1/*
2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
4 *
5 * Use of this software is governed by the MIT license
6 *
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
11 */
12
13#include <limits.h>
14#include <isl/id.h>
15#include <isl/val.h>
16#include <isl/space.h>
17#include <isl/aff.h>
18#include <isl/constraint.h>
19#include <isl/set.h>
20#include <isl/ilp.h>
21#include <isl/union_set.h>
22#include <isl/union_map.h>
23#include <isl/schedule_node.h>
24#include <isl/options.h>
25#include <isl_sort.h>
26#include <isl_tarjan.h>
27#include <isl_ast_private.h>
28#include <isl_ast_build_expr.h>
29#include <isl_ast_build_private.h>
30#include <isl_ast_graft_private.h>
31
32/* Try and reduce the number of disjuncts in the representation of "set",
33 * without dropping explicit representations of local variables.
34 */
35static __isl_give isl_set *isl_set_coalesce_preserve(__isl_take isl_set *set)
36{
37 isl_ctx *ctx;
38 int save_preserve;
39
40 if (!set)
41 return NULL;
42
43 ctx = isl_set_get_ctx(set);
44 save_preserve = isl_options_get_coalesce_preserve_locals(ctx);
45 isl_options_set_coalesce_preserve_locals(ctx, val: 1);
46 set = isl_set_coalesce(set);
47 isl_options_set_coalesce_preserve_locals(ctx, val: save_preserve);
48 return set;
49}
50
51/* Data used in generate_domain.
52 *
53 * "build" is the input build.
54 * "list" collects the results.
55 */
56struct isl_generate_domain_data {
57 isl_ast_build *build;
58
59 isl_ast_graft_list *list;
60};
61
62static __isl_give isl_ast_graft_list *generate_next_level(
63 __isl_take isl_union_map *executed,
64 __isl_take isl_ast_build *build);
65static __isl_give isl_ast_graft_list *generate_code(
66 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
67 int internal);
68
69/* Generate an AST for a single domain based on
70 * the (non single valued) inverse schedule "executed".
71 *
72 * We extend the schedule with the iteration domain
73 * and continue generating through a call to generate_code.
74 *
75 * In particular, if executed has the form
76 *
77 * S -> D
78 *
79 * then we continue generating code on
80 *
81 * [S -> D] -> D
82 *
83 * The extended inverse schedule is clearly single valued
84 * ensuring that the nested generate_code will not reach this function,
85 * but will instead create calls to all elements of D that need
86 * to be executed from the current schedule domain.
87 */
88static isl_stat generate_non_single_valued(__isl_take isl_map *executed,
89 struct isl_generate_domain_data *data)
90{
91 isl_map *identity;
92 isl_ast_build *build;
93 isl_ast_graft_list *list;
94
95 build = isl_ast_build_copy(build: data->build);
96
97 identity = isl_set_identity(set: isl_map_range(map: isl_map_copy(map: executed)));
98 executed = isl_map_domain_product(map1: executed, map2: identity);
99 build = isl_ast_build_set_single_valued(build, sv: 1);
100
101 list = generate_code(executed: isl_union_map_from_map(map: executed), build, internal: 1);
102
103 data->list = isl_ast_graft_list_concat(list1: data->list, list2: list);
104
105 return isl_stat_ok;
106}
107
108/* Call the at_each_domain callback, if requested by the user,
109 * after recording the current inverse schedule in the build.
110 */
111static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
112 __isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
113{
114 if (!graft || !build)
115 return isl_ast_graft_free(graft);
116 if (!build->at_each_domain)
117 return graft;
118
119 build = isl_ast_build_copy(build);
120 build = isl_ast_build_set_executed(build,
121 executed: isl_union_map_from_map(map: isl_map_copy(map: executed)));
122 if (!build)
123 return isl_ast_graft_free(graft);
124
125 graft->node = build->at_each_domain(graft->node,
126 build, build->at_each_domain_user);
127 isl_ast_build_free(build);
128
129 if (!graft->node)
130 graft = isl_ast_graft_free(graft);
131
132 return graft;
133}
134
135/* Generate a call expression for the single executed
136 * domain element "map" and put a guard around it based its (simplified)
137 * domain. "executed" is the original inverse schedule from which "map"
138 * has been derived. In particular, "map" is either identical to "executed"
139 * or it is the result of gisting "executed" with respect to the build domain.
140 * "executed" is only used if there is an at_each_domain callback.
141 *
142 * At this stage, any pending constraints in the build can no longer
143 * be simplified with respect to any enforced constraints since
144 * the call node does not have any enforced constraints.
145 * Since all pending constraints not covered by any enforced constraints
146 * will be added as a guard to the graft in create_node_scaled,
147 * even in the eliminated case, the pending constraints
148 * can be considered to have been generated by outer constructs.
149 *
150 * If the user has set an at_each_domain callback, it is called
151 * on the constructed call expression node.
152 */
153static isl_stat add_domain(__isl_take isl_map *executed,
154 __isl_take isl_map *map, struct isl_generate_domain_data *data)
155{
156 isl_ast_build *build;
157 isl_ast_graft *graft;
158 isl_ast_graft_list *list;
159 isl_set *guard, *pending;
160
161 build = isl_ast_build_copy(build: data->build);
162 pending = isl_ast_build_get_pending(build);
163 build = isl_ast_build_replace_pending_by_guard(build, guard: pending);
164
165 guard = isl_map_domain(bmap: isl_map_copy(map));
166 guard = isl_set_compute_divs(set: guard);
167 guard = isl_set_coalesce_preserve(set: guard);
168 guard = isl_set_gist(set: guard, context: isl_ast_build_get_generated(build));
169 guard = isl_ast_build_specialize(build, set: guard);
170
171 graft = isl_ast_graft_alloc_domain(schedule: map, build);
172 graft = at_each_domain(graft, executed, build);
173 isl_ast_build_free(build);
174 isl_map_free(map: executed);
175 graft = isl_ast_graft_add_guard(graft, guard, build: data->build);
176
177 list = isl_ast_graft_list_from_ast_graft(el: graft);
178 data->list = isl_ast_graft_list_concat(list1: data->list, list2: list);
179
180 return isl_stat_ok;
181}
182
183/* Generate an AST for a single domain based on
184 * the inverse schedule "executed" and add it to data->list.
185 *
186 * If there is more than one domain element associated to the current
187 * schedule "time", then we need to continue the generation process
188 * in generate_non_single_valued.
189 * Note that the inverse schedule being single-valued may depend
190 * on constraints that are only available in the original context
191 * domain specified by the user. We therefore first introduce
192 * some of the constraints of data->build->domain. In particular,
193 * we intersect with a single-disjunct approximation of this set.
194 * We perform this approximation to avoid further splitting up
195 * the executed relation, possibly introducing a disjunctive guard
196 * on the statement.
197 *
198 * On the other hand, we only perform the test after having taken the gist
199 * of the domain as the resulting map is the one from which the call
200 * expression is constructed. Using this map to construct the call
201 * expression usually yields simpler results in cases where the original
202 * map is not obviously single-valued.
203 * If the original map is obviously single-valued, then the gist
204 * operation is skipped.
205 *
206 * Because we perform the single-valuedness test on the gisted map,
207 * we may in rare cases fail to recognize that the inverse schedule
208 * is single-valued. This becomes problematic if this happens
209 * from the recursive call through generate_non_single_valued
210 * as we would then end up in an infinite recursion.
211 * We therefore check if we are inside a call to generate_non_single_valued
212 * and revert to the ungisted map if the gisted map turns out not to be
213 * single-valued.
214 *
215 * Otherwise, call add_domain to generate a call expression (with guard) and
216 * to call the at_each_domain callback, if any.
217 */
218static isl_stat generate_domain(__isl_take isl_map *executed, void *user)
219{
220 struct isl_generate_domain_data *data = user;
221 isl_set *domain;
222 isl_map *map = NULL;
223 int empty, sv;
224
225 domain = isl_ast_build_get_domain(build: data->build);
226 domain = isl_set_from_basic_set(bset: isl_set_simple_hull(set: domain));
227 executed = isl_map_intersect_domain(map: executed, set: domain);
228 empty = isl_map_is_empty(map: executed);
229 if (empty < 0)
230 goto error;
231 if (empty) {
232 isl_map_free(map: executed);
233 return isl_stat_ok;
234 }
235
236 sv = isl_map_plain_is_single_valued(map: executed);
237 if (sv < 0)
238 goto error;
239 if (sv)
240 return add_domain(executed, map: isl_map_copy(map: executed), data);
241
242 executed = isl_map_coalesce(map: executed);
243 map = isl_map_copy(map: executed);
244 map = isl_ast_build_compute_gist_map_domain(build: data->build, map);
245 sv = isl_map_is_single_valued(map);
246 if (sv < 0)
247 goto error;
248 if (!sv) {
249 isl_map_free(map);
250 if (data->build->single_valued)
251 map = isl_map_copy(map: executed);
252 else
253 return generate_non_single_valued(executed, data);
254 }
255
256 return add_domain(executed, map, data);
257error:
258 isl_map_free(map);
259 isl_map_free(map: executed);
260 return isl_stat_error;
261}
262
263/* Call build->create_leaf to a create "leaf" node in the AST,
264 * encapsulate the result in an isl_ast_graft and return the result
265 * as a 1-element list.
266 *
267 * Note that the node returned by the user may be an entire tree.
268 *
269 * Since the node itself cannot enforce any constraints, we turn
270 * all pending constraints into guards and add them to the resulting
271 * graft to ensure that they will be generated.
272 *
273 * Before we pass control to the user, we first clear some information
274 * from the build that is (presumbably) only meaningful
275 * for the current code generation.
276 * This includes the create_leaf callback itself, so we make a copy
277 * of the build first.
278 */
279static __isl_give isl_ast_graft_list *call_create_leaf(
280 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
281{
282 isl_set *guard;
283 isl_ast_node *node;
284 isl_ast_graft *graft;
285 isl_ast_build *user_build;
286
287 guard = isl_ast_build_get_pending(build);
288 user_build = isl_ast_build_copy(build);
289 user_build = isl_ast_build_replace_pending_by_guard(build: user_build,
290 guard: isl_set_copy(set: guard));
291 user_build = isl_ast_build_set_executed(build: user_build, executed);
292 user_build = isl_ast_build_clear_local_info(build: user_build);
293 if (!user_build)
294 node = NULL;
295 else
296 node = build->create_leaf(user_build, build->create_leaf_user);
297 graft = isl_ast_graft_alloc(node, build);
298 graft = isl_ast_graft_add_guard(graft, guard, build);
299 isl_ast_build_free(build);
300 return isl_ast_graft_list_from_ast_graft(el: graft);
301}
302
303static __isl_give isl_ast_graft_list *build_ast_from_child(
304 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
305 __isl_take isl_union_map *executed);
306
307/* Generate an AST after having handled the complete schedule
308 * of this call to the code generator or the complete band
309 * if we are generating an AST from a schedule tree.
310 *
311 * If we are inside a band node, then move on to the child of the band.
312 *
313 * If the user has specified a create_leaf callback, control
314 * is passed to the user in call_create_leaf.
315 *
316 * Otherwise, we generate one or more calls for each individual
317 * domain in generate_domain.
318 */
319static __isl_give isl_ast_graft_list *generate_inner_level(
320 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
321{
322 isl_ctx *ctx;
323 struct isl_generate_domain_data data = { build };
324
325 if (!build || !executed)
326 goto error;
327
328 if (isl_ast_build_has_schedule_node(build)) {
329 isl_schedule_node *node;
330 node = isl_ast_build_get_schedule_node(build);
331 build = isl_ast_build_reset_schedule_node(build);
332 return build_ast_from_child(build, node, executed);
333 }
334
335 if (build->create_leaf)
336 return call_create_leaf(executed, build);
337
338 ctx = isl_union_map_get_ctx(umap: executed);
339 data.list = isl_ast_graft_list_alloc(ctx, n: 0);
340 if (isl_union_map_foreach_map(umap: executed, fn: &generate_domain, user: &data) < 0)
341 data.list = isl_ast_graft_list_free(list: data.list);
342
343 if (0)
344error: data.list = NULL;
345 isl_ast_build_free(build);
346 isl_union_map_free(umap: executed);
347 return data.list;
348}
349
350/* Call the before_each_for callback, if requested by the user.
351 */
352static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
353 __isl_keep isl_ast_build *build)
354{
355 isl_id *id;
356
357 if (!node || !build)
358 return isl_ast_node_free(node);
359 if (!build->before_each_for)
360 return node;
361 id = build->before_each_for(build, build->before_each_for_user);
362 node = isl_ast_node_set_annotation(node, annotation: id);
363 return node;
364}
365
366/* Call the after_each_for callback, if requested by the user.
367 */
368static __isl_give isl_ast_graft *after_each_for(__isl_take isl_ast_graft *graft,
369 __isl_keep isl_ast_build *build)
370{
371 if (!graft || !build)
372 return isl_ast_graft_free(graft);
373 if (!build->after_each_for)
374 return graft;
375 graft->node = build->after_each_for(graft->node, build,
376 build->after_each_for_user);
377 if (!graft->node)
378 return isl_ast_graft_free(graft);
379 return graft;
380}
381
382/* Plug in all the know values of the current and outer dimensions
383 * in the domain of "executed". In principle, we only need to plug
384 * in the known value of the current dimension since the values of
385 * outer dimensions have been plugged in already.
386 * However, it turns out to be easier to just plug in all known values.
387 */
388static __isl_give isl_union_map *plug_in_values(
389 __isl_take isl_union_map *executed, __isl_keep isl_ast_build *build)
390{
391 return isl_ast_build_substitute_values_union_map_domain(build,
392 umap: executed);
393}
394
395/* Check if the constraint "c" is a lower bound on dimension "pos",
396 * an upper bound, or independent of dimension "pos".
397 */
398static int constraint_type(isl_constraint *c, int pos)
399{
400 if (isl_constraint_is_lower_bound(constraint: c, type: isl_dim_set, pos))
401 return 1;
402 if (isl_constraint_is_upper_bound(constraint: c, type: isl_dim_set, pos))
403 return 2;
404 return 0;
405}
406
407/* Compare the types of the constraints "a" and "b",
408 * resulting in constraints that are independent of "depth"
409 * to be sorted before the lower bounds on "depth", which in
410 * turn are sorted before the upper bounds on "depth".
411 */
412static int cmp_constraint(__isl_keep isl_constraint *a,
413 __isl_keep isl_constraint *b, void *user)
414{
415 int *depth = user;
416 int t1 = constraint_type(c: a, pos: *depth);
417 int t2 = constraint_type(c: b, pos: *depth);
418
419 return t1 - t2;
420}
421
422/* Extract a lower bound on dimension "pos" from constraint "c".
423 *
424 * If the constraint is of the form
425 *
426 * a x + f(...) >= 0
427 *
428 * then we essentially return
429 *
430 * l = ceil(-f(...)/a)
431 *
432 * However, if the current dimension is strided, then we need to make
433 * sure that the lower bound we construct is of the form
434 *
435 * f + s a
436 *
437 * with f the offset and s the stride.
438 * We therefore compute
439 *
440 * f + s * ceil((l - f)/s)
441 */
442static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
443 int pos, __isl_keep isl_ast_build *build)
444{
445 isl_aff *aff;
446
447 aff = isl_constraint_get_bound(constraint: c, type: isl_dim_set, pos);
448 aff = isl_aff_ceil(aff);
449
450 if (isl_ast_build_has_stride(build, pos)) {
451 isl_aff *offset;
452 isl_val *stride;
453
454 offset = isl_ast_build_get_offset(build, pos);
455 stride = isl_ast_build_get_stride(build, pos);
456
457 aff = isl_aff_sub(aff1: aff, aff2: isl_aff_copy(aff: offset));
458 aff = isl_aff_scale_down_val(aff, v: isl_val_copy(v: stride));
459 aff = isl_aff_ceil(aff);
460 aff = isl_aff_scale_val(aff, v: stride);
461 aff = isl_aff_add(aff1: aff, aff2: offset);
462 }
463
464 aff = isl_ast_build_compute_gist_aff(build, aff);
465
466 return aff;
467}
468
469/* Return the exact lower bound (or upper bound if "upper" is set)
470 * of "domain" as a piecewise affine expression.
471 *
472 * If we are computing a lower bound (of a strided dimension), then
473 * we need to make sure it is of the form
474 *
475 * f + s a
476 *
477 * where f is the offset and s is the stride.
478 * We therefore need to include the stride constraint before computing
479 * the minimum.
480 */
481static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
482 __isl_keep isl_ast_build *build, int upper)
483{
484 isl_set *stride;
485 isl_map *it_map;
486 isl_pw_aff *pa;
487 isl_pw_multi_aff *pma;
488
489 domain = isl_set_copy(set: domain);
490 if (!upper) {
491 stride = isl_ast_build_get_stride_constraint(build);
492 domain = isl_set_intersect(set1: domain, set2: stride);
493 }
494 it_map = isl_ast_build_map_to_iterator(build, set: domain);
495 if (upper)
496 pma = isl_map_lexmax_pw_multi_aff(map: it_map);
497 else
498 pma = isl_map_lexmin_pw_multi_aff(map: it_map);
499 pa = isl_pw_multi_aff_get_pw_aff(pma, pos: 0);
500 isl_pw_multi_aff_free(pma);
501 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
502 pa = isl_pw_aff_coalesce(pa);
503
504 return pa;
505}
506
507/* Callback for sorting the isl_pw_aff_list passed to reduce_list and
508 * remove_redundant_lower_bounds.
509 */
510static int reduce_list_cmp(__isl_keep isl_pw_aff *a, __isl_keep isl_pw_aff *b,
511 void *user)
512{
513 return isl_pw_aff_plain_cmp(pa1: a, pa2: b);
514}
515
516/* Given a list of lower bounds "list", remove those that are redundant
517 * with respect to the other bounds in "list" and the domain of "build".
518 *
519 * We first sort the bounds in the same way as they would be sorted
520 * by set_for_node_expressions so that we can try and remove the last
521 * bounds first.
522 *
523 * For a lower bound to be effective, there needs to be at least
524 * one domain element for which it is larger than all other lower bounds.
525 * For each lower bound we therefore intersect the domain with
526 * the conditions that it is larger than all other bounds and
527 * check whether the result is empty. If so, the bound can be removed.
528 */
529static __isl_give isl_pw_aff_list *remove_redundant_lower_bounds(
530 __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
531{
532 int i, j;
533 isl_size n;
534 isl_set *domain;
535
536 list = isl_pw_aff_list_sort(list, cmp: &reduce_list_cmp, NULL);
537
538 n = isl_pw_aff_list_n_pw_aff(list);
539 if (n < 0)
540 return isl_pw_aff_list_free(list);
541 if (n <= 1)
542 return list;
543
544 domain = isl_ast_build_get_domain(build);
545
546 for (i = n - 1; i >= 0; --i) {
547 isl_pw_aff *pa_i;
548 isl_set *domain_i;
549 int empty;
550
551 domain_i = isl_set_copy(set: domain);
552 pa_i = isl_pw_aff_list_get_pw_aff(list, index: i);
553
554 for (j = 0; j < n; ++j) {
555 isl_pw_aff *pa_j;
556 isl_set *better;
557
558 if (j == i)
559 continue;
560
561 pa_j = isl_pw_aff_list_get_pw_aff(list, index: j);
562 better = isl_pw_aff_gt_set(pwaff1: isl_pw_aff_copy(pwaff: pa_i), pwaff2: pa_j);
563 domain_i = isl_set_intersect(set1: domain_i, set2: better);
564 }
565
566 empty = isl_set_is_empty(set: domain_i);
567
568 isl_set_free(set: domain_i);
569 isl_pw_aff_free(pwaff: pa_i);
570
571 if (empty < 0)
572 goto error;
573 if (!empty)
574 continue;
575 list = isl_pw_aff_list_drop(list, first: i, n: 1);
576 n--;
577 }
578
579 isl_set_free(set: domain);
580
581 return list;
582error:
583 isl_set_free(set: domain);
584 return isl_pw_aff_list_free(list);
585}
586
587/* Extract a lower bound on dimension "pos" from each constraint
588 * in "constraints" and return the list of lower bounds.
589 * If "constraints" has zero elements, then we extract a lower bound
590 * from "domain" instead.
591 *
592 * If the current dimension is strided, then the lower bound
593 * is adjusted by lower_bound to match the stride information.
594 * This modification may make one or more lower bounds redundant
595 * with respect to the other lower bounds. We therefore check
596 * for this condition and remove the redundant lower bounds.
597 */
598static __isl_give isl_pw_aff_list *lower_bounds(
599 __isl_keep isl_constraint_list *constraints, int pos,
600 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
601{
602 isl_ctx *ctx;
603 isl_pw_aff_list *list;
604 int i;
605 isl_size n;
606
607 if (!build)
608 return NULL;
609
610 n = isl_constraint_list_n_constraint(list: constraints);
611 if (n < 0)
612 return NULL;
613 if (n == 0) {
614 isl_pw_aff *pa;
615 pa = exact_bound(domain, build, upper: 0);
616 return isl_pw_aff_list_from_pw_aff(el: pa);
617 }
618
619 ctx = isl_ast_build_get_ctx(build);
620 list = isl_pw_aff_list_alloc(ctx,n);
621
622 for (i = 0; i < n; ++i) {
623 isl_aff *aff;
624 isl_constraint *c;
625
626 c = isl_constraint_list_get_constraint(list: constraints, index: i);
627 aff = lower_bound(c, pos, build);
628 isl_constraint_free(c);
629 list = isl_pw_aff_list_add(list, el: isl_pw_aff_from_aff(aff));
630 }
631
632 if (isl_ast_build_has_stride(build, pos))
633 list = remove_redundant_lower_bounds(list, build);
634
635 return list;
636}
637
638/* Extract an upper bound on dimension "pos" from each constraint
639 * in "constraints" and return the list of upper bounds.
640 * If "constraints" has zero elements, then we extract an upper bound
641 * from "domain" instead.
642 */
643static __isl_give isl_pw_aff_list *upper_bounds(
644 __isl_keep isl_constraint_list *constraints, int pos,
645 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
646{
647 isl_ctx *ctx;
648 isl_pw_aff_list *list;
649 int i;
650 isl_size n;
651
652 n = isl_constraint_list_n_constraint(list: constraints);
653 if (n < 0)
654 return NULL;
655 if (n == 0) {
656 isl_pw_aff *pa;
657 pa = exact_bound(domain, build, upper: 1);
658 return isl_pw_aff_list_from_pw_aff(el: pa);
659 }
660
661 ctx = isl_ast_build_get_ctx(build);
662 list = isl_pw_aff_list_alloc(ctx,n);
663
664 for (i = 0; i < n; ++i) {
665 isl_aff *aff;
666 isl_constraint *c;
667
668 c = isl_constraint_list_get_constraint(list: constraints, index: i);
669 aff = isl_constraint_get_bound(constraint: c, type: isl_dim_set, pos);
670 isl_constraint_free(c);
671 aff = isl_aff_floor(aff);
672 list = isl_pw_aff_list_add(list, el: isl_pw_aff_from_aff(aff));
673 }
674
675 return list;
676}
677
678/* Return an isl_ast_expr that performs the reduction of type "type"
679 * on AST expressions corresponding to the elements in "list".
680 *
681 * The list is assumed to contain at least one element.
682 * If the list contains exactly one element, then the returned isl_ast_expr
683 * simply computes that affine expression.
684 * If the list contains more than one element, then we sort it
685 * using a fairly arbitrary but hopefully reasonably stable order.
686 */
687static __isl_give isl_ast_expr *reduce_list(enum isl_ast_expr_op_type type,
688 __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
689{
690 int i;
691 isl_size n;
692 isl_ctx *ctx;
693 isl_ast_expr *expr;
694
695 n = isl_pw_aff_list_n_pw_aff(list);
696 if (n < 0)
697 return NULL;
698
699 if (n == 1)
700 return isl_ast_build_expr_from_pw_aff_internal(build,
701 pa: isl_pw_aff_list_get_pw_aff(list, index: 0));
702
703 ctx = isl_pw_aff_list_get_ctx(list);
704 expr = isl_ast_expr_alloc_op(ctx, op: type, n_arg: n);
705
706 list = isl_pw_aff_list_copy(list);
707 list = isl_pw_aff_list_sort(list, cmp: &reduce_list_cmp, NULL);
708 if (!list)
709 return isl_ast_expr_free(expr);
710
711 for (i = 0; i < n; ++i) {
712 isl_ast_expr *expr_i;
713
714 expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
715 pa: isl_pw_aff_list_get_pw_aff(list, index: i));
716 expr = isl_ast_expr_op_add_arg(expr, arg: expr_i);
717 }
718
719 isl_pw_aff_list_free(list);
720 return expr;
721}
722
723/* Add guards implied by the "generated constraints",
724 * but not (necessarily) enforced by the generated AST to "guard".
725 * In particular, if there is any stride constraints,
726 * then add the guard implied by those constraints.
727 * If we have generated a degenerate loop, then add the guard
728 * implied by "bounds" on the outer dimensions, i.e., the guard
729 * that ensures that the single value actually exists.
730 * Since there may also be guards implied by a combination
731 * of these constraints, we first combine them before
732 * deriving the implied constraints.
733 */
734static __isl_give isl_set *add_implied_guards(__isl_take isl_set *guard,
735 int degenerate, __isl_keep isl_basic_set *bounds,
736 __isl_keep isl_ast_build *build)
737{
738 isl_size depth;
739 isl_bool has_stride;
740 isl_space *space;
741 isl_set *dom, *set;
742
743 depth = isl_ast_build_get_depth(build);
744 has_stride = isl_ast_build_has_stride(build, pos: depth);
745 if (depth < 0 || has_stride < 0)
746 return isl_set_free(set: guard);
747 if (!has_stride && !degenerate)
748 return guard;
749
750 space = isl_basic_set_get_space(bset: bounds);
751 dom = isl_set_universe(space);
752
753 if (degenerate) {
754 bounds = isl_basic_set_copy(bset: bounds);
755 bounds = isl_basic_set_drop_constraints_not_involving_dims(
756 bset: bounds, type: isl_dim_set, first: depth, n: 1);
757 set = isl_set_from_basic_set(bset: bounds);
758 dom = isl_set_intersect(set1: dom, set2: set);
759 }
760
761 if (has_stride) {
762 set = isl_ast_build_get_stride_constraint(build);
763 dom = isl_set_intersect(set1: dom, set2: set);
764 }
765
766 dom = isl_set_eliminate(set: dom, type: isl_dim_set, first: depth, n: 1);
767 dom = isl_ast_build_compute_gist(build, set: dom);
768 guard = isl_set_intersect(set1: guard, set2: dom);
769
770 return guard;
771}
772
773/* Update "graft" based on "sub_build" for the degenerate case.
774 *
775 * "build" is the build in which graft->node was created
776 * "sub_build" contains information about the current level itself,
777 * including the single value attained.
778 *
779 * We set the initialization part of the for loop to the single
780 * value attained by the current dimension.
781 * The increment and condition are not strictly needed as they are known
782 * to be "1" and "iterator <= value" respectively.
783 */
784static __isl_give isl_ast_graft *refine_degenerate(
785 __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build,
786 __isl_keep isl_ast_build *sub_build)
787{
788 isl_pw_aff *value;
789 isl_ast_expr *init;
790
791 if (!graft || !sub_build)
792 return isl_ast_graft_free(graft);
793
794 value = isl_pw_aff_copy(pwaff: sub_build->value);
795
796 init = isl_ast_build_expr_from_pw_aff_internal(build, pa: value);
797 graft->node = isl_ast_node_for_set_init(node: graft->node, init);
798 if (!graft->node)
799 return isl_ast_graft_free(graft);
800
801 return graft;
802}
803
804/* Return the intersection of constraints in "list" as a set.
805 */
806static __isl_give isl_set *intersect_constraints(
807 __isl_keep isl_constraint_list *list)
808{
809 int i;
810 isl_size n;
811 isl_basic_set *bset;
812
813 n = isl_constraint_list_n_constraint(list);
814 if (n < 0)
815 return NULL;
816 if (n < 1)
817 isl_die(isl_constraint_list_get_ctx(list), isl_error_internal,
818 "expecting at least one constraint", return NULL);
819
820 bset = isl_basic_set_from_constraint(
821 constraint: isl_constraint_list_get_constraint(list, index: 0));
822 for (i = 1; i < n; ++i) {
823 isl_basic_set *bset_i;
824
825 bset_i = isl_basic_set_from_constraint(
826 constraint: isl_constraint_list_get_constraint(list, index: i));
827 bset = isl_basic_set_intersect(bset1: bset, bset2: bset_i);
828 }
829
830 return isl_set_from_basic_set(bset);
831}
832
833/* Compute the constraints on the outer dimensions enforced by
834 * graft->node and add those constraints to graft->enforced,
835 * in case the upper bound is expressed as a set "upper".
