| 1 | /* |
| 2 | * Copyright 2012-2014 Ecole Normale Superieure |
| 3 | * Copyright 2014 INRIA Rocquencourt |
| 4 | * |
| 5 | * Use of this software is governed by the MIT license |
| 6 | * |
| 7 | * Written by Sven Verdoolaege, |
| 8 | * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France |
| 9 | * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, |
| 10 | * B.P. 105 - 78153 Le Chesnay, France |
| 11 | */ |
| 12 | |
| 13 | #include <limits.h> |
| 14 | #include <isl/id.h> |
| 15 | #include <isl/val.h> |
| 16 | #include <isl/space.h> |
| 17 | #include <isl/aff.h> |
| 18 | #include <isl/constraint.h> |
| 19 | #include <isl/set.h> |
| 20 | #include <isl/ilp.h> |
| 21 | #include <isl/union_set.h> |
| 22 | #include <isl/union_map.h> |
| 23 | #include <isl/schedule_node.h> |
| 24 | #include <isl/options.h> |
| 25 | #include <isl_sort.h> |
| 26 | #include <isl_tarjan.h> |
| 27 | #include <isl_ast_private.h> |
| 28 | #include <isl_ast_build_expr.h> |
| 29 | #include <isl_ast_build_private.h> |
| 30 | #include <isl_ast_graft_private.h> |
| 31 | |
| 32 | /* Try and reduce the number of disjuncts in the representation of "set", |
| 33 | * without dropping explicit representations of local variables. |
| 34 | */ |
| 35 | static __isl_give isl_set *isl_set_coalesce_preserve(__isl_take isl_set *set) |
| 36 | { |
| 37 | isl_ctx *ctx; |
| 38 | int save_preserve; |
| 39 | |
| 40 | if (!set) |
| 41 | return NULL; |
| 42 | |
| 43 | ctx = isl_set_get_ctx(set); |
| 44 | save_preserve = isl_options_get_coalesce_preserve_locals(ctx); |
| 45 | isl_options_set_coalesce_preserve_locals(ctx, val: 1); |
| 46 | set = isl_set_coalesce(set); |
| 47 | isl_options_set_coalesce_preserve_locals(ctx, val: save_preserve); |
| 48 | return set; |
| 49 | } |
| 50 | |
| 51 | /* Data used in generate_domain. |
| 52 | * |
| 53 | * "build" is the input build. |
| 54 | * "list" collects the results. |
| 55 | */ |
| 56 | struct isl_generate_domain_data { |
| 57 | isl_ast_build *build; |
| 58 | |
| 59 | isl_ast_graft_list *list; |
| 60 | }; |
| 61 | |
| 62 | static __isl_give isl_ast_graft_list *generate_next_level( |
| 63 | __isl_take isl_union_map *executed, |
| 64 | __isl_take isl_ast_build *build); |
| 65 | static __isl_give isl_ast_graft_list *generate_code( |
| 66 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build, |
| 67 | int internal); |
| 68 | |
| 69 | /* Generate an AST for a single domain based on |
| 70 | * the (non single valued) inverse schedule "executed". |
| 71 | * |
| 72 | * We extend the schedule with the iteration domain |
| 73 | * and continue generating through a call to generate_code. |
| 74 | * |
| 75 | * In particular, if executed has the form |
| 76 | * |
| 77 | * S -> D |
| 78 | * |
| 79 | * then we continue generating code on |
| 80 | * |
| 81 | * [S -> D] -> D |
| 82 | * |
| 83 | * The extended inverse schedule is clearly single valued |
| 84 | * ensuring that the nested generate_code will not reach this function, |
| 85 | * but will instead create calls to all elements of D that need |
| 86 | * to be executed from the current schedule domain. |
| 87 | */ |
| 88 | static isl_stat generate_non_single_valued(__isl_take isl_map *executed, |
| 89 | struct isl_generate_domain_data *data) |
| 90 | { |
| 91 | isl_map *identity; |
| 92 | isl_ast_build *build; |
| 93 | isl_ast_graft_list *list; |
| 94 | |
| 95 | build = isl_ast_build_copy(build: data->build); |
| 96 | |
| 97 | identity = isl_set_identity(set: isl_map_range(map: isl_map_copy(map: executed))); |
