; |
| 1292 | isl_aff *aff; |
| 1293 | }; |
| 1294 | |
| 1295 | /* Clear the specified coefficient of data->aff if the value "v" |
| 1296 | * does not have the required sign. |
| 1297 | */ |
| 1298 | static isl_bool clear_opposite_sign(enum isl_dim_type type, int pos, |
| 1299 | __isl_take isl_val *v, void *user) |
| 1300 | { |
| 1301 | struct isl_ast_coefficients_of_sign_data *data = user; |
| 1302 | |
| 1303 | if (type == isl_dim_set) |
| 1304 | type = isl_dim_in; |
| 1305 | if (data->sign * isl_val_sgn(v) < 0) |
| 1306 | data->aff = isl_aff_set_coefficient_si(aff: data->aff, type, pos, v: 0); |
| 1307 | isl_val_free(v); |
| 1308 | |
| 1309 | return isl_bool_true; |
| 1310 | } |
| 1311 | |
| 1312 | /* Extract the coefficients of "aff" (excluding the constant term) |
| 1313 | * that have the given sign. |
| 1314 | * |
| 1315 | * Take a copy of "aff" and clear the coefficients that do not have |
| 1316 | * the required sign. |
| 1317 | * Consider the coefficients in reverse order since clearing |
| 1318 | * the coefficient of an integer division in data.aff |
| 1319 | * could result in the removal of that integer division from data.aff, |
| 1320 | * changing the positions of all subsequent integer divisions of data.aff, |
| 1321 | * while those of "aff" remain the same. |
| 1322 | */ |
| 1323 | static __isl_give isl_aff *coefficients_of_sign(__isl_take isl_aff *aff, |
| 1324 | int sign) |
| 1325 | { |
| 1326 | struct isl_ast_coefficients_of_sign_data data; |
| 1327 | |
| 1328 | data.sign = sign; |
| 1329 | data.aff = isl_aff_copy(aff); |
| 1330 | if (every_non_zero_coefficient(aff, reverse: 1, fn: &clear_opposite_sign, user: &data) < 0) |
| 1331 | data.aff = isl_aff_free(aff: data.aff); |
| 1332 | isl_aff_free(aff); |
| 1333 | |
| 1334 | data.aff = isl_aff_set_constant_si(aff: data.aff, v: 0); |
| 1335 | |
| 1336 | return data.aff; |
| 1337 | } |
| 1338 | |
| 1339 | /* Should the constant term "v" be considered positive? |
| 1340 | * |
| 1341 | * A positive constant will be added to "pos" by the caller, |
| 1342 | * while a negative constant will be added to "neg". |
| 1343 | * If either "pos" or "neg" is exactly zero, then we prefer |
| 1344 | * to add the constant "v" to that side, irrespective of the sign of "v". |
| 1345 | * This results in slightly shorter expressions and may reduce the risk |
| 1346 | * of overflows. |
| 1347 | */ |
| 1348 | static isl_bool constant_is_considered_positive(__isl_keep isl_val *v, |
| 1349 | __isl_keep isl_ast_expr *pos, __isl_keep isl_ast_expr *neg) |
| 1350 | { |
| 1351 | isl_bool zero; |
| 1352 | |
| 1353 | zero = ast_expr_is_zero(expr: pos); |
| 1354 | if (zero < 0 || zero) |
| 1355 | return zero; |
| 1356 | zero = ast_expr_is_zero(expr: neg); |
| 1357 | if (zero < 0 || zero) |
| 1358 | return isl_bool_not(b: zero); |
| 1359 | return isl_val_is_pos(v); |
| 1360 | } |
| 1361 | |
| 1362 | /* Check if the equality |
| 1363 | * |
| 1364 | * aff = 0 |
| 1365 | * |
| 1366 | * represents a stride constraint on the integer division "pos". |
| 1367 | * |
| 1368 | * In particular, if the integer division "pos" is equal to |
| 1369 | * |
| 1370 | * floor(e/d) |
| 1371 | * |
| 1372 | * then check if aff is equal to |
| 1373 | * |
| 1374 | * e - d floor(e/d) |
| 1375 | * |
| 1376 | * or its opposite. |
| 1377 | * |
| 1378 | * If so, the equality is exactly |
| 1379 | * |
| 1380 | * e mod d = 0 |
| 1381 | * |
| 1382 | * Note that in principle we could also accept |
| 1383 | * |
| 1384 | * e - d floor(e'/d) |
| 1385 | * |
| 1386 | * where e and e' differ by a constant. |
| 1387 | */ |
| 1388 | static isl_bool is_stride_constraint(__isl_keep isl_aff *aff, int pos) |
| 1389 | { |
| 1390 | isl_aff *div; |
| 1391 | isl_val *c, *d; |
| 1392 | isl_bool eq; |
| 1393 | |
| 1394 | div = isl_aff_get_div(aff, pos); |
| 1395 | c = isl_aff_get_coefficient_val(aff, type: isl_dim_div, pos); |
| 1396 | d = isl_aff_get_denominator_val(aff: div); |
| 1397 | eq = isl_val_abs_eq(v1: c, v2: d); |
| 1398 | if (eq >= 0 && eq) { |
| 1399 | aff = isl_aff_copy(aff); |
| 1400 | aff = isl_aff_set_coefficient_si(aff, type: isl_dim_div, pos, v: 0); |
| 1401 | div = isl_aff_scale_val(aff: div, v: d); |
| 1402 | if (isl_val_is_pos(v: c)) |
| 1403 | div = isl_aff_neg(aff: div); |
| 1404 | eq = isl_aff_plain_is_equal(aff1: div, aff2: aff); |
| 1405 | isl_aff_free(aff); |
| 1406 | } else |
| 1407 | isl_val_free(v: d); |
| 1408 | isl_val_free(v: c); |
| 1409 | isl_aff_free(aff: div); |
| 1410 | |
| 1411 | return eq; |
| 1412 | } |
| 1413 | |
| 1414 | /* Are all coefficients of "aff" (zero or) negative? |
| 1415 | */ |
| 1416 | static isl_bool all_negative_coefficients(__isl_keep isl_aff *aff) |
| 1417 | { |
| 1418 | int i; |
| 1419 | isl_size n; |
| 1420 | |
| 1421 | n = isl_aff_dim(aff, type: isl_dim_param); |
| 1422 | if (n < 0) |
| 1423 | return isl_bool_error; |
| 1424 | for (i = 0; i < n; ++i) |
| 1425 | if (isl_aff_coefficient_sgn(aff, type: isl_dim_param, pos: i) > 0) |
| 1426 | return isl_bool_false; |
| 1427 | |
| 1428 | n = isl_aff_dim(aff, type: isl_dim_in); |
| 1429 | if (n < 0) |
| 1430 | return isl_bool_error; |
| 1431 | for (i = 0; i < n; ++i) |
| 1432 | if (isl_aff_coefficient_sgn(aff, type: isl_dim_in, pos: i) > 0) |
| 1433 | return isl_bool_false; |
| 1434 | |
| 1435 | return isl_bool_true; |
| 1436 | } |
| 1437 | |
| 1438 | /* Give an equality of the form |
| 1439 | * |
| 1440 | * aff = e - d floor(e/d) = 0 |
| 1441 | * |
| 1442 | * or |
| 1443 | * |
| 1444 | * aff = -e + d floor(e/d) = 0 |
| 1445 | * |
| 1446 | * with the integer division "pos" equal to floor(e/d), |
| 1447 | * construct the AST expression |
| 1448 | * |
| 1449 | * (isl_ast_expr_op_eq, |
| 1450 | * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0)) |
| 1451 | * |
| 1452 | * If e only has negative coefficients, then construct |
| 1453 | * |
| 1454 | * (isl_ast_expr_op_eq, |
| 1455 | * (isl_ast_expr_op_zdiv_r, expr(-e), expr(d)), expr(0)) |
| 1456 | * |
| 1457 | * instead. |
| 1458 | */ |
| 1459 | static __isl_give isl_ast_expr *( |
| 1460 | __isl_take isl_aff *aff, int pos, __isl_keep isl_ast_build *build) |
| 1461 | { |
| 1462 | isl_bool all_neg; |
| 1463 | isl_ctx *ctx; |
| 1464 | isl_val *c; |
| 1465 | isl_ast_expr *expr, *cst; |
| 1466 | |
| 1467 | if (!aff) |
| 1468 | return NULL; |
| 1469 | |
| 1470 | ctx = isl_aff_get_ctx(aff); |
| 1471 | |
| 1472 | c = isl_aff_get_coefficient_val(aff, type: isl_dim_div, pos); |
| 1473 | aff = isl_aff_set_coefficient_si(aff, type: isl_dim_div, pos, v: 0); |
| 1474 | |
| 1475 | all_neg = all_negative_coefficients(aff); |
| 1476 | if (all_neg < 0) |
| 1477 | aff = isl_aff_free(aff); |
| 1478 | else if (all_neg) |
| 1479 | aff = isl_aff_neg(aff); |
| 1480 | |
| 1481 | cst = isl_ast_expr_from_val(v: isl_val_abs(v: c)); |
| 1482 | expr = isl_ast_expr_from_aff(aff, build); |
| 1483 | |
| 1484 | expr = isl_ast_expr_alloc_binary(type: isl_ast_expr_op_zdiv_r, expr1: expr, expr2: cst); |
| 1485 | cst = isl_ast_expr_alloc_int_si(ctx, i: 0); |
| 1486 | expr = isl_ast_expr_alloc_binary(type: isl_ast_expr_op_eq, expr1: expr, expr2: cst); |
| 1487 | |
| 1488 | return expr; |
| 1489 | } |
| 1490 | |
| 1491 | /* Construct an isl_ast_expr evaluating |
| 1492 | * |
| 1493 | * "expr_pos" == "expr_neg", if "eq" is set, or |
| 1494 | * "expr_pos" >= "expr_neg", if "eq" is not set |
| 1495 | * |
| 1496 | * However, if "expr_pos" is an integer constant (and "expr_neg" is not), |
| 1497 | * then the two expressions are interchanged. This ensures that, |
| 1498 | * e.g., "i <= 5" is constructed rather than "5 >= i". |
| 1499 | */ |
| 1500 | static __isl_give isl_ast_expr *construct_constraint_expr(int eq, |
| 1501 | __isl_take isl_ast_expr *expr_pos, __isl_take isl_ast_expr *expr_neg) |
| 1502 | { |