836 *
837 * In particular, if l(...) is a lower bound in "lower", and
838 *
839 * -a i + f(...) >= 0 or a i <= f(...)
840 *
841 * is an upper bound ocnstraint on the current dimension i,
842 * then the for loop enforces the constraint
843 *
844 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
845 *
846 * We therefore simply take each lower bound in turn, plug it into
847 * the upper bounds and compute the intersection over all lower bounds.
848 *
849 * If a lower bound is a rational expression, then
850 * isl_basic_set_preimage_multi_aff will force this rational
851 * expression to have only integer values. However, the loop
852 * itself does not enforce this integrality constraint. We therefore
853 * use the ceil of the lower bounds instead of the lower bounds themselves.
854 * Other constraints will make sure that the for loop is only executed
855 * when each of the lower bounds attains an integral value.
856 * In particular, potentially rational values only occur in
857 * lower_bound if the offset is a (seemingly) rational expression,
858 * but then outer conditions will make sure that this rational expression
859 * only attains integer values.
860 */
861static __isl_give isl_ast_graft *set_enforced_from_set(
862 __isl_take isl_ast_graft *graft,
863 __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
864{
865 isl_space *space;
866 isl_basic_set *enforced;
867 isl_pw_multi_aff *pma;
868 int i;
869 isl_size n;
870
871 n = isl_pw_aff_list_n_pw_aff(list: lower);
872 if (!graft || n < 0)
873 return isl_ast_graft_free(graft);
874
875 space = isl_set_get_space(set: upper);
876 enforced = isl_basic_set_universe(space: isl_space_copy(space));
877
878 space = isl_space_map_from_set(space);
879 pma = isl_pw_multi_aff_identity(space);
880
881 for (i = 0; i < n; ++i) {
882 isl_pw_aff *pa;
883 isl_set *enforced_i;
884 isl_basic_set *hull;
885 isl_pw_multi_aff *pma_i;
886
887 pa = isl_pw_aff_list_get_pw_aff(list: lower, index: i);
888 pa = isl_pw_aff_ceil(pwaff: pa);
889 pma_i = isl_pw_multi_aff_copy(pma);
890 pma_i = isl_pw_multi_aff_set_pw_aff(pma: pma_i, pos, pa);
891 enforced_i = isl_set_copy(set: upper);
892 enforced_i = isl_set_preimage_pw_multi_aff(set: enforced_i, pma: pma_i);
893 hull = isl_set_simple_hull(set: enforced_i);
894 enforced = isl_basic_set_intersect(bset1: enforced, bset2: hull);
895 }
896
897 isl_pw_multi_aff_free(pma);
898
899 graft = isl_ast_graft_enforce(graft, enforced);
900
901 return graft;
902}
903
904/* Compute the constraints on the outer dimensions enforced by
905 * graft->node and add those constraints to graft->enforced,
906 * in case the upper bound is expressed as
907 * a list of affine expressions "upper".
908 *
909 * The enforced condition is that each lower bound expression is less
910 * than or equal to each upper bound expression.
911 */
912static __isl_give isl_ast_graft *set_enforced_from_list(
913 __isl_take isl_ast_graft *graft,
914 __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
915{
916 isl_set *cond;
917 isl_basic_set *enforced;
918
919 lower = isl_pw_aff_list_copy(list: lower);
920 upper = isl_pw_aff_list_copy(list: upper);
921 cond = isl_pw_aff_list_le_set(list1: lower, list2: upper);
922 enforced = isl_set_simple_hull(set: cond);
923 graft = isl_ast_graft_enforce(graft, enforced);
924
925 return graft;
926}
927
928/* Does "aff" have a negative constant term?
929 */
930static isl_bool aff_constant_is_negative(__isl_keep isl_set *set,
931 __isl_keep isl_aff *aff, void *user)
932{
933 isl_bool is_neg;
934 isl_val *v;
935
936 v = isl_aff_get_constant_val(aff);
937 is_neg = isl_val_is_neg(v);
938 isl_val_free(v);
939
940 return is_neg;
941}
942
943/* Does "pa" have a negative constant term over its entire domain?
944 */
945static isl_bool pw_aff_constant_is_negative(__isl_keep isl_pw_aff *pa,
946 void *user)
947{
948 return isl_pw_aff_every_piece(pa, test: &aff_constant_is_negative, NULL);
949}
950
951/* Does each element in "list" have a negative constant term?
952 */
953static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
954{
955 return isl_pw_aff_list_every(list, test: &pw_aff_constant_is_negative, NULL);
956}
957
958/* Add 1 to each of the elements in "list", where each of these elements
959 * is defined over the internal schedule space of "build".
960 */
961static __isl_give isl_pw_aff_list *list_add_one(
962 __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
963{
964 int i;
965 isl_size n;
966 isl_space *space;
967 isl_aff *aff;
968 isl_pw_aff *one;
969
970 n = isl_pw_aff_list_n_pw_aff(list);
971 if (n < 0)
972 return isl_pw_aff_list_free(list);
973
974 space = isl_ast_build_get_space(build, internal: 1);
975 aff = isl_aff_zero_on_domain(ls: isl_local_space_from_space(space));
976 aff = isl_aff_add_constant_si(aff, v: 1);
977 one = isl_pw_aff_from_aff(aff);
978
979 for (i = 0; i < n; ++i) {
980 isl_pw_aff *pa;
981 pa = isl_pw_aff_list_get_pw_aff(list, index: i);
982 pa = isl_pw_aff_add(pwaff1: pa, pwaff2: isl_pw_aff_copy(pwaff: one));
983 list = isl_pw_aff_list_set_pw_aff(list, index: i, el: pa);
984 }
985
986 isl_pw_aff_free(pwaff: one);
987
988 return list;
989}
990
991/* Set the condition part of the for node graft->node in case
992 * the upper bound is represented as a list of piecewise affine expressions.
993 *
994 * In particular, set the condition to
995 *
996 * iterator <= min(list of upper bounds)
997 *
998 * If each of the upper bounds has a negative constant term, then
999 * set the condition to
1000 *
1001 * iterator < min(list of (upper bound + 1)s)
1002 *
1003 */
1004static __isl_give isl_ast_graft *set_for_cond_from_list(
1005 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
1006 __isl_keep isl_ast_build *build)
1007{
1008 int neg;
1009 isl_ast_expr *bound, *iterator, *cond;
1010 enum isl_ast_expr_op_type type = isl_ast_expr_op_le;
1011
1012 if (!graft || !list)
1013 return isl_ast_graft_free(graft);
1014
1015 neg = list_constant_is_negative(list);
1016 if (neg < 0)
1017 return isl_ast_graft_free(graft);
1018 list = isl_pw_aff_list_copy(list);
1019 if (neg) {
1020 list = list_add_one(list, build);
1021 type = isl_ast_expr_op_lt;
1022 }
1023
1024 bound = reduce_list(type: isl_ast_expr_op_min, list, build);
1025 iterator = isl_ast_expr_copy(expr: graft->node->u.f.iterator);
1026 cond = isl_ast_expr_alloc_binary(type, expr1: iterator, expr2: bound);
1027 graft->node = isl_ast_node_for_set_cond(node: graft->node, init: cond);
1028
1029 isl_pw_aff_list_free(list);
1030 if (!graft->node)
1031 return isl_ast_graft_free(graft);
1032 return graft;
1033}
1034
1035/* Set the condition part of the for node graft->node in case
1036 * the upper bound is represented as a set.
1037 */
1038static __isl_give isl_ast_graft *set_for_cond_from_set(
1039 __isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
1040 __isl_keep isl_ast_build *build)
1041{
1042 isl_ast_expr *cond;
1043
1044 if (!graft)
1045 return NULL;
1046
1047 cond = isl_ast_build_expr_from_set_internal(build, set: isl_set_copy(set));
1048 graft->node = isl_ast_node_for_set_cond(node: graft->node, init: cond);
1049 if (!graft->node)
1050 return isl_ast_graft_free(graft);
1051 return graft;
1052}
1053
1054/* Construct an isl_ast_expr for the increment (i.e., stride) of
1055 * the current dimension.
1056 */
1057static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
1058{
1059 isl_size depth;
1060 isl_val *v;
1061 isl_ctx *ctx;
1062
1063 depth = isl_ast_build_get_depth(build);
1064 if (depth < 0)
1065 return NULL;
1066 ctx = isl_ast_build_get_ctx(build);
1067
1068 if (!isl_ast_build_has_stride(build, pos: depth))
1069 return isl_ast_expr_alloc_int_si(ctx, i: 1);
1070
1071 v = isl_ast_build_get_stride(build, pos: depth);
1072 return isl_ast_expr_from_val(v);
1073}
1074
1075/* Should we express the loop condition as
1076 *
1077 * iterator <= min(list of upper bounds)
1078 *
1079 * or as a conjunction of constraints?
1080 *
1081 * The first is constructed from a list of upper bounds.
1082 * The second is constructed from a set.
1083 *
1084 * If there are no upper bounds in "constraints", then this could mean
1085 * that "domain" simply doesn't have an upper bound or that we didn't
1086 * pick any upper bound. In the first case, we want to generate the
1087 * loop condition as a(n empty) conjunction of constraints
1088 * In the second case, we will compute
1089 * a single upper bound from "domain" and so we use the list form.
1090 *
1091 * If there are upper bounds in "constraints",
1092 * then we use the list form iff the atomic_upper_bound option is set.
1093 */
1094static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
1095 __isl_keep isl_set *domain, int depth)
1096{
1097 if (n_upper > 0)
1098 return isl_options_get_ast_build_atomic_upper_bound(ctx);
1099 else
1100 return isl_set_dim_has_upper_bound(set: domain, type: isl_dim_set, pos: depth);
1101}
1102
1103/* Fill in the expressions of the for node in graft->node.
1104 *
1105 * In particular,
1106 * - set the initialization part of the loop to the maximum of the lower bounds
1107 * - extract the increment from the stride of the current dimension
1108 * - construct the for condition either based on a list of upper bounds
1109 * or on a set of upper bound constraints.
1110 */
1111static __isl_give isl_ast_graft *set_for_node_expressions(
1112 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
1113 int use_list, __isl_keep isl_pw_aff_list *upper_list,
1114 __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
1115{
1116 isl_ast_expr *init;
1117
1118 if (!graft)
1119 return NULL;
1120
1121 init = reduce_list(type: isl_ast_expr_op_max, list: lower, build);
1122 graft->node = isl_ast_node_for_set_init(node: graft->node, init);
1123 graft->node = isl_ast_node_for_set_inc(node: graft->node, init: for_inc(build));
1124
1125 if (!graft->node)
1126 graft = isl_ast_graft_free(graft);
1127
1128 if (use_list)
1129 graft = set_for_cond_from_list(graft, list: upper_list, build);
1130 else
1131 graft = set_for_cond_from_set(graft, set: upper_set, build);
1132
1133 return graft;
1134}
1135
1136/* Update "graft" based on "bounds" and "domain" for the generic,
1137 * non-degenerate, case.
1138 *
1139 * "c_lower" and "c_upper" contain the lower and upper bounds
1140 * that the loop node should express.
1141 * "domain" is the subset of the intersection of the constraints
1142 * for which some code is executed.
1143 *
1144 * There may be zero lower bounds or zero upper bounds in "constraints"
1145 * in case the list of constraints was created
1146 * based on the atomic option or based on separation with explicit bounds.
1147 * In that case, we use "domain" to derive lower and/or upper bounds.
1148 *
1149 * We first compute a list of one or more lower bounds.
1150 *
1151 * Then we decide if we want to express the condition as
1152 *
1153 * iterator <= min(list of upper bounds)
1154 *
1155 * or as a conjunction of constraints.
1156 *
1157 * The set of enforced constraints is then computed either based on
1158 * a list of upper bounds or on a set of upper bound constraints.
1159 * We do not compute any enforced constraints if we were forced
1160 * to compute a lower or upper bound using exact_bound. The domains
1161 * of the resulting expressions may imply some bounds on outer dimensions
1162 * that we do not want to appear in the enforced constraints since
1163 * they are not actually enforced by the corresponding code.
1164 *
1165 * Finally, we fill in the expressions of the for node.
1166 */
1167static __isl_give isl_ast_graft *refine_generic_bounds(
1168 __isl_take isl_ast_graft *graft,
1169 __isl_take isl_constraint_list *c_lower,
1170 __isl_take isl_constraint_list *c_upper,
1171 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1172{
1173 isl_size depth;
1174 isl_ctx *ctx;
1175 isl_pw_aff_list *lower;
1176 int use_list;
1177 isl_set *upper_set = NULL;
1178 isl_pw_aff_list *upper_list = NULL;
1179 isl_size n_lower, n_upper;
1180
1181 depth = isl_ast_build_get_depth(build);
1182 if (!graft || !c_lower || !c_upper || depth < 0)
1183 goto error;
1184
1185 ctx = isl_ast_graft_get_ctx(graft);
1186
1187 n_lower = isl_constraint_list_n_constraint(list: c_lower);
1188 n_upper = isl_constraint_list_n_constraint(list: c_upper);
1189 if (n_lower < 0 || n_upper < 0)
1190 goto error;
1191
1192 use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
1193
1194 lower = lower_bounds(constraints: c_lower, pos: depth, domain, build);
1195
1196 if (use_list)
1197 upper_list = upper_bounds(constraints: c_upper, pos: depth, domain, build);
1198 else if (n_upper > 0)
1199 upper_set = intersect_constraints(list: c_upper);
1200 else
1201 upper_set = isl_set_universe(space: isl_set_get_space(set: domain));
1202
1203 if (n_lower == 0 || n_upper == 0)
1204 ;
1205 else if (use_list)
1206 graft = set_enforced_from_list(graft, lower, upper: upper_list);
1207 else
1208 graft = set_enforced_from_set(graft, lower, pos: depth, upper: upper_set);
1209
1210 graft = set_for_node_expressions(graft, lower, use_list, upper_list,
1211 upper_set, build);
1212
1213 isl_pw_aff_list_free(list: lower);
1214 isl_pw_aff_list_free(list: upper_list);
1215 isl_set_free(set: upper_set);
1216 isl_constraint_list_free(list: c_lower);
1217 isl_constraint_list_free(list: c_upper);
1218
1219 return graft;
1220error:
1221 isl_constraint_list_free(list: c_lower);
1222 isl_constraint_list_free(list: c_upper);
1223 return isl_ast_graft_free(graft);
1224}
1225
1226/* Internal data structure used inside count_constraints to keep
1227 * track of the number of constraints that are independent of dimension "pos",
1228 * the lower bounds in "pos" and the upper bounds in "pos".
1229 */
1230struct isl_ast_count_constraints_data {
1231 int pos;
1232
1233 int n_indep;
1234 int n_lower;
1235 int n_upper;
1236};
1237
1238/* Increment data->n_indep, data->lower or data->upper depending
1239 * on whether "c" is independent of dimensions data->pos,
1240 * a lower bound or an upper bound.
1241 */
1242static isl_stat count_constraints(__isl_take isl_constraint *c, void *user)
1243{
1244 struct isl_ast_count_constraints_data *data = user;
1245
1246 if (isl_constraint_is_lower_bound(constraint: c, type: isl_dim_set, pos: data->pos))
1247 data->n_lower++;
1248 else if (isl_constraint_is_upper_bound(constraint: c, type: isl_dim_set, pos: data->pos))
1249 data->n_upper++;
1250 else
1251 data->n_indep++;
1252
1253 isl_constraint_free(c);
1254
1255 return isl_stat_ok;
1256}
1257
1258/* Update "graft" based on "bounds" and "domain" for the generic,
1259 * non-degenerate, case.
1260 *
1261 * "list" respresent the list of bounds that need to be encoded by
1262 * the for loop. Only the constraints that involve the iterator
1263 * are relevant here. The other constraints are taken care of by
1264 * the caller and are included in the generated constraints of "build".
1265 * "domain" is the subset of the intersection of the constraints
1266 * for which some code is executed.
1267 * "build" is the build in which graft->node was created.
1268 *
1269 * We separate lower bounds, upper bounds and constraints that
1270 * are independent of the loop iterator.
1271 *
1272 * The actual for loop bounds are generated in refine_generic_bounds.
1273 */
1274static __isl_give isl_ast_graft *refine_generic_split(
1275 __isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list,
1276 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1277{
1278 struct isl_ast_count_constraints_data data;
1279 isl_size depth;
1280 isl_constraint_list *lower;
1281 isl_constraint_list *upper;
1282
1283 depth = isl_ast_build_get_depth(build);
1284 if (depth < 0)
1285 list = isl_constraint_list_free(list);
1286 if (!list)
1287 return isl_ast_graft_free(graft);
1288
1289 data.pos = depth;
1290
1291 list = isl_constraint_list_sort(list, cmp: &cmp_constraint, user: &data.pos);
1292 if (!list)
1293 return isl_ast_graft_free(graft);
1294
1295 data.n_indep = data.n_lower = data.n_upper = 0;
1296 if (isl_constraint_list_foreach(list, fn: &count_constraints, user: &data) < 0) {
1297 isl_constraint_list_free(list);
1298 return isl_ast_graft_free(graft);
1299 }
1300
1301 lower = isl_constraint_list_drop(list, first: 0, n: data.n_indep);
1302 upper = isl_constraint_list_copy(list: lower);
1303 lower = isl_constraint_list_drop(list: lower, first: data.n_lower, n: data.n_upper);
1304 upper = isl_constraint_list_drop(list: upper, first: 0, n: data.n_lower);
1305
1306 return refine_generic_bounds(graft, c_lower: lower, c_upper: upper, domain, build);
1307}
1308
1309/* Update "graft" based on "bounds" and "domain" for the generic,
1310 * non-degenerate, case.
1311 *
1312 * "bounds" respresent the bounds that need to be encoded by
1313 * the for loop (or a guard around the for loop).
1314 * "domain" is the subset of "bounds" for which some code is executed.
1315 * "build" is the build in which graft->node was created.
1316 *
1317 * We break up "bounds" into a list of constraints and continue with
1318 * refine_generic_split.
1319 */
1320static __isl_give isl_ast_graft *refine_generic(
1321 __isl_take isl_ast_graft *graft,
1322 __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1323 __isl_keep isl_ast_build *build)
1324{
1325 isl_constraint_list *list;
1326
1327 if (!build || !graft)
1328 return isl_ast_graft_free(graft);
1329
1330 list = isl_basic_set_get_constraint_list(bset: bounds);
1331
1332 graft = refine_generic_split(graft, list, domain, build);
1333
1334 return graft;
1335}
1336
1337/* Create a for node for the current level.
1338 *
1339 * Mark the for node degenerate if "degenerate" is set.
1340 */
1341static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1342 int degenerate)
1343{
1344 isl_size depth;
1345 isl_id *id;
1346 isl_ast_node *node;
1347
1348 depth = isl_ast_build_get_depth(build);
1349 if (depth < 0)
1350 return NULL;
1351
1352 id = isl_ast_build_get_iterator_id(build, pos: depth);
1353 node = isl_ast_node_alloc_for(id);
1354 if (degenerate)
1355 node = isl_ast_node_for_mark_degenerate(node);
1356
1357 return node;
1358}
1359
1360/* If the ast_build_exploit_nested_bounds option is set, then return
1361 * the constraints enforced by all elements in "list".
1362 * Otherwise, return the universe.
1363 */
1364static __isl_give isl_basic_set *extract_shared_enforced(
1365 __isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build)
1366{
1367 isl_ctx *ctx;
1368 isl_space *space;
1369
1370 if (!list)
1371 return NULL;
1372
1373 ctx = isl_ast_graft_list_get_ctx(list);
1374 if (isl_options_get_ast_build_exploit_nested_bounds(ctx))
1375 return isl_ast_graft_list_extract_shared_enforced(list, build);
1376
1377 space = isl_ast_build_get_space(build, internal: 1);
1378 return isl_basic_set_universe(space);
1379}
1380
1381/* Return the pending constraints of "build" that are not already taken
1382 * care of (by a combination of "enforced" and the generated constraints
1383 * of "build").
1384 */
1385static __isl_give isl_set *extract_pending(__isl_keep isl_ast_build *build,
1386 __isl_keep isl_basic_set *enforced)
1387{
1388 isl_set *guard, *context;
1389
1390 guard = isl_ast_build_get_pending(build);
1391 context = isl_set_from_basic_set(bset: isl_basic_set_copy(bset: enforced));
1392 context = isl_set_intersect(set1: context,
1393 set2: isl_ast_build_get_generated(build));
1394 return isl_set_gist(set: guard, context);
1395}
1396
1397/* Create an AST node for the current dimension based on
1398 * the schedule domain "bounds" and return the node encapsulated
1399 * in an isl_ast_graft.
1400 *
1401 * "executed" is the current inverse schedule, taking into account
1402 * the bounds in "bounds"
1403 * "domain" is the domain of "executed", with inner dimensions projected out.
1404 * It may be a strict subset of "bounds" in case "bounds" was created
1405 * based on the atomic option or based on separation with explicit bounds.
1406 *
1407 * "domain" may satisfy additional equalities that result
1408 * from intersecting "executed" with "bounds" in add_node.
1409 * It may also satisfy some global constraints that were dropped out because
1410 * we performed separation with explicit bounds.
1411 * The very first step is then to copy these constraints to "bounds".
1412 *
1413 * Since we may be calling before_each_for and after_each_for
1414 * callbacks, we record the current inverse schedule in the build.
1415 *
1416 * We consider three builds,
1417 * "build" is the one in which the current level is created,
1418 * "body_build" is the build in which the next level is created,
1419 * "sub_build" is essentially the same as "body_build", except that
1420 * the depth has not been increased yet.
1421 *
1422 * "build" already contains information (in strides and offsets)
1423 * about the strides at the current level, but this information is not
1424 * reflected in the build->domain.
1425 * We first add this information and the "bounds" to the sub_build->domain.
1426 * isl_ast_build_set_loop_bounds adds the stride information and
1427 * checks whether the current dimension attains
1428 * only a single value and whether this single value can be represented using
1429 * a single affine expression.
1430 * In the first case, the current level is considered "degenerate".
1431 * In the second, sub-case, the current level is considered "eliminated".
1432 * Eliminated levels don't need to be reflected in the AST since we can
1433 * simply plug in the affine expression. For degenerate, but non-eliminated,
1434 * levels, we do introduce a for node, but mark is as degenerate so that
1435 * it can be printed as an assignment of the single value to the loop
1436 * "iterator".
1437 *
1438 * If the current level is eliminated, we explicitly plug in the value
1439 * for the current level found by isl_ast_build_set_loop_bounds in the
1440 * inverse schedule. This ensures that if we are working on a slice
1441 * of the domain based on information available in the inverse schedule
1442 * and the build domain, that then this information is also reflected
1443 * in the inverse schedule. This operation also eliminates the current
1444 * dimension from the inverse schedule making sure no inner dimensions depend
1445 * on the current dimension. Otherwise, we create a for node, marking
1446 * it degenerate if appropriate. The initial for node is still incomplete
1447 * and will be completed in either refine_degenerate or refine_generic.
1448 *
1449 * We then generate a sequence of grafts for the next level,
1450 * create a surrounding graft for the current level and insert
1451 * the for node we created (if the current level is not eliminated).
1452 * Before creating a graft for the current level, we first extract
1453 * hoistable constraints from the child guards and combine them
1454 * with the pending constraints in the build. These constraints
1455 * are used to simplify the child guards and then added to the guard
1456 * of the current graft to ensure that they will be generated.
1457 * If the hoisted guard is a disjunction, then we use it directly
1458 * to gist the guards on the children before intersect it with the
1459 * pending constraints. We do so because this disjunction is typically
1460 * identical to the guards on the children such that these guards
1461 * can be effectively removed completely. After the intersection,
1462 * the gist operation would have a harder time figuring this out.
1463 *
1464 * Finally, we set the bounds of the for loop in either
1465 * refine_degenerate or refine_generic.
1466 * We do so in a context where the pending constraints of the build
1467 * have been replaced by the guard of the current graft.
1468 */
1469static __isl_give isl_ast_graft *create_node_scaled(
1470 __isl_take isl_union_map *executed,
1471 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1472 __isl_take isl_ast_build *build)
1473{
1474 isl_size depth;
1475 int degenerate;
1476 isl_bool eliminated;
1477 isl_size n;
1478 isl_basic_set *hull;
1479 isl_basic_set *enforced;
1480 isl_set *guard, *hoisted;
1481 isl_ast_node *node = NULL;
1482 isl_ast_graft *graft;
1483 isl_ast_graft_list *children;
1484 isl_ast_build *sub_build;
1485 isl_ast_build *body_build;
1486
1487 domain = isl_ast_build_eliminate_divs(build, set: domain);
1488 domain = isl_set_detect_equalities(set: domain);
1489 hull = isl_set_unshifted_simple_hull(set: isl_set_copy(set: domain));
1490 bounds = isl_basic_set_intersect(bset1: bounds, bset2: hull);
1491 build = isl_ast_build_set_executed(build, executed: isl_union_map_copy(umap: executed));
1492
1493 depth = isl_ast_build_get_depth(build);
1494 if (depth < 0)
1495 build = isl_ast_build_free(build);
1496 sub_build = isl_ast_build_copy(build);
1497 bounds = isl_basic_set_remove_redundancies(bset: bounds);
1498 bounds = isl_ast_build_specialize_basic_set(build: sub_build, bset: bounds);
1499 sub_build = isl_ast_build_set_loop_bounds(build: sub_build,
1500 bounds: isl_basic_set_copy(bset: bounds));
1501 degenerate = isl_ast_build_has_value(build: sub_build);
1502 eliminated = isl_ast_build_has_affine_value(build: sub_build, pos: depth);
1503 if (degenerate < 0 || eliminated < 0)
1504 executed = isl_union_map_free(umap: executed);
1505 if (!degenerate)
1506 bounds = isl_ast_build_compute_gist_basic_set(build, bset: bounds);
1507 sub_build = isl_ast_build_set_pending_generated(build: sub_build,
1508 bounds: isl_basic_set_copy(bset: bounds));
1509 if (eliminated)
1510 executed = plug_in_values(executed, build: sub_build);
1511 else
1512 node = create_for(build, degenerate);
1513
1514 body_build = isl_ast_build_copy(build: sub_build);
1515 body_build = isl_ast_build_increase_depth(build: body_build);
1516 if (!eliminated)
1517 node = before_each_for(node, build: body_build);
1518 children = generate_next_level(executed,
1519 build: isl_ast_build_copy(build: body_build));
1520
1521 enforced = extract_shared_enforced(list: children, build);
1522 guard = extract_pending(build: sub_build, enforced);
1523 hoisted = isl_ast_graft_list_extract_hoistable_guard(list: children, build);
1524 n = isl_set_n_basic_set(set: hoisted);
1525 if (n < 0)
1526 children = isl_ast_graft_list_free(list: children);
1527 if (n > 1)
1528 children = isl_ast_graft_list_gist_guards(list: children,
1529 context: isl_set_copy(set: hoisted));
1530 guard = isl_set_intersect(set1: guard, set2: hoisted);
1531 if (!eliminated)
1532 guard = add_implied_guards(guard, degenerate, bounds, build);
1533
1534 graft = isl_ast_graft_alloc_from_children(list: children,
1535 guard: isl_set_copy(set: guard), enforced, build, sub_build);
1536
1537 if (!eliminated) {
1538 isl_ast_build *for_build;
1539
1540 graft = isl_ast_graft_insert_for(graft, node);
1541 for_build = isl_ast_build_copy(build);
1542 for_build = isl_ast_build_replace_pending_by_guard(build: for_build,
1543 guard: isl_set_copy(set: guard));
1544 if (degenerate)
1545 graft = refine_degenerate(graft, build: for_build, sub_build);
1546 else
1547 graft = refine_generic(graft, bounds,
1548 domain, build: for_build);
1549 isl_ast_build_free(build: for_build);
1550 }
1551 isl_set_free(set: guard);
1552 if (!eliminated)
1553 graft = after_each_for(graft, build: body_build);
1554
1555 isl_ast_build_free(build: body_build);
1556 isl_ast_build_free(build: sub_build);
1557 isl_ast_build_free(build);
1558 isl_basic_set_free(bset: bounds);
1559 isl_set_free(set: domain);
1560
1561 return graft;
1562}
1563
1564/* Internal data structure for checking if all constraints involving
1565 * the input dimension "depth" are such that the other coefficients
1566 * are multiples of "m", reducing "m" if they are not.