| 98 | executed = isl_map_domain_product(map1: executed, map2: identity); |
| 99 | build = isl_ast_build_set_single_valued(build, sv: 1); |
| 100 | |
| 101 | list = generate_code(executed: isl_union_map_from_map(map: executed), build, internal: 1); |
| 102 | |
| 103 | data->list = isl_ast_graft_list_concat(list1: data->list, list2: list); |
| 104 | |
| 105 | return isl_stat_ok; |
| 106 | } |
| 107 | |
| 108 | /* Call the at_each_domain callback, if requested by the user, |
| 109 | * after recording the current inverse schedule in the build. |
| 110 | */ |
| 111 | static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft, |
| 112 | __isl_keep isl_map *executed, __isl_keep isl_ast_build *build) |
| 113 | { |
| 114 | if (!graft || !build) |
| 115 | return isl_ast_graft_free(graft); |
| 116 | if (!build->at_each_domain) |
| 117 | return graft; |
| 118 | |
| 119 | build = isl_ast_build_copy(build); |
| 120 | build = isl_ast_build_set_executed(build, |
| 121 | executed: isl_union_map_from_map(map: isl_map_copy(map: executed))); |
| 122 | if (!build) |
| 123 | return isl_ast_graft_free(graft); |
| 124 | |
| 125 | graft->node = build->at_each_domain(graft->node, |
| 126 | build, build->at_each_domain_user); |
| 127 | isl_ast_build_free(build); |
| 128 | |
| 129 | if (!graft->node) |
| 130 | graft = isl_ast_graft_free(graft); |
| 131 | |
| 132 | return graft; |
| 133 | } |
| 134 | |
| 135 | /* Generate a call expression for the single executed |
| 136 | * domain element "map" and put a guard around it based its (simplified) |
| 137 | * domain. "executed" is the original inverse schedule from which "map" |
| 138 | * has been derived. In particular, "map" is either identical to "executed" |
| 139 | * or it is the result of gisting "executed" with respect to the build domain. |
| 140 | * "executed" is only used if there is an at_each_domain callback. |
| 141 | * |
| 142 | * At this stage, any pending constraints in the build can no longer |
| 143 | * be simplified with respect to any enforced constraints since |
| 144 | * the call node does not have any enforced constraints. |
| 145 | * Since all pending constraints not covered by any enforced constraints |
| 146 | * will be added as a guard to the graft in create_node_scaled, |
| 147 | * even in the eliminated case, the pending constraints |
| 148 | * can be considered to have been generated by outer constructs. |
| 149 | * |
| 150 | * If the user has set an at_each_domain callback, it is called |
| 151 | * on the constructed call expression node. |
| 152 | */ |
| 153 | static isl_stat add_domain(__isl_take isl_map *executed, |
| 154 | __isl_take isl_map *map, struct isl_generate_domain_data *data) |
| 155 | { |
| 156 | isl_ast_build *build; |
| 157 | isl_ast_graft *graft; |
| 158 | isl_ast_graft_list *list; |
| 159 | isl_set *guard, *pending; |
| 160 | |
| 161 | build = isl_ast_build_copy(build: data->build); |
| 162 | pending = isl_ast_build_get_pending(build); |
| 163 | build = isl_ast_build_replace_pending_by_guard(build, guard: pending); |
| 164 | |
| 165 | guard = isl_map_domain(bmap: isl_map_copy(map)); |
| 166 | guard = isl_set_compute_divs(set: guard); |
| 167 | guard = isl_set_coalesce_preserve(set: guard); |
| 168 | guard = isl_set_gist(set: guard, context: isl_ast_build_get_generated(build)); |
| 169 | guard = isl_ast_build_specialize(build, set: guard); |
| 170 | |
| 171 | graft = isl_ast_graft_alloc_domain(schedule: map, build); |
| 172 | graft = at_each_domain(graft, executed, build); |