| 1503 | isl_ast_expr *expr; |
| 1504 | enum isl_ast_expr_op_type type; |
| 1505 | int pos_is_cst, neg_is_cst; |
| 1506 | |
| 1507 | pos_is_cst = isl_ast_expr_get_type(expr: expr_pos) == isl_ast_expr_int; |
| 1508 | neg_is_cst = isl_ast_expr_get_type(expr: expr_neg) == isl_ast_expr_int; |
| 1509 | if (pos_is_cst && !neg_is_cst) { |
| 1510 | type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_le; |
| 1511 | expr = isl_ast_expr_alloc_binary(type, expr1: expr_neg, expr2: expr_pos); |
| 1512 | } else { |
| 1513 | type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_ge; |
| 1514 | expr = isl_ast_expr_alloc_binary(type, expr1: expr_pos, expr2: expr_neg); |
| 1515 | } |
| 1516 | |
| 1517 | return expr; |
| 1518 | } |
| 1519 | |
| 1520 | /* Construct an isl_ast_expr that evaluates the condition "aff" == 0 |
| 1521 | * (if "eq" is set) or "aff" >= 0 (otherwise). |
| 1522 | * The result is simplified in terms of build->domain. |
| 1523 | * |
| 1524 | * We first extract hidden modulo computations from "aff" |
| 1525 | * and then collect all the terms with a positive coefficient in cons_pos |
| 1526 | * and the terms with a negative coefficient in cons_neg. |
| 1527 | * |
| 1528 | * The result is then essentially of the form |
| 1529 | * |
| 1530 | * (isl_ast_expr_op_ge, expr(pos), expr(-neg))) |
| 1531 | * |
| 1532 | * or |
| 1533 | * |
| 1534 | * (isl_ast_expr_op_eq, expr(pos), expr(-neg))) |
| 1535 | * |
| 1536 | * However, if there are no terms with positive coefficients (or no terms |
| 1537 | * with negative coefficients), then the constant term is added to "pos" |
| 1538 | * (or "neg"), ignoring the sign of the constant term. |
| 1539 | */ |
| 1540 | static __isl_give isl_ast_expr *isl_ast_expr_from_constraint_no_stride( |
| 1541 | int eq, __isl_take isl_aff *aff, __isl_keep isl_ast_build *build) |
| 1542 | { |
| 1543 | isl_bool cst_is_pos; |
| 1544 | isl_ctx *ctx; |
| 1545 | isl_ast_expr *expr_pos; |
| 1546 | isl_ast_expr *expr_neg; |
| 1547 | isl_aff *aff_pos, *aff_neg; |
| 1548 | struct isl_ast_add_term_data data; |
| 1549 | |
| 1550 | ctx = isl_aff_get_ctx(aff); |
| 1551 | expr_pos = isl_ast_expr_alloc_int_si(ctx, i: 0); |
| 1552 | expr_neg = isl_ast_expr_alloc_int_si(ctx, i: 0); |
| 1553 | |
| 1554 | aff = extract_modulos(aff, pos: &expr_pos, neg: &expr_neg, build); |
| 1555 | |
| 1556 | data.build = build; |
| 1557 | data.ls = isl_aff_get_domain_local_space(aff); |
| 1558 | data.cst = isl_aff_get_constant_val(aff); |
| 1559 | |
| 1560 | aff_pos = coefficients_of_sign(aff: isl_aff_copy(aff), sign: 1); |
| 1561 | aff_neg = isl_aff_neg(aff: coefficients_of_sign(aff, sign: -1)); |
| 1562 | |
| 1563 | expr_pos = add_terms(expr: expr_pos, aff: aff_pos, data: &data); |
| 1564 | data.cst = isl_val_neg(v: data.cst); |
| 1565 | expr_neg = add_terms(expr: expr_neg, aff: aff_neg, data: &data); |
| 1566 | data.cst = isl_val_neg(v: data.cst); |
| 1567 | isl_local_space_free(ls: data.ls); |
| 1568 | |
| 1569 | cst_is_pos = |
| 1570 | constant_is_considered_positive(v: data.cst, pos: expr_pos, neg: expr_neg); |
| 1571 | if (cst_is_pos < 0) |
| 1572 | expr_pos = isl_ast_expr_free(expr: expr_pos); |
| 1573 | |
| 1574 | if (cst_is_pos) { |
| 1575 | expr_pos = isl_ast_expr_add_int(expr: expr_pos, v: data.cst); |
| 1576 | } else { |
| 1577 | data.cst = isl_val_neg(v: data.cst); |
| 1578 | expr_neg = isl_ast_expr_add_int(expr: expr_neg, v: data.cst); |
| 1579 | } |
| 1580 | |
| 1581 | isl_aff_free(aff: aff_pos); |
| 1582 | isl_aff_free(aff: aff_neg); |
| 1583 | return construct_constraint_expr(eq, expr_pos, expr_neg); |
| 1584 | } |
| 1585 | |
| 1586 | /* Construct an isl_ast_expr that evaluates the condition "constraint". |
| 1587 | * The result is simplified in terms of build->domain. |
| 1588 | * |
| 1589 | * We first check if the constraint is an equality of the form |
| 1590 | * |
| 1591 | * e - d floor(e/d) = 0 |
| 1592 | * |
| 1593 | * i.e., |
| 1594 | * |
| 1595 | * e mod d = 0 |
| 1596 | * |
| 1597 | * If so, we convert it to |
| 1598 | * |
| 1599 | * (isl_ast_expr_op_eq, |
| 1600 | * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0)) |
| 1601 | */ |
| 1602 | static __isl_give isl_ast_expr *isl_ast_expr_from_constraint( |
| 1603 | __isl_take isl_constraint *constraint, __isl_keep isl_ast_build *build) |
| 1604 | { |
| 1605 | int i; |
| 1606 | isl_size n; |
| 1607 | isl_aff *aff; |
| 1608 | isl_bool eq; |
| 1609 | |
| 1610 | aff = isl_constraint_get_aff(constraint); |
| 1611 | eq = isl_constraint_is_equality(constraint); |
| 1612 | isl_constraint_free(c: constraint); |
| 1613 | if (eq < 0) |
| 1614 | goto error; |
| 1615 | |
| 1616 | n = isl_aff_dim(aff, type: isl_dim_div); |
| 1617 | if (n < 0) |
| 1618 | aff = isl_aff_free(aff); |
| 1619 | if (eq && n > 0) |
| 1620 | for (i = 0; i < n; ++i) { |
| 1621 | isl_bool is_stride; |
| 1622 | is_stride = is_stride_constraint(aff, pos: i); |
| 1623 | if (is_stride < 0) |
| 1624 | goto error; |
| 1625 | if (is_stride) |
| 1626 | return extract_stride_constraint(aff, pos: i, build); |
| 1627 | } |
| 1628 | |
| 1629 | return isl_ast_expr_from_constraint_no_stride(eq, aff, build); |
| 1630 | error: |
| 1631 | isl_aff_free(aff); |
| 1632 | return NULL; |
| 1633 | } |
| 1634 | |
| 1635 | /* Wrapper around isl_constraint_cmp_last_non_zero for use |
| 1636 | * as a callback to isl_constraint_list_sort. |
| 1637 | * If isl_constraint_cmp_last_non_zero cannot tell the constraints |
| 1638 | * apart, then use isl_constraint_plain_cmp instead. |
| 1639 | */ |
| 1640 | static int cmp_constraint(__isl_keep isl_constraint *a, |
| 1641 | __isl_keep isl_constraint *b, void *user) |
| 1642 | { |
| 1643 | int cmp; |
| 1644 | |
| 1645 | cmp = isl_constraint_cmp_last_non_zero(c1: a, c2: b); |
| 1646 | if (cmp != 0) |
| 1647 | return cmp; |
| 1648 | return isl_constraint_plain_cmp(c1: a, c2: b); |
| 1649 | } |
| 1650 | |
| 1651 | /* Construct an isl_ast_expr that evaluates the conditions defining "bset". |
| 1652 | * The result is simplified in terms of build->domain. |
| 1653 | * |
| 1654 | * If "bset" is not bounded by any constraint, then we construct |
| 1655 | * the expression "1", i.e., "true". |
| 1656 | * |
| 1657 | * Otherwise, we sort the constraints, putting constraints that involve |
| 1658 | * integer divisions after those that do not, and construct an "and" |
| 1659 | * of the ast expressions of the individual constraints. |
| 1660 | * |
| 1661 | * Each constraint is added to the generated constraints of the build |
| 1662 | * after it has been converted to an AST expression so that it can be used |
| 1663 | * to simplify the following constraints. This may change the truth value |
| 1664 | * of subsequent constraints that do not satisfy the earlier constraints, |
| 1665 | * but this does not affect the outcome of the conjunction as it is |
| 1666 | * only true if all the conjuncts are true (no matter in what order |
| 1667 | * they are evaluated). In particular, the constraints that do not |
| 1668 | * involve integer divisions may serve to simplify some constraints |
| 1669 | * that do involve integer divisions. |
| 1670 | */ |
| 1671 | __isl_give isl_ast_expr *isl_ast_build_expr_from_basic_set( |
| 1672 | __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset) |
| 1673 | { |
| 1674 | int i; |
| 1675 | isl_size n; |
| 1676 | isl_constraint *c; |
| 1677 | isl_constraint_list *list; |
| 1678 | isl_ast_expr *res; |
| 1679 | isl_set *set; |
| 1680 | |
| 1681 | list = isl_basic_set_get_constraint_list(bset); |
| 1682 | isl_basic_set_free(bset); |
| 1683 | list = isl_constraint_list_sort(list, cmp: &cmp_constraint, NULL); |
| 1684 | n = isl_constraint_list_n_constraint(list); |
| 1685 | if (n < 0) |
| 1686 | build = NULL; |
| 1687 | if (n == 0) { |