1567 * If "m" is reduced all the way down to "1", then the check has failed
1568 * and we break out of the iteration.
1569 */
1570struct isl_check_scaled_data {
1571 int depth;
1572 isl_val *m;
1573};
1574
1575/* If constraint "c" involves the input dimension data->depth,
1576 * then make sure that all the other coefficients are multiples of data->m,
1577 * reducing data->m if needed.
1578 * Break out of the iteration if data->m has become equal to "1".
1579 */
1580static isl_stat constraint_check_scaled(__isl_take isl_constraint *c,
1581 void *user)
1582{
1583 struct isl_check_scaled_data *data = user;
1584 int i, j;
1585 isl_size n;
1586 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1587 isl_dim_div };
1588
1589 if (!isl_constraint_involves_dims(constraint: c, type: isl_dim_in, first: data->depth, n: 1)) {
1590 isl_constraint_free(c);
1591 return isl_stat_ok;
1592 }
1593
1594 for (i = 0; i < 4; ++i) {
1595 n = isl_constraint_dim(constraint: c, type: t[i]);
1596 if (n < 0)
1597 break;
1598 for (j = 0; j < n; ++j) {
1599 isl_val *d;
1600
1601 if (t[i] == isl_dim_in && j == data->depth)
1602 continue;
1603 if (!isl_constraint_involves_dims(constraint: c, type: t[i], first: j, n: 1))
1604 continue;
1605 d = isl_constraint_get_coefficient_val(constraint: c, type: t[i], pos: j);
1606 data->m = isl_val_gcd(v1: data->m, v2: d);
1607 if (isl_val_is_one(v: data->m))
1608 break;
1609 }
1610 if (j < n)
1611 break;
1612 }
1613
1614 isl_constraint_free(c);
1615
1616 return i < 4 ? isl_stat_error : isl_stat_ok;
1617}
1618
1619/* For each constraint of "bmap" that involves the input dimension data->depth,
1620 * make sure that all the other coefficients are multiples of data->m,
1621 * reducing data->m if needed.
1622 * Break out of the iteration if data->m has become equal to "1".
1623 */
1624static isl_stat basic_map_check_scaled(__isl_take isl_basic_map *bmap,
1625 void *user)
1626{
1627 isl_stat r;
1628
1629 r = isl_basic_map_foreach_constraint(bmap,
1630 fn: &constraint_check_scaled, user);
1631 isl_basic_map_free(bmap);
1632
1633 return r;
1634}
1635
1636/* For each constraint of "map" that involves the input dimension data->depth,
1637 * make sure that all the other coefficients are multiples of data->m,
1638 * reducing data->m if needed.
1639 * Break out of the iteration if data->m has become equal to "1".
1640 */
1641static isl_stat map_check_scaled(__isl_take isl_map *map, void *user)
1642{
1643 isl_stat r;
1644
1645 r = isl_map_foreach_basic_map(map, fn: &basic_map_check_scaled, user);
1646 isl_map_free(map);
1647
1648 return r;
1649}
1650
1651/* Create an AST node for the current dimension based on
1652 * the schedule domain "bounds" and return the node encapsulated
1653 * in an isl_ast_graft.
1654 *
1655 * "executed" is the current inverse schedule, taking into account
1656 * the bounds in "bounds"
1657 * "domain" is the domain of "executed", with inner dimensions projected out.
1658 *
1659 *
1660 * Before moving on to the actual AST node construction in create_node_scaled,
1661 * we first check if the current dimension is strided and if we can scale
1662 * down this stride. Note that we only do this if the ast_build_scale_strides
1663 * option is set.
1664 *
1665 * In particular, let the current dimension take on values
1666 *
1667 * f + s a
1668 *
1669 * with a an integer. We check if we can find an integer m that (obviously)
1670 * divides both f and s.
1671 *
1672 * If so, we check if the current dimension only appears in constraints
1673 * where the coefficients of the other variables are multiples of m.
1674 * We perform this extra check to avoid the risk of introducing
1675 * divisions by scaling down the current dimension.
1676 *
1677 * If so, we scale the current dimension down by a factor of m.
1678 * That is, we plug in
1679 *
1680 * i = m i' (1)
1681 *
1682 * Note that in principle we could always scale down strided loops
1683 * by plugging in
1684 *
1685 * i = f + s i'
1686 *
1687 * but this may result in i' taking on larger values than the original i,
1688 * due to the shift by "f".
1689 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1690 */
1691static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1692 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1693 __isl_take isl_ast_build *build)
1694{
1695 struct isl_check_scaled_data data;
1696 isl_size depth;
1697 isl_ctx *ctx;
1698 isl_aff *offset;
1699 isl_val *d;
1700
1701 ctx = isl_ast_build_get_ctx(build);
1702 if (!isl_options_get_ast_build_scale_strides(ctx))
1703 return create_node_scaled(executed, bounds, domain, build);
1704
1705 depth = isl_ast_build_get_depth(build);
1706 if (depth < 0)
1707 build = isl_ast_build_free(build);
1708 data.depth = depth;
1709 if (!isl_ast_build_has_stride(build, pos: data.depth))
1710 return create_node_scaled(executed, bounds, domain, build);
1711
1712 offset = isl_ast_build_get_offset(build, pos: data.depth);
1713 data.m = isl_ast_build_get_stride(build, pos: data.depth);
1714 if (!data.m)
1715 offset = isl_aff_free(aff: offset);
1716 offset = isl_aff_scale_down_val(aff: offset, v: isl_val_copy(v: data.m));
1717 d = isl_aff_get_denominator_val(aff: offset);
1718 if (!d)
1719 executed = isl_union_map_free(umap: executed);
1720
1721 if (executed && isl_val_is_divisible_by(v1: data.m, v2: d))
1722 data.m = isl_val_div(v1: data.m, v2: d);
1723 else {
1724 data.m = isl_val_set_si(v: data.m, i: 1);
1725 isl_val_free(v: d);
1726 }
1727
1728 if (!isl_val_is_one(v: data.m)) {
1729 if (isl_union_map_foreach_map(umap: executed, fn: &map_check_scaled,
1730 user: &data) < 0 &&
1731 !isl_val_is_one(v: data.m))
1732 executed = isl_union_map_free(umap: executed);
1733 }
1734
1735 if (!isl_val_is_one(v: data.m)) {
1736 isl_space *space;
1737 isl_multi_aff *ma;
1738 isl_aff *aff;
1739 isl_map *map;
1740 isl_union_map *umap;
1741
1742 space = isl_ast_build_get_space(build, internal: 1);
1743 space = isl_space_map_from_set(space);
1744 ma = isl_multi_aff_identity(space);
1745 aff = isl_multi_aff_get_aff(multi: ma, pos: data.depth);
1746 aff = isl_aff_scale_val(aff, v: isl_val_copy(v: data.m));
1747 ma = isl_multi_aff_set_aff(multi: ma, pos: data.depth, el: aff);
1748
1749 bounds = isl_basic_set_preimage_multi_aff(bset: bounds,
1750 ma: isl_multi_aff_copy(multi: ma));
1751 domain = isl_set_preimage_multi_aff(set: domain,
1752 ma: isl_multi_aff_copy(multi: ma));
1753 map = isl_map_reverse(map: isl_map_from_multi_aff(maff: ma));
1754 umap = isl_union_map_from_map(map);
1755 executed = isl_union_map_apply_domain(umap1: executed,
1756 umap2: isl_union_map_copy(umap));
1757 build = isl_ast_build_scale_down(build, m: isl_val_copy(v: data.m),
1758 umap);
1759 }
1760 isl_aff_free(aff: offset);
1761 isl_val_free(v: data.m);
1762
1763 return create_node_scaled(executed, bounds, domain, build);
1764}
1765
1766/* Add the basic set to the list that "user" points to.
1767 */
1768static isl_stat collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1769{
1770 isl_basic_set_list **list = user;
1771
1772 *list = isl_basic_set_list_add(list: *list, el: bset);
1773
1774 return isl_stat_ok;
1775}
1776
1777/* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1778 */
1779static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1780 __isl_take isl_set *set)
1781{
1782 isl_size n;
1783 isl_ctx *ctx;
1784 isl_basic_set_list *list;
1785
1786 n = isl_set_n_basic_set(set);
1787 if (n < 0)
1788 set = isl_set_free(set);
1789 if (!set)
1790 return NULL;
1791
1792 ctx = isl_set_get_ctx(set);
1793
1794 list = isl_basic_set_list_alloc(ctx, n);
1795 if (isl_set_foreach_basic_set(set, fn: &collect_basic_set, user: &list) < 0)
1796 list = isl_basic_set_list_free(list);
1797
1798 isl_set_free(set);
1799 return list;
1800}
1801
1802/* Generate code for the schedule domain "bounds"
1803 * and add the result to "list".
1804 *
1805 * We mainly detect strides here and check if the bounds do not
1806 * conflict with the current build domain
1807 * and then pass over control to create_node.
1808 *
1809 * "bounds" reflects the bounds on the current dimension and possibly
1810 * some extra conditions on outer dimensions.
1811 * It does not, however, include any divs involving the current dimension,
1812 * so it does not capture any stride constraints.
1813 * We therefore need to compute that part of the schedule domain that
1814 * intersects with "bounds" and derive the strides from the result.
1815 */
1816static __isl_give isl_ast_graft_list *add_node(
1817 __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1818 __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1819{
1820 isl_ast_graft *graft;
1821 isl_set *domain = NULL;
1822 isl_union_set *uset;
1823 int empty, disjoint;
1824
1825 uset = isl_union_set_from_basic_set(bset: isl_basic_set_copy(bset: bounds));
1826 executed = isl_union_map_intersect_domain(umap: executed, uset);
1827 empty = isl_union_map_is_empty(umap: executed);
1828 if (empty < 0)
1829 goto error;
1830 if (empty)
1831 goto done;
1832
1833 uset = isl_union_map_domain(umap: isl_union_map_copy(umap: executed));
1834 domain = isl_set_from_union_set(uset);
1835 domain = isl_ast_build_specialize(build, set: domain);
1836
1837 domain = isl_set_compute_divs(set: domain);
1838 domain = isl_ast_build_eliminate_inner(build, set: domain);
1839 disjoint = isl_set_is_disjoint(set1: domain, set2: build->domain);
1840 if (disjoint < 0)
1841 goto error;
1842 if (disjoint)
1843 goto done;
1844
1845 build = isl_ast_build_detect_strides(build, set: isl_set_copy(set: domain));
1846
1847 graft = create_node(executed, bounds, domain,
1848 build: isl_ast_build_copy(build));
1849 list = isl_ast_graft_list_add(list, el: graft);
1850 isl_ast_build_free(build);
1851 return list;
1852error:
1853 list = isl_ast_graft_list_free(list);
1854done:
1855 isl_set_free(set: domain);
1856 isl_basic_set_free(bset: bounds);
1857 isl_union_map_free(umap: executed);
1858 isl_ast_build_free(build);
1859 return list;
1860}
1861
1862/* Does any element of i follow or coincide with any element of j
1863 * at the current depth for equal values of the outer dimensions?
1864 */
1865static isl_bool domain_follows_at_depth(__isl_keep isl_basic_set *i,
1866 __isl_keep isl_basic_set *j, void *user)
1867{
1868 int depth = *(int *) user;
1869 isl_basic_map *test;
1870 isl_bool empty;
1871 int l;
1872
1873 test = isl_basic_map_from_domain_and_range(domain: isl_basic_set_copy(bset: i),
1874 range: isl_basic_set_copy(bset: j));
1875 for (l = 0; l < depth; ++l)
1876 test = isl_basic_map_equate(bmap: test, type1: isl_dim_in, pos1: l,
1877 type2: isl_dim_out, pos2: l);
1878 test = isl_basic_map_order_ge(bmap: test, type1: isl_dim_in, pos1: depth,
1879 type2: isl_dim_out, pos2: depth);
1880 empty = isl_basic_map_is_empty(bmap: test);
1881 isl_basic_map_free(bmap: test);
1882
1883 return isl_bool_not(b: empty);
1884}
1885
1886/* Split up each element of "list" into a part that is related to "bset"
1887 * according to "gt" and a part that is not.
1888 * Return a list that consist of "bset" and all the pieces.
1889 */
1890static __isl_give isl_basic_set_list *add_split_on(
1891 __isl_take isl_basic_set_list *list, __isl_take isl_basic_set *bset,
1892 __isl_keep isl_basic_map *gt)
1893{
1894 int i;
1895 isl_size n;
1896 isl_basic_set_list *res;
1897
1898 n = isl_basic_set_list_n_basic_set(list);
1899 if (n < 0)
1900 bset = isl_basic_set_free(bset);
1901
1902 gt = isl_basic_map_copy(bmap: gt);
1903 gt = isl_basic_map_intersect_domain(bmap: gt, bset: isl_basic_set_copy(bset));
1904 res = isl_basic_set_list_from_basic_set(el: bset);
1905 for (i = 0; res && i < n; ++i) {
1906 isl_basic_set *bset;
1907 isl_set *set1, *set2;
1908 isl_basic_map *bmap;
1909 int empty;
1910
1911 bset = isl_basic_set_list_get_basic_set(list, index: i);
1912 bmap = isl_basic_map_copy(bmap: gt);
1913 bmap = isl_basic_map_intersect_range(bmap, bset);
1914 bset = isl_basic_map_range(bmap);
1915 empty = isl_basic_set_is_empty(bset);
1916 if (empty < 0)
1917 res = isl_basic_set_list_free(list: res);
1918 if (empty) {
1919 isl_basic_set_free(bset);
1920 bset = isl_basic_set_list_get_basic_set(list, index: i);
1921 res = isl_basic_set_list_add(list: res, el: bset);
1922 continue;
1923 }
1924
1925 res = isl_basic_set_list_add(list: res, el: isl_basic_set_copy(bset));
1926 set1 = isl_set_from_basic_set(bset);
1927 bset = isl_basic_set_list_get_basic_set(list, index: i);
1928 set2 = isl_set_from_basic_set(bset);
1929 set1 = isl_set_subtract(set1: set2, set2: set1);
1930 set1 = isl_set_make_disjoint(set: set1);
1931
1932 res = isl_basic_set_list_concat(list1: res,
1933 list2: isl_basic_set_list_from_set(set: set1));
1934 }
1935 isl_basic_map_free(bmap: gt);
1936 isl_basic_set_list_free(list);
1937 return res;
1938}
1939
1940static __isl_give isl_ast_graft_list *generate_sorted_domains(
1941 __isl_keep isl_basic_set_list *domain_list,
1942 __isl_keep isl_union_map *executed,
1943 __isl_keep isl_ast_build *build);
1944
1945/* Internal data structure for add_nodes.
1946 *
1947 * "executed" and "build" are extra arguments to be passed to add_node.
1948 * "list" collects the results.
1949 */
1950struct isl_add_nodes_data {
1951 isl_union_map *executed;
1952 isl_ast_build *build;
1953
1954 isl_ast_graft_list *list;
1955};
1956
1957/* Generate code for the schedule domains in "scc"
1958 * and add the results to "list".
1959 *
1960 * The domains in "scc" form a strongly connected component in the ordering.
1961 * If the number of domains in "scc" is larger than 1, then this means
1962 * that we cannot determine a valid ordering for the domains in the component.
1963 * This should be fairly rare because the individual domains
1964 * have been made disjoint first.
1965 * The problem is that the domains may be integrally disjoint but not
1966 * rationally disjoint. For example, we may have domains
1967 *
1968 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1969 *
1970 * These two domains have an empty intersection, but their rational
1971 * relaxations do intersect. It is impossible to order these domains
1972 * in the second dimension because the first should be ordered before
1973 * the second for outer dimension equal to 0, while it should be ordered
1974 * after for outer dimension equal to 1.
1975 *
1976 * This may happen in particular in case of unrolling since the domain
1977 * of each slice is replaced by its simple hull.
1978 *
1979 * For each basic set i in "scc" and for each of the following basic sets j,
1980 * we split off that part of the basic set i that shares the outer dimensions
1981 * with j and lies before j in the current dimension.
1982 * We collect all the pieces in a new list that replaces "scc".
1983 *
1984 * While the elements in "scc" should be disjoint, we double-check
1985 * this property to avoid running into an infinite recursion in case
1986 * they intersect due to some internal error.
1987 */
1988static isl_stat add_nodes(__isl_take isl_basic_set_list *scc, void *user)
1989{
1990 struct isl_add_nodes_data *data = user;
1991 int i;
1992 isl_size depth;
1993 isl_size n;
1994 isl_basic_set *bset, *first;
1995 isl_basic_set_list *list;
1996 isl_space *space;
1997 isl_basic_map *gt;
1998
1999 n = isl_basic_set_list_n_basic_set(list: scc);
2000 if (n < 0)
2001 goto error;
2002 bset = isl_basic_set_list_get_basic_set(list: scc, index: 0);
2003 if (n == 1) {
2004 isl_basic_set_list_free(list: scc);
2005 data->list = add_node(list: data->list,
2006 executed: isl_union_map_copy(umap: data->executed), bounds: bset,
2007 build: isl_ast_build_copy(build: data->build));
2008 return data->list ? isl_stat_ok : isl_stat_error;
2009 }
2010
2011 depth = isl_ast_build_get_depth(build: data->build);
2012 if (depth < 0)
2013 bset = isl_basic_set_free(bset);
2014 space = isl_basic_set_get_space(bset);
2015 space = isl_space_map_from_set(space);
2016 gt = isl_basic_map_universe(space);
2017 for (i = 0; i < depth; ++i)
2018 gt = isl_basic_map_equate(bmap: gt, type1: isl_dim_in, pos1: i, type2: isl_dim_out, pos2: i);
2019 gt = isl_basic_map_order_gt(bmap: gt, type1: isl_dim_in, pos1: depth, type2: isl_dim_out, pos2: depth);
2020
2021 first = isl_basic_set_copy(bset);
2022 list = isl_basic_set_list_from_basic_set(el: bset);
2023 for (i = 1; i < n; ++i) {
2024 int disjoint;
2025
2026 bset = isl_basic_set_list_get_basic_set(list: scc, index: i);
2027
2028 disjoint = isl_basic_set_is_disjoint(bset1: bset, bset2: first);
2029 if (disjoint < 0)
2030 list = isl_basic_set_list_free(list);
2031 else if (!disjoint)
2032 isl_die(isl_basic_set_list_get_ctx(scc),
2033 isl_error_internal,
2034 "basic sets in scc are assumed to be disjoint",
2035 list = isl_basic_set_list_free(list));
2036
2037 list = add_split_on(list, bset, gt);
2038 }
2039 isl_basic_set_free(bset: first);
2040 isl_basic_map_free(bmap: gt);
2041 isl_basic_set_list_free(list: scc);
2042 scc = list;
2043 data->list = isl_ast_graft_list_concat(list1: data->list,
2044 list2: generate_sorted_domains(domain_list: scc, executed: data->executed, build: data->build));
2045 isl_basic_set_list_free(list: scc);
2046
2047 return data->list ? isl_stat_ok : isl_stat_error;
2048error:
2049 isl_basic_set_list_free(list: scc);
2050 return isl_stat_error;
2051}
2052
2053/* Sort the domains in "domain_list" according to the execution order
2054 * at the current depth (for equal values of the outer dimensions),
2055 * generate code for each of them, collecting the results in a list.
2056 * If no code is generated (because the intersection of the inverse schedule
2057 * with the domains turns out to be empty), then an empty list is returned.
2058 *
2059 * The caller is responsible for ensuring that the basic sets in "domain_list"
2060 * are pair-wise disjoint. It can, however, in principle happen that
2061 * two basic sets should be ordered one way for one value of the outer
2062 * dimensions and the other way for some other value of the outer dimensions.
2063 * We therefore play safe and look for strongly connected components.
2064 * The function add_nodes takes care of handling non-trivial components.
2065 */
2066static __isl_give isl_ast_graft_list *generate_sorted_domains(
2067 __isl_keep isl_basic_set_list *domain_list,
2068 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2069{
2070 isl_ctx *ctx;
2071 struct isl_add_nodes_data data;
2072 isl_size depth;
2073 isl_size n;
2074
2075 n = isl_basic_set_list_n_basic_set(list: domain_list);
2076 if (n < 0)
2077 return NULL;
2078
2079 ctx = isl_basic_set_list_get_ctx(list: domain_list);
2080 data.list = isl_ast_graft_list_alloc(ctx, n);
2081 if (n == 0)
2082 return data.list;
2083 if (n == 1)
2084 return add_node(list: data.list, executed: isl_union_map_copy(umap: executed),
2085 bounds: isl_basic_set_list_get_basic_set(list: domain_list, index: 0),
2086 build: isl_ast_build_copy(build));
2087
2088 depth = isl_ast_build_get_depth(build);
2089 data.executed = executed;
2090 data.build = build;
2091 if (depth < 0 || isl_basic_set_list_foreach_scc(list: domain_list,
2092 follows: &domain_follows_at_depth, follows_user: &depth,
2093 fn: &add_nodes, fn_user: &data) < 0)
2094 data.list = isl_ast_graft_list_free(list: data.list);
2095
2096 return data.list;
2097}
2098
2099/* Do i and j share any values for the outer dimensions?
2100 */
2101static isl_bool shared_outer(__isl_keep isl_basic_set *i,
2102 __isl_keep isl_basic_set *j, void *user)
2103{
2104 int depth = *(int *) user;
2105 isl_basic_map *test;
2106 isl_bool empty;
2107 int l;
2108
2109 test = isl_basic_map_from_domain_and_range(domain: isl_basic_set_copy(bset: i),
2110 range: isl_basic_set_copy(bset: j));
2111 for (l = 0; l < depth; ++l)
2112 test = isl_basic_map_equate(bmap: test, type1: isl_dim_in, pos1: l,
2113 type2: isl_dim_out, pos2: l);
2114 empty = isl_basic_map_is_empty(bmap: test);
2115 isl_basic_map_free(bmap: test);
2116
2117 return isl_bool_not(b: empty);
2118}
2119
2120/* Internal data structure for generate_sorted_domains_wrap.
2121 *
2122 * "n" is the total number of basic sets
2123 * "executed" and "build" are extra arguments to be passed
2124 * to generate_sorted_domains.
2125 *
2126 * "single" is set to 1 by generate_sorted_domains_wrap if there
2127 * is only a single component.
2128 * "list" collects the results.
2129 */
2130struct isl_ast_generate_parallel_domains_data {
2131 isl_size n;
2132 isl_union_map *executed;
2133 isl_ast_build *build;
2134
2135 int single;
2136 isl_ast_graft_list *list;
2137};
2138
2139/* Call generate_sorted_domains on "scc", fuse the result into a list
2140 * with either zero or one graft and collect the these single element
2141 * lists into data->list.
2142 *
2143 * If there is only one component, i.e., if the number of basic sets
2144 * in the current component is equal to the total number of basic sets,
2145 * then data->single is set to 1 and the result of generate_sorted_domains
2146 * is not fused.
2147 */
2148static isl_stat generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc,
2149 void *user)
2150{
2151 struct isl_ast_generate_parallel_domains_data *data = user;
2152 isl_ast_graft_list *list;
2153 isl_size n;
2154
2155 n = isl_basic_set_list_n_basic_set(list: scc);
2156 if (n < 0)
2157 scc = isl_basic_set_list_free(list: scc);
2158 list = generate_sorted_domains(domain_list: scc, executed: data->executed, build: data->build);
2159 data->single = n == data->n;
2160 if (!data->single)
2161 list = isl_ast_graft_list_fuse(children: list, build: data->build);
2162 if (!data->list)
2163 data->list = list;
2164 else
2165 data->list = isl_ast_graft_list_concat(list1: data->list, list2: list);
2166
2167 isl_basic_set_list_free(list: scc);
2168 if (!data->list)
2169 return isl_stat_error;
2170
2171 return isl_stat_ok;
2172}
2173
2174/* Look for any (weakly connected) components in the "domain_list"
2175 * of domains that share some values of the outer dimensions.
2176 * That is, domains in different components do not share any values
2177 * of the outer dimensions. This means that these components
2178 * can be freely reordered.
2179 * Within each of the components, we sort the domains according
2180 * to the execution order at the current depth.
2181 *
2182 * If there is more than one component, then generate_sorted_domains_wrap
2183 * fuses the result of each call to generate_sorted_domains
2184 * into a list with either zero or one graft and collects these (at most)
2185 * single element lists into a bigger list. This means that the elements of the
2186 * final list can be freely reordered. In particular, we sort them
2187 * according to an arbitrary but fixed ordering to ease merging of
2188 * graft lists from different components.
2189 */
2190static __isl_give isl_ast_graft_list *generate_parallel_domains(
2191 __isl_keep isl_basic_set_list *domain_list,
2192 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2193{
2194 isl_size depth;
2195 struct isl_ast_generate_parallel_domains_data data;
2196
2197 data.n = isl_basic_set_list_n_basic_set(list: domain_list);
2198 if (data.n < 0)
2199 return NULL;
2200
2201 if (data.n <= 1)
2202 return generate_sorted_domains(domain_list, executed, build);
2203
2204 depth = isl_ast_build_get_depth(build);
2205 if (depth < 0)
2206 return NULL;
2207 data.list = NULL;
2208 data.executed = executed;
2209 data.build = build;
2210 data.single = 0;
2211 if (isl_basic_set_list_foreach_scc(list: domain_list, follows: &shared_outer, follows_user: &depth,
2212 fn: &generate_sorted_domains_wrap,
2213 fn_user: &data) < 0)
2214 data.list = isl_ast_graft_list_free(list: data.list);
2215
2216 if (!data.single)
2217 data.list = isl_ast_graft_list_sort_guard(list: data.list);
2218
2219 return data.list;
2220}
2221
2222/* Internal data for separate_domain.
2223 *
2224 * "explicit" is set if we only want to use explicit bounds.
2225 *
2226 * "domain" collects the separated domains.
2227 */
2228struct isl_separate_domain_data {
2229 isl_ast_build *build;
2230 int explicit;
2231 isl_set *domain;
2232};
2233
2234/* Extract implicit bounds on the current dimension for the executed "map".
2235 *
2236 * The domain of "map" may involve inner dimensions, so we
2237 * need to eliminate them.
2238 */
2239static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
2240 __isl_keep isl_ast_build *build)
2241{
2242 isl_set *domain;
2243
2244 domain = isl_map_domain(bmap: map);
2245 domain = isl_ast_build_eliminate(build, domain);
2246
2247 return domain;
2248}
2249
2250/* Extract explicit bounds on the current dimension for the executed "map".
2251 *
2252 * Rather than eliminating the inner dimensions as in implicit_bounds,
2253 * we simply drop any constraints involving those inner dimensions.
2254 * The idea is that most bounds that are implied by constraints on the
2255 * inner dimensions will be enforced by for loops and not by explicit guards.
2256 * There is then no need to separate along those bounds.
2257 */
2258static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
2259 __isl_keep isl_ast_build *build)
2260{
2261 isl_set *domain;
2262 isl_size depth;
2263 isl_size dim;
2264
2265 depth = isl_ast_build_get_depth(build);
2266 dim = isl_map_dim(map, type: isl_dim_out);
2267 if (depth < 0 || dim < 0)
2268 return isl_map_domain(bmap: isl_map_free(map));
2269 map = isl_map_drop_constraints_involving_dims(map, type: isl_dim_out, first: 0, n: dim);
2270
2271 domain = isl_map_domain(bmap: map);
2272 dim = isl_set_dim(set: domain, type: isl_dim_set);
2273 domain = isl_set_detect_equalities(set: domain);
2274 domain = isl_set_drop_constraints_involving_dims(set: domain,
2275 type: isl_dim_set, first: depth + 1, n: dim - (depth + 1));
2276 domain = isl_set_remove_divs_involving_dims(set: domain,
2277 type: isl_dim_set, first: depth, n: 1);
2278 domain = isl_set_remove_unknown_divs(set: domain);
2279
2280 return domain;
2281}
2282
2283/* Split data->domain into pieces that intersect with the range of "map"
2284 * and pieces that do not intersect with the range of "map"
2285 * and then add that part of the range of "map" that does not intersect
2286 * with data->domain.