| 173 | isl_ast_build_free(build); |
| 174 | isl_map_free(map: executed); |
| 175 | graft = isl_ast_graft_add_guard(graft, guard, build: data->build); |
| 176 | |
| 177 | list = isl_ast_graft_list_from_ast_graft(el: graft); |
| 178 | data->list = isl_ast_graft_list_concat(list1: data->list, list2: list); |
| 179 | |
| 180 | return isl_stat_ok; |
| 181 | } |
| 182 | |
| 183 | /* Generate an AST for a single domain based on |
| 184 | * the inverse schedule "executed" and add it to data->list. |
| 185 | * |
| 186 | * If there is more than one domain element associated to the current |
| 187 | * schedule "time", then we need to continue the generation process |
| 188 | * in generate_non_single_valued. |
| 189 | * Note that the inverse schedule being single-valued may depend |
| 190 | * on constraints that are only available in the original context |
| 191 | * domain specified by the user. We therefore first introduce |
| 192 | * some of the constraints of data->build->domain. In particular, |
| 193 | * we intersect with a single-disjunct approximation of this set. |
| 194 | * We perform this approximation to avoid further splitting up |
| 195 | * the executed relation, possibly introducing a disjunctive guard |
| 196 | * on the statement. |
| 197 | * |
| 198 | * On the other hand, we only perform the test after having taken the gist |
| 199 | * of the domain as the resulting map is the one from which the call |
| 200 | * expression is constructed. Using this map to construct the call |
| 201 | * expression usually yields simpler results in cases where the original |
| 202 | * map is not obviously single-valued. |
| 203 | * If the original map is obviously single-valued, then the gist |
| 204 | * operation is skipped. |
| 205 | * |
| 206 | * Because we perform the single-valuedness test on the gisted map, |
| 207 | * we may in rare cases fail to recognize that the inverse schedule |
| 208 | * is single-valued. This becomes problematic if this happens |
| 209 | * from the recursive call through generate_non_single_valued |
| 210 | * as we would then end up in an infinite recursion. |
| 211 | * We therefore check if we are inside a call to generate_non_single_valued |
| 212 | * and revert to the ungisted map if the gisted map turns out not to be |
| 213 | * single-valued. |
| 214 | * |
| 215 | * Otherwise, call add_domain to generate a call expression (with guard) and |
| 216 | * to call the at_each_domain callback, if any. |
| 217 | */ |
| 218 | static isl_stat generate_domain(__isl_take isl_map *executed, void *user) |
| 219 | { |
| 220 | struct isl_generate_domain_data *data = user; |
| 221 | isl_set *domain; |
| 222 | isl_map *map = NULL; |
| 223 | int empty, sv; |
| 224 | |
| 225 | domain = isl_ast_build_get_domain(build: data->build); |
| 226 | domain = isl_set_from_basic_set(bset: isl_set_simple_hull(set: domain)); |
| 227 | executed = isl_map_intersect_domain(map: executed, set: domain); |
| 228 | empty = isl_map_is_empty(map: executed); |
| 229 | if (empty < 0) |
| 230 | goto error; |
| 231 | if (empty) { |
| 232 | isl_map_free(map: executed); |
| 233 | return isl_stat_ok; |
| 234 | } |
| 235 | |
| 236 | sv = isl_map_plain_is_single_valued(map: executed); |
| 237 | if (sv < 0) |
| 238 | goto error; |
| 239 | if (sv) |
| 240 | return add_domain(executed, map: isl_map_copy(map: executed), data); |
| 241 | |
| 242 | executed = isl_map_coalesce(map: executed); |
| 243 | map = isl_map_copy(map: executed); |