| 1688 | isl_ctx *ctx = isl_constraint_list_get_ctx(list); |
| 1689 | isl_constraint_list_free(list); |
| 1690 | return isl_ast_expr_alloc_int_si(ctx, i: 1); |
| 1691 | } |
| 1692 | |
| 1693 | build = isl_ast_build_copy(build); |
| 1694 | |
| 1695 | c = isl_constraint_list_get_constraint(list, index: 0); |
| 1696 | bset = isl_basic_set_from_constraint(constraint: isl_constraint_copy(c)); |
| 1697 | set = isl_set_from_basic_set(bset); |
| 1698 | res = isl_ast_expr_from_constraint(constraint: c, build); |
| 1699 | build = isl_ast_build_restrict_generated(build, set); |
| 1700 | |
| 1701 | for (i = 1; i < n; ++i) { |
| 1702 | isl_ast_expr *expr; |
| 1703 | |
| 1704 | c = isl_constraint_list_get_constraint(list, index: i); |
| 1705 | bset = isl_basic_set_from_constraint(constraint: isl_constraint_copy(c)); |
| 1706 | set = isl_set_from_basic_set(bset); |
| 1707 | expr = isl_ast_expr_from_constraint(constraint: c, build); |
| 1708 | build = isl_ast_build_restrict_generated(build, set); |
| 1709 | res = isl_ast_expr_and(expr1: res, expr2: expr); |
| 1710 | } |
| 1711 | |
| 1712 | isl_constraint_list_free(list); |
| 1713 | isl_ast_build_free(build); |
| 1714 | return res; |
| 1715 | } |
| 1716 | |
| 1717 | /* Construct an isl_ast_expr that evaluates the conditions defining "set". |
| 1718 | * The result is simplified in terms of build->domain. |
| 1719 | * |
| 1720 | * If "set" is an (obviously) empty set, then return the expression "0". |
| 1721 | * |
| 1722 | * If there are multiple disjuncts in the description of the set, |
| 1723 | * then subsequent disjuncts are simplified in a context where |
| 1724 | * the previous disjuncts have been removed from build->domain. |
| 1725 | * In particular, constraints that ensure that there is no overlap |
| 1726 | * with these previous disjuncts, can be removed. |
| 1727 | * This is mostly useful for disjuncts that are only defined by |
| 1728 | * a single constraint (relative to the build domain) as the opposite |
| 1729 | * of that single constraint can then be removed from the other disjuncts. |
| 1730 | * In order not to increase the number of disjuncts in the build domain |
| 1731 | * after subtracting the previous disjuncts of "set", the simple hull |
| 1732 | * is computed after taking the difference with each of these disjuncts. |
| 1733 | * This means that constraints that prevent overlap with a union |
| 1734 | * of multiple previous disjuncts are not removed. |
| 1735 | * |
| 1736 | * "set" lives in the internal schedule space. |
| 1737 | */ |
| 1738 | __isl_give isl_ast_expr *isl_ast_build_expr_from_set_internal( |
| 1739 | __isl_keep isl_ast_build *build, __isl_take isl_set *set) |
| 1740 | { |
| 1741 | int i; |
| 1742 | isl_size n; |
| 1743 | isl_basic_set *bset; |
| 1744 | isl_basic_set_list *list; |
| 1745 | isl_set *domain; |
| 1746 | isl_ast_expr *res; |
| 1747 | |
| 1748 | list = isl_set_get_basic_set_list(set); |
| 1749 | isl_set_free(set); |
| 1750 | |
| 1751 | n = isl_basic_set_list_n_basic_set(list); |
| 1752 | if (n < 0) |
| 1753 | build = NULL; |
| 1754 | if (n == 0) { |
| 1755 | isl_ctx *ctx = isl_ast_build_get_ctx(build); |
| 1756 | isl_basic_set_list_free(list); |
| 1757 | return isl_ast_expr_from_val(v: isl_val_zero(ctx)); |
| 1758 | } |
| 1759 | |
| 1760 | domain = isl_ast_build_get_domain(build); |
| 1761 | |
| 1762 | bset = isl_basic_set_list_get_basic_set(list, index: 0); |
| 1763 | set = isl_set_from_basic_set(bset: isl_basic_set_copy(bset)); |
| 1764 | res = isl_ast_build_expr_from_basic_set(build, bset); |
| 1765 | |
| 1766 | for (i = 1; i < n; ++i) { |
| 1767 | isl_ast_expr *expr; |
| 1768 | isl_set *rest; |
| 1769 | |
| 1770 | rest = isl_set_subtract(set1: isl_set_copy(set: domain), set2: set); |
| 1771 | rest = isl_set_from_basic_set(bset: isl_set_simple_hull(set: rest)); |
| 1772 | domain = isl_set_intersect(set1: domain, set2: rest); |
| 1773 | bset = isl_basic_set_list_get_basic_set(list, index: i); |
| 1774 | set = isl_set_from_basic_set(bset: isl_basic_set_copy(bset)); |
| 1775 | bset = isl_basic_set_gist(bset, |
| 1776 | context: isl_set_simple_hull(set: isl_set_copy(set: domain))); |
| 1777 | expr = isl_ast_build_expr_from_basic_set(build, bset); |
| 1778 | res = isl_ast_expr_or(expr1: res, expr2: expr); |
| 1779 | } |
| 1780 | |
| 1781 | isl_set_free(set: domain); |
| 1782 | isl_set_free(set); |
| 1783 | isl_basic_set_list_free(list); |
| 1784 | return res; |
| 1785 | } |
| 1786 | |
| 1787 | /* Construct an isl_ast_expr that evaluates the conditions defining "set". |
| 1788 | * The result is simplified in terms of build->domain. |
| 1789 | * |
| 1790 | * If "set" is an (obviously) empty set, then return the expression "0". |
| 1791 | * |
| 1792 | * "set" lives in the external schedule space. |
| 1793 | * |
| 1794 | * The internal AST expression generation assumes that there are |
| 1795 | * no unknown divs, so make sure an explicit representation is available. |
| 1796 | * Since the set comes from the outside, it may have constraints that |
| 1797 | * are redundant with respect to the build domain. Remove them first. |
| 1798 | */ |
| 1799 | __isl_give isl_ast_expr *isl_ast_build_expr_from_set( |
| 1800 | __isl_keep isl_ast_build *build, __isl_take isl_set *set) |
| 1801 | { |
| 1802 | isl_bool needs_map; |
| 1803 | |
| 1804 | needs_map = isl_ast_build_need_schedule_map(build); |
| 1805 | if (needs_map < 0) { |
| 1806 | set = isl_set_free(set); |
| 1807 | } else if (needs_map) { |
| 1808 | isl_multi_aff *ma; |
| 1809 | ma = isl_ast_build_get_schedule_map_multi_aff(build); |
| 1810 | set = isl_set_preimage_multi_aff(set, ma); |
| 1811 | } |
| 1812 | |
| 1813 | set = isl_set_compute_divs(set); |
| 1814 | set = isl_ast_build_compute_gist(build, set); |
| 1815 | return isl_ast_build_expr_from_set_internal(build, set); |
| 1816 | } |
| 1817 | |
| 1818 | /* State of data about previous pieces in |
| 1819 | * isl_ast_build_expr_from_pw_aff_internal. |
| 1820 | * |
| 1821 | * isl_state_none: no data about previous pieces |
| 1822 | * isl_state_single: data about a single previous piece |
| 1823 | * isl_state_min: data represents minimum of several pieces |
| 1824 | * isl_state_max: data represents maximum of several pieces |
| 1825 | */ |
| 1826 | enum isl_from_pw_aff_state { |
| 1827 | isl_state_none, |
| 1828 | isl_state_single, |
| 1829 | isl_state_min, |
| 1830 | isl_state_max |
| 1831 | }; |
| 1832 | |
| 1833 | /* Internal date structure representing a single piece in the input of |
| 1834 | * isl_ast_build_expr_from_pw_aff_internal. |
| 1835 | * |
| 1836 | * If "state" is isl_state_none, then "set_list" and "aff_list" are not used. |
| 1837 | * If "state" is isl_state_single, then "set_list" and "aff_list" contain the |
| 1838 | * single previous subpiece. |
| 1839 | * If "state" is isl_state_min, then "set_list" and "aff_list" contain |
| 1840 | * a sequence of several previous subpieces that are equal to the minimum |
| 1841 | * of the entries in "aff_list" over the union of "set_list" |
| 1842 | * If "state" is isl_state_max, then "set_list" and "aff_list" contain |
| 1843 | * a sequence of several previous subpieces that are equal to the maximum |
| 1844 | * of the entries in "aff_list" over the union of "set_list" |
| 1845 | * |
| 1846 | * During the construction of the pieces, "set" is NULL. |
| 1847 | * After the construction, "set" is set to the union of the elements |
| 1848 | * in "set_list", at which point "set_list" is set to NULL. |
| 1849 | */ |
| 1850 | struct isl_from_pw_aff_piece { |
| 1851 | enum isl_from_pw_aff_state state; |
| 1852 | isl_set *set; |
| 1853 | isl_set_list *set_list; |
| 1854 | isl_aff_list *aff_list; |
| 1855 | }; |
| 1856 | |
| 1857 | /* Internal data structure for isl_ast_build_expr_from_pw_aff_internal. |