2287 */
2288static isl_stat separate_domain(__isl_take isl_map *map, void *user)
2289{
2290 struct isl_separate_domain_data *data = user;
2291 isl_set *domain;
2292 isl_set *d1, *d2;
2293
2294 if (data->explicit)
2295 domain = explicit_bounds(map, build: data->build);
2296 else
2297 domain = implicit_bounds(map, build: data->build);
2298
2299 domain = isl_set_coalesce(set: domain);
2300 domain = isl_set_make_disjoint(set: domain);
2301 d1 = isl_set_subtract(set1: isl_set_copy(set: domain), set2: isl_set_copy(set: data->domain));
2302 d2 = isl_set_subtract(set1: isl_set_copy(set: data->domain), set2: isl_set_copy(set: domain));
2303 data->domain = isl_set_intersect(set1: data->domain, set2: domain);
2304 data->domain = isl_set_union(set1: data->domain, set2: d1);
2305 data->domain = isl_set_union(set1: data->domain, set2: d2);
2306
2307 return isl_stat_ok;
2308}
2309
2310/* Separate the schedule domains of "executed".
2311 *
2312 * That is, break up the domain of "executed" into basic sets,
2313 * such that for each basic set S, every element in S is associated with
2314 * the same domain spaces.
2315 *
2316 * "space" is the (single) domain space of "executed".
2317 */
2318static __isl_give isl_set *separate_schedule_domains(
2319 __isl_take isl_space *space, __isl_take isl_union_map *executed,
2320 __isl_keep isl_ast_build *build)
2321{
2322 struct isl_separate_domain_data data = { build };
2323 isl_ctx *ctx;
2324
2325 ctx = isl_ast_build_get_ctx(build);
2326 data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
2327 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
2328 data.domain = isl_set_empty(space);
2329 if (isl_union_map_foreach_map(umap: executed, fn: &separate_domain, user: &data) < 0)
2330 data.domain = isl_set_free(set: data.domain);
2331
2332 isl_union_map_free(umap: executed);
2333 return data.domain;
2334}
2335
2336/* Temporary data used during the search for a lower bound for unrolling.
2337 *
2338 * "build" is the build in which the unrolling will be performed
2339 * "domain" is the original set for which to find a lower bound
2340 * "depth" is the dimension for which to find a lower boudn
2341 * "expansion" is the expansion that needs to be applied to "domain"
2342 * in the unrolling that will be performed
2343 *
2344 * "lower" is the best lower bound found so far. It is NULL if we have not
2345 * found any yet.
2346 * "n" is the corresponding size. If lower is NULL, then the value of n
2347 * is undefined.
2348 * "n_div" is the maximal number of integer divisions in the first
2349 * unrolled iteration (after expansion). It is set to -1 if it hasn't
2350 * been computed yet.
2351 */
2352struct isl_find_unroll_data {
2353 isl_ast_build *build;
2354 isl_set *domain;
2355 int depth;
2356 isl_basic_map *expansion;
2357
2358 isl_aff *lower;
2359 int *n;
2360 int n_div;
2361};
2362
2363/* Return the constraint
2364 *
2365 * i_"depth" = aff + offset
2366 */
2367static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff,
2368 int offset)
2369{
2370 aff = isl_aff_copy(aff);
2371 aff = isl_aff_add_coefficient_si(aff, type: isl_dim_in, pos: depth, v: -1);
2372 aff = isl_aff_add_constant_si(aff, v: offset);
2373 return isl_equality_from_aff(aff);
2374}
2375
2376/* Update *user to the number of integer divisions in the first element
2377 * of "ma", if it is larger than the current value.
2378 */
2379static isl_stat update_n_div(__isl_take isl_set *set,
2380 __isl_take isl_multi_aff *ma, void *user)
2381{
2382 isl_aff *aff;
2383 int *n = user;
2384 isl_size n_div;
2385
2386 aff = isl_multi_aff_get_aff(multi: ma, pos: 0);
2387 n_div = isl_aff_dim(aff, type: isl_dim_div);
2388 isl_aff_free(aff);
2389 isl_multi_aff_free(multi: ma);
2390 isl_set_free(set);
2391
2392 if (n_div > *n)
2393 *n = n_div;
2394
2395 return n_div >= 0 ? isl_stat_ok : isl_stat_error;
2396}
2397
2398/* Get the number of integer divisions in the expression for the iterator
2399 * value at the first slice in the unrolling based on lower bound "lower",
2400 * taking into account the expansion that needs to be performed on this slice.
2401 */
2402static int get_expanded_n_div(struct isl_find_unroll_data *data,
2403 __isl_keep isl_aff *lower)
2404{
2405 isl_constraint *c;
2406 isl_set *set;
2407 isl_map *it_map, *expansion;
2408 isl_pw_multi_aff *pma;
2409 int n;
2410
2411 c = at_offset(depth: data->depth, aff: lower, offset: 0);
2412 set = isl_set_copy(set: data->domain);
2413 set = isl_set_add_constraint(set, constraint: c);
2414 expansion = isl_map_from_basic_map(bmap: isl_basic_map_copy(bmap: data->expansion));
2415 set = isl_set_apply(set, map: expansion);
2416 it_map = isl_ast_build_map_to_iterator(build: data->build, set);
2417 pma = isl_pw_multi_aff_from_map(map: it_map);
2418 n = 0;
2419 if (isl_pw_multi_aff_foreach_piece(pma, fn: &update_n_div, user: &n) < 0)
2420 n = -1;
2421 isl_pw_multi_aff_free(pma);
2422
2423 return n;
2424}
2425
2426/* Is the lower bound "lower" with corresponding iteration count "n"
2427 * better than the one stored in "data"?
2428 * If there is no upper bound on the iteration count ("n" is infinity) or
2429 * if the count is too large, then we cannot use this lower bound.
2430 * Otherwise, if there was no previous lower bound or
2431 * if the iteration count of the new lower bound is smaller than
2432 * the iteration count of the previous lower bound, then we consider
2433 * the new lower bound to be better.
2434 * If the iteration count is the same, then compare the number
2435 * of integer divisions that would be needed to express
2436 * the iterator value at the first slice in the unrolling
2437 * according to the lower bound. If we end up computing this
2438 * number, then store the lowest value in data->n_div.
2439 */
2440static int is_better_lower_bound(struct isl_find_unroll_data *data,
2441 __isl_keep isl_aff *lower, __isl_keep isl_val *n)
2442{
2443 int cmp;
2444 int n_div;
2445
2446 if (!n)
2447 return -1;
2448 if (isl_val_is_infty(v: n))
2449 return 0;
2450 if (isl_val_cmp_si(v: n, INT_MAX) > 0)
2451 return 0;
2452 if (!data->lower)
2453 return 1;
2454 cmp = isl_val_cmp_si(v: n, i: *data->n);
2455 if (cmp < 0)
2456 return 1;
2457 if (cmp > 0)
2458 return 0;
2459 if (data->n_div < 0)
2460 data->n_div = get_expanded_n_div(data, lower: data->lower);
2461 if (data->n_div < 0)
2462 return -1;
2463 if (data->n_div == 0)
2464 return 0;
2465 n_div = get_expanded_n_div(data, lower);
2466 if (n_div < 0)
2467 return -1;
2468 if (n_div >= data->n_div)
2469 return 0;
2470 data->n_div = n_div;
2471
2472 return 1;
2473}
2474
2475/* Check if we can use "c" as a lower bound and if it is better than
2476 * any previously found lower bound.
2477 *
2478 * If "c" does not involve the dimension at the current depth,
2479 * then we cannot use it.
2480 * Otherwise, let "c" be of the form
2481 *
2482 * i >= f(j)/a
2483 *
2484 * We compute the maximal value of
2485 *
2486 * -ceil(f(j)/a)) + i + 1
2487 *
2488 * over the domain. If there is such a value "n", then we know
2489 *
2490 * -ceil(f(j)/a)) + i + 1 <= n
2491 *
2492 * or
2493 *
2494 * i < ceil(f(j)/a)) + n
2495 *
2496 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2497 * We just need to check if we have found any lower bound before and
2498 * if the new lower bound is better (smaller n or fewer integer divisions)
2499 * than the previously found lower bounds.
2500 */
2501static isl_stat update_unrolling_lower_bound(struct isl_find_unroll_data *data,
2502 __isl_keep isl_constraint *c)
2503{
2504 isl_aff *aff, *lower;
2505 isl_val *max;
2506 int better;
2507
2508 if (!isl_constraint_is_lower_bound(constraint: c, type: isl_dim_set, pos: data->depth))
2509 return isl_stat_ok;
2510
2511 lower = isl_constraint_get_bound(constraint: c, type: isl_dim_set, pos: data->depth);
2512 lower = isl_aff_ceil(aff: lower);
2513 aff = isl_aff_copy(aff: lower);
2514 aff = isl_aff_neg(aff);
2515 aff = isl_aff_add_coefficient_si(aff, type: isl_dim_in, pos: data->depth, v: 1);
2516 aff = isl_aff_add_constant_si(aff, v: 1);
2517 max = isl_set_max_val(set: data->domain, obj: aff);
2518 isl_aff_free(aff);
2519
2520 better = is_better_lower_bound(data, lower, n: max);
2521 if (better < 0 || !better) {
2522 isl_val_free(v: max);
2523 isl_aff_free(aff: lower);
2524 return better < 0 ? isl_stat_error : isl_stat_ok;
2525 }
2526
2527 isl_aff_free(aff: data->lower);
2528 data->lower = lower;
2529 *data->n = isl_val_get_num_si(v: max);
2530 isl_val_free(v: max);
2531
2532 return isl_stat_ok;
2533}
2534
2535/* Check if we can use "c" as a lower bound and if it is better than
2536 * any previously found lower bound.
2537 */
2538static isl_stat constraint_find_unroll(__isl_take isl_constraint *c, void *user)
2539{
2540 struct isl_find_unroll_data *data;
2541 isl_stat r;
2542
2543 data = (struct isl_find_unroll_data *) user;
2544 r = update_unrolling_lower_bound(data, c);
2545 isl_constraint_free(c);
2546
2547 return r;
2548}
2549
2550/* Look for a lower bound l(i) on the dimension at "depth"
2551 * and a size n such that "domain" is a subset of
2552 *
2553 * { [i] : l(i) <= i_d < l(i) + n }
2554 *
2555 * where d is "depth" and l(i) depends only on earlier dimensions.
2556 * Furthermore, try and find a lower bound such that n is as small as possible.
2557 * In particular, "n" needs to be finite.
2558 * "build" is the build in which the unrolling will be performed.
2559 * "expansion" is the expansion that needs to be applied to "domain"
2560 * in the unrolling that will be performed.
2561 *
2562 * Inner dimensions have been eliminated from "domain" by the caller.
2563 *
2564 * We first construct a collection of lower bounds on the input set
2565 * by computing its simple hull. We then iterate through them,
2566 * discarding those that we cannot use (either because they do not
2567 * involve the dimension at "depth" or because they have no corresponding
2568 * upper bound, meaning that "n" would be unbounded) and pick out the
2569 * best from the remaining ones.
2570 *
2571 * If we cannot find a suitable lower bound, then we consider that
2572 * to be an error.
2573 */
2574static __isl_give isl_aff *find_unroll_lower_bound(
2575 __isl_keep isl_ast_build *build, __isl_keep isl_set *domain,
2576 int depth, __isl_keep isl_basic_map *expansion, int *n)
2577{
2578 struct isl_find_unroll_data data =
2579 { build, domain, depth, expansion, NULL, n, -1 };
2580 isl_basic_set *hull;
2581
2582 hull = isl_set_simple_hull(set: isl_set_copy(set: domain));
2583
2584 if (isl_basic_set_foreach_constraint(bset: hull,
2585 fn: &constraint_find_unroll, user: &data) < 0)
2586 goto error;
2587
2588 isl_basic_set_free(bset: hull);
2589
2590 if (!data.lower)
2591 isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2592 "cannot find lower bound for unrolling", return NULL);
2593
2594 return data.lower;
2595error:
2596 isl_basic_set_free(bset: hull);
2597 return isl_aff_free(aff: data.lower);
2598}
2599
2600/* Call "fn" on each iteration of the current dimension of "domain".
2601 * If "init" is not NULL, then it is called with the number of
2602 * iterations before any call to "fn".
2603 * Return -1 on failure.
2604 *
2605 * Since we are going to be iterating over the individual values,
2606 * we first check if there are any strides on the current dimension.
2607 * If there is, we rewrite the current dimension i as
2608 *
2609 * i = stride i' + offset
2610 *
2611 * and then iterate over individual values of i' instead.
2612 *
2613 * We then look for a lower bound on i' and a size such that the domain
2614 * is a subset of
2615 *
2616 * { [j,i'] : l(j) <= i' < l(j) + n }
2617 *
2618 * and then take slices of the domain at values of i'
2619 * between l(j) and l(j) + n - 1.
2620 *
2621 * We compute the unshifted simple hull of each slice to ensure that
2622 * we have a single basic set per offset. The slicing constraint
2623 * may get simplified away before the unshifted simple hull is taken
2624 * and may therefore in some rare cases disappear from the result.
2625 * We therefore explicitly add the constraint back after computing
2626 * the unshifted simple hull to ensure that the basic sets
2627 * remain disjoint. The constraints that are dropped by taking the hull
2628 * will be taken into account at the next level, as in the case of the
2629 * atomic option.
2630 *
2631 * Finally, we map i' back to i and call "fn".
2632 */
2633static int foreach_iteration(__isl_take isl_set *domain,
2634 __isl_keep isl_ast_build *build, int (*init)(int n, void *user),
2635 int (*fn)(__isl_take isl_basic_set *bset, void *user), void *user)
2636{
2637 int i, n;
2638 isl_bool empty;
2639 isl_size depth;
2640 isl_multi_aff *expansion;
2641 isl_basic_map *bmap;
2642 isl_aff *lower = NULL;
2643 isl_ast_build *stride_build;
2644
2645 depth = isl_ast_build_get_depth(build);
2646 if (depth < 0)
2647 domain = isl_set_free(set: domain);
2648
2649 domain = isl_ast_build_eliminate_inner(build, set: domain);
2650 domain = isl_set_intersect(set1: domain, set2: isl_ast_build_get_domain(build));
2651 stride_build = isl_ast_build_copy(build);
2652 stride_build = isl_ast_build_detect_strides(build: stride_build,
2653 set: isl_set_copy(set: domain));
2654 expansion = isl_ast_build_get_stride_expansion(build: stride_build);
2655
2656 domain = isl_set_preimage_multi_aff(set: domain,
2657 ma: isl_multi_aff_copy(multi: expansion));
2658 domain = isl_ast_build_eliminate_divs(build: stride_build, set: domain);
2659 isl_ast_build_free(build: stride_build);
2660
2661 bmap = isl_basic_map_from_multi_aff(maff: expansion);
2662
2663 empty = isl_set_is_empty(set: domain);
2664 if (empty < 0) {
2665 n = -1;
2666 } else if (empty) {
2667 n = 0;
2668 } else {
2669 lower = find_unroll_lower_bound(build, domain, depth, expansion: bmap, n: &n);
2670 if (!lower)
2671 n = -1;
2672 }
2673 if (n >= 0 && init && init(n, user) < 0)
2674 n = -1;
2675 for (i = 0; i < n; ++i) {
2676 isl_set *set;
2677 isl_basic_set *bset;
2678 isl_constraint *slice;
2679
2680 slice = at_offset(depth, aff: lower, offset: i);
2681 set = isl_set_copy(set: domain);
2682 set = isl_set_add_constraint(set, constraint: isl_constraint_copy(c: slice));
2683 bset = isl_set_unshifted_simple_hull(set);
2684 bset = isl_basic_set_add_constraint(bset, constraint: slice);
2685 bset = isl_basic_set_apply(bset, bmap: isl_basic_map_copy(bmap));
2686
2687 if (fn(bset, user) < 0)
2688 break;
2689 }
2690
2691 isl_aff_free(aff: lower);
2692 isl_set_free(set: domain);
2693 isl_basic_map_free(bmap);
2694
2695 return n < 0 || i < n ? -1 : 0;
2696}
2697
2698/* Data structure for storing the results and the intermediate objects
2699 * of compute_domains.
2700 *
2701 * "list" is the main result of the function and contains a list
2702 * of disjoint basic sets for which code should be generated.
2703 *
2704 * "executed" and "build" are inputs to compute_domains.
2705 * "schedule_domain" is the domain of "executed".
2706 *
2707 * "option" contains the domains at the current depth that should by
2708 * atomic, separated or unrolled. These domains are as specified by
2709 * the user, except that inner dimensions have been eliminated and
2710 * that they have been made pair-wise disjoint.
2711 *
2712 * "sep_class" contains the user-specified split into separation classes
2713 * specialized to the current depth.
2714 * "done" contains the union of the separation domains that have already
2715 * been handled.
2716 */
2717struct isl_codegen_domains {
2718 isl_basic_set_list *list;
2719
2720 isl_union_map *executed;
2721 isl_ast_build *build;
2722 isl_set *schedule_domain;
2723
2724 isl_set *option[4];
2725
2726 isl_map *sep_class;
2727 isl_set *done;
2728};
2729
2730/* Internal data structure for do_unroll.
2731 *
2732 * "domains" stores the results of compute_domains.
2733 * "class_domain" is the original class domain passed to do_unroll.
2734 * "unroll_domain" collects the unrolled iterations.
2735 */
2736struct isl_ast_unroll_data {
2737 struct isl_codegen_domains *domains;
2738 isl_set *class_domain;
2739 isl_set *unroll_domain;
2740};
2741
2742/* Given an iteration of an unrolled domain represented by "bset",
2743 * add it to data->domains->list.
2744 * Since we may have dropped some constraints, we intersect with
2745 * the class domain again to ensure that each element in the list
2746 * is disjoint from the other class domains.
2747 */
2748static int do_unroll_iteration(__isl_take isl_basic_set *bset, void *user)
2749{
2750 struct isl_ast_unroll_data *data = user;
2751 isl_set *set;
2752 isl_basic_set_list *list;
2753
2754 set = isl_set_from_basic_set(bset);
2755 data->unroll_domain = isl_set_union(set1: data->unroll_domain,
2756 set2: isl_set_copy(set));
2757 set = isl_set_intersect(set1: set, set2: isl_set_copy(set: data->class_domain));
2758 set = isl_set_make_disjoint(set);
2759 list = isl_basic_set_list_from_set(set);
2760 data->domains->list = isl_basic_set_list_concat(list1: data->domains->list,
2761 list2: list);
2762
2763 return 0;
2764}
2765
2766/* Extend domains->list with a list of basic sets, one for each value
2767 * of the current dimension in "domain" and remove the corresponding
2768 * sets from the class domain. Return the updated class domain.
2769 * The divs that involve the current dimension have not been projected out
2770 * from this domain.
2771 *
2772 * We call foreach_iteration to iterate over the individual values and
2773 * in do_unroll_iteration we collect the individual basic sets in
2774 * domains->list and their union in data->unroll_domain, which is then
2775 * used to update the class domain.
2776 */
2777static __isl_give isl_set *do_unroll(struct isl_codegen_domains *domains,
2778 __isl_take isl_set *domain, __isl_take isl_set *class_domain)
2779{
2780 struct isl_ast_unroll_data data;
2781
2782 if (!domain)
2783 return isl_set_free(set: class_domain);
2784 if (!class_domain)
2785 return isl_set_free(set: domain);
2786
2787 data.domains = domains;
2788 data.class_domain = class_domain;
2789 data.unroll_domain = isl_set_empty(space: isl_set_get_space(set: domain));
2790
2791 if (foreach_iteration(domain, build: domains->build, NULL,
2792 fn: &do_unroll_iteration, user: &data) < 0)
2793 data.unroll_domain = isl_set_free(set: data.unroll_domain);
2794
2795 class_domain = isl_set_subtract(set1: class_domain, set2: data.unroll_domain);
2796
2797 return class_domain;
2798}
2799
2800/* Add domains to domains->list for each individual value of the current
2801 * dimension, for that part of the schedule domain that lies in the
2802 * intersection of the option domain and the class domain.
2803 * Remove the corresponding sets from the class domain and
2804 * return the updated class domain.
2805 *
2806 * We first break up the unroll option domain into individual pieces
2807 * and then handle each of them separately. The unroll option domain
2808 * has been made disjoint in compute_domains_init_options,
2809 *
2810 * Note that we actively want to combine different pieces of the
2811 * schedule domain that have the same value at the current dimension.
2812 * We therefore need to break up the unroll option domain before
2813 * intersecting with class and schedule domain, hoping that the
2814 * unroll option domain specified by the user is relatively simple.
2815 */
2816static __isl_give isl_set *compute_unroll_domains(
2817 struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
2818{
2819 isl_set *unroll_domain;
2820 isl_basic_set_list *unroll_list;
2821 int i;
2822 isl_size n;
2823 isl_bool empty;
2824
2825 empty = isl_set_is_empty(set: domains->option[isl_ast_loop_unroll]);
2826 if (empty < 0)
2827 return isl_set_free(set: class_domain);
2828 if (empty)
2829 return class_domain;
2830
2831 unroll_domain = isl_set_copy(set: domains->option[isl_ast_loop_unroll]);
2832 unroll_list = isl_basic_set_list_from_set(set: unroll_domain);
2833
2834 n = isl_basic_set_list_n_basic_set(list: unroll_list);
2835 if (n < 0)
2836 class_domain = isl_set_free(set: class_domain);
2837 for (i = 0; i < n; ++i) {
2838 isl_basic_set *bset;
2839
2840 bset = isl_basic_set_list_get_basic_set(list: unroll_list, index: i);
2841 unroll_domain = isl_set_from_basic_set(bset);
2842 unroll_domain = isl_set_intersect(set1: unroll_domain,
2843 set2: isl_set_copy(set: class_domain));
2844 unroll_domain = isl_set_intersect(set1: unroll_domain,
2845 set2: isl_set_copy(set: domains->schedule_domain));
2846
2847 empty = isl_set_is_empty(set: unroll_domain);
2848 if (empty >= 0 && empty) {
2849 isl_set_free(set: unroll_domain);
2850 continue;
2851 }
2852
2853 class_domain = do_unroll(domains, domain: unroll_domain, class_domain);
2854 }
2855
2856 isl_basic_set_list_free(list: unroll_list);
2857
2858 return class_domain;
2859}
2860
2861/* Try and construct a single basic set that includes the intersection of
2862 * the schedule domain, the atomic option domain and the class domain.
2863 * Add the resulting basic set(s) to domains->list and remove them
2864 * from class_domain. Return the updated class domain.
2865 *
2866 * We construct a single domain rather than trying to combine
2867 * the schedule domains of individual domains because we are working
2868 * within a single component so that non-overlapping schedule domains
2869 * should already have been separated.
2870 * We do however need to make sure that this single domains is a subset
2871 * of the class domain so that it would not intersect with any other
2872 * class domains. This means that we may end up splitting up the atomic
2873 * domain in case separation classes are being used.
2874 *
2875 * "domain" is the intersection of the schedule domain and the class domain,
2876 * with inner dimensions projected out.
2877 */
2878static __isl_give isl_set *compute_atomic_domain(
2879 struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
2880{
2881 isl_basic_set *bset;
2882 isl_basic_set_list *list;
2883 isl_set *domain, *atomic_domain;
2884 int empty;
2885
2886 domain = isl_set_copy(set: domains->option[isl_ast_loop_atomic]);
2887 domain = isl_set_intersect(set1: domain, set2: isl_set_copy(set: class_domain));
2888 domain = isl_set_intersect(set1: domain,
2889 set2: isl_set_copy(set: domains->schedule_domain));
2890 empty = isl_set_is_empty(set: domain);
2891 if (empty < 0)
2892 class_domain = isl_set_free(set: class_domain);
2893 if (empty) {
2894 isl_set_free(set: domain);
2895 return class_domain;
2896 }
2897
2898 domain = isl_ast_build_eliminate(build: domains->build, domain);
2899 domain = isl_set_coalesce_preserve(set: domain);
2900 bset = isl_set_unshifted_simple_hull(set: domain);
2901 domain = isl_set_from_basic_set(bset);
2902 atomic_domain = isl_set_copy(set: domain);
2903 domain = isl_set_intersect(set1: domain, set2: isl_set_copy(set: class_domain));
2904 class_domain = isl_set_subtract(set1: class_domain, set2: atomic_domain);
2905 domain = isl_set_make_disjoint(set: domain);
2906 list = isl_basic_set_list_from_set(set: domain);
2907 domains->list = isl_basic_set_list_concat(list1: domains->list, list2: list);
2908
2909 return class_domain;
2910}
2911
2912/* Split up the schedule domain into uniform basic sets,
2913 * in the sense that each element in a basic set is associated to
2914 * elements of the same domains, and add the result to domains->list.
2915 * Do this for that part of the schedule domain that lies in the
2916 * intersection of "class_domain" and the separate option domain.
2917 *
2918 * "class_domain" may or may not include the constraints
2919 * of the schedule domain, but this does not make a difference
2920 * since we are going to intersect it with the domain of the inverse schedule.
2921 * If it includes schedule domain constraints, then they may involve
2922 * inner dimensions, but we will eliminate them in separation_domain.
2923 */
2924static int compute_separate_domain(struct isl_codegen_domains *domains,
2925 __isl_keep isl_set *class_domain)
2926{
2927 isl_space *space;
2928 isl_set *domain;
2929 isl_union_map *executed;
2930 isl_basic_set_list *list;
2931 int empty;
2932
2933 domain = isl_set_copy(set: domains->option[isl_ast_loop_separate]);
2934 domain = isl_set_intersect(set1: domain, set2: isl_set_copy(set: class_domain));
2935 executed = isl_union_map_copy(umap: domains->executed);
2936 executed = isl_union_map_intersect_domain(umap: executed,
2937 uset: isl_union_set_from_set(set: domain));
2938 empty = isl_union_map_is_empty(umap: executed);
2939 if (empty < 0 || empty) {
2940 isl_union_map_free(umap: executed);
2941 return empty < 0 ? -1 : 0;
2942 }
2943
2944 space = isl_set_get_space(set: class_domain);
2945 domain = separate_schedule_domains(space, executed, build: domains->build);
2946
2947 list = isl_basic_set_list_from_set(set: domain);
2948 domains->list = isl_basic_set_list_concat(list1: domains->list, list2: list);
2949
2950 return 0;
2951}
2952
2953/* Split up the domain at the current depth into disjoint
2954 * basic sets for which code should be generated separately
2955 * for the given separation class domain.
2956 *
2957 * If any separation classes have been defined, then "class_domain"
2958 * is the domain of the current class and does not refer to inner dimensions.
2959 * Otherwise, "class_domain" is the universe domain.
2960 *
2961 * We first make sure that the class domain is disjoint from
2962 * previously considered class domains.
2963 *
2964 * The separate domains can be computed directly from the "class_domain".
2965 *
2966 * The unroll, atomic and remainder domains need the constraints
2967 * from the schedule domain.
2968 *
2969 * For unrolling, the actual schedule domain is needed (with divs that
2970 * may refer to the current dimension) so that stride detection can be
2971 * performed.
2972 *
2973 * For atomic and remainder domains, inner dimensions and divs involving
2974 * the current dimensions should be eliminated.
2975 * In case we are working within a separation class, we need to intersect
2976 * the result with the current "class_domain" to ensure that the domains
2977 * are disjoint from those generated from other class domains.
2978 *
2979 * The domain that has been made atomic may be larger than specified
2980 * by the user since it needs to be representable as a single basic set.
2981 * This possibly larger domain is removed from class_domain by
2982 * compute_atomic_domain. It is computed first so that the extended domain
2983 * would not overlap with any domains computed before.
2984 * Similary, the unrolled domains may have some constraints removed and
2985 * may therefore also be larger than specified by the user.
2986 *
2987 * If anything is left after handling separate, unroll and atomic,
2988 * we split it up into basic sets and append the basic sets to domains->list.