| 244 | map = isl_ast_build_compute_gist_map_domain(build: data->build, map); |
| 245 | sv = isl_map_is_single_valued(map); |
| 246 | if (sv < 0) |
| 247 | goto error; |
| 248 | if (!sv) { |
| 249 | isl_map_free(map); |
| 250 | if (data->build->single_valued) |
| 251 | map = isl_map_copy(map: executed); |
| 252 | else |
| 253 | return generate_non_single_valued(executed, data); |
| 254 | } |
| 255 | |
| 256 | return add_domain(executed, map, data); |
| 257 | error: |
| 258 | isl_map_free(map); |
| 259 | isl_map_free(map: executed); |
| 260 | return isl_stat_error; |
| 261 | } |
| 262 | |
| 263 | /* Call build->create_leaf to a create "leaf" node in the AST, |
| 264 | * encapsulate the result in an isl_ast_graft and return the result |
| 265 | * as a 1-element list. |
| 266 | * |
| 267 | * Note that the node returned by the user may be an entire tree. |
| 268 | * |
| 269 | * Since the node itself cannot enforce any constraints, we turn |
| 270 | * all pending constraints into guards and add them to the resulting |
| 271 | * graft to ensure that they will be generated. |
| 272 | * |
| 273 | * Before we pass control to the user, we first clear some information |
| 274 | * from the build that is (presumbably) only meaningful |
| 275 | * for the current code generation. |
| 276 | * This includes the create_leaf callback itself, so we make a copy |
| 277 | * of the build first. |
| 278 | */ |
| 279 | static __isl_give isl_ast_graft_list *call_create_leaf( |
| 280 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
| 281 | { |
| 282 | isl_set *guard; |
| 283 | isl_ast_node *node; |
| 284 | isl_ast_graft *graft; |
| 285 | isl_ast_build *user_build; |
| 286 | |
| 287 | guard = isl_ast_build_get_pending(build); |
| 288 | user_build = isl_ast_build_copy(build); |
| 289 | user_build = isl_ast_build_replace_pending_by_guard(build: user_build, |
| 290 | guard: isl_set_copy(set: guard)); |
| 291 | user_build = isl_ast_build_set_executed(build: user_build, executed); |
| 292 | user_build = isl_ast_build_clear_local_info(build: user_build); |
| 293 | if (!user_build) |
| 294 | node = NULL; |
| 295 | else |
| 296 | node = build->create_leaf(user_build, build->create_leaf_user); |
| 297 | graft = isl_ast_graft_alloc(node, build); |
| 298 | graft = isl_ast_graft_add_guard(graft, guard, build); |
| 299 | isl_ast_build_free(build); |
| 300 | return isl_ast_graft_list_from_ast_graft(el: graft); |
| 301 | } |
| 302 | |
| 303 | static __isl_give isl_ast_graft_list *build_ast_from_child( |
| 304 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
| 305 | __isl_take isl_union_map *executed); |
| 306 | |
| 307 | /* Generate an AST after having handled the complete schedule |
| 308 | * of this call to the code generator or the complete band |
| 309 | * if we are generating an AST from a schedule tree. |
| 310 | * |
| 311 | * If we are inside a band node, then move on to the child of the band. |
| 312 | * |
| 313 | * If the user has specified a create_leaf callback, control |
| 314 | * is passed to the user in call_create_leaf. |
| 315 | * |
| 316 | * Otherwise, we generate one or more calls for each individual |
| 317 | * domain in generate_domain. |
| 318 | */ |
| 319 | static __isl_give isl_ast_graft_list *generate_inner_level( |
| 320 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
| 321 | { |
| 322 | isl_ctx *ctx; |
| 323 | struct isl_generate_domain_data data = { build }; |
| 324 | |
| 325 | if (!build || !executed) |
| 326 | goto error; |
| 327 | |
| 328 | if (isl_ast_build_has_schedule_