| 1858 | * |
| 1859 | * "build" specifies the domain against which the result is simplified. |
| 1860 | * "dom" is the domain of the entire isl_pw_aff. |
| 1861 | * |
| 1862 | * "n" is the number of pieces constructed already. |
| 1863 | * In particular, during the construction of the pieces, "n" points to |
| 1864 | * the piece that is being constructed. After the construction of the |
| 1865 | * pieces, "n" is set to the total number of pieces. |
| 1866 | * "max" is the total number of allocated entries. |
| 1867 | * "p" contains the individual pieces. |
| 1868 | */ |
| 1869 | struct isl_from_pw_aff_data { |
| 1870 | isl_ast_build *build; |
| 1871 | isl_set *dom; |
| 1872 | |
| 1873 | int n; |
| 1874 | int max; |
| 1875 | struct isl_from_pw_aff_piece *p; |
| 1876 | }; |
| 1877 | |
| 1878 | /* Initialize "data" based on "build" and "pa". |
| 1879 | */ |
| 1880 | static isl_stat isl_from_pw_aff_data_init(struct isl_from_pw_aff_data *data, |
| 1881 | __isl_keep isl_ast_build *build, __isl_keep isl_pw_aff *pa) |
| 1882 | { |
| 1883 | isl_size n; |
| 1884 | isl_ctx *ctx; |
| 1885 | |
| 1886 | ctx = isl_pw_aff_get_ctx(pwaff: pa); |
| 1887 | n = isl_pw_aff_n_piece(pwaff: pa); |
| 1888 | if (n < 0) |
| 1889 | return isl_stat_error; |
| 1890 | if (n == 0) |
| 1891 | isl_die(ctx, isl_error_invalid, |
| 1892 | "cannot handle void expression" , return isl_stat_error); |
| 1893 | data->max = n; |
| 1894 | data->p = isl_calloc_array(ctx, struct isl_from_pw_aff_piece, n); |
| 1895 | if (!data->p) |
| 1896 | return isl_stat_error; |
| 1897 | data->build = build; |
| 1898 | data->dom = isl_pw_aff_domain(pwaff: isl_pw_aff_copy(pwaff: pa)); |
| 1899 | data->n = 0; |
| 1900 | |
| 1901 | return isl_stat_ok; |
| 1902 | } |
| 1903 | |
| 1904 | /* Free all memory allocated for "data". |
| 1905 | */ |
| 1906 | static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data *data) |
| 1907 | { |
| 1908 | int i; |
| 1909 | |
| 1910 | isl_set_free(set: data->dom); |
| 1911 | if (!data->p) |
| 1912 | return; |
| 1913 | |
| 1914 | for (i = 0; i < data->max; ++i) { |
| 1915 | isl_set_free(set: data->p[i].set); |
| 1916 | isl_set_list_free(list: data->p[i].set_list); |
| 1917 | isl_aff_list_free(list: data->p[i].aff_list); |
| 1918 | } |
| 1919 | free(ptr: data->p); |
| 1920 | } |
| 1921 | |
| 1922 | /* Initialize the current entry of "data" to an unused piece. |
| 1923 | */ |
| 1924 | static void set_none(struct isl_from_pw_aff_data *data) |
| 1925 | { |
| 1926 | data->p[data->n].state = isl_state_none; |
| 1927 | data->p[data->n].set_list = NULL; |
| 1928 | data->p[data->n].aff_list = NULL; |
| 1929 | } |
| 1930 | |
| 1931 | /* Store "set" and "aff" in the current entry of "data" as a single subpiece. |
| 1932 | */ |
| 1933 | static void set_single(struct isl_from_pw_aff_data *data, |
| 1934 | __isl_take isl_set *set, __isl_take isl_aff *aff) |
| 1935 | { |
| 1936 | data->p[data->n].state = isl_state_single; |
| 1937 | data->p[data->n].set_list = isl_set_list_from_set(el: set); |
| 1938 | data->p[data->n].aff_list = isl_aff_list_from_aff(el: aff); |
| 1939 | } |
| 1940 | |
| 1941 | /* Extend the current entry of "data" with "set" and "aff" |
| 1942 | * as a minimum expression. |
| 1943 | */ |
| 1944 | static isl_stat extend_min(struct isl_from_pw_aff_data *data, |
| 1945 | __isl_take isl_set *set, __isl_take isl_aff *aff) |
| 1946 | { |
| 1947 | int n = data->n; |
| 1948 | data->p[n].state = isl_state_min; |
| 1949 | data->p[n].set_list = isl_set_list_add(list: data->p[n].set_list, el: set); |
| 1950 | data->p[n].aff_list = isl_aff_list_add(list: data->p[n].aff_list, el: aff); |
| 1951 | |
| 1952 | if (!data->p[n].set_list || !data->p[n].aff_list) |
| 1953 | return isl_stat_error; |
| 1954 | return isl_stat_ok; |
| 1955 | } |
| 1956 | |
| 1957 | /* Extend the current entry of "data" with "set" and "aff" |
| 1958 | * as a maximum expression. |
| 1959 | */ |
| 1960 | static isl_stat extend_max(struct isl_from_pw_aff_data *data, |
| 1961 | __isl_take isl_set *set, __isl_take isl_aff *aff) |
| 1962 | { |
| 1963 | int n = data->n; |
| 1964 | data->p[n].state = isl_state_max; |
| 1965 | data->p[n].set_list = isl_set_list_add(list: data->p[n].set_list, el: set); |
| 1966 | data->p[n].aff_list = isl_aff_list_add(list: data->p[n].aff_list, el: aff); |
| 1967 | |
| 1968 | if (!data->p[n].set_list || !data->p[n].aff_list) |
| 1969 | return isl_stat_error; |
| 1970 | return isl_stat_ok; |
| 1971 | } |
| 1972 | |
| 1973 | /* Extend the domain of the current entry of "data", which is assumed |
| 1974 | * to contain a single subpiece, with "set". If "replace" is set, |
| 1975 | * then also replace the affine function by "aff". Otherwise, |
| 1976 | * simply free "aff". |
| 1977 | */ |
| 1978 | static isl_stat extend_domain(struct isl_from_pw_aff_data *data, |
| 1979 | __isl_take isl_set *set, __isl_take isl_aff *aff, int replace) |
| 1980 | { |
| 1981 | int n = data->n; |
| 1982 | isl_set *set_n; |
| 1983 | |
| 1984 | set_n = isl_set_list_get_set(list: data->p[n].set_list, index: 0); |
| 1985 | set_n = isl_set_union(set1: set_n, set2: set); |
| 1986 | data->p[n].set_list = |
| 1987 | isl_set_list_set_set(list: data->p[n].set_list, index: 0, el: set_n); |
| 1988 | |
| 1989 | if (replace) |
| 1990 | data->p[n].aff_list = |
| 1991 | isl_aff_list_set_aff(list: data->p[n].aff_list, index: 0, el: aff); |
| 1992 | else |
| 1993 | isl_aff_free(aff); |
| 1994 | |
| 1995 | if (!data->p[n].set_list || !data->p[n].aff_list) |
| 1996 | return isl_stat_error; |
| 1997 | return isl_stat_ok; |
| 1998 | } |
| 1999 | |
| 2000 | /* Construct an isl_ast_expr from "list" within "build". |
| 2001 | * If "state" is isl_state_single, then "list" contains a single entry and |
| 2002 | * an isl_ast_expr is constructed for that entry. |
| 2003 | * Otherwise a min or max expression is constructed from "list" |
| 2004 | * depending on "state". |
| 2005 | */ |
| 2006 | static __isl_give isl_ast_expr *ast_expr_from_aff_list( |
| 2007 | __isl_take isl_aff_list *list, enum isl_from_pw_aff_state state, |
| 2008 | __isl_keep isl_ast_build *build) |
| 2009 | { |
| 2010 | int i; |
| 2011 | isl_size n; |
| 2012 | isl_aff *aff; |
| 2013 | isl_ast_expr *expr = NULL; |
| 2014 | enum isl_ast_expr_op_type op_type; |
| 2015 | |
| 2016 | if (state == isl_state_single) { |
| 2017 | aff = isl_aff_list_get_aff(list, index: 0); |
| 2018 | isl_aff_list_free(list); |
| 2019 | return isl_ast_expr_from_aff(aff, build); |
| 2020 | } |
| 2021 | n = isl_aff_list_n_aff(list); |
| 2022 | if (n < 0) |
| 2023 | goto error; |
| 2024 | op_type = state == isl_state_min ? isl_ast_expr_op_min |
| 2025 | : isl_ast_expr_op_max; |
| 2026 | expr = isl_ast_expr_alloc_op(ctx: isl_ast_build_get_ctx(build), op: op_type, n_arg: n); |
| 2027 | |
| 2028 | for (i = 0; i < n; ++i) { |
| 2029 | isl_ast_expr *expr_i; |
| 2030 | |
| 2031 | aff = isl_aff_list_get_aff(list, index: i); |
| 2032 | expr_i = isl_ast_expr_from_aff(aff, build); |
| 2033 | expr = isl_ast_expr_op_add_arg(expr, arg: expr_i); |
| 2034 | } |
| 2035 | |
| 2036 | isl_aff_list_free(list); |
| 2037 | return expr; |
| 2038 | error: |
| 2039 | isl_aff_list_free(list); |
| 2040 | isl_ast_expr_free(expr); |
| 2041 | return NULL; |
| 2042 | } |
| 2043 | |
| 2044 | /* Extend the list of expressions in "next" to take into account |
| 2045 | * the piece at position "pos" in "data", allowing for a further extension |
| 2046 | * for the next piece(s). |
| 2047 | * In particular, "next" is extended with a select operation that selects |
| 2048 | * an isl_ast_expr corresponding to data->aff_list on data->set and |
| 2049 | * to an expression that will be filled in by later calls. |
| 2050 | * Return a pointer to the arguments of this select operation. |