2989 */
2990static isl_stat compute_partial_domains(struct isl_codegen_domains *domains,
2991 __isl_take isl_set *class_domain)
2992{
2993 isl_basic_set_list *list;
2994 isl_set *domain;
2995
2996 class_domain = isl_set_subtract(set1: class_domain,
2997 set2: isl_set_copy(set: domains->done));
2998 domains->done = isl_set_union(set1: domains->done,
2999 set2: isl_set_copy(set: class_domain));
3000
3001 class_domain = compute_atomic_domain(domains, class_domain);
3002 class_domain = compute_unroll_domains(domains, class_domain);
3003
3004 domain = isl_set_copy(set: class_domain);
3005
3006 if (compute_separate_domain(domains, class_domain: domain) < 0)
3007 goto error;
3008 domain = isl_set_subtract(set1: domain,
3009 set2: isl_set_copy(set: domains->option[isl_ast_loop_separate]));
3010
3011 domain = isl_set_intersect(set1: domain,
3012 set2: isl_set_copy(set: domains->schedule_domain));
3013
3014 domain = isl_ast_build_eliminate(build: domains->build, domain);
3015 domain = isl_set_intersect(set1: domain, set2: isl_set_copy(set: class_domain));
3016
3017 domain = isl_set_coalesce_preserve(set: domain);
3018 domain = isl_set_make_disjoint(set: domain);
3019
3020 list = isl_basic_set_list_from_set(set: domain);
3021 domains->list = isl_basic_set_list_concat(list1: domains->list, list2: list);
3022
3023 isl_set_free(set: class_domain);
3024
3025 return isl_stat_ok;
3026error:
3027 isl_set_free(set: domain);
3028 isl_set_free(set: class_domain);
3029 return isl_stat_error;
3030}
3031
3032/* Split up the domain at the current depth into disjoint
3033 * basic sets for which code should be generated separately
3034 * for the separation class identified by "pnt".
3035 *
3036 * We extract the corresponding class domain from domains->sep_class,
3037 * eliminate inner dimensions and pass control to compute_partial_domains.
3038 */
3039static isl_stat compute_class_domains(__isl_take isl_point *pnt, void *user)
3040{
3041 struct isl_codegen_domains *domains = user;
3042 isl_set *class_set;
3043 isl_set *domain;
3044 int disjoint;
3045
3046 class_set = isl_set_from_point(pnt);
3047 domain = isl_map_domain(bmap: isl_map_intersect_range(
3048 map: isl_map_copy(map: domains->sep_class), set: class_set));
3049 domain = isl_ast_build_compute_gist(build: domains->build, set: domain);
3050 domain = isl_ast_build_eliminate(build: domains->build, domain);
3051
3052 disjoint = isl_set_plain_is_disjoint(set1: domain, set2: domains->schedule_domain);
3053 if (disjoint < 0)
3054 return isl_stat_error;
3055 if (disjoint) {
3056 isl_set_free(set: domain);
3057 return isl_stat_ok;
3058 }
3059
3060 return compute_partial_domains(domains, class_domain: domain);
3061}
3062
3063/* Extract the domains at the current depth that should be atomic,
3064 * separated or unrolled and store them in option.
3065 *
3066 * The domains specified by the user might overlap, so we make
3067 * them disjoint by subtracting earlier domains from later domains.
3068 */
3069static void compute_domains_init_options(isl_set *option[4],
3070 __isl_keep isl_ast_build *build)
3071{
3072 enum isl_ast_loop_type type, type2;
3073 isl_set *unroll;
3074
3075 for (type = isl_ast_loop_atomic;
3076 type <= isl_ast_loop_separate; ++type) {
3077 option[type] = isl_ast_build_get_option_domain(build, type);
3078 for (type2 = isl_ast_loop_atomic; type2 < type; ++type2)
3079 option[type] = isl_set_subtract(set1: option[type],
3080 set2: isl_set_copy(set: option[type2]));
3081 }
3082
3083 unroll = option[isl_ast_loop_unroll];
3084 unroll = isl_set_coalesce(set: unroll);
3085 unroll = isl_set_make_disjoint(set: unroll);
3086 option[isl_ast_loop_unroll] = unroll;
3087}
3088
3089/* Split up the domain at the current depth into disjoint
3090 * basic sets for which code should be generated separately,
3091 * based on the user-specified options.
3092 * Return the list of disjoint basic sets.
3093 *
3094 * There are three kinds of domains that we need to keep track of.
3095 * - the "schedule domain" is the domain of "executed"
3096 * - the "class domain" is the domain corresponding to the currrent
3097 * separation class
3098 * - the "option domain" is the domain corresponding to one of the options
3099 * atomic, unroll or separate
3100 *
3101 * We first consider the individial values of the separation classes
3102 * and split up the domain for each of them separately.
3103 * Finally, we consider the remainder. If no separation classes were
3104 * specified, then we call compute_partial_domains with the universe
3105 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
3106 * with inner dimensions removed. We do this because we want to
3107 * avoid computing the complement of the class domains (i.e., the difference
3108 * between the universe and domains->done).
3109 */
3110static __isl_give isl_basic_set_list *compute_domains(
3111 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
3112{
3113 struct isl_codegen_domains domains;
3114 isl_ctx *ctx;
3115 isl_set *domain;
3116 isl_union_set *schedule_domain;
3117 isl_set *classes;
3118 isl_space *space;
3119 int n_param;
3120 enum isl_ast_loop_type type;
3121 isl_bool empty;
3122
3123 if (!executed)
3124 return NULL;
3125
3126 ctx = isl_union_map_get_ctx(umap: executed);
3127 domains.list = isl_basic_set_list_alloc(ctx, n: 0);
3128
3129 schedule_domain = isl_union_map_domain(umap: isl_union_map_copy(umap: executed));
3130 domain = isl_set_from_union_set(uset: schedule_domain);
3131
3132 compute_domains_init_options(option: domains.option, build);
3133
3134 domains.sep_class = isl_ast_build_get_separation_class(build);
3135 classes = isl_map_range(map: isl_map_copy(map: domains.sep_class));
3136 n_param = isl_set_dim(set: classes, type: isl_dim_param);
3137 if (n_param < 0)
3138 classes = isl_set_free(set: classes);
3139 classes = isl_set_project_out(set: classes, type: isl_dim_param, first: 0, n: n_param);
3140
3141 space = isl_set_get_space(set: domain);
3142 domains.build = build;
3143 domains.schedule_domain = isl_set_copy(set: domain);
3144 domains.executed = executed;
3145 domains.done = isl_set_empty(space);
3146
3147 if (isl_set_foreach_point(set: classes, fn: &compute_class_domains, user: &domains) < 0)
3148 domains.list = isl_basic_set_list_free(list: domains.list);
3149 isl_set_free(set: classes);
3150
3151 empty = isl_set_is_empty(set: domains.done);
3152 if (empty < 0) {
3153 domains.list = isl_basic_set_list_free(list: domains.list);
3154 domain = isl_set_free(set: domain);
3155 } else if (empty) {
3156 isl_set_free(set: domain);
3157 domain = isl_set_universe(space: isl_set_get_space(set: domains.done));
3158 } else {
3159 domain = isl_ast_build_eliminate(build, domain);
3160 }
3161 if (compute_partial_domains(domains: &domains, class_domain: domain) < 0)
3162 domains.list = isl_basic_set_list_free(list: domains.list);
3163
3164 isl_set_free(set: domains.schedule_domain);
3165 isl_set_free(set: domains.done);
3166 isl_map_free(map: domains.sep_class);
3167 for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type)
3168 isl_set_free(set: domains.option[type]);
3169
3170 return domains.list;
3171}
3172
3173/* Generate code for a single component, after shifting (if any)
3174 * has been applied, in case the schedule was specified as a union map.
3175 *
3176 * We first split up the domain at the current depth into disjoint
3177 * basic sets based on the user-specified options.
3178 * Then we generated code for each of them and concatenate the results.
3179 */
3180static __isl_give isl_ast_graft_list *generate_shifted_component_flat(
3181 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3182{
3183 isl_basic_set_list *domain_list;
3184 isl_ast_graft_list *list = NULL;
3185
3186 domain_list = compute_domains(executed, build);
3187 list = generate_parallel_domains(domain_list, executed, build);
3188
3189 isl_basic_set_list_free(list: domain_list);
3190 isl_union_map_free(umap: executed);
3191 isl_ast_build_free(build);
3192
3193 return list;
3194}
3195
3196/* Generate code for a single component, after shifting (if any)
3197 * has been applied, in case the schedule was specified as a schedule tree
3198 * and the separate option was specified.
3199 *
3200 * We perform separation on the domain of "executed" and then generate
3201 * an AST for each of the resulting disjoint basic sets.
3202 */
3203static __isl_give isl_ast_graft_list *generate_shifted_component_tree_separate(
3204 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3205{
3206 isl_space *space;
3207 isl_set *domain;
3208 isl_basic_set_list *domain_list;
3209 isl_ast_graft_list *list;
3210
3211 space = isl_ast_build_get_space(build, internal: 1);
3212 domain = separate_schedule_domains(space,
3213 executed: isl_union_map_copy(umap: executed), build);
3214 domain_list = isl_basic_set_list_from_set(set: domain);
3215
3216 list = generate_parallel_domains(domain_list, executed, build);
3217
3218 isl_basic_set_list_free(list: domain_list);
3219 isl_union_map_free(umap: executed);
3220 isl_ast_build_free(build);
3221
3222 return list;
3223}
3224
3225/* Internal data structure for generate_shifted_component_tree_unroll.
3226 *
3227 * "executed" and "build" are inputs to generate_shifted_component_tree_unroll.
3228 * "list" collects the constructs grafts.
3229 */
3230struct isl_ast_unroll_tree_data {
3231 isl_union_map *executed;
3232 isl_ast_build *build;
3233 isl_ast_graft_list *list;
3234};
3235
3236/* Initialize data->list to a list of "n" elements.
3237 */
3238static int init_unroll_tree(int n, void *user)
3239{
3240 struct isl_ast_unroll_tree_data *data = user;
3241 isl_ctx *ctx;
3242
3243 ctx = isl_ast_build_get_ctx(build: data->build);
3244 data->list = isl_ast_graft_list_alloc(ctx, n);
3245
3246 return 0;
3247}
3248
3249/* Given an iteration of an unrolled domain represented by "bset",
3250 * generate the corresponding AST and add the result to data->list.
3251 */
3252static int do_unroll_tree_iteration(__isl_take isl_basic_set *bset, void *user)
3253{
3254 struct isl_ast_unroll_tree_data *data = user;
3255
3256 data->list = add_node(list: data->list, executed: isl_union_map_copy(umap: data->executed),
3257 bounds: bset, build: isl_ast_build_copy(build: data->build));
3258
3259 return 0;
3260}
3261
3262/* Generate code for a single component, after shifting (if any)
3263 * has been applied, in case the schedule was specified as a schedule tree
3264 * and the unroll option was specified.
3265 *
3266 * We call foreach_iteration to iterate over the individual values and
3267 * construct and collect the corresponding grafts in do_unroll_tree_iteration.
3268 */
3269static __isl_give isl_ast_graft_list *generate_shifted_component_tree_unroll(
3270 __isl_take isl_union_map *executed, __isl_take isl_set *domain,
3271 __isl_take isl_ast_build *build)
3272{
3273 struct isl_ast_unroll_tree_data data = { executed, build, NULL };
3274
3275 if (foreach_iteration(domain, build, init: &init_unroll_tree,
3276 fn: &do_unroll_tree_iteration, user: &data) < 0)
3277 data.list = isl_ast_graft_list_free(list: data.list);
3278
3279 isl_union_map_free(umap: executed);
3280 isl_ast_build_free(build);
3281
3282 return data.list;
3283}
3284
3285/* Does "domain" involve a disjunction that is purely based on
3286 * constraints involving only outer dimension?
3287 *
3288 * In particular, is there a disjunction such that the constraints
3289 * involving the current and later dimensions are the same over
3290 * all the disjuncts?
3291 */
3292static isl_bool has_pure_outer_disjunction(__isl_keep isl_set *domain,
3293 __isl_keep isl_ast_build *build)
3294{
3295 isl_basic_set *hull;
3296 isl_set *shared, *inner;
3297 isl_bool equal;
3298 isl_size depth;
3299 isl_size n;
3300 isl_size dim;
3301
3302 n = isl_set_n_basic_set(set: domain);
3303 if (n < 0)
3304 return isl_bool_error;
3305 if (n <= 1)
3306 return isl_bool_false;
3307 dim = isl_set_dim(set: domain, type: isl_dim_set);
3308 depth = isl_ast_build_get_depth(build);
3309 if (dim < 0 || depth < 0)
3310 return isl_bool_error;
3311
3312 inner = isl_set_copy(set: domain);
3313 inner = isl_set_drop_constraints_not_involving_dims(set: inner,
3314 type: isl_dim_set, first: depth, n: dim - depth);
3315 hull = isl_set_plain_unshifted_simple_hull(set: isl_set_copy(set: inner));
3316 shared = isl_set_from_basic_set(bset: hull);
3317 equal = isl_set_plain_is_equal(set1: inner, set2: shared);
3318 isl_set_free(set: inner);
3319 isl_set_free(set: shared);
3320
3321 return equal;
3322}
3323
3324/* Generate code for a single component, after shifting (if any)
3325 * has been applied, in case the schedule was specified as a schedule tree.
3326 * In particular, handle the base case where there is either no isolated
3327 * set or we are within the isolated set (in which case "isolated" is set)
3328 * or the iterations that precede or follow the isolated set.
3329 *
3330 * The schedule domain is broken up or combined into basic sets
3331 * according to the AST generation option specified in the current
3332 * schedule node, which may be either atomic, separate, unroll or
3333 * unspecified. If the option is unspecified, then we currently simply
3334 * split the schedule domain into disjoint basic sets.
3335 *
3336 * In case the separate option is specified, the AST generation is
3337 * handled by generate_shifted_component_tree_separate.
3338 * In the other cases, we need the global schedule domain.
3339 * In the unroll case, the AST generation is then handled by
3340 * generate_shifted_component_tree_unroll which needs the actual
3341 * schedule domain (with divs that may refer to the current dimension)
3342 * so that stride detection can be performed.
3343 * In the atomic or unspecified case, inner dimensions and divs involving
3344 * the current dimensions should be eliminated.
3345 * The result is then either combined into a single basic set or
3346 * split up into disjoint basic sets.
3347 * Finally an AST is generated for each basic set and the results are
3348 * concatenated.
3349 *
3350 * If the schedule domain involves a disjunction that is purely based on
3351 * constraints involving only outer dimension, then it is treated as
3352 * if atomic was specified. This ensures that only a single loop
3353 * is generated instead of a sequence of identical loops with
3354 * different guards.
3355 */
3356static __isl_give isl_ast_graft_list *generate_shifted_component_tree_base(
3357 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3358 int isolated)
3359{
3360 isl_bool outer_disjunction;
3361 isl_union_set *schedule_domain;
3362 isl_set *domain;
3363 isl_basic_set_list *domain_list;
3364 isl_ast_graft_list *list;
3365 enum isl_ast_loop_type type;
3366
3367 type = isl_ast_build_get_loop_type(build, isolated);
3368 if (type < 0)
3369 goto error;
3370
3371 if (type == isl_ast_loop_separate)
3372 return generate_shifted_component_tree_separate(executed,
3373 build);
3374
3375 schedule_domain = isl_union_map_domain(umap: isl_union_map_copy(umap: executed));
3376 domain = isl_set_from_union_set(uset: schedule_domain);
3377
3378 if (type == isl_ast_loop_unroll)
3379 return generate_shifted_component_tree_unroll(executed, domain,
3380 build);
3381
3382 domain = isl_ast_build_eliminate(build, domain);
3383 domain = isl_set_coalesce_preserve(set: domain);
3384
3385 outer_disjunction = has_pure_outer_disjunction(domain, build);
3386 if (outer_disjunction < 0)
3387 domain = isl_set_free(set: domain);
3388
3389 if (outer_disjunction || type == isl_ast_loop_atomic) {
3390 isl_basic_set *hull;
3391 hull = isl_set_unshifted_simple_hull(set: domain);
3392 domain_list = isl_basic_set_list_from_basic_set(el: hull);
3393 } else {
3394 domain = isl_set_make_disjoint(set: domain);
3395 domain_list = isl_basic_set_list_from_set(set: domain);
3396 }
3397
3398 list = generate_parallel_domains(domain_list, executed, build);
3399
3400 isl_basic_set_list_free(list: domain_list);
3401 isl_union_map_free(umap: executed);
3402 isl_ast_build_free(build);
3403
3404 return list;
3405error:
3406 isl_union_map_free(umap: executed);
3407 isl_ast_build_free(build);
3408 return NULL;
3409}
3410
3411/* Extract out the disjunction imposed by "domain" on the outer
3412 * schedule dimensions.
3413 *
3414 * In particular, remove all inner dimensions from "domain" (including
3415 * the current dimension) and then remove the constraints that are shared
3416 * by all disjuncts in the result.
3417 */
3418static __isl_give isl_set *extract_disjunction(__isl_take isl_set *domain,
3419 __isl_keep isl_ast_build *build)
3420{
3421 isl_set *hull;
3422 isl_size depth;
3423 isl_size dim;
3424
3425 domain = isl_ast_build_specialize(build, set: domain);
3426 depth = isl_ast_build_get_depth(build);
3427 dim = isl_set_dim(set: domain, type: isl_dim_set);
3428 if (depth < 0 || dim < 0)
3429 return isl_set_free(set: domain);
3430 domain = isl_set_eliminate(set: domain, type: isl_dim_set, first: depth, n: dim - depth);
3431 domain = isl_set_remove_unknown_divs(set: domain);
3432 hull = isl_set_copy(set: domain);
3433 hull = isl_set_from_basic_set(bset: isl_set_unshifted_simple_hull(set: hull));
3434 domain = isl_set_gist(set: domain, context: hull);
3435
3436 return domain;
3437}
3438
3439/* Add "guard" to the grafts in "list".
3440 * "build" is the outer AST build, while "sub_build" includes "guard"
3441 * in its generated domain.
3442 *
3443 * First combine the grafts into a single graft and then add the guard.
3444 * If the list is empty, or if some error occurred, then simply return
3445 * the list.
3446 */
3447static __isl_give isl_ast_graft_list *list_add_guard(
3448 __isl_take isl_ast_graft_list *list, __isl_keep isl_set *guard,
3449 __isl_keep isl_ast_build *build, __isl_keep isl_ast_build *sub_build)
3450{
3451 isl_ast_graft *graft;
3452 isl_size n;
3453
3454 list = isl_ast_graft_list_fuse(children: list, build: sub_build);
3455
3456 n = isl_ast_graft_list_n_ast_graft(list);
3457 if (n < 0)
3458 return isl_ast_graft_list_free(list);
3459 if (n != 1)
3460 return list;
3461
3462 graft = isl_ast_graft_list_get_ast_graft(list, index: 0);
3463 graft = isl_ast_graft_add_guard(graft, guard: isl_set_copy(set: guard), build);
3464 list = isl_ast_graft_list_set_ast_graft(list, index: 0, el: graft);
3465
3466 return list;
3467}
3468
3469/* Generate code for a single component, after shifting (if any)
3470 * has been applied, in case the schedule was specified as a schedule tree.
3471 * In particular, do so for the specified subset of the schedule domain.
3472 *
3473 * If we are outside of the isolated part, then "domain" may include
3474 * a disjunction. Explicitly generate this disjunction at this point
3475 * instead of relying on the disjunction getting hoisted back up
3476 * to this level.
3477 */
3478static __isl_give isl_ast_graft_list *generate_shifted_component_tree_part(
3479 __isl_keep isl_union_map *executed, __isl_take isl_set *domain,
3480 __isl_keep isl_ast_build *build, int isolated)
3481{
3482 isl_union_set *uset;
3483 isl_ast_graft_list *list;
3484 isl_ast_build *sub_build;
3485 int empty;
3486
3487 uset = isl_union_set_from_set(set: isl_set_copy(set: domain));
3488 executed = isl_union_map_copy(umap: executed);
3489 executed = isl_union_map_intersect_domain(umap: executed, uset);
3490 empty = isl_union_map_is_empty(umap: executed);
3491 if (empty < 0)
3492 goto error;
3493 if (empty) {
3494 isl_ctx *ctx;
3495 isl_union_map_free(umap: executed);
3496 isl_set_free(set: domain);
3497 ctx = isl_ast_build_get_ctx(build);
3498 return isl_ast_graft_list_alloc(ctx, n: 0);
3499 }
3500
3501 sub_build = isl_ast_build_copy(build);
3502 if (!isolated) {
3503 domain = extract_disjunction(domain, build);
3504 sub_build = isl_ast_build_restrict_generated(build: sub_build,
3505 set: isl_set_copy(set: domain));
3506 }
3507 list = generate_shifted_component_tree_base(executed,
3508 build: isl_ast_build_copy(build: sub_build), isolated);
3509 if (!isolated)
3510 list = list_add_guard(list, guard: domain, build, sub_build);
3511 isl_ast_build_free(build: sub_build);
3512 isl_set_free(set: domain);
3513 return list;
3514error:
3515 isl_union_map_free(umap: executed);
3516 isl_set_free(set: domain);
3517 return NULL;
3518}
3519
3520/* Generate code for a single component, after shifting (if any)
3521 * has been applied, in case the schedule was specified as a schedule tree.
3522 * In particular, do so for the specified sequence of subsets
3523 * of the schedule domain, "before", "isolated", "after" and "other",
3524 * where only the "isolated" part is considered to be isolated.
3525 */
3526static __isl_give isl_ast_graft_list *generate_shifted_component_parts(
3527 __isl_take isl_union_map *executed, __isl_take isl_set *before,
3528 __isl_take isl_set *isolated, __isl_take isl_set *after,
3529 __isl_take isl_set *other, __isl_take isl_ast_build *build)
3530{
3531 isl_ast_graft_list *list, *res;
3532
3533 res = generate_shifted_component_tree_part(executed, domain: before, build, isolated: 0);
3534 list = generate_shifted_component_tree_part(executed, domain: isolated,
3535 build, isolated: 1);
3536 res = isl_ast_graft_list_concat(list1: res, list2: list);
3537 list = generate_shifted_component_tree_part(executed, domain: after, build, isolated: 0);
3538 res = isl_ast_graft_list_concat(list1: res, list2: list);
3539 list = generate_shifted_component_tree_part(executed, domain: other, build, isolated: 0);
3540 res = isl_ast_graft_list_concat(list1: res, list2: list);
3541
3542 isl_union_map_free(umap: executed);
3543 isl_ast_build_free(build);
3544
3545 return res;
3546}
3547
3548/* Does "set" intersect "first", but not "second"?
3549 */
3550static isl_bool only_intersects_first(__isl_keep isl_set *set,
3551 __isl_keep isl_set *first, __isl_keep isl_set *second)
3552{
3553 isl_bool disjoint;
3554
3555 disjoint = isl_set_is_disjoint(set1: set, set2: first);
3556 if (disjoint < 0)
3557 return isl_bool_error;
3558 if (disjoint)
3559 return isl_bool_false;
3560
3561 return isl_set_is_disjoint(set1: set, set2: second);
3562}
3563
3564/* Generate code for a single component, after shifting (if any)
3565 * has been applied, in case the schedule was specified as a schedule tree.
3566 * In particular, do so in case of isolation where there is
3567 * only an "isolated" part and an "after" part.
3568 * "dead1" and "dead2" are freed by this function in order to simplify
3569 * the caller.
3570 *
3571 * The "before" and "other" parts are set to empty sets.
3572 */
3573static __isl_give isl_ast_graft_list *generate_shifted_component_only_after(
3574 __isl_take isl_union_map *executed, __isl_take isl_set *isolated,
3575 __isl_take isl_set *after, __isl_take isl_ast_build *build,
3576 __isl_take isl_set *dead1, __isl_take isl_set *dead2)
3577{
3578 isl_set *empty;
3579
3580 empty = isl_set_empty(space: isl_set_get_space(set: after));
3581 isl_set_free(set: dead1);
3582 isl_set_free(set: dead2);
3583 return generate_shifted_component_parts(executed, before: isl_set_copy(set: empty),
3584 isolated, after, other: empty, build);
3585}
3586
3587/* Generate code for a single component, after shifting (if any)
3588 * has been applied, in case the schedule was specified as a schedule tree.
3589 *
3590 * We first check if the user has specified an isolated schedule domain
3591 * and that we are not already outside of this isolated schedule domain.
3592 * If so, we break up the schedule domain into iterations that
3593 * precede the isolated domain, the isolated domain itself,
3594 * the iterations that follow the isolated domain and
3595 * the remaining iterations (those that are incomparable
3596 * to the isolated domain).
3597 * We generate an AST for each piece and concatenate the results.
3598 *
3599 * If the isolated domain is not convex, then it is replaced
3600 * by a convex superset to ensure that the sets of preceding and
3601 * following iterations are properly defined and, in particular,
3602 * that there are no intermediate iterations that do not belong
3603 * to the isolated domain.
3604 *
3605 * In the special case where at least one element of the schedule
3606 * domain that does not belong to the isolated domain needs
3607 * to be scheduled after this isolated domain, but none of those
3608 * elements need to be scheduled before, break up the schedule domain
3609 * in only two parts, the isolated domain, and a part that will be
3610 * scheduled after the isolated domain.
3611 *
3612 * If no isolated set has been specified, then we generate an
3613 * AST for the entire inverse schedule.
3614 */
3615static __isl_give isl_ast_graft_list *generate_shifted_component_tree(
3616 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3617{
3618 int i;
3619 isl_size depth;
3620 int empty, has_isolate;
3621 isl_space *space;
3622 isl_union_set *schedule_domain;
3623 isl_set *domain;
3624 isl_basic_set *hull;
3625 isl_set *isolated, *before, *after, *test;
3626 isl_map *gt, *lt;
3627 isl_bool pure;
3628
3629 build = isl_ast_build_extract_isolated(build);
3630 has_isolate = isl_ast_build_has_isolated(build);
3631 if (has_isolate < 0)
3632 executed = isl_union_map_free(umap: executed);
3633 else if (!has_isolate)
3634 return generate_shifted_component_tree_base(executed, build, isolated: 0);
3635
3636 schedule_domain = isl_union_map_domain(umap: isl_union_map_copy(umap: executed));
3637 domain = isl_set_from_union_set(uset: schedule_domain);
3638
3639 isolated = isl_ast_build_get_isolated(build);
3640 isolated = isl_set_intersect(set1: isolated, set2: isl_set_copy(set: domain));
3641 test = isl_ast_build_specialize(build, set: isl_set_copy(set: isolated));
3642 empty = isl_set_is_empty(set: test);
3643 isl_set_free(set: test);
3644 if (empty < 0)
3645 goto error;
3646 if (empty) {
3647 isl_set_free(set: isolated);
3648 isl_set_free(set: domain);
3649 return generate_shifted_component_tree_base(executed, build, isolated: 0);
3650 }
3651 depth = isl_ast_build_get_depth(build);
3652 if (depth < 0)
3653 goto error;
3654
3655 isolated = isl_ast_build_eliminate(build, domain: isolated);
3656 hull = isl_set_unshifted_simple_hull(set: isolated);
3657 isolated = isl_set_from_basic_set(bset: hull);
3658
3659 space = isl_space_map_from_set(space: isl_set_get_space(set: isolated));
3660 gt = isl_map_universe(space);
3661 for (i = 0; i < depth; ++i)
3662 gt = isl_map_equate(map: gt, type1: isl_dim_in, pos1: i, type2: isl_dim_out, pos2: i);
3663 gt = isl_map_order_gt(map: gt, type1: isl_dim_in, pos1: depth, type2: isl_dim_out, pos2: depth);
3664 lt = isl_map_reverse(map: isl_map_copy(map: gt));
3665 before = isl_set_apply(set: isl_set_copy(set: isolated), map: gt);
3666 after = isl_set_apply(set: isl_set_copy(set: isolated), map: lt);
3667
3668 domain = isl_set_subtract(set1: domain, set2: isl_set_copy(set: isolated));
3669 pure = only_intersects_first(set: domain, first: after, second: before);
3670 if (pure < 0)
3671 executed = isl_union_map_free(umap: executed);
3672 else if (pure)
3673 return generate_shifted_component_only_after(executed, isolated,
3674 after: domain, build, dead1: before, dead2: after);
3675 domain = isl_set_subtract(set1: domain, set2: isl_set_copy(set: before));
3676 domain = isl_set_subtract(set1: domain, set2: isl_set_copy(set: after));
3677 after = isl_set_subtract(set1: after, set2: isl_set_copy(set: isolated));
3678 after = isl_set_subtract(set1: after, set2: isl_set_copy(set: before));
3679 before = isl_set_subtract(set1: before, set2: isl_set_copy(set: isolated));
3680
3681 return generate_shifted_component_parts(executed, before, isolated,
3682 after, other: domain, build);
3683error:
3684 isl_set_free(set: domain);
3685 isl_set_free(set: isolated);
3686 isl_union_map_free(umap: executed);
3687 isl_ast_build_free(build);
3688 return NULL;
3689}
3690
3691/* Generate code for a single component, after shifting (if any)
3692 * has been applied.