| 2051 | * Afterwards, the state of "data" is set to isl_state_none. |
| 2052 | * |
| 2053 | * The constraints of data->set are added to the generated |
| 2054 | * constraints of the build such that they can be exploited to simplify |
| 2055 | * the AST expression constructed from data->aff_list. |
| 2056 | */ |
| 2057 | static isl_ast_expr_list **add_intermediate_piece( |
| 2058 | struct isl_from_pw_aff_data *data, |
| 2059 | int pos, isl_ast_expr_list **next) |
| 2060 | { |
| 2061 | isl_ctx *ctx; |
| 2062 | isl_ast_build *build; |
| 2063 | isl_ast_expr *ternary, *arg; |
| 2064 | isl_set *set, *gist; |
| 2065 | |
| 2066 | set = data->p[pos].set; |
| 2067 | data->p[pos].set = NULL; |
| 2068 | ctx = isl_ast_build_get_ctx(build: data->build); |
| 2069 | ternary = isl_ast_expr_alloc_op(ctx, op: isl_ast_expr_op_select, n_arg: 3); |
| 2070 | gist = isl_set_gist(set: isl_set_copy(set), context: isl_set_copy(set: data->dom)); |
| 2071 | arg = isl_ast_build_expr_from_set_internal(build: data->build, set: gist); |
| 2072 | ternary = isl_ast_expr_op_add_arg(expr: ternary, arg); |
| 2073 | build = isl_ast_build_copy(build: data->build); |
| 2074 | build = isl_ast_build_restrict_generated(build, set); |
| 2075 | arg = ast_expr_from_aff_list(list: data->p[pos].aff_list, |
| 2076 | state: data->p[pos].state, build); |
| 2077 | data->p[pos].aff_list = NULL; |
| 2078 | isl_ast_build_free(build); |
| 2079 | ternary = isl_ast_expr_op_add_arg(expr: ternary, arg); |
| 2080 | data->p[pos].state = isl_state_none; |
| 2081 | if (!ternary) |
| 2082 | return NULL; |
| 2083 | |
| 2084 | *next = isl_ast_expr_list_add(list: *next, el: ternary); |
| 2085 | return &ternary->u.op.args; |
| 2086 | } |
| 2087 | |
| 2088 | /* Extend the list of expressions in "next" to take into account |
| 2089 | * the final piece, located at position "pos" in "data". |
| 2090 | * In particular, "next" is extended with an expression |
| 2091 | * to evaluate data->aff_list and the domain is ignored. |
| 2092 | * Return isl_stat_ok on success and isl_stat_error on failure. |
| 2093 | * |
| 2094 | * The constraints of data->set are however added to the generated |
| 2095 | * constraints of the build such that they can be exploited to simplify |
| 2096 | * the AST expression constructed from data->aff_list. |
| 2097 | */ |
| 2098 | static isl_stat add_last_piece(struct isl_from_pw_aff_data *data, |
| 2099 | int pos, isl_ast_expr_list **next) |
| 2100 | { |
| 2101 | isl_ast_build *build; |
| 2102 | isl_ast_expr *last; |
| 2103 | |
| 2104 | if (data->p[pos].state == isl_state_none) |
| 2105 | isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid, |
| 2106 | "cannot handle void expression" , return isl_stat_error); |
| 2107 | |
| 2108 | build = isl_ast_build_copy(build: data->build); |
| 2109 | build = isl_ast_build_restrict_generated(build, set: data->p[pos].set); |
| 2110 | data->p[pos].set = NULL; |
| 2111 | last = ast_expr_from_aff_list(list: data->p[pos].aff_list, |
| 2112 | state: data->p[pos].state, build); |
| 2113 | *next = isl_ast_expr_list_add(list: *next, el: last); |
| 2114 | data->p[pos].aff_list = NULL; |
| 2115 | isl_ast_build_free(build); |
| 2116 | data->p[pos].state = isl_state_none; |
| 2117 | if (!*next) |
| 2118 | return isl_stat_error; |
| 2119 | |
| 2120 | return isl_stat_ok; |
| 2121 | } |
| 2122 | |
| 2123 | /* Return -1 if the piece "p1" should be sorted before "p2" |
| 2124 | * and 1 if it should be sorted after "p2". |
| 2125 | * Return 0 if they do not need to be sorted in a specific order. |
| 2126 | * |
| 2127 | * Pieces are sorted according to the number of disjuncts |
| 2128 | * in their domains. |
| 2129 | */ |
| 2130 | static int sort_pieces_cmp(const void *p1, const void *p2, void *arg) |
| 2131 | { |
| 2132 | const struct isl_from_pw_aff_piece *piece1 = p1; |
| 2133 | const struct isl_from_pw_aff_piece *piece2 = p2; |
| 2134 | isl_size n1, n2; |
| 2135 | |
| 2136 | n1 = isl_set_n_basic_set(set: piece1->set); |
| 2137 | n2 = isl_set_n_basic_set(set: piece2->set); |
| 2138 | |
| 2139 | return n1 - n2; |
| 2140 | } |
| 2141 | |
| 2142 | /* Construct an isl_ast_expr from the pieces in "data". |
| 2143 | * Return the result or NULL on failure. |
| 2144 | * |
| 2145 | * When this function is called, data->n points to the current piece. |
| 2146 | * If this is an effective piece, then first increment data->n such |
| 2147 | * that data->n contains the number of pieces. |
| 2148 | * The "set_list" fields are subsequently replaced by the corresponding |
| 2149 | * "set" fields, after which the pieces are sorted according to |
| 2150 | * the number of disjuncts in these "set" fields. |
| 2151 | * |
| 2152 | * Construct intermediate AST expressions for the initial pieces and |
| 2153 | * finish off with the final pieces. |
| 2154 | * |
| 2155 | * Any piece that is not the very first is added to the list of arguments |
| 2156 | * of the previously constructed piece. |
| 2157 | * In order not to have to special case the first piece, |
| 2158 | * an extra list is created to hold the final result. |
| 2159 | */ |
| 2160 | static isl_ast_expr *build_pieces(struct isl_from_pw_aff_data *data) |
| 2161 | { |
| 2162 | int i; |
| 2163 | isl_ctx *ctx; |
| 2164 | isl_ast_expr_list *res_list; |
| 2165 | isl_ast_expr_list **next = &res_list; |
| 2166 | isl_ast_expr *res; |
| 2167 | |
| 2168 | if (data->p[data->n].state != isl_state_none) |
| 2169 | data->n++; |
| 2170 | ctx = isl_ast_build_get_ctx(build: data->build); |
| 2171 | if (data->n == 0) |
| 2172 | isl_die(ctx, isl_error_invalid, |
| 2173 | "cannot handle void expression" , return NULL); |
| 2174 | |
| 2175 | for (i = 0; i < data->n; ++i) { |
| 2176 | data->p[i].set = isl_set_list_union(list: data->p[i].set_list); |
| 2177 | if (data->p[i].state != isl_state_single) |
| 2178 | data->p[i].set = isl_set_coalesce(set: data->p[i].set); |
| 2179 | data->p[i].set_list = NULL; |
| 2180 | } |
| 2181 | |
| 2182 | if (isl_sort(pbase: data->p, total_elems: data->n, size: sizeof(data->p[0]), |
| 2183 | cmp: &sort_pieces_cmp, NULL) < 0) |
| 2184 | return NULL; |
| 2185 | |
| 2186 | res_list = isl_ast_expr_list_alloc(ctx, n: 1); |
| 2187 | if (!res_list) |
| 2188 | return NULL; |
| 2189 | for (i = 0; i + 1 < data->n; ++i) { |
| 2190 | next = add_intermediate_piece(data, pos: i, next); |
| 2191 | if (!next) |
| 2192 | goto error; |
| 2193 | } |
| 2194 | |
| 2195 | if (add_last_piece(data, pos: data->n - 1, next) < 0) |
| 2196 | goto error; |
| 2197 | |
| 2198 | res = isl_ast_expr_list_get_at(list: res_list, index: 0); |
| 2199 | isl_ast_expr_list_free(list: res_list); |
| 2200 | return res; |
| 2201 | error: |
| 2202 | isl_ast_expr_list_free(list: res_list); |
| 2203 | return NULL; |
| 2204 | } |
| 2205 | |
| 2206 | /* Is the domain of the current entry of "data", which is assumed |
| 2207 | * to contain a single subpiece, a subset of "set"? |
| 2208 | */ |
| 2209 | static isl_bool single_is_subset(struct isl_from_pw_aff_data *data, |
| 2210 | __isl_keep isl_set *set) |
| 2211 | { |
| 2212 | isl_bool subset; |
| 2213 | isl_set *set_n; |
| 2214 | |
| 2215 | set_n = isl_set_list_get_set(list: data->p[data->n].set_list, index: 0); |
| 2216 | subset = isl_set_is_subset(set1: set_n, set2: set); |
| 2217 | isl_set_free(set: set_n); |
| 2218 | |
| 2219 | return subset; |
| 2220 | } |
| 2221 | |
| 2222 | /* Is "aff" a rational expression, i.e., does it have a denominator |
| 2223 | * different from one? |
| 2224 | */ |
| 2225 | static isl_bool aff_is_rational(__isl_keep isl_aff *aff) |
| 2226 | { |
| 2227 | isl_bool rational; |
| 2228 | isl_val *den; |
| 2229 | |
| 2230 | den = isl_aff_get_denominator_val(aff); |
| 2231 | rational = isl_bool_not(b: isl_val_is_one(v: den)); |
| 2232 | isl_val_free(v: den); |
| 2233 | |
| 2234 | return rational; |
| 2235 | } |
| 2236 | |
| 2237 | /* Does "list" consist of a single rational affine expression? |
| 2238 | */ |
| 2239 | static isl_bool is_single_rational_aff(__isl_keep isl_aff_list *list) |
| 2240 | { |
| 2241 | isl_size n; |
| 2242 | isl_bool rational; |
| 2243 | isl_aff *aff; |
| 2244 | |
| 2245 | n = isl_aff_list_n_aff(list); |
| 2246 | if (n < 0) |
| 2247 | return isl_bool_error; |
| 2248 | if (n != 1) |
| 2249 | return isl_bool_false; |
| 2250 | aff = isl_aff_list_get_aff(list, index: 0); |
| 2251 | rational = aff_is_rational(aff); |
| 2252 | isl_aff_free(aff); |
| 2253 | |
| 2254 | return rational; |
| 2255 | } |
| 2256 | |
| 2257 | /* Can the list of subpieces in the last piece of "data" be extended with |
| 2258 | * "set" and "aff" based on "test"? |
| 2259 | * In particular, is it the case for each entry (set_i, aff_i) that |
| 2260 | * |
| 2261 | * test(aff, aff_i) holds on set_i, and |
| 2262 | * test(aff_i, aff) holds on set? |
| 2263 | * |
| 2264 | * "test" returns the set of elements where the tests holds, meaning |
| 2265 | * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff). |
| 2266 | * |
| 2267 | * This function is used to detect min/max expressions. |
| 2268 | * If the ast_build_detect_min_max option is turned off, then |
| 2269 | * do not even try and perform any detection and return false instead. |
| 2270 | * |
| 2271 | * Rational affine expressions are not considered for min/max expressions |
| 2272 | * since the combined expression will be defined on the union of the domains, |
| 2273 | * while a rational expression may only yield integer values |
| 2274 | * on its own definition domain. |
| 2275 | */ |
| 2276 | static isl_bool extends(struct isl_from_pw_aff_data *data, |
| 2277 | __isl_keep isl_set *set, __isl_keep isl_aff *aff, |
| 2278 | __isl_give isl_basic_set *(*test)(__isl_take isl_aff *aff1, |
| 2279 | __isl_take isl_aff *aff2)) |
| 2280 | { |
| 2281 | int i; |
| 2282 | isl_size n; |
| 2283 | isl_bool is_rational; |
| 2284 | isl_ctx *ctx; |
| 2285 | isl_set *dom; |
| 2286 | |
| 2287 | is_rational = aff_is_rational(aff); |
| 2288 | if (is_rational >= 0 && !is_rational) |
| 2289 | is_rational = is_single_rational_aff(list: data->p[data->n].aff_list); |
| 2290 | if (is_rational < 0 || is_rational) |
| 2291 | return isl_bool_not(b: is_rational); |
| 2292 | |
| 2293 | ctx = isl_ast_build_get_ctx(build: data->build); |
| 2294 | if (!isl_options_get_ast_build_detect_min_max(ctx)) |
| 2295 | return isl_bool_false; |
| 2296 | |
| 2297 | n = isl_set_list_n_set(list: data->p[data->n].set_list); |
| 2298 | if (n < 0) |
| 2299 | return isl_bool_error; |
| 2300 | |
| 2301 | dom = isl_ast_build_get_domain(build: data->build); |
| 2302 | set = isl_set_intersect(set1: dom, set2: isl_set_copy(set)); |
| 2303 | |
| 2304 | for (i = 0; i < n ; ++i) { |
| 2305 | isl_aff *aff_i; |
| 2306 | isl_set *valid; |
| 2307 | isl_set *dom, *required; |
| 2308 | isl_bool is_valid; |
| 2309 | |
| 2310 | aff_i = isl_aff_list_get_aff(list: data->p[data->n].aff_list, index: i); |
| 2311 | valid = isl_set_from_basic_set(bset: test(isl_aff_copy(aff), aff_i)); |
| 2312 | required = isl_set_list_get_set(list: data->p[data->n].set_list, index: i); |
| 2313 | dom = isl_ast_build_get_domain(build: data->build); |
| 2314 | required = isl_set_intersect(set1: dom, set2: required); |
| 2315 | is_valid = isl_set_is_subset(set1: required, set2: valid); |
| 2316 | isl_set_free(set: required); |
| 2317 | isl_set_free(set: valid); |
| 2318 | if (is_valid < 0 || !is_valid) { |
| 2319 | isl_set_free(set); |
| 2320 | return is_valid; |
| 2321 | } |
| 2322 | |
| 2323 | aff_i = isl_aff_list_get_aff(list: data->p[data->n].aff_list, index: i); |
| 2324 | valid = isl_set_from_basic_set(bset: test(aff_i, isl_aff_copy(aff))); |
| 2325 | is_valid = isl_set_is_subset(set1: set, set2: valid); |
| 2326 | isl_set_free(set: valid); |
| 2327 | if (is_valid < 0 || !is_valid) { |
| 2328 | isl_set_free(set); |
| 2329 | return is_valid; |
| 2330 | } |
| 2331 | } |
| 2332 | |
| 2333 | isl_set_free(set); |
| 2334 | return isl_bool_true; |
| 2335 | } |
| 2336 | |
| 2337 | /* Can the list of pieces in "data" be extended with "set" and "aff" |
| 2338 | * to form/preserve a minimum expression? |
| 2339 | * In particular, is it the case for each entry (set_i, aff_i) that |
| 2340 | * |
| 2341 | * aff >= aff_i on set_i, and |
| 2342 | * aff_i >= aff on set? |
| 2343 | */ |
| 2344 | static isl_bool extends_min(struct isl_from_pw_aff_data *data, |
| 2345 | __isl_keep isl_set *set, __isl_keep isl_aff *aff) |
| 2346 | { |
| 2347 | return extends(data, set, aff, test: &isl_aff_ge_basic_set); |
| 2348 | } |
| 2349 | |
| 2350 | /* Can the list of pieces in "data" be extended with "set" and "aff" |
| 2351 | * to form/preserve a maximum expression? |
| 2352 | * In particular, is it the case for each entry (set_i, aff_i) that |
| 2353 | * |
| 2354 | * aff <= aff_i on set_i, and |
| 2355 | * aff_i <= aff on set? |
| 2356 | */ |
| 2357 | static isl_bool extends_max(struct isl_from_pw_aff_data *data, |
| 2358 | __isl_keep isl_set *set, __isl_keep isl_aff *aff) |
| 2359 | { |
| 2360 | return extends(data, set, aff, test: &isl_aff_le_basic_set); |
| 2361 | } |
| 2362 | |
| 2363 | /* This function is called during the construction of an isl_ast_expr |
| 2364 | * that evaluates an isl_pw_aff. |
| 2365 | * If the last piece of "data" contains a single subpiece and |
| 2366 | * if its affine function is equal to "aff" on a part of the domain |
| 2367 | * that includes either "set" or the domain of that single subpiece, |
| 2368 | * then extend the domain of that single subpiece with "set". |
| 2369 | * If it was the original domain of the single subpiece where |
| 2370 | * the two affine functions are equal, then also replace |
| 2371 | * the affine function of the single subpiece by "aff". |
| 2372 | * If the last piece of "data" contains either a single subpiece |
| 2373 | * or a minimum, then check if this minimum expression can be extended |
| 2374 | * with (set, aff). |
| 2375 | * If so, extend the sequence and return. |
| 2376 | * Perform the same operation for maximum expressions. |
| 2377 | * If no such extension can be performed, then move to the next piece |
| 2378 | * in "data" (if the current piece contains any data), and then store |
| 2379 | * the current subpiece in the current piece of "data" for later handling. |
| 2380 | */ |
| 2381 | static isl_stat ast_expr_from_pw_aff(__isl_take isl_set *set, |
| 2382 | __isl_take isl_aff *aff, void *user) |
| 2383 | { |
| 2384 | struct isl_from_pw_aff_data *data = user; |
| 2385 | isl_bool test; |
| 2386 | enum isl_from_pw_aff_state state; |
| 2387 | |
| 2388 | state = data->p[data->n].state; |
| 2389 | if (state == isl_state_single) { |
| 2390 | isl_aff *aff0; |
| 2391 | isl_set *eq; |
| 2392 | isl_bool subset1, subset2 = isl_bool_false; |
| 2393 | aff0 = isl_aff_list_get_aff(list: data->p[data->n].aff_list, index: 0); |
| 2394 | eq = isl_aff_eq_set(aff1: isl_aff_copy(aff), aff2: aff0); |
| 2395 | subset1 = isl_set_is_subset(set1: set, set2: eq); |
| 2396 | if (subset1 >= 0 && !subset1) |
| 2397 | subset2 = single_is_subset(data, set: eq); |
| 2398 | isl_set_free(set: eq); |
| 2399 | if (subset1 < 0 || subset2 < 0) |
| 2400 | goto error; |
| 2401 | if (subset1) |
| 2402 | return extend_domain(data, set, aff, replace: 0); |
| 2403 | if (subset2) |
| 2404 | return extend_domain(data, set, aff, replace: 1); |
| 2405 | } |
| 2406 | if (state == isl_state_single || state == isl_state_min) { |
| 2407 | test = extends_min(data, set, aff); |
| 2408 | if (test < 0) |
| 2409 | goto error; |
| 2410 | if (test) |
| 2411 | return extend_min(data, set, aff); |