3693 *
3694 * Call generate_shifted_component_tree or generate_shifted_component_flat
3695 * depending on whether the schedule was specified as a schedule tree.
3696 */
3697static __isl_give isl_ast_graft_list *generate_shifted_component(
3698 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3699{
3700 if (isl_ast_build_has_schedule_node(build))
3701 return generate_shifted_component_tree(executed, build);
3702 else
3703 return generate_shifted_component_flat(executed, build);
3704}
3705
3706struct isl_set_map_pair {
3707 isl_set *set;
3708 isl_map *map;
3709};
3710
3711/* Given an array "domain" of isl_set_map_pairs and an array "order"
3712 * of indices into the "domain" array,
3713 * return the union of the "map" fields of the elements
3714 * indexed by the first "n" elements of "order".
3715 */
3716static __isl_give isl_union_map *construct_component_executed(
3717 struct isl_set_map_pair *domain, int *order, int n)
3718{
3719 int i;
3720 isl_map *map;
3721 isl_union_map *executed;
3722
3723 map = isl_map_copy(map: domain[order[0]].map);
3724 executed = isl_union_map_from_map(map);
3725 for (i = 1; i < n; ++i) {
3726 map = isl_map_copy(map: domain[order[i]].map);
3727 executed = isl_union_map_add_map(umap: executed, map);
3728 }
3729
3730 return executed;
3731}
3732
3733/* Generate code for a single component, after shifting (if any)
3734 * has been applied.
3735 *
3736 * The component inverse schedule is specified as the "map" fields
3737 * of the elements of "domain" indexed by the first "n" elements of "order".
3738 */
3739static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
3740 struct isl_set_map_pair *domain, int *order, int n,
3741 __isl_take isl_ast_build *build)
3742{
3743 isl_union_map *executed;
3744
3745 executed = construct_component_executed(domain, order, n);
3746 return generate_shifted_component(executed, build);
3747}
3748
3749/* Does set dimension "pos" of "set" have an obviously fixed value?
3750 */
3751static int dim_is_fixed(__isl_keep isl_set *set, int pos)
3752{
3753 int fixed;
3754 isl_val *v;
3755
3756 v = isl_set_plain_get_val_if_fixed(set, type: isl_dim_set, pos);
3757 if (!v)
3758 return -1;
3759 fixed = !isl_val_is_nan(v);
3760 isl_val_free(v);
3761
3762 return fixed;
3763}
3764
3765/* Given an array "domain" of isl_set_map_pairs and an array "order"
3766 * of indices into the "domain" array,
3767 * do all (except for at most one) of the "set" field of the elements
3768 * indexed by the first "n" elements of "order" have a fixed value
3769 * at position "depth"?
3770 */
3771static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
3772 int *order, int n, int depth)
3773{
3774 int i;
3775 int non_fixed = -1;
3776
3777 for (i = 0; i < n; ++i) {
3778 int f;
3779
3780 f = dim_is_fixed(set: domain[order[i]].set, pos: depth);
3781 if (f < 0)
3782 return -1;
3783 if (f)
3784 continue;
3785 if (non_fixed >= 0)
3786 return 0;
3787 non_fixed = i;
3788 }
3789
3790 return 1;
3791}
3792
3793/* Given an array "domain" of isl_set_map_pairs and an array "order"
3794 * of indices into the "domain" array,
3795 * eliminate the inner dimensions from the "set" field of the elements
3796 * indexed by the first "n" elements of "order", provided the current
3797 * dimension does not have a fixed value.
3798 *
3799 * Return the index of the first element in "order" with a corresponding
3800 * "set" field that does not have an (obviously) fixed value.
3801 */
3802static int eliminate_non_fixed(struct isl_set_map_pair *domain,
3803 int *order, int n, int depth, __isl_keep isl_ast_build *build)
3804{
3805 int i;
3806 int base = -1;
3807
3808 for (i = n - 1; i >= 0; --i) {
3809 int f;
3810 f = dim_is_fixed(set: domain[order[i]].set, pos: depth);
3811 if (f < 0)
3812 return -1;
3813 if (f)
3814 continue;
3815 domain[order[i]].set = isl_ast_build_eliminate_inner(build,
3816 set: domain[order[i]].set);
3817 base = i;
3818 }
3819
3820 return base;
3821}
3822
3823/* Given an array "domain" of isl_set_map_pairs and an array "order"
3824 * of indices into the "domain" array,
3825 * find the element of "domain" (amongst those indexed by the first "n"
3826 * elements of "order") with the "set" field that has the smallest
3827 * value for the current iterator.
3828 *
3829 * Note that the domain with the smallest value may depend on the parameters
3830 * and/or outer loop dimension. Since the result of this function is only
3831 * used as heuristic, we only make a reasonable attempt at finding the best
3832 * domain, one that should work in case a single domain provides the smallest
3833 * value for the current dimension over all values of the parameters
3834 * and outer dimensions.
3835 *
3836 * In particular, we compute the smallest value of the first domain
3837 * and replace it by that of any later domain if that later domain
3838 * has a smallest value that is smaller for at least some value
3839 * of the parameters and outer dimensions.
3840 */
3841static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
3842 __isl_keep isl_ast_build *build)
3843{
3844 int i;
3845 isl_map *min_first;
3846 int first = 0;
3847
3848 min_first = isl_ast_build_map_to_iterator(build,
3849 set: isl_set_copy(set: domain[order[0]].set));
3850 min_first = isl_map_lexmin(map: min_first);
3851
3852 for (i = 1; i < n; ++i) {
3853 isl_map *min, *test;
3854 int empty;
3855
3856 min = isl_ast_build_map_to_iterator(build,
3857 set: isl_set_copy(set: domain[order[i]].set));
3858 min = isl_map_lexmin(map: min);
3859 test = isl_map_copy(map: min);
3860 test = isl_map_apply_domain(map1: isl_map_copy(map: min_first), map2: test);
3861 test = isl_map_order_lt(map: test, type1: isl_dim_in, pos1: 0, type2: isl_dim_out, pos2: 0);
3862 empty = isl_map_is_empty(map: test);
3863 isl_map_free(map: test);
3864 if (empty >= 0 && !empty) {
3865 isl_map_free(map: min_first);
3866 first = i;
3867 min_first = min;
3868 } else
3869 isl_map_free(map: min);
3870
3871 if (empty < 0)
3872 break;
3873 }
3874
3875 isl_map_free(map: min_first);
3876
3877 return i < n ? -1 : first;
3878}
3879
3880/* Construct a shifted inverse schedule based on the original inverse schedule,
3881 * the stride and the offset.
3882 *
3883 * The original inverse schedule is specified as the "map" fields
3884 * of the elements of "domain" indexed by the first "n" elements of "order".
3885 *
3886 * "stride" and "offset" are such that the difference
3887 * between the values of the current dimension of domain "i"
3888 * and the values of the current dimension for some reference domain are
3889 * equal to
3890 *
3891 * stride * integer + offset[i]
3892 *
3893 * Moreover, 0 <= offset[i] < stride.
3894 *
3895 * For each domain, we create a map
3896 *
3897 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
3898 *
3899 * where j refers to the current dimension and the other dimensions are
3900 * unchanged, and apply this map to the original schedule domain.
3901 *
3902 * For example, for the original schedule
3903 *
3904 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3905 *
3906 * and assuming the offset is 0 for the A domain and 1 for the B domain,
3907 * we apply the mapping
3908 *
3909 * { [j] -> [j, 0] }
3910 *
3911 * to the schedule of the "A" domain and the mapping
3912 *
3913 * { [j - 1] -> [j, 1] }
3914 *
3915 * to the schedule of the "B" domain.
3916 *
3917 *
3918 * Note that after the transformation, the differences between pairs
3919 * of values of the current dimension over all domains are multiples
3920 * of stride and that we have therefore exposed the stride.
3921 *
3922 *
3923 * To see that the mapping preserves the lexicographic order,
3924 * first note that each of the individual maps above preserves the order.
3925 * If the value of the current iterator is j1 in one domain and j2 in another,
3926 * then if j1 = j2, we know that the same map is applied to both domains
3927 * and the order is preserved.
3928 * Otherwise, let us assume, without loss of generality, that j1 < j2.
3929 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
3930 *
3931 * j1 - c1 < j2 - c2
3932 *
3933 * and the order is preserved.
3934 * If c1 < c2, then we know
3935 *
3936 * 0 <= c2 - c1 < s
3937 *
3938 * We also have
3939 *
3940 * j2 - j1 = n * s + r
3941 *
3942 * with n >= 0 and 0 <= r < s.
3943 * In other words, r = c2 - c1.
3944 * If n > 0, then
3945 *
3946 * j1 - c1 < j2 - c2
3947 *
3948 * If n = 0, then
3949 *
3950 * j1 - c1 = j2 - c2
3951 *
3952 * and so
3953 *
3954 * (j1 - c1, c1) << (j2 - c2, c2)
3955 *
3956 * with "<<" the lexicographic order, proving that the order is preserved
3957 * in all cases.
3958 */
3959static __isl_give isl_union_map *construct_shifted_executed(
3960 struct isl_set_map_pair *domain, int *order, int n,
3961 __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
3962 __isl_keep isl_ast_build *build)
3963{
3964 int i;
3965 isl_union_map *executed;
3966 isl_space *space;
3967 isl_map *map;
3968 isl_size depth;
3969 isl_constraint *c;
3970
3971 depth = isl_ast_build_get_depth(build);
3972 if (depth < 0)
3973 return NULL;
3974 space = isl_ast_build_get_space(build, internal: 1);
3975 executed = isl_union_map_empty(space: isl_space_copy(space));
3976 space = isl_space_map_from_set(space);
3977 map = isl_map_identity(space: isl_space_copy(space));
3978 map = isl_map_eliminate(map, type: isl_dim_out, first: depth, n: 1);
3979 map = isl_map_insert_dims(map, type: isl_dim_out, pos: depth + 1, n: 1);
3980 space = isl_space_insert_dims(space, type: isl_dim_out, pos: depth + 1, n: 1);
3981
3982 c = isl_constraint_alloc_equality(ls: isl_local_space_from_space(space));
3983 c = isl_constraint_set_coefficient_si(constraint: c, type: isl_dim_in, pos: depth, v: 1);
3984 c = isl_constraint_set_coefficient_si(constraint: c, type: isl_dim_out, pos: depth, v: -1);
3985
3986 for (i = 0; i < n; ++i) {
3987 isl_map *map_i;
3988 isl_val *v;
3989
3990 v = isl_multi_val_get_val(multi: offset, pos: i);
3991 if (!v)
3992 break;
3993 map_i = isl_map_copy(map);
3994 map_i = isl_map_fix_val(map: map_i, type: isl_dim_out, pos: depth + 1,
3995 v: isl_val_copy(v));
3996 v = isl_val_neg(v);
3997 c = isl_constraint_set_constant_val(constraint: c, v);
3998 map_i = isl_map_add_constraint(map: map_i, constraint: isl_constraint_copy(c));
3999
4000 map_i = isl_map_apply_domain(map1: isl_map_copy(map: domain[order[i]].map),
4001 map2: map_i);
4002 executed = isl_union_map_add_map(umap: executed, map: map_i);
4003 }
4004
4005 isl_constraint_free(c);
4006 isl_map_free(map);
4007
4008 if (i < n)
4009 executed = isl_union_map_free(umap: executed);
4010
4011 return executed;
4012}
4013
4014/* Generate code for a single component, after exposing the stride,
4015 * given that the schedule domain is "shifted strided".
4016 *
4017 * The component inverse schedule is specified as the "map" fields
4018 * of the elements of "domain" indexed by the first "n" elements of "order".
4019 *
4020 * The schedule domain being "shifted strided" means that the differences
4021 * between the values of the current dimension of domain "i"
4022 * and the values of the current dimension for some reference domain are
4023 * equal to
4024 *
4025 * stride * integer + offset[i]
4026 *
4027 * We first look for the domain with the "smallest" value for the current
4028 * dimension and adjust the offsets such that the offset of the "smallest"
4029 * domain is equal to zero. The other offsets are reduced modulo stride.
4030 *
4031 * Based on this information, we construct a new inverse schedule in
4032 * construct_shifted_executed that exposes the stride.
4033 * Since this involves the introduction of a new schedule dimension,
4034 * the build needs to be changed accordingly.
4035 * After computing the AST, the newly introduced dimension needs
4036 * to be removed again from the list of grafts. We do this by plugging
4037 * in a mapping that represents the new schedule domain in terms of the
4038 * old schedule domain.
4039 */
4040static __isl_give isl_ast_graft_list *generate_shift_component(
4041 struct isl_set_map_pair *domain, int *order, int n,
4042 __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
4043 __isl_take isl_ast_build *build)
4044{
4045 isl_ast_graft_list *list;
4046 int first;
4047 isl_size depth;
4048 isl_val *val;
4049 isl_multi_val *mv;
4050 isl_space *space;
4051 isl_multi_aff *ma, *zero;
4052 isl_union_map *executed;
4053
4054 depth = isl_ast_build_get_depth(build);
4055
4056 first = first_offset(domain, order, n, build);
4057 if (depth < 0 || first < 0)
4058 goto error;
4059
4060 mv = isl_multi_val_copy(multi: offset);
4061 val = isl_multi_val_get_val(multi: offset, pos: first);
4062 val = isl_val_neg(v: val);
4063 mv = isl_multi_val_add_val(mv, v: val);
4064 mv = isl_multi_val_mod_val(mv, v: isl_val_copy(v: stride));
4065
4066 executed = construct_shifted_executed(domain, order, n, stride, offset: mv,
4067 build);
4068 space = isl_ast_build_get_space(build, internal: 1);
4069 space = isl_space_map_from_set(space);
4070 ma = isl_multi_aff_identity(space: isl_space_copy(space));
4071 space = isl_space_from_domain(space: isl_space_domain(space));
4072 space = isl_space_add_dims(space, type: isl_dim_out, n: 1);
4073 zero = isl_multi_aff_zero(space);
4074 ma = isl_multi_aff_range_splice(multi1: ma, pos: depth + 1, multi2: zero);
4075 build = isl_ast_build_insert_dim(build, pos: depth + 1);
4076 list = generate_shifted_component(executed, build);
4077
4078 list = isl_ast_graft_list_preimage_multi_aff(list, ma);
4079
4080 isl_multi_val_free(multi: mv);
4081
4082 return list;
4083error:
4084 isl_ast_build_free(build);
4085 return NULL;
4086}
4087
4088/* Does any node in the schedule tree rooted at the current schedule node
4089 * of "build" depend on outer schedule nodes?
4090 */
4091static int has_anchored_subtree(__isl_keep isl_ast_build *build)
4092{
4093 isl_schedule_node *node;
4094 int dependent = 0;
4095
4096 node = isl_ast_build_get_schedule_node(build);
4097 dependent = isl_schedule_node_is_subtree_anchored(node);
4098 isl_schedule_node_free(node);
4099
4100 return dependent;
4101}
4102
4103/* Generate code for a single component.
4104 *
4105 * The component inverse schedule is specified as the "map" fields
4106 * of the elements of "domain" indexed by the first "n" elements of "order".
4107 *
4108 * This function may modify the "set" fields of "domain".
4109 *
4110 * Before proceeding with the actual code generation for the component,
4111 * we first check if there are any "shifted" strides, meaning that
4112 * the schedule domains of the individual domains are all strided,
4113 * but that they have different offsets, resulting in the union
4114 * of schedule domains not being strided anymore.
4115 *
4116 * The simplest example is the schedule
4117 *
4118 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
4119 *
4120 * Both schedule domains are strided, but their union is not.
4121 * This function detects such cases and then rewrites the schedule to
4122 *
4123 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
4124 *
4125 * In the new schedule, the schedule domains have the same offset (modulo
4126 * the stride), ensuring that the union of schedule domains is also strided.
4127 *
4128 *
4129 * If there is only a single domain in the component, then there is
4130 * nothing to do. Similarly, if the current schedule dimension has
4131 * a fixed value for almost all domains then there is nothing to be done.
4132 * In particular, we need at least two domains where the current schedule
4133 * dimension does not have a fixed value.
4134 * Finally, in case of a schedule map input,
4135 * if any of the options refer to the current schedule dimension,
4136 * then we bail out as well. It would be possible to reformulate the options
4137 * in terms of the new schedule domain, but that would introduce constraints
4138 * that separate the domains in the options and that is something we would
4139 * like to avoid.
4140 * In the case of a schedule tree input, we bail out if any of
4141 * the descendants of the current schedule node refer to outer
4142 * schedule nodes in any way.
4143 *
4144 *
4145 * To see if there is any shifted stride, we look at the differences
4146 * between the values of the current dimension in pairs of domains
4147 * for equal values of outer dimensions. These differences should be
4148 * of the form
4149 *
4150 * m x + r
4151 *
4152 * with "m" the stride and "r" a constant. Note that we cannot perform
4153 * this analysis on individual domains as the lower bound in each domain
4154 * may depend on parameters or outer dimensions and so the current dimension
4155 * itself may not have a fixed remainder on division by the stride.
4156 *
4157 * In particular, we compare the first domain that does not have an
4158 * obviously fixed value for the current dimension to itself and all
4159 * other domains and collect the offsets and the gcd of the strides.
4160 * If the gcd becomes one, then we failed to find shifted strides.
4161 * If the gcd is zero, then the differences were all fixed, meaning
4162 * that some domains had non-obviously fixed values for the current dimension.
4163 * If all the offsets are the same (for those domains that do not have
4164 * an obviously fixed value for the current dimension), then we do not
4165 * apply the transformation.
4166 * If none of the domains were skipped, then there is nothing to do.
4167 * If some of them were skipped, then if we apply separation, the schedule
4168 * domain should get split in pieces with a (non-shifted) stride.
4169 *
4170 * Otherwise, we apply a shift to expose the stride in
4171 * generate_shift_component.
4172 */
4173static __isl_give isl_ast_graft_list *generate_component(
4174 struct isl_set_map_pair *domain, int *order, int n,
4175 __isl_take isl_ast_build *build)
4176{
4177 int i, d;
4178 isl_size depth;
4179 isl_ctx *ctx;
4180 isl_map *map;
4181 isl_set *deltas;
4182 isl_val *gcd = NULL;
4183 isl_multi_val *mv;
4184 int fixed, skip;
4185 int base;
4186 isl_ast_graft_list *list;
4187 int res = 0;
4188
4189 depth = isl_ast_build_get_depth(build);
4190 if (depth < 0)
4191 goto error;
4192
4193 skip = n == 1;
4194 if (skip >= 0 && !skip)
4195 skip = at_most_one_non_fixed(domain, order, n, depth);
4196 if (skip >= 0 && !skip) {
4197 if (isl_ast_build_has_schedule_node(build))
4198 skip = has_anchored_subtree(build);
4199 else
4200 skip = isl_ast_build_options_involve_depth(build);
4201 }
4202 if (skip < 0)
4203 goto error;
4204 if (skip)
4205 return generate_shifted_component_from_list(domain,
4206 order, n, build);
4207
4208 base = eliminate_non_fixed(domain, order, n, depth, build);
4209 if (base < 0)
4210 goto error;
4211
4212 ctx = isl_ast_build_get_ctx(build);
4213
4214 mv = isl_multi_val_zero(space: isl_space_set_alloc(ctx, nparam: 0, dim: n));
4215
4216 fixed = 1;
4217 for (i = 0; i < n; ++i) {
4218 isl_val *r, *m;
4219
4220 map = isl_map_from_domain_and_range(
4221 domain: isl_set_copy(set: domain[order[base]].set),
4222 range: isl_set_copy(set: domain[order[i]].set));
4223 for (d = 0; d < depth; ++d)
4224 map = isl_map_equate(map, type1: isl_dim_in, pos1: d,
4225 type2: isl_dim_out, pos2: d);
4226 deltas = isl_map_deltas(map);
4227 res = isl_set_dim_residue_class_val(set: deltas, pos: depth, modulo: &m, residue: &r);
4228 isl_set_free(set: deltas);
4229 if (res < 0)
4230 break;
4231
4232 if (i == 0)
4233 gcd = m;
4234 else
4235 gcd = isl_val_gcd(v1: gcd, v2: m);
4236 if (isl_val_is_one(v: gcd)) {
4237 isl_val_free(v: r);
4238 break;
4239 }
4240 mv = isl_multi_val_set_val(multi: mv, pos: i, el: r);
4241
4242 res = dim_is_fixed(set: domain[order[i]].set, pos: depth);
4243 if (res < 0)
4244 break;
4245 if (res)
4246 continue;
4247
4248 if (fixed && i > base) {
4249 isl_val *a, *b;
4250 a = isl_multi_val_get_val(multi: mv, pos: i);
4251 b = isl_multi_val_get_val(multi: mv, pos: base);
4252 if (isl_val_ne(v1: a, v2: b))
4253 fixed = 0;
4254 isl_val_free(v: a);
4255 isl_val_free(v: b);
4256 }
4257 }
4258
4259 if (res < 0 || !gcd) {
4260 isl_ast_build_free(build);
4261 list = NULL;
4262 } else if (i < n || fixed || isl_val_is_zero(v: gcd)) {
4263 list = generate_shifted_component_from_list(domain,
4264 order, n, build);
4265 } else {
4266 list = generate_shift_component(domain, order, n, stride: gcd, offset: mv,
4267 build);
4268 }
4269
4270 isl_val_free(v: gcd);
4271 isl_multi_val_free(multi: mv);
4272
4273 return list;
4274error:
4275 isl_ast_build_free(build);
4276 return NULL;
4277}
4278
4279/* Store both "map" itself and its domain in the
4280 * structure pointed to by *next and advance to the next array element.
4281 */
4282static isl_stat extract_domain(__isl_take isl_map *map, void *user)
4283{
4284 struct isl_set_map_pair **next = user;
4285
4286 (*next)->map = isl_map_copy(map);
4287 (*next)->set = isl_map_domain(bmap: map);
4288 (*next)++;
4289
4290 return isl_stat_ok;
4291}
4292
4293static isl_bool after_in_tree(__isl_keep isl_union_map *umap,
4294 __isl_keep isl_schedule_node *node);
4295
4296/* Is any domain element of "umap" scheduled after any of
4297 * the corresponding image elements by the tree rooted at
4298 * the child of "node"?
4299 */
4300static isl_bool after_in_child(__isl_keep isl_union_map *umap,
4301 __isl_keep isl_schedule_node *node)
4302{
4303 isl_schedule_node *child;
4304 isl_bool after;
4305
4306 child = isl_schedule_node_get_child(node, pos: 0);
4307 after = after_in_tree(umap, node: child);
4308 isl_schedule_node_free(node: child);
4309
4310 return after;
4311}
4312
4313/* Is any domain element of "umap" scheduled after any of
4314 * the corresponding image elements by the tree rooted at
4315 * the band node "node"?
4316 *
4317 * We first check if any domain element is scheduled after any
4318 * of the corresponding image elements by the band node itself.
4319 * If not, we restrict "map" to those pairs of element that
4320 * are scheduled together by the band node and continue with
4321 * the child of the band node.
4322 * If there are no such pairs then the map passed to after_in_child
4323 * will be empty causing it to return 0.
4324 */
4325static isl_bool after_in_band(__isl_keep isl_union_map *umap,
4326 __isl_keep isl_schedule_node *node)
4327{
4328 isl_multi_union_pw_aff *mupa;
4329 isl_union_map *partial, *test, *gt, *universe, *umap1, *umap2;
4330 isl_union_set *domain, *range;
4331 isl_space *space;
4332 isl_bool empty;
4333 isl_bool after;
4334 isl_size n;
4335
4336 n = isl_schedule_node_band_n_member(node);
4337 if (n < 0)
4338 return isl_bool_error;
4339 if (n == 0)
4340 return after_in_child(umap, node);
4341
4342 mupa = isl_schedule_node_band_get_partial_schedule(node);
4343 space = isl_multi_union_pw_aff_get_space(multi: mupa);
4344 partial = isl_union_map_from_multi_union_pw_aff(mupa);
4345 test = isl_union_map_copy(umap);
4346 test = isl_union_map_apply_domain(umap1: test, umap2: isl_union_map_copy(umap: partial));
4347 test = isl_union_map_apply_range(umap1: test, umap2: isl_union_map_copy(umap: partial));
4348 gt = isl_union_map_from_map(map: isl_map_lex_gt(set_space: space));
4349 test = isl_union_map_intersect(umap1: test, umap2: gt);
4350 empty = isl_union_map_is_empty(umap: test);
4351 isl_union_map_free(umap: test);
4352
4353 if (empty < 0 || !empty) {
4354 isl_union_map_free(umap: partial);
4355 return isl_bool_not(b: empty);
4356 }
4357
4358 universe = isl_union_map_universe(umap: isl_union_map_copy(umap));
4359 domain = isl_union_map_domain(umap: isl_union_map_copy(umap: universe));
4360 range = isl_union_map_range(umap: universe);
4361 umap1 = isl_union_map_copy(umap: partial);
4362 umap1 = isl_union_map_intersect_domain(umap: umap1, uset: domain);
4363 umap2 = isl_union_map_intersect_domain(umap: partial, uset: range);
4364 test = isl_union_map_apply_range(umap1, umap2: isl_union_map_reverse(umap: umap2));
4365 test = isl_union_map_intersect(umap1: test, umap2: isl_union_map_copy(umap));
4366 after = after_in_child(umap: test, node);
4367 isl_union_map_free(umap: test);
4368 return after;
4369}
4370
4371/* Is any domain element of "umap" scheduled after any of
4372 * the corresponding image elements by the tree rooted at
4373 * the context node "node"?
4374 *
4375 * The context constraints apply to the schedule domain,
4376 * so we cannot apply them directly to "umap", which contains
4377 * pairs of statement instances. Instead, we add them
4378 * to the range of the prefix schedule for both domain and
4379 * range of "umap".
4380 */
4381static isl_bool after_in_context(__isl_keep isl_union_map *umap,
4382 __isl_keep isl_schedule_node *node)
4383{
4384 isl_union_map *prefix, *universe, *umap1, *umap2;
4385 isl_union_set *domain, *range;
4386 isl_set *context;
4387 isl_bool after;
4388
4389 umap = isl_union_map_copy(umap);
4390 context = isl_schedule_node_context_get_context(node);
4391 prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
4392 universe = isl_union_map_universe(umap: isl_union_map_copy(umap));
4393 domain = isl_union_map_domain(umap: isl_union_map_copy(umap: universe));
4394 range = isl_union_map_range(umap: universe);
4395 umap1 = isl_union_map_copy(umap: prefix);
4396 umap1 = isl_union_map_intersect_domain(umap: umap1, uset: domain);
4397 umap2 = isl_union_map_intersect_domain(umap: prefix, uset: range);
4398 umap1 = isl_union_map_intersect_range(umap: umap1,
4399 uset: isl_union_set_from_set(set: context));
4400 umap1 = isl_union_map_apply_range(umap1, umap2: isl_union_map_reverse(umap: umap2));
4401 umap = isl_union_map_intersect(umap1: umap, umap2: umap1);
4402
4403 after = after_in_child(umap, node);
4404
4405 isl_union_map_free(umap);
4406
4407 return after;
4408}
4409
4410/* Is any domain element of "umap" scheduled after any of
4411 * the corresponding image elements by the tree rooted at
4412 * the expansion node "node"?
4413 *
4414 * We apply the expansion to domain and range of "umap" and
4415 * continue with its child.
4416 */
4417static isl_bool after_in_expansion(__isl_keep isl_union_map *umap,
4418 __isl_keep isl_schedule_node *node)
4419{
4420 isl_union_map *expansion;
4421 isl_bool after;
4422
4423 expansion = isl_schedule_node_expansion_get_expansion(node);
4424 umap = isl_union_map_copy(umap);
4425 umap = isl_union_map_apply_domain(umap1: umap, umap2: isl_union_map_copy(umap: expansion));
4426 umap = isl_union_map_apply_range(umap1: umap, umap2: expansion);
4427
4428 after = after_in_child(umap, node);
4429
4430 isl_union_map_free(umap);
4431
4432 return after;
4433}
4434
4435/* Is any domain element of "umap" scheduled after any of
4436 * the corresponding image elements by the tree rooted at
4437 * the extension node "node"?
4438 *
4439 * Since the extension node may add statement instances before or
4440 * after the pairs of statement instances in "umap", we return isl_bool_true
4441 * to ensure that these pairs are not broken up.