| 2412 | } |
| 2413 | if (state == isl_state_single || state == isl_state_max) { |
| 2414 | test = extends_max(data, set, aff); |
| 2415 | if (test < 0) |
| 2416 | goto error; |
| 2417 | if (test) |
| 2418 | return extend_max(data, set, aff); |
| 2419 | } |
| 2420 | if (state != isl_state_none) |
| 2421 | data->n++; |
| 2422 | set_single(data, set, aff); |
| 2423 | |
| 2424 | return isl_stat_ok; |
| 2425 | error: |
| 2426 | isl_set_free(set); |
| 2427 | isl_aff_free(aff); |
| 2428 | return isl_stat_error; |
| 2429 | } |
| 2430 | |
| 2431 | /* Construct an isl_ast_expr that evaluates "pa". |
| 2432 | * The result is simplified in terms of build->domain. |
| 2433 | * |
| 2434 | * The domain of "pa" lives in the internal schedule space. |
| 2435 | */ |
| 2436 | __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff_internal( |
| 2437 | __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa) |
| 2438 | { |
| 2439 | struct isl_from_pw_aff_data data = { NULL }; |
| 2440 | isl_ast_expr *res = NULL; |
| 2441 | |
| 2442 | pa = isl_ast_build_compute_gist_pw_aff(build, pa); |
| 2443 | pa = isl_pw_aff_coalesce(pa); |
| 2444 | if (!pa) |
| 2445 | return NULL; |
| 2446 | |
| 2447 | if (isl_from_pw_aff_data_init(data: &data, build, pa) < 0) |
| 2448 | goto error; |
| 2449 | set_none(&data); |
| 2450 | |
| 2451 | if (isl_pw_aff_foreach_piece(pwaff: pa, fn: &ast_expr_from_pw_aff, user: &data) >= 0) |
| 2452 | res = build_pieces(data: &data); |
| 2453 | |
| 2454 | isl_pw_aff_free(pwaff: pa); |
| 2455 | isl_from_pw_aff_data_clear(data: &data); |
| 2456 | return res; |
| 2457 | error: |
| 2458 | isl_pw_aff_free(pwaff: pa); |
| 2459 | isl_from_pw_aff_data_clear(data: &data); |
| 2460 | return NULL; |
| 2461 | } |
| 2462 | |
| 2463 | /* Construct an isl_ast_expr that evaluates "pa". |
| 2464 | * The result is simplified in terms of build->domain. |
| 2465 | * |
| 2466 | * The domain of "pa" lives in the external schedule space. |
| 2467 | */ |
| 2468 | __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff( |
| 2469 | __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa) |
| 2470 | { |
| 2471 | isl_ast_expr *expr; |
| 2472 | isl_bool needs_map; |
| 2473 | |
| 2474 | needs_map = isl_ast_build_need_schedule_map(build); |
| 2475 | if (needs_map < 0) { |
| 2476 | pa = isl_pw_aff_free(pwaff: pa); |
| 2477 | } else if (needs_map) { |
| 2478 | isl_multi_aff *ma; |
| 2479 | ma = isl_ast_build_get_schedule_map_multi_aff(build); |
| 2480 | pa = isl_pw_aff_pullback_multi_aff(pa, ma); |
| 2481 | } |
| 2482 | expr = isl_ast_build_expr_from_pw_aff_internal(build, pa); |
| 2483 | return expr; |
| 2484 | } |
| 2485 | |
| 2486 | /* Set the ids of the input dimensions of "mpa" to the iterator ids |
| 2487 | * of "build". |
| 2488 | * |
| 2489 | * The domain of "mpa" is assumed to live in the internal schedule domain. |
| 2490 | */ |
| 2491 | static __isl_give isl_multi_pw_aff *set_iterator_names( |
| 2492 | __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa) |
| 2493 | { |
| 2494 | int i; |
| 2495 | isl_size n; |
| 2496 | |
| 2497 | n = isl_multi_pw_aff_dim(multi: mpa, type: isl_dim_in); |
| 2498 | if (n < 0) |
| 2499 | return isl_multi_pw_aff_free(multi: mpa); |
| 2500 | for (i = 0; i < n; ++i) { |
| 2501 | isl_id *id; |
| 2502 | |
| 2503 | id = isl_ast_build_get_iterator_id(build, pos: i); |
| 2504 | mpa = isl_multi_pw_aff_set_dim_id(multi: mpa, type: isl_dim_in, pos: i, id); |
| 2505 | } |
| 2506 | |
| 2507 | return mpa; |
| 2508 | } |
| 2509 | |
| 2510 | /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and |
| 2511 | * the remaining arguments derived from "mpa". |
| 2512 | * That is, construct a call or access expression that calls/accesses "arg0" |
| 2513 | * with arguments/indices specified by "mpa". |
| 2514 | */ |
| 2515 | static __isl_give isl_ast_expr *isl_ast_build_with_arguments( |
| 2516 | __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type, |
| 2517 | __isl_take isl_ast_expr *arg0, __isl_take isl_multi_pw_aff *mpa) |
| 2518 | { |
| 2519 | int i; |
| 2520 | isl_size n; |
| 2521 | isl_ctx *ctx; |
| 2522 | isl_ast_expr *expr; |
| 2523 | |
| 2524 | ctx = isl_ast_build_get_ctx(build); |
| 2525 | |
| 2526 | n = isl_multi_pw_aff_dim(multi: mpa, type: isl_dim_out); |
| 2527 | expr = n >= 0 ? isl_ast_expr_alloc_op(ctx, op: type, n_arg: 1 + n) : NULL; |
| 2528 | expr = isl_ast_expr_op_add_arg(expr, arg: arg0); |
| 2529 | for (i = 0; i < n; ++i) { |
| 2530 | isl_pw_aff *pa; |
| 2531 | isl_ast_expr *arg; |
| 2532 | |
| 2533 | pa = isl_multi_pw_aff_get_pw_aff(multi: mpa, pos: i); |
| 2534 | arg = isl_ast_build_expr_from_pw_aff_internal(build, pa); |
| 2535 | expr = isl_ast_expr_op_add_arg(expr, arg); |
| 2536 | } |
| 2537 | |
| 2538 | isl_multi_pw_aff_free(multi: mpa); |
| 2539 | return expr; |
| 2540 | } |
| 2541 | |
| 2542 | static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal( |
| 2543 | __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type, |
| 2544 | __isl_take isl_multi_pw_aff *mpa); |
| 2545 | |
| 2546 | /* Construct an isl_ast_expr that accesses the member specified by "mpa". |
| 2547 | * The range of "mpa" is assumed to be wrapped relation. |
| 2548 | * The domain of this wrapped relation specifies the structure being |
| 2549 | * accessed, while the range of this wrapped relation spacifies the |
| 2550 | * member of the structure being accessed. |
| 2551 | * |
| 2552 | * The domain of "mpa" is assumed to live in the internal schedule domain. |
| 2553 | */ |
| 2554 | static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_member( |
| 2555 | __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa) |
| 2556 | { |
| 2557 | isl_id *id; |
| 2558 | isl_multi_pw_aff *domain; |
| 2559 | isl_ast_expr *domain_expr, *expr; |
| 2560 | enum isl_ast_expr_op_type type = isl_ast_expr_op_access; |
| 2561 | |
| 2562 | domain = isl_multi_pw_aff_copy(multi: mpa); |
| 2563 | domain = isl_multi_pw_aff_range_factor_domain(multi: domain); |
| 2564 | domain_expr = isl_ast_build_from_multi_pw_aff_internal(build, |
| 2565 | type, mpa: domain); |
| 2566 | mpa = isl_multi_pw_aff_range_factor_range(multi: mpa); |
| 2567 | if (!isl_multi_pw_aff_has_tuple_id(multi: mpa, type: isl_dim_out)) |
| 2568 | isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, |
| 2569 | "missing field name" , goto error); |
| 2570 | id = isl_multi_pw_aff_get_tuple_id(multi: mpa, type: isl_dim_out); |
| 2571 | expr = isl_ast_expr_from_id(id); |
| 2572 | expr = isl_ast_expr_alloc_binary(type: isl_ast_expr_op_member, |
| 2573 | expr1: domain_expr, expr2: expr); |
| 2574 | return isl_ast_build_with_arguments(build, type, arg0: expr, mpa); |
| 2575 | error: |
| 2576 | isl_multi_pw_aff_free(multi: mpa); |
| 2577 | return NULL; |
| 2578 | } |
| 2579 | |
| 2580 | /* Construct an isl_ast_expr of type "type" that calls or accesses |
| 2581 | * the element specified by "mpa". |
| 2582 | * The first argument is obtained from the output tuple name. |
| 2583 | * The remaining arguments are given by the piecewise affine expressions. |
| 2584 | * |
| 2585 | * If the range of "mpa" is a mapped relation, then we assume it |
| 2586 | * represents an access to a member of a structure. |
| 2587 | * |
| 2588 | * The domain of "mpa" is assumed to live in the internal schedule domain. |
| 2589 | */ |
| 2590 | static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal( |
| 2591 | __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type, |
| 2592 | __isl_take isl_multi_pw_aff *mpa) |
| 2593 | { |
| 2594 | isl_ctx *ctx; |
| 2595 | isl_id *id; |
| 2596 | isl_ast_expr *expr; |
| 2597 | |
| 2598 | if (!mpa) |
| 2599 | goto error; |
| 2600 | |
| 2601 | if (type == isl_ast_expr_op_access && |
| 2602 | isl_multi_pw_aff_range_is_wrapping(multi: mpa)) |
| 2603 | return isl_ast_build_from_multi_pw_aff_member(build, mpa); |
| 2604 | |
| 2605 | mpa = set_iterator_names(build, mpa); |
| 2606 | if (!build || !mpa) |
| 2607 | goto error; |
| 2608 | |
| 2609 | ctx = isl_ast_build_get_ctx(build); |
| 2610 | |
| 2611 | if (isl_multi_pw_aff_has_tuple_id(multi: mpa, type: isl_dim_out)) |
| 2612 | id = isl_multi_pw_aff_get_tuple_id(multi: mpa, type: isl_dim_out); |
| 2613 | else |
| 2614 | id = isl_id_alloc(ctx, name: "" , NULL); |
| 2615 | |
| 2616 | expr = isl_ast_expr_from_id(id); |
| 2617 | return isl_ast_build_with_arguments(build, type, arg0: expr, mpa); |
| 2618 | error: |
| 2619 | isl_multi_pw_aff_free(multi: mpa); |
| 2620 | return NULL; |
| 2621 | } |
| 2622 | |
| 2623 | /* Construct an isl_ast_expr of type "type" that calls or accesses |
| 2624 | * the element specified by "pma". |
| 2625 | * The first argument is obtained from the output tuple name. |
| 2626 | * The remaining arguments are given by the piecewise affine expressions. |
| 2627 | * |
| 2628 | * The domain of "pma" is assumed to live in the internal schedule domain. |
| 2629 | */ |
| 2630 | static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff_internal( |
| 2631 | __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type, |
| 2632 | __isl_take isl_pw_multi_aff *pma) |
| 2633 | { |
| 2634 | isl_multi_pw_aff *mpa; |
| 2635 | |
| 2636 | mpa = isl_multi_pw_aff_from_pw_multi_aff(pma); |
| 2637 | return isl_ast_build_from_multi_pw_aff_internal(build, type, mpa); |
| 2638 | } |
| 2639 | |
| 2640 | /* Construct an isl_ast_expr of type "type" that calls or accesses |
| 2641 | * the element specified by "mpa". |
| 2642 | * The first argument is obtained from the output tuple name. |
| 2643 | * The remaining arguments are given by the piecewise affine expressions. |
| 2644 | * |
| 2645 | * The domain of "mpa" is assumed to live in the external schedule domain. |
| 2646 | */ |
| 2647 | static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff( |
| 2648 | __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type, |
| 2649 | __isl_take isl_multi_pw_aff *mpa) |
| 2650 | { |
| 2651 | isl_bool is_domain; |
| 2652 | isl_bool needs_map; |
| 2653 | isl_ast_expr *expr; |
| 2654 | isl_space *space_build, *space_mpa; |
| 2655 | |
| 2656 | space_build = isl_ast_build_get_space(build, internal: 0); |
| 2657 | space_mpa = isl_multi_pw_aff_get_space(multi: mpa); |
| 2658 | is_domain = isl_space_tuple_is_equal(space1: space_build, type1: isl_dim_set, |
| 2659 | space2: space_mpa, type2: isl_dim_in); |
| 2660 | isl_space_free(space: space_build); |
| 2661 | isl_space_free(space: space_mpa); |
| 2662 | if (is_domain < 0) |
| 2663 | goto error; |
| 2664 | if (!is_domain) |
| 2665 | isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, |
| 2666 | "spaces don't match" , goto error); |
| 2667 | |
| 2668 | needs_map = isl_ast_build_need_schedule_map(build); |
| 2669 | if (needs_map < 0) |
| 2670 | goto error; |
| 2671 | if (needs_map) { |
| 2672 | isl_multi_aff *ma; |
| 2673 | ma = isl_ast_build_get_schedule_map_multi_aff(build); |
| 2674 | mpa = isl_multi_pw_aff_pullback_multi_aff(mpa, ma); |
| 2675 | } |
| 2676 | |
| 2677 | expr = isl_ast_build_from_multi_pw_aff_internal(build, type, mpa); |
| 2678 | return expr; |
| 2679 | error: |
| 2680 | isl_multi_pw_aff_free(multi: mpa); |
| 2681 | return NULL; |
| 2682 | } |
| 2683 | |
| 2684 | /* Construct an isl_ast_expr that calls the domain element specified by "mpa". |
| 2685 | * The name of the function is obtained from the output tuple name. |
| 2686 | * The arguments are given by the piecewise affine expressions. |
| 2687 | * |
| 2688 | * The domain of "mpa" is assumed to live in the external schedule domain. |
| 2689 | */ |
| 2690 | __isl_give isl_ast_expr *isl_ast_build_call_from_multi_pw_aff( |
| 2691 | __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa) |
| 2692 | { |
| 2693 | return isl_ast_build_from_multi_pw_aff(build, |
| 2694 | type: isl_ast_expr_op_call, mpa); |
| 2695 | } |
| 2696 | |
| 2697 | /* Construct an isl_ast_expr that accesses the array element specified by "mpa". |
| 2698 | * The name of the array is obtained from the output tuple name. |
| 2699 | * The index expressions are given by the piecewise affine expressions. |
| 2700 | * |
| 2701 | * The domain of "mpa" is assumed to live in the external schedule domain. |
| 2702 | */ |
| 2703 | __isl_give isl_ast_expr *isl_ast_build_access_from_multi_pw_aff( |
| 2704 | __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa) |
| 2705 | { |
| 2706 | return isl_ast_build_from_multi_pw_aff(build, |
| 2707 | type: isl_ast_expr_op_access, mpa); |
| 2708 | } |
| 2709 | |
| 2710 | /* Construct an isl_ast_expr of type "type" that calls or accesses |
| 2711 | * the element specified by "pma". |
| 2712 | * The first argument is obtained from the output tuple name. |
| 2713 | * The remaining arguments are given by the piecewise affine expressions. |
| 2714 | * |
| 2715 | * The domain of "pma" is assumed to live in the external schedule domain. |
| 2716 | */ |
| 2717 | static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff( |
| 2718 | __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type, |
| 2719 | __isl_take isl_pw_multi_aff *pma) |
| 2720 | { |
| 2721 | isl_multi_pw_aff *mpa; |
| 2722 | |
| 2723 | mpa = isl_multi_pw_aff_from_pw_multi_aff(pma); |
| 2724 | return isl_ast_build_from_multi_pw_aff(build, type, mpa); |
| 2725 | } |
| 2726 | |
| 2727 | /* Construct an isl_ast_expr that calls the domain element specified by "pma". |
| 2728 | * The name of the function is obtained from the output tuple name. |
| 2729 | * The arguments are given by the piecewise affine expressions. |
| 2730 | * |
| 2731 | * The domain of "pma" is assumed to live in the external schedule domain. |
| 2732 | */ |
| 2733 | __isl_give isl_ast_expr *isl_ast_build_call_from_pw_multi_aff( |
| 2734 | __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma) |
| 2735 | { |
| 2736 | return isl_ast_build_from_pw_multi_aff(build, |
| 2737 | type: isl_ast_expr_op_call, pma); |
| 2738 | } |
| 2739 | |
| 2740 | /* Construct an isl_ast_expr that accesses the array element specified by "pma". |
| 2741 | * The name of the array is obtained from the output tuple name. |
| 2742 | * The index expressions are given by the piecewise affine expressions. |
| 2743 | * |
| 2744 | * The domain of "pma" is assumed to live in the external schedule domain. |
| 2745 | */ |
| 2746 | __isl_give isl_ast_expr *isl_ast_build_access_from_pw_multi_aff( |
| 2747 | __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma) |
| 2748 | { |
| 2749 | return isl_ast_build_from_pw_multi_aff(build, |
| 2750 | type: isl_ast_expr_op_access, pma); |
| 2751 | } |
| 2752 | |
| 2753 | /* Construct an isl_ast_expr that calls the domain element |
| 2754 | * specified by "executed". |
| 2755 | * |
| 2756 | * "executed" is assumed to be single-valued, with a domain that lives |
| 2757 | * in the internal schedule space. |
| 2758 | */ |
| 2759 | __isl_give isl_ast_node *isl_ast_build_call_from_executed( |
| 2760 | __isl_keep isl_ast_build *build, __isl_take isl_map *executed) |
| 2761 | { |
| 2762 | isl_pw_multi_aff *iteration; |
| 2763 | isl_ast_expr *expr; |
| 2764 | |
| 2765 | iteration = isl_pw_multi_aff_from_map(map: executed); |
| 2766 | iteration = isl_ast_build_compute_gist_pw_multi_aff(build, pma: iteration); |
| 2767 | iteration = isl_pw_multi_aff_intersect_domain(pma: iteration, |
| 2768 | set: isl_ast_build_get_domain(build)); |
| 2769 | expr = isl_ast_build_from_pw_multi_aff_internal(build, |
| 2770 | type: isl_ast_expr_op_call, pma: iteration); |
| 2771 | return isl_ast_node_alloc_user(expr); |
| 2772 | } |
| 2773 | |