4442 */
4443static isl_bool after_in_extension(__isl_keep isl_union_map *umap,
4444 __isl_keep isl_schedule_node *node)
4445{
4446 return isl_bool_true;
4447}
4448
4449/* Is any domain element of "umap" scheduled after any of
4450 * the corresponding image elements by the tree rooted at
4451 * the filter node "node"?
4452 *
4453 * We intersect domain and range of "umap" with the filter and
4454 * continue with its child.
4455 */
4456static isl_bool after_in_filter(__isl_keep isl_union_map *umap,
4457 __isl_keep isl_schedule_node *node)
4458{
4459 isl_union_set *filter;
4460 isl_bool after;
4461
4462 umap = isl_union_map_copy(umap);
4463 filter = isl_schedule_node_filter_get_filter(node);
4464 umap = isl_union_map_intersect_domain(umap, uset: isl_union_set_copy(uset: filter));
4465 umap = isl_union_map_intersect_range(umap, uset: filter);
4466
4467 after = after_in_child(umap, node);
4468
4469 isl_union_map_free(umap);
4470
4471 return after;
4472}
4473
4474/* Is any domain element of "umap" scheduled after any of
4475 * the corresponding image elements by the tree rooted at
4476 * the set node "node"?
4477 *
4478 * This is only the case if this condition holds in any
4479 * of the (filter) children of the set node.
4480 * In particular, if the domain and the range of "umap"
4481 * are contained in different children, then the condition
4482 * does not hold.
4483 */
4484static isl_bool after_in_set(__isl_keep isl_union_map *umap,
4485 __isl_keep isl_schedule_node *node)
4486{
4487 int i;
4488 isl_size n;
4489
4490 n = isl_schedule_node_n_children(node);
4491 if (n < 0)
4492 return isl_bool_error;
4493 for (i = 0; i < n; ++i) {
4494 isl_schedule_node *child;
4495 isl_bool after;
4496
4497 child = isl_schedule_node_get_child(node, pos: i);
4498 after = after_in_tree(umap, node: child);
4499 isl_schedule_node_free(node: child);
4500
4501 if (after < 0 || after)
4502 return after;
4503 }
4504
4505 return isl_bool_false;
4506}
4507
4508/* Return the filter of child "i" of "node".
4509 */
4510static __isl_give isl_union_set *child_filter(
4511 __isl_keep isl_schedule_node *node, int i)
4512{
4513 isl_schedule_node *child;
4514 isl_union_set *filter;
4515
4516 child = isl_schedule_node_get_child(node, pos: i);
4517 filter = isl_schedule_node_filter_get_filter(node: child);
4518 isl_schedule_node_free(node: child);
4519
4520 return filter;
4521}
4522
4523/* Is any domain element of "umap" scheduled after any of
4524 * the corresponding image elements by the tree rooted at
4525 * the sequence node "node"?
4526 *
4527 * This happens in particular if any domain element is
4528 * contained in a later child than one containing a range element or
4529 * if the condition holds within a given child in the sequence.
4530 * The later part of the condition is checked by after_in_set.
4531 */
4532static isl_bool after_in_sequence(__isl_keep isl_union_map *umap,
4533 __isl_keep isl_schedule_node *node)
4534{
4535 int i, j;
4536 isl_size n;
4537 isl_union_map *umap_i;
4538 isl_bool empty;
4539 isl_bool after = isl_bool_false;
4540
4541 n = isl_schedule_node_n_children(node);
4542 if (n < 0)
4543 return isl_bool_error;
4544 for (i = 1; i < n; ++i) {
4545 isl_union_set *filter_i;
4546
4547 umap_i = isl_union_map_copy(umap);
4548 filter_i = child_filter(node, i);
4549 umap_i = isl_union_map_intersect_domain(umap: umap_i, uset: filter_i);
4550 empty = isl_union_map_is_empty(umap: umap_i);
4551 if (empty < 0)
4552 goto error;
4553 if (empty) {
4554 isl_union_map_free(umap: umap_i);
4555 continue;
4556 }
4557
4558 for (j = 0; j < i; ++j) {
4559 isl_union_set *filter_j;
4560 isl_union_map *umap_ij;
4561
4562 umap_ij = isl_union_map_copy(umap: umap_i);
4563 filter_j = child_filter(node, i: j);
4564 umap_ij = isl_union_map_intersect_range(umap: umap_ij,
4565 uset: filter_j);
4566 empty = isl_union_map_is_empty(umap: umap_ij);
4567 isl_union_map_free(umap: umap_ij);
4568
4569 if (empty < 0)
4570 goto error;
4571 if (!empty)
4572 after = isl_bool_true;
4573 if (after)
4574 break;
4575 }
4576
4577 isl_union_map_free(umap: umap_i);
4578 if (after)
4579 break;
4580 }
4581
4582 if (after < 0 || after)
4583 return after;
4584
4585 return after_in_set(umap, node);
4586error:
4587 isl_union_map_free(umap: umap_i);
4588 return isl_bool_error;
4589}
4590
4591/* Is any domain element of "umap" scheduled after any of
4592 * the corresponding image elements by the tree rooted at "node"?
4593 *
4594 * If "umap" is empty, then clearly there is no such element.
4595 * Otherwise, consider the different types of nodes separately.
4596 */
4597static isl_bool after_in_tree(__isl_keep isl_union_map *umap,
4598 __isl_keep isl_schedule_node *node)
4599{
4600 isl_bool empty;
4601 enum isl_schedule_node_type type;
4602
4603 empty = isl_union_map_is_empty(umap);
4604 if (empty < 0)
4605 return isl_bool_error;
4606 if (empty)
4607 return isl_bool_false;
4608 if (!node)
4609 return isl_bool_error;
4610
4611 type = isl_schedule_node_get_type(node);
4612 switch (type) {
4613 case isl_schedule_node_error:
4614 return isl_bool_error;
4615 case isl_schedule_node_leaf:
4616 return isl_bool_false;
4617 case isl_schedule_node_band:
4618 return after_in_band(umap, node);
4619 case isl_schedule_node_domain:
4620 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
4621 "unexpected internal domain node",
4622 return isl_bool_error);
4623 case isl_schedule_node_context:
4624 return after_in_context(umap, node);
4625 case isl_schedule_node_expansion:
4626 return after_in_expansion(umap, node);
4627 case isl_schedule_node_extension:
4628 return after_in_extension(umap, node);
4629 case isl_schedule_node_filter:
4630 return after_in_filter(umap, node);
4631 case isl_schedule_node_guard:
4632 case isl_schedule_node_mark:
4633 return after_in_child(umap, node);
4634 case isl_schedule_node_set:
4635 return after_in_set(umap, node);
4636 case isl_schedule_node_sequence:
4637 return after_in_sequence(umap, node);
4638 }
4639
4640 return isl_bool_true;
4641}
4642
4643/* Is any domain element of "map1" scheduled after any domain
4644 * element of "map2" by the subtree underneath the current band node,
4645 * while at the same time being scheduled together by the current
4646 * band node, i.e., by "map1" and "map2?
4647 *
4648 * If the child of the current band node is a leaf, then
4649 * no element can be scheduled after any other element.
4650 *
4651 * Otherwise, we construct a relation between domain elements
4652 * of "map1" and domain elements of "map2" that are scheduled
4653 * together and then check if the subtree underneath the current
4654 * band node determines their relative order.
4655 */
4656static isl_bool after_in_subtree(__isl_keep isl_ast_build *build,
4657 __isl_keep isl_map *map1, __isl_keep isl_map *map2)
4658{
4659 isl_schedule_node *node;
4660 isl_map *map;
4661 isl_union_map *umap;
4662 isl_bool after;
4663
4664 node = isl_ast_build_get_schedule_node(build);
4665 if (!node)
4666 return isl_bool_error;
4667 node = isl_schedule_node_child(node, pos: 0);
4668 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf) {
4669 isl_schedule_node_free(node);
4670 return isl_bool_false;
4671 }
4672 map = isl_map_copy(map: map2);
4673 map = isl_map_apply_domain(map1: map, map2: isl_map_copy(map: map1));
4674 umap = isl_union_map_from_map(map);
4675 after = after_in_tree(umap, node);
4676 isl_union_map_free(umap);
4677 isl_schedule_node_free(node);
4678 return after;
4679}
4680
4681/* Internal data for any_scheduled_after.
4682 *
4683 * "build" is the build in which the AST is constructed.
4684 * "depth" is the number of loops that have already been generated
4685 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
4686 * "domain" is an array of set-map pairs corresponding to the different
4687 * iteration domains. The set is the schedule domain, i.e., the domain
4688 * of the inverse schedule, while the map is the inverse schedule itself.
4689 */
4690struct isl_any_scheduled_after_data {
4691 isl_ast_build *build;
4692 int depth;
4693 int group_coscheduled;
4694 struct isl_set_map_pair *domain;
4695};
4696
4697/* Is any element of domain "i" scheduled after any element of domain "j"
4698 * (for a common iteration of the first data->depth loops)?
4699 *
4700 * data->domain[i].set contains the domain of the inverse schedule
4701 * for domain "i", i.e., elements in the schedule domain.
4702 *
4703 * If we are inside a band of a schedule tree and there is a pair
4704 * of elements in the two domains that is schedule together by
4705 * the current band, then we check if any element of "i" may be schedule
4706 * after element of "j" by the descendants of the band node.
4707 *
4708 * If data->group_coscheduled is set, then we also return 1 if there
4709 * is any pair of elements in the two domains that are scheduled together.
4710 */
4711static isl_bool any_scheduled_after(int i, int j, void *user)
4712{
4713 struct isl_any_scheduled_after_data *data = user;
4714 isl_size dim = isl_set_dim(set: data->domain[i].set, type: isl_dim_set);
4715 int pos;
4716
4717 if (dim < 0)
4718 return isl_bool_error;
4719
4720 for (pos = data->depth; pos < dim; ++pos) {
4721 int follows;
4722
4723 follows = isl_set_follows_at(set1: data->domain[i].set,
4724 set2: data->domain[j].set, pos);
4725
4726 if (follows < -1)
4727 return isl_bool_error;
4728 if (follows > 0)
4729 return isl_bool_true;
4730 if (follows < 0)
4731 return isl_bool_false;
4732 }
4733
4734 if (isl_ast_build_has_schedule_node(build: data->build)) {
4735 isl_bool after;
4736
4737 after = after_in_subtree(build: data->build, map1: data->domain[i].map,
4738 map2: data->domain[j].map);
4739 if (after < 0 || after)
4740 return after;
4741 }
4742
4743 return isl_bool_ok(b: data->group_coscheduled);
4744}
4745
4746/* Look for independent components at the current depth and generate code
4747 * for each component separately. The resulting lists of grafts are
4748 * merged in an attempt to combine grafts with identical guards.
4749 *
4750 * Code for two domains can be generated separately if all the elements
4751 * of one domain are scheduled before (or together with) all the elements
4752 * of the other domain. We therefore consider the graph with as nodes
4753 * the domains and an edge between two nodes if any element of the first
4754 * node is scheduled after any element of the second node.
4755 * If the ast_build_group_coscheduled is set, then we also add an edge if
4756 * there is any pair of elements in the two domains that are scheduled
4757 * together.
4758 * Code is then generated (by generate_component)
4759 * for each of the strongly connected components in this graph
4760 * in their topological order.
4761 *
4762 * Since the test is performed on the domain of the inverse schedules of
4763 * the different domains, we precompute these domains and store
4764 * them in data.domain.
4765 */
4766static __isl_give isl_ast_graft_list *generate_components(
4767 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
4768{
4769 int i;
4770 isl_ctx *ctx = isl_ast_build_get_ctx(build);
4771 isl_size n = isl_union_map_n_map(umap: executed);
4772 isl_size depth;
4773 struct isl_any_scheduled_after_data data;
4774 struct isl_set_map_pair *next;
4775 struct isl_tarjan_graph *g = NULL;
4776 isl_ast_graft_list *list = NULL;
4777 int n_domain = 0;
4778
4779 data.domain = NULL;
4780 if (n < 0)
4781 goto error;
4782 data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
4783 if (!data.domain)
4784 goto error;
4785 n_domain = n;
4786
4787 next = data.domain;
4788 if (isl_union_map_foreach_map(umap: executed, fn: &extract_domain, user: &next) < 0)
4789 goto error;
4790
4791 depth = isl_ast_build_get_depth(build);
4792 if (depth < 0)
4793 goto error;
4794 data.build = build;
4795 data.depth = depth;
4796 data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
4797 g = isl_tarjan_graph_init(ctx, len: n, follows: &any_scheduled_after, user: &data);
4798 if (!g)
4799 goto error;
4800
4801 list = isl_ast_graft_list_alloc(ctx, n: 0);
4802
4803 i = 0;
4804 while (list && n) {
4805 isl_ast_graft_list *list_c;
4806 int first = i;
4807
4808 if (g->order[i] == -1)
4809 isl_die(ctx, isl_error_internal, "cannot happen",
4810 goto error);
4811 ++i; --n;
4812 while (g->order[i] != -1) {
4813 ++i; --n;
4814 }
4815
4816 list_c = generate_component(domain: data.domain,
4817 order: g->order + first, n: i - first,
4818 build: isl_ast_build_copy(build));
4819 list = isl_ast_graft_list_merge(list1: list, list2: list_c, build);
4820
4821 ++i;
4822 }
4823
4824 if (0)
4825error: list = isl_ast_graft_list_free(list);
4826 isl_tarjan_graph_free(g);
4827 for (i = 0; i < n_domain; ++i) {
4828 isl_map_free(map: data.domain[i].map);
4829 isl_set_free(set: data.domain[i].set);
4830 }
4831 free(ptr: data.domain);
4832 isl_union_map_free(umap: executed);
4833 isl_ast_build_free(build);
4834
4835 return list;
4836}
4837
4838/* Generate code for the next level (and all inner levels).
4839 *
4840 * If "executed" is empty, i.e., no code needs to be generated,
4841 * then we return an empty list.
4842 *
4843 * If we have already generated code for all loop levels, then we pass
4844 * control to generate_inner_level.
4845 *
4846 * If "executed" lives in a single space, i.e., if code needs to be
4847 * generated for a single domain, then there can only be a single
4848 * component and we go directly to generate_shifted_component.
4849 * Otherwise, we call generate_components to detect the components
4850 * and to call generate_component on each of them separately.
4851 */
4852static __isl_give isl_ast_graft_list *generate_next_level(
4853 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
4854{
4855 isl_size depth;
4856 isl_size dim;
4857 isl_size n;
4858
4859 if (!build || !executed)
4860 goto error;
4861
4862 if (isl_union_map_is_empty(umap: executed)) {
4863 isl_ctx *ctx = isl_ast_build_get_ctx(build);
4864 isl_union_map_free(umap: executed);
4865 isl_ast_build_free(build);
4866 return isl_ast_graft_list_alloc(ctx, n: 0);
4867 }
4868
4869 depth = isl_ast_build_get_depth(build);
4870 dim = isl_ast_build_dim(build, type: isl_dim_set);
4871 if (depth < 0 || dim < 0)
4872 goto error;
4873 if (depth >= dim)
4874 return generate_inner_level(executed, build);
4875
4876 n = isl_union_map_n_map(umap: executed);
4877 if (n < 0)
4878 goto error;
4879 if (n == 1)
4880 return generate_shifted_component(executed, build);
4881
4882 return generate_components(executed, build);
4883error:
4884 isl_union_map_free(umap: executed);
4885 isl_ast_build_free(build);
4886 return NULL;
4887}
4888
4889/* Internal data structure used by isl_ast_build_node_from_schedule_map.
4890 * internal, executed and build are the inputs to generate_code.
4891 * list collects the output.
4892 */
4893struct isl_generate_code_data {
4894 int internal;
4895 isl_union_map *executed;
4896 isl_ast_build *build;
4897
4898 isl_ast_graft_list *list;
4899};
4900
4901/* Given an inverse schedule in terms of the external build schedule, i.e.,
4902 *
4903 * [E -> S] -> D
4904 *
4905 * with E the external build schedule and S the additional schedule "space",
4906 * reformulate the inverse schedule in terms of the internal schedule domain,
4907 * i.e., return
4908 *
4909 * [I -> S] -> D
4910 *
4911 * We first obtain a mapping
4912 *
4913 * I -> E
4914 *
4915 * take the inverse and the product with S -> S, resulting in
4916 *
4917 * [I -> S] -> [E -> S]
4918 *
4919 * Applying the map to the input produces the desired result.
4920 */
4921static __isl_give isl_union_map *internal_executed(
4922 __isl_take isl_union_map *executed, __isl_keep isl_space *space,
4923 __isl_keep isl_ast_build *build)
4924{
4925 isl_map *id, *proj;
4926
4927 proj = isl_ast_build_get_schedule_map(build);
4928 proj = isl_map_reverse(map: proj);
4929 space = isl_space_map_from_set(space: isl_space_copy(space));
4930 id = isl_map_identity(space);
4931 proj = isl_map_product(map1: proj, map2: id);
4932 executed = isl_union_map_apply_domain(umap1: executed,
4933 umap2: isl_union_map_from_map(map: proj));
4934 return executed;
4935}
4936
4937/* Generate an AST that visits the elements in the range of data->executed
4938 * in the relative order specified by the corresponding domain element(s)
4939 * for those domain elements that belong to "set".
4940 * Add the result to data->list.
4941 *
4942 * The caller ensures that "set" is a universe domain.
4943 * "space" is the space of the additional part of the schedule.
4944 * It is equal to the space of "set" if build->domain is parametric.
4945 * Otherwise, it is equal to the range of the wrapped space of "set".
4946 *
4947 * If the build space is not parametric and
4948 * if isl_ast_build_node_from_schedule_map
4949 * was called from an outside user (data->internal not set), then
4950 * the (inverse) schedule refers to the external build domain and needs to
4951 * be transformed to refer to the internal build domain.
4952 *
4953 * If the build space is parametric, then we add some of the parameter
4954 * constraints to the executed relation. Adding these constraints
4955 * allows for an earlier detection of conflicts in some cases.
4956 * However, we do not want to divide the executed relation into
4957 * more disjuncts than necessary. We therefore approximate
4958 * the constraints on the parameters by a single disjunct set.
4959 *
4960 * The build is extended to include the additional part of the schedule.
4961 * If the original build space was not parametric, then the options
4962 * in data->build refer only to the additional part of the schedule
4963 * and they need to be adjusted to refer to the complete AST build
4964 * domain.
4965 *
4966 * After having adjusted inverse schedule and build, we start generating
4967 * code with the outer loop of the current code generation
4968 * in generate_next_level.
4969 *
4970 * If the original build space was not parametric, we undo the embedding
4971 * on the resulting isl_ast_node_list so that it can be used within
4972 * the outer AST build.
4973 */
4974static isl_stat generate_code_in_space(struct isl_generate_code_data *data,
4975 __isl_take isl_set *set, __isl_take isl_space *space)
4976{
4977 isl_union_map *executed;
4978 isl_ast_build *build;
4979 isl_ast_graft_list *list;
4980 int embed;
4981
4982 executed = isl_union_map_copy(umap: data->executed);
4983 executed = isl_union_map_intersect_domain(umap: executed,
4984 uset: isl_union_set_from_set(set));
4985
4986 embed = !isl_set_is_params(set: data->build->domain);
4987 if (embed && !data->internal)
4988 executed = internal_executed(executed, space, build: data->build);
4989 if (!embed) {
4990 isl_set *domain;
4991 domain = isl_ast_build_get_domain(build: data->build);
4992 domain = isl_set_from_basic_set(bset: isl_set_simple_hull(set: domain));
4993 executed = isl_union_map_intersect_params(umap: executed, set: domain);
4994 }
4995
4996 build = isl_ast_build_copy(build: data->build);
4997 build = isl_ast_build_product(build, embedding: space);
4998
4999 list = generate_next_level(executed, build);
5000
5001 list = isl_ast_graft_list_unembed(list, product: embed);
5002
5003 data->list = isl_ast_graft_list_concat(list1: data->list, list2: list);
5004
5005 return isl_stat_ok;
5006}
5007
5008/* Generate an AST that visits the elements in the range of data->executed
5009 * in the relative order specified by the corresponding domain element(s)
5010 * for those domain elements that belong to "set".
5011 * Add the result to data->list.
5012 *
5013 * The caller ensures that "set" is a universe domain.
5014 *
5015 * If the build space S is not parametric, then the space of "set"
5016 * need to be a wrapped relation with S as domain. That is, it needs
5017 * to be of the form
5018 *
5019 * [S -> T]
5020 *
5021 * Check this property and pass control to generate_code_in_space
5022 * passing along T.
5023 * If the build space is not parametric, then T is the space of "set".
5024 */
5025static isl_stat generate_code_set(__isl_take isl_set *set, void *user)
5026{
5027 struct isl_generate_code_data *data = user;
5028 isl_space *space, *build_space;
5029 int is_domain;
5030
5031 space = isl_set_get_space(set);
5032
5033 if (isl_set_is_params(set: data->build->domain))
5034 return generate_code_in_space(data, set, space);
5035
5036 build_space = isl_ast_build_get_space(build: data->build, internal: data->internal);
5037 space = isl_space_unwrap(space);
5038 is_domain = isl_space_is_domain(space1: build_space, space2: space);
5039 isl_space_free(space: build_space);
5040 space = isl_space_range(space);
5041
5042 if (is_domain < 0)
5043 goto error;
5044 if (!is_domain)
5045 isl_die(isl_set_get_ctx(set), isl_error_invalid,
5046 "invalid nested schedule space", goto error);
5047
5048 return generate_code_in_space(data, set, space);
5049error:
5050 isl_set_free(set);
5051 isl_space_free(space);
5052 return isl_stat_error;
5053}
5054
5055/* Generate an AST that visits the elements in the range of "executed"
5056 * in the relative order specified by the corresponding domain element(s).
5057 *
5058 * "build" is an isl_ast_build that has either been constructed by
5059 * isl_ast_build_from_context or passed to a callback set by
5060 * isl_ast_build_set_create_leaf.
5061 * In the first case, the space of the isl_ast_build is typically
5062 * a parametric space, although this is currently not enforced.
5063 * In the second case, the space is never a parametric space.
5064 * If the space S is not parametric, then the domain space(s) of "executed"
5065 * need to be wrapped relations with S as domain.
5066 *
5067 * If the domain of "executed" consists of several spaces, then an AST
5068 * is generated for each of them (in arbitrary order) and the results
5069 * are concatenated.
5070 *
5071 * If "internal" is set, then the domain "S" above refers to the internal
5072 * schedule domain representation. Otherwise, it refers to the external
5073 * representation, as returned by isl_ast_build_get_schedule_space.
5074 *
5075 * We essentially run over all the spaces in the domain of "executed"
5076 * and call generate_code_set on each of them.
5077 */
5078static __isl_give isl_ast_graft_list *generate_code(
5079 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
5080 int internal)
5081{
5082 isl_ctx *ctx;
5083 struct isl_generate_code_data data = { 0 };
5084 isl_space *space;
5085 isl_union_set *schedule_domain;
5086 isl_union_map *universe;
5087
5088 if (!build)
5089 goto error;
5090 space = isl_ast_build_get_space(build, internal: 1);
5091 space = isl_space_align_params(space1: space,
5092 space2: isl_union_map_get_space(umap: executed));
5093 space = isl_space_align_params(space1: space,
5094 space2: isl_union_map_get_space(umap: build->options));
5095 build = isl_ast_build_align_params(build, model: isl_space_copy(space));
5096 executed = isl_union_map_align_params(umap: executed, model: space);
5097 if (!executed || !build)
5098 goto error;
5099
5100 ctx = isl_ast_build_get_ctx(build);
5101
5102 data.internal = internal;
5103 data.executed = executed;
5104 data.build = build;
5105 data.list = isl_ast_graft_list_alloc(ctx, n: 0);
5106
5107 universe = isl_union_map_universe(umap: isl_union_map_copy(umap: executed));
5108 schedule_domain = isl_union_map_domain(umap: universe);
5109 if (isl_union_set_foreach_set(uset: schedule_domain, fn: &generate_code_set,
5110 user: &data) < 0)
5111 data.list = isl_ast_graft_list_free(list: data.list);
5112
5113 isl_union_set_free(uset: schedule_domain);
5114 isl_union_map_free(umap: executed);
5115
5116 isl_ast_build_free(build);
5117 return data.list;
5118error:
5119 isl_union_map_free(umap: executed);
5120 isl_ast_build_free(build);
5121 return NULL;
5122}
5123
5124/* Generate an AST that visits the elements in the domain of "schedule"
5125 * in the relative order specified by the corresponding image element(s).
5126 *
5127 * "build" is an isl_ast_build that has either been constructed by
5128 * isl_ast_build_from_context or passed to a callback set by
5129 * isl_ast_build_set_create_leaf.
5130 * In the first case, the space of the isl_ast_build is typically
5131 * a parametric space, although this is currently not enforced.
5132 * In the second case, the space is never a parametric space.
5133 * If the space S is not parametric, then the range space(s) of "schedule"
5134 * need to be wrapped relations with S as domain.
5135 *
5136 * If the range of "schedule" consists of several spaces, then an AST
5137 * is generated for each of them (in arbitrary order) and the results
5138 * are concatenated.
5139 *
5140 * We first initialize the local copies of the relevant options.
5141 * We do this here rather than when the isl_ast_build is created
5142 * because the options may have changed between the construction
5143 * of the isl_ast_build and the call to isl_generate_code.
5144 *
5145 * The main computation is performed on an inverse schedule (with
5146 * the schedule domain in the domain and the elements to be executed
5147 * in the range) called "executed".
5148 */
5149__isl_give isl_ast_node *isl_ast_build_node_from_schedule_map(
5150 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
5151{
5152 isl_ast_graft_list *list;
5153 isl_ast_node *node;
5154 isl_union_map *executed;
5155
5156 build = isl_ast_build_copy(build);
5157 build = isl_ast_build_set_single_valued(build, sv: 0);
5158 schedule = isl_union_map_coalesce(umap: schedule);
5159 schedule = isl_union_map_remove_redundancies(umap: schedule);
5160 executed = isl_union_map_reverse(umap: schedule);
5161 list = generate_code(executed, build: isl_ast_build_copy(build), internal: 0);
5162 node = isl_ast_node_from_graft_list(list, build);
5163 isl_ast_build_free(build);
5164
5165 return node;
5166}
5167
5168/* The old name for isl_ast_build_node_from_schedule_map.
5169 * It is being kept for backward compatibility, but
5170 * it will be removed in the future.
5171 */
5172__isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
5173 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
5174{
5175 return isl_ast_build_node_from_schedule_map(build, schedule);
5176}
5177
5178/* Generate an AST that visits the elements in the domain of "executed"
5179 * in the relative order specified by the leaf node "node".
5180 *
5181 * The relation "executed" maps the outer generated loop iterators
5182 * to the domain elements executed by those iterations.
5183 *
5184 * Simply pass control to generate_inner_level.
5185 * Note that the current build does not refer to any band node, so
5186 * that generate_inner_level will not try to visit the child of
5187 * the leaf node.
5188 *
5189 * If multiple statement instances reach a leaf,
5190 * then they can be executed in any order.
5191 * Group the list of grafts based on shared guards
5192 * such that identical guards are only generated once
5193 * when the list is eventually passed on to isl_ast_graft_list_fuse.
5194 */
5195static __isl_give isl_ast_graft_list *build_ast_from_leaf(
5196 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5197 __isl_take isl_union_map *executed)
5198{
5199 isl_ast_graft_list *list;
5200
5201 isl_schedule_node_free(node);
5202 list = generate_inner_level(executed, build: isl_ast_build_copy(build));
5203 list = isl_ast_graft_list_group_on_guard(list, build);
5204 isl_ast_build_free(build);
5205
5206 return list;
5207}
5208
5209/* Check that the band partial schedule "partial" does not filter out
5210 * any statement instances, as specified by the range of "executed".
5211 */
5212static isl_stat check_band_schedule_total_on_instances(
5213 __isl_keep isl_multi_union_pw_aff *partial,
5214 __isl_keep isl_union_map *executed)
5215{
5216 isl_bool subset;
5217 isl_union_set *domain, *instances;
5218
5219 instances = isl_union_map_range(umap: isl_union_map_copy(umap: executed));
5220 partial = isl_multi_union_pw_aff_copy(multi: partial);
5221 domain = isl_multi_union_pw_aff_domain(mupa: partial);
5222 subset = isl_union_set_is_subset(uset1: instances, uset2: domain);
5223 isl_union_set_free(uset: domain);
5224 isl_union_set_free(uset: instances);
5225
5226 if (subset < 0)
5227 return isl_stat_error;
5228 if (!subset)
5229 isl_die(isl_union_map_get_ctx(executed), isl_error_invalid,
5230 "band node is not allowed to drop statement instances",
5231 return isl_stat_error);
5232 return isl_stat_ok;
5233}
5234
5235/* Generate an AST that visits the elements in the domain of "executed"
5236 * in the relative order specified by the band node "node" and its descendants.
5237 *
5238 * The relation "executed" maps the outer generated loop iterators
5239 * to the domain elements executed by those iterations.
5240 *
5241 * If the band is empty, we continue with its descendants.
5242 * Otherwise, we extend the build and the inverse schedule with
5243 * the additional space/partial schedule and continue generating
5244 * an AST in generate_next_level.
5245 * As soon as we have extended the inverse schedule with the additional
5246 * partial schedule, we look for equalities that may exists between
5247 * the old and the new part.
5248 */
5249static __isl_give isl_ast_graft_list *build_ast_from_band(
5250 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5251 __isl_take isl_union_map *executed)
5252{
5253 isl_space *space;
5254 isl_multi_union_pw_aff *extra;
5255 isl_union_map *extra_umap;
5256 isl_ast_graft_list *list;
5257 isl_size n1, n2;
5258 isl_size n;
5259
5260 n = isl_schedule_node_band_n_member(node);
5261 if (!build || n < 0 || !executed)
5262 goto error;
5263
5264 if (n == 0)
5265 return build_ast_from_child(build, node, executed);
5266
5267 extra = isl_schedule_node_band_get_partial_schedule(node);
5268 extra = isl_multi_union_pw_aff_align_params(multi: extra,
5269 model: isl_ast_build_get_space(build, internal: 1));
5270 space = isl_multi_union_pw_aff_get_space(multi: extra);
5271
5272 if (check_band_schedule_total_on_instances(partial: extra, executed) < 0)
5273 executed = isl_union_map_free(umap: executed);
5274
5275 extra_umap = isl_union_map_from_multi_union_pw_aff(mupa: extra);
5276 extra_umap = isl_union_map_reverse(umap: extra_umap);
5277
5278 executed = isl_union_map_domain_product(umap1: executed, umap2: extra_umap);
5279 executed = isl_union_map_detect_equalities(umap: executed);
5280
5281 n1 = isl_ast_build_dim(build, type: isl_dim_param);
5282 build = isl_ast_build_product(build, embedding: space);
5283 n2 = isl_ast_build_dim(build, type: isl_dim_param);
5284 if (n1 < 0 || n2 < 0)
5285 build = isl_ast_build_free(build);
5286 else if (n2 > n1)
5287 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
5288 "band node is not allowed to introduce new parameters",
5289 build = isl_ast_build_free(build));
5290 build = isl_ast_build_set_schedule_node(build, node);
5291
5292 list = generate_next_level(executed, build);
5293
5294 list = isl_ast_graft_list_unembed(list, product: 1);
5295
5296 return list;
5297error:
5298 isl_schedule_node_free(node);
5299 isl_union_map_free(umap: executed);
5300 isl_ast_build_free(build);
5301 return NULL;
5302}
5303
5304/* Hoist a list of grafts (in practice containing a single graft)
5305 * from "sub_build" (which includes extra context information)
5306 * to "build".
5307 *
5308 * In particular, project out all additional parameters introduced
5309 * by the context node from the enforced constraints and the guard
5310 * of the single graft.
5311 */
5312static __isl_give isl_ast_graft_list *hoist_out_of_context(
5313 __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build,
5314 __isl_keep isl_ast_build *sub_build)
5315{
5316 isl_ast_graft *graft;
5317 isl_basic_set *enforced;
5318 isl_set *guard;
5319 isl_size n_param, extra_param;
5320
5321 n_param = isl_ast_build_dim(build, type: isl_dim_param);
5322 extra_param = isl_ast_build_dim(build: sub_build, type: isl_dim_param);
5323 if (n_param < 0 || extra_param < 0)
5324 return isl_ast_graft_list_free(list);
5325
5326 if (extra_param == n_param)
5327 return list;
5328
5329 extra_param -= n_param;
5330 enforced = isl_ast_graft_list_extract_shared_enforced(list, build: sub_build);
5331 enforced = isl_basic_set_project_out(bset: enforced, type: isl_dim_param,
5332 first: n_param, n: extra_param);
5333 enforced = isl_basic_set_remove_unknown_divs(bset: enforced);
5334 guard = isl_ast_graft_list_extract_hoistable_guard(list, build: sub_build);
5335 guard = isl_set_remove_divs_involving_dims(set: guard, type: isl_dim_param,
5336 first: n_param, n: extra_param);
5337 guard = isl_set_project_out(set: guard, type: isl_dim_param, first: n_param, n: extra_param);
5338 guard = isl_set_compute_divs(set: guard);
5339 graft = isl_ast_graft_alloc_from_children(list, guard, enforced,
5340 build, sub_build);
5341 list = isl_ast_graft_list_from_ast_graft(el: graft);
5342
5343 return list;
5344}
5345
5346/* Generate an AST that visits the elements in the domain of "executed"
5347 * in the relative order specified by the context node "node"
5348 * and its descendants.
5349 *
5350 * The relation "executed" maps the outer generated loop iterators
5351 * to the domain elements executed by those iterations.
5352 *
5353 * The context node may introduce additional parameters as well as
5354 * constraints on the outer schedule dimensions or original parameters.
5355 *
5356 * We add the extra parameters to a new build and the context
5357 * constraints to both the build and (as a single disjunct)
5358 * to the domain of "executed". Since the context constraints
5359 * are specified in terms of the input schedule, we first need
5360 * to map them to the internal schedule domain.
5361 *
5362 * After constructing the AST from the descendants of "node",
5363 * we combine the list of grafts into a single graft within
5364 * the new build, in order to be able to exploit the additional
5365 * context constraints during this combination.
5366 *
5367 * Additionally, if the current node is the outermost node in
5368 * the schedule tree (apart from the root domain node), we generate
5369 * all pending guards, again to be able to exploit the additional
5370 * context constraints. We currently do not do this for internal
5371 * context nodes since we may still want to hoist conditions
5372 * to outer AST nodes.
5373 *
5374 * If the context node introduced any new parameters, then they
5375 * are removed from the set of enforced constraints and guard
5376 * in hoist_out_of_context.
5377 */
5378static __isl_give isl_ast_graft_list *build_ast_from_context(
5379 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5380 __isl_take isl_union_map *executed)
5381{
5382 isl_set *context;
5383 isl_space *space;
5384 isl_multi_aff *internal2input;
5385 isl_ast_build *sub_build;
5386 isl_ast_graft_list *list;
5387 isl_size n;
5388 isl_size depth;
5389
5390 depth = isl_schedule_node_get_tree_depth(node);
5391 if (depth < 0)
5392 build = isl_ast_build_free(build);
5393 space = isl_ast_build_get_space(build, internal: 1);
5394 context = isl_schedule_node_context_get_context(node);
5395 context = isl_set_align_params(set: context, model: space);
5396 sub_build = isl_ast_build_copy(build);
5397 space = isl_set_get_space(set: context);
5398 sub_build = isl_ast_build_align_params(build: sub_build, model: space);
5399 internal2input = isl_ast_build_get_internal2input(build: sub_build);
5400 context = isl_set_preimage_multi_aff(set: context, ma: internal2input);
5401 sub_build = isl_ast_build_restrict_generated(build: sub_build,
5402 set: isl_set_copy(set: context));
5403 context = isl_set_from_basic_set(bset: isl_set_simple_hull(set: context));
5404 executed = isl_union_map_intersect_domain(umap: executed,
5405 uset: isl_union_set_from_set(set: context));
5406
5407 list = build_ast_from_child(build: isl_ast_build_copy(build: sub_build),
5408 node, executed);
5409 n = isl_ast_graft_list_n_ast_graft(list);
5410 if (n < 0)
5411 list = isl_ast_graft_list_free(list);
5412
5413 list = isl_ast_graft_list_fuse(children: list, build: sub_build);
5414 if (depth == 1)
5415 list = isl_ast_graft_list_insert_pending_guard_nodes(list,
5416 build: sub_build);
5417 if (n >= 1)
5418 list = hoist_out_of_context(list, build, sub_build);
5419
5420 isl_ast_build_free(build);
5421 isl_ast_build_free(build: sub_build);
5422
5423 return list;
5424}
5425
5426/* Generate an AST that visits the elements in the domain of "executed"
5427 * in the relative order specified by the expansion node "node" and
5428 * its descendants.
5429 *
5430 * The relation "executed" maps the outer generated loop iterators
5431 * to the domain elements executed by those iterations.
5432 *
5433 * We expand the domain elements by the expansion and
5434 * continue with the descendants of the node.
5435 */
5436static __isl_give isl_ast_graft_list *build_ast_from_expansion(
5437 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5438 __isl_take isl_union_map *executed)
5439{
5440 isl_union_map *expansion;
5441 isl_size n1, n2;
5442
5443 expansion = isl_schedule_node_expansion_get_expansion(node);
5444 expansion = isl_union_map_align_params(umap: expansion,
5445 model: isl_union_map_get_space(umap: executed));
5446
5447 n1 = isl_union_map_dim(umap: executed, type: isl_dim_param);
5448 executed = isl_union_map_apply_range(umap1: executed, umap2: expansion);
5449 n2 = isl_union_map_dim(umap: executed, type: isl_dim_param);
5450 if (n1 < 0 || n2 < 0)
5451 goto error;
5452 if (n2 > n1)
5453 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
5454 "expansion node is not allowed to introduce "
5455 "new parameters", goto error);
5456
5457 return build_ast_from_child(build, node, executed);
5458error:
5459 isl_ast_build_free(build);
5460 isl_schedule_node_free(node);
5461 isl_union_map_free(umap: executed);
5462 return NULL;
5463}
5464
5465/* Generate an AST that visits the elements in the domain of "executed"
5466 * in the relative order specified by the extension node "node" and
5467 * its descendants.
5468 *
5469 * The relation "executed" maps the outer generated loop iterators
5470 * to the domain elements executed by those iterations.
5471 *
5472 * Extend the inverse schedule with the extension applied to current
5473 * set of generated constraints. Since the extension if formulated
5474 * in terms of the input schedule, it first needs to be transformed
5475 * to refer to the internal schedule.
5476 */
5477static __isl_give isl_ast_graft_list *build_ast_from_extension(
5478 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5479 __isl_take isl_union_map *executed)
5480{
5481 isl_union_set *schedule_domain;
5482 isl_union_map *extension;
5483 isl_set *set;
5484
5485 set = isl_ast_build_get_generated(build);
5486 set = isl_set_from_basic_set(bset: isl_set_simple_hull(set));
5487 schedule_domain = isl_union_set_from_set(set);
5488
5489 extension = isl_schedule_node_extension_get_extension(node);
5490
5491 extension = isl_union_map_preimage_domain_multi_aff(umap: extension,
5492 ma: isl_multi_aff_copy(multi: build->internal2input));
5493 extension = isl_union_map_intersect_domain(umap: extension, uset: schedule_domain);
5494 extension = isl_ast_build_substitute_values_union_map_domain(build,
5495 umap: extension);
5496 executed = isl_union_map_union(umap1: executed, umap2: extension);
5497
5498 return build_ast_from_child(build, node, executed);
5499}
5500
5501/* Generate an AST that visits the elements in the domain of "executed"
5502 * in the relative order specified by the filter node "node" and
5503 * its descendants.
5504 *
5505 * The relation "executed" maps the outer generated loop iterators
5506 * to the domain elements executed by those iterations.
5507 *
5508 * We simply intersect the iteration domain (i.e., the range of "executed")
5509 * with the filter and continue with the descendants of the node,
5510 * unless the resulting inverse schedule is empty, in which
5511 * case we return an empty list.
5512 *
5513 * If the result of the intersection is equal to the original "executed"
5514 * relation, then keep the original representation since the intersection
5515 * may have unnecessarily broken up the relation into a greater number
5516 * of disjuncts.
5517 */
5518static __isl_give isl_ast_graft_list *build_ast_from_filter(
5519 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5520 __isl_take isl_union_map *executed)
5521{
5522 isl_ctx *ctx;
5523 isl_union_set *filter;
5524 isl_union_map *orig;
5525 isl_ast_graft_list *list;
5526 int empty;
5527 isl_bool unchanged;
5528 isl_size n1, n2;
5529
5530 orig = isl_union_map_copy(umap: executed);
5531 if (!build || !node || !executed)
5532 goto error;
5533
5534 filter = isl_schedule_node_filter_get_filter(node);
5535 filter = isl_union_set_align_params(uset: filter,
5536 model: isl_union_map_get_space(umap: executed));
5537 n1 = isl_union_map_dim(umap: executed, type: isl_dim_param);
5538 executed = isl_union_map_intersect_range(umap: executed, uset: filter);
5539 n2 = isl_union_map_dim(umap: executed, type: isl_dim_param);
5540 if (n1 < 0 || n2 < 0)
5541 goto error;
5542 if (n2 > n1)
5543 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
5544 "filter node is not allowed to introduce "
5545 "new parameters", goto error);
5546
5547 unchanged = isl_union_map_is_subset(umap1: orig, umap2: executed);
5548 empty = isl_union_map_is_empty(umap: executed);
5549 if (unchanged < 0 || empty < 0)
5550 goto error;
5551 if (unchanged) {
5552 isl_union_map_free(umap: executed);
5553 return build_ast_from_child(build, node, executed: orig);
5554 }
5555 isl_union_map_free(umap: orig);
5556 if (!empty)
5557 return build_ast_from_child(build, node, executed);
5558
5559 ctx = isl_ast_build_get_ctx(build);
5560 list = isl_ast_graft_list_alloc(ctx, n: 0);
5561 isl_ast_build_free(build);
5562 isl_schedule_node_free(node);
5563 isl_union_map_free(umap: executed);
5564 return list;
5565error:
5566 isl_ast_build_free(build);
5567 isl_schedule_node_free(node);
5568 isl_union_map_free(umap: executed);
5569 isl_union_map_free(umap: orig);
5570 return NULL;
5571}
5572
5573/* Generate an AST that visits the elements in the domain of "executed"
5574 * in the relative order specified by the guard node "node" and
5575 * its descendants.
5576 *
5577 * The relation "executed" maps the outer generated loop iterators
5578 * to the domain elements executed by those iterations.
5579 *
5580 * Ensure that the associated guard is enforced by the outer AST
5581 * constructs by adding it to the guard of the graft.
5582 * Since we know that we will enforce the guard, we can also include it
5583 * in the generated constraints used to construct an AST for
5584 * the descendant nodes.
5585 */
5586static __isl_give isl_ast_graft_list *build_ast_from_guard(
5587 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5588 __isl_take isl_union_map *executed)
5589{
5590 isl_space *space;
5591 isl_set *guard, *hoisted;
5592 isl_basic_set *enforced;
5593 isl_ast_build *sub_build;
5594 isl_ast_graft *graft;
5595 isl_ast_graft_list *list;
5596 isl_size n1, n2, n;
5597
5598 space = isl_ast_build_get_space(build, internal: 1);
5599 guard = isl_schedule_node_guard_get_guard(node);
5600 n1 = isl_space_dim(space, type: isl_dim_param);
5601 guard = isl_set_align_params(set: guard, model: space);
5602 n2 = isl_set_dim(set: guard, type: isl_dim_param);
5603 if (n1 < 0 || n2 < 0)
5604 guard = isl_set_free(set: guard);
5605 else if (n2 > n1)
5606 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
5607 "guard node is not allowed to introduce "
5608 "new parameters", guard = isl_set_free(guard));
5609 guard = isl_set_preimage_multi_aff(set: guard,
5610 ma: isl_multi_aff_copy(multi: build->internal2input));
5611 guard = isl_ast_build_specialize(build, set: guard);
5612 guard = isl_set_gist(set: guard, context: isl_set_copy(set: build->generated));
5613
5614 sub_build = isl_ast_build_copy(build);
5615 sub_build = isl_ast_build_restrict_generated(build: sub_build,
5616 set: isl_set_copy(set: guard));
5617
5618 list = build_ast_from_child(build: isl_ast_build_copy(build: sub_build),
5619 node, executed);
5620
5621 hoisted = isl_ast_graft_list_extract_hoistable_guard(list, build: sub_build);
5622 n = isl_set_n_basic_set(set: hoisted);
5623 if (n < 0)
5624 list = isl_ast_graft_list_free(list);
5625 if (n > 1)
5626 list = isl_ast_graft_list_gist_guards(list,
5627 context: isl_set_copy(set: hoisted));
5628 guard = isl_set_intersect(set1: guard, set2: hoisted);
5629 enforced = extract_shared_enforced(list, build);
5630 graft = isl_ast_graft_alloc_from_children(list, guard, enforced,
5631 build, sub_build);
5632
5633 isl_ast_build_free(build: sub_build);
5634 isl_ast_build_free(build);
5635 return isl_ast_graft_list_from_ast_graft(el: graft);
5636}
5637
5638/* Call the before_each_mark callback, if requested by the user.
5639 *
5640 * Return 0 on success and -1 on error.
5641 *
5642 * The caller is responsible for recording the current inverse schedule
5643 * in "build".
5644 */
5645static isl_stat before_each_mark(__isl_keep isl_id *mark,
5646 __isl_keep isl_ast_build *build)
5647{
5648 if (!build)
5649 return isl_stat_error;
5650 if (!build->before_each_mark)
5651 return isl_stat_ok;
5652 return build->before_each_mark(mark, build,
5653 build->before_each_mark_user);
5654}
5655
5656/* Call the after_each_mark callback, if requested by the user.
5657 *
5658 * The caller is responsible for recording the current inverse schedule
5659 * in "build".
5660 */
5661static __isl_give isl_ast_graft *after_each_mark(
5662 __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build)
5663{
5664 if (!graft || !build)
5665 return isl_ast_graft_free(graft);
5666 if (!build->after_each_mark)
5667 return graft;
5668 graft->node = build->after_each_mark(graft->node, build,
5669 build->after_each_mark_user);
5670 if (!graft->node)
5671 return isl_ast_graft_free(graft);
5672 return graft;
5673}
5674
5675
5676/* Generate an AST that visits the elements in the domain of "executed"
5677 * in the relative order specified by the mark node "node" and
5678 * its descendants.
5679 *
5680 * The relation "executed" maps the outer generated loop iterators
5681 * to the domain elements executed by those iterations.
5682
5683 * Since we may be calling before_each_mark and after_each_mark
5684 * callbacks, we record the current inverse schedule in the build.
5685 *
5686 * We generate an AST for the child of the mark node, combine
5687 * the graft list into a single graft and then insert the mark
5688 * in the AST of that single graft.
5689 */
5690static __isl_give isl_ast_graft_list *build_ast_from_mark(
5691 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5692 __isl_take isl_union_map *executed)
5693{
5694 isl_id *mark;
5695 isl_ast_graft *graft;
5696 isl_ast_graft_list *list;
5697 isl_size n;
5698
5699 build = isl_ast_build_set_executed(build, executed: isl_union_map_copy(umap: executed));
5700
5701 mark = isl_schedule_node_mark_get_id(node);
5702 if (before_each_mark(mark, build) < 0)
5703 node = isl_schedule_node_free(node);
5704
5705 list = build_ast_from_child(build: isl_ast_build_copy(build), node, executed);
5706 list = isl_ast_graft_list_fuse(children: list, build);
5707 n = isl_ast_graft_list_n_ast_graft(list);
5708 if (n < 0)
5709 list = isl_ast_graft_list_free(list);
5710 if (n == 0) {
5711 isl_id_free(id: mark);
5712 } else {
5713 graft = isl_ast_graft_list_get_ast_graft(list, index: 0);
5714 graft = isl_ast_graft_insert_mark(graft, mark);
5715 graft = after_each_mark(graft, build);
5716 list = isl_ast_graft_list_set_ast_graft(list, index: 0, el: graft);
5717 }
5718 isl_ast_build_free(build);
5719
5720 return list;
5721}
5722
5723static __isl_give isl_ast_graft_list *build_ast_from_schedule_node(
5724 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5725 __isl_take isl_union_map *executed);
5726
5727/* Generate an AST that visits the elements in the domain of "executed"
5728 * in the relative order specified by the sequence (or set) node "node" and
5729 * its descendants.
5730 *
5731 * The relation "executed" maps the outer generated loop iterators
5732 * to the domain elements executed by those iterations.
5733 *
5734 * We simply generate an AST for each of the children and concatenate
5735 * the results.
5736 */
5737static __isl_give isl_ast_graft_list *build_ast_from_sequence(
5738 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5739 __isl_take isl_union_map *executed)
5740{
5741 int i;
5742 isl_size n;
5743 isl_ctx *ctx;
5744 isl_ast_graft_list *list;
5745
5746 ctx = isl_ast_build_get_ctx(build);
5747 list = isl_ast_graft_list_alloc(ctx, n: 0);
5748
5749 n = isl_schedule_node_n_children(node);
5750 if (n < 0)
5751 list = isl_ast_graft_list_free(list);
5752 for (i = 0; i < n; ++i) {
5753 isl_schedule_node *child;
5754 isl_ast_graft_list *list_i;
5755
5756 child = isl_schedule_node_get_child(node, pos: i);
5757 list_i = build_ast_from_schedule_node(build: isl_ast_build_copy(build),
5758 node: child, executed: isl_union_map_copy(umap: executed));
5759 list = isl_ast_graft_list_concat(list1: list, list2: list_i);
5760 }
5761 isl_ast_build_free(build);
5762 isl_schedule_node_free(node);
5763 isl_union_map_free(umap: executed);
5764
5765 return list;
5766}
5767
5768/* Generate an AST that visits the elements in the domain of "executed"
5769 * in the relative order specified by the node "node" and its descendants.
5770 *
5771 * The relation "executed" maps the outer generated loop iterators
5772 * to the domain elements executed by those iterations.
5773 *
5774 * The node types are handled in separate functions.
5775 * Set nodes are currently treated in the same way as sequence nodes.
5776 * The children of a set node may be executed in any order,
5777 * including the order of the children.
5778 */
5779static __isl_give isl_ast_graft_list *build_ast_from_schedule_node(
5780 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5781 __isl_take isl_union_map *executed)
5782{
5783 enum isl_schedule_node_type type;
5784
5785 type = isl_schedule_node_get_type(node);
5786
5787 switch (type) {
5788 case isl_schedule_node_error:
5789 goto error;
5790 case isl_schedule_node_leaf:
5791 return build_ast_from_leaf(build, node, executed);
5792 case isl_schedule_node_band:
5793 return build_ast_from_band(build, node, executed);
5794 case isl_schedule_node_context:
5795 return build_ast_from_context(build, node, executed);
5796 case isl_schedule_node_domain:
5797 isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported,
5798 "unexpected internal domain node", goto error);
5799 case isl_schedule_node_expansion:
5800 return build_ast_from_expansion(build, node, executed);
5801 case isl_schedule_node_extension:
5802 return build_ast_from_extension(build, node, executed);
5803 case isl_schedule_node_filter:
5804 return build_ast_from_filter(build, node, executed);
5805 case isl_schedule_node_guard:
5806 return build_ast_from_guard(build, node, executed);
5807 case isl_schedule_node_mark:
5808 return build_ast_from_mark(build, node, executed);
5809 case isl_schedule_node_sequence:
5810 case isl_schedule_node_set:
5811 return build_ast_from_sequence(build, node, executed);
5812 }
5813
5814 isl_die(isl_ast_build_get_ctx(build), isl_error_internal,
5815 "unhandled type", goto error);
5816error:
5817 isl_union_map_free(umap: executed);
5818 isl_schedule_node_free(node);
5819 isl_ast_build_free(build);
5820
5821 return NULL;
5822}
5823
5824/* Generate an AST that visits the elements in the domain of "executed"
5825 * in the relative order specified by the (single) child of "node" and
5826 * its descendants.
5827 *
5828 * The relation "executed" maps the outer generated loop iterators
5829 * to the domain elements executed by those iterations.
5830 *
5831 * This function is never called on a leaf, set or sequence node,
5832 * so the node always has exactly one child.
5833 */
5834static __isl_give isl_ast_graft_list *build_ast_from_child(
5835 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5836 __isl_take isl_union_map *executed)
5837{
5838 node = isl_schedule_node_child(node, pos: 0);
5839 return build_ast_from_schedule_node(build, node, executed);
5840}
5841
5842/* Generate an AST that visits the elements in the domain of the domain
5843 * node "node" in the relative order specified by its descendants.
5844 *
5845 * An initial inverse schedule is created that maps a zero-dimensional
5846 * schedule space to the node domain.
5847 * The input "build" is assumed to have a parametric domain and
5848 * is replaced by the same zero-dimensional schedule space.
5849 *
5850 * We also add some of the parameter constraints in the build domain
5851 * to the executed relation. Adding these constraints
5852 * allows for an earlier detection of conflicts in some cases.
5853 * However, we do not want to divide the executed relation into
5854 * more disjuncts than necessary. We therefore approximate
5855 * the constraints on the parameters by a single disjunct set.
5856 */
5857static __isl_give isl_ast_node *build_ast_from_domain(
5858 __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node)
5859{
5860 isl_ctx *ctx;
5861 isl_union_set *domain, *schedule_domain;
5862 isl_union_map *executed;
5863 isl_space *space;
5864 isl_set *set;
5865 isl_ast_graft_list *list;
5866 isl_ast_node *ast;
5867 int is_params;
5868
5869 if (!build)
5870 goto error;
5871
5872 ctx = isl_ast_build_get_ctx(build);
5873 space = isl_ast_build_get_space(build, internal: 1);
5874 is_params = isl_space_is_params(space);
5875 isl_space_free(space);
5876 if (is_params < 0)
5877 goto error;
5878 if (!is_params)
5879 isl_die(ctx, isl_error_unsupported,
5880 "expecting parametric initial context", goto error);
5881
5882 domain = isl_schedule_node_domain_get_domain(node);
5883 domain = isl_union_set_coalesce(uset: domain);
5884
5885 space = isl_union_set_get_space(uset: domain);
5886 space = isl_space_set_from_params(space);
5887 build = isl_ast_build_product(build, embedding: space);
5888
5889 set = isl_ast_build_get_domain(build);
5890 set = isl_set_from_basic_set(bset: isl_set_simple_hull(set));
5891 schedule_domain = isl_union_set_from_set(set);
5892
5893 executed = isl_union_map_from_domain_and_range(domain: schedule_domain, range: domain);
5894 list = build_ast_from_child(build: isl_ast_build_copy(build), node, executed);
5895 ast = isl_ast_node_from_graft_list(list, build);
5896 isl_ast_build_free(build);
5897
5898 return ast;
5899error:
5900 isl_schedule_node_free(node);
5901 isl_ast_build_free(build);
5902 return NULL;
5903}
5904
5905/* Generate an AST that visits the elements in the domain of "schedule"
5906 * in the relative order specified by the schedule tree.
5907 *
5908 * "build" is an isl_ast_build that has been created using
5909 * isl_ast_build_alloc or isl_ast_build_from_context based
5910 * on a parametric set.
5911 *
5912 * The construction starts at the root node of the schedule,
5913 * which is assumed to be a domain node.
5914 */
5915__isl_give isl_ast_node *isl_ast_build_node_from_schedule(
5916 __isl_keep isl_ast_build *build, __isl_take isl_schedule *schedule)
5917{
5918 isl_ctx *ctx;
5919 isl_schedule_node *node;
5920
5921 if (!build || !schedule)
5922 goto error;
5923
5924 ctx = isl_ast_build_get_ctx(build);
5925
5926 node = isl_schedule_get_root(schedule);
5927 if (!node)
5928 goto error;
5929 isl_schedule_free(sched: schedule);
5930
5931 build = isl_ast_build_copy(build);
5932 build = isl_ast_build_set_single_valued(build, sv: 0);
5933 if (isl_schedule_node_get_type(node) != isl_schedule_node_domain)
5934 isl_die(ctx, isl_error_unsupported,
5935 "expecting root domain node",
5936 build = isl_ast_build_free(build));
5937 return build_ast_from_domain(build, node);
5938error:
5939 isl_schedule_free(sched: schedule);
5940 return NULL;
5941}
5942

source code of polly/lib/External/isl/isl_ast_codegen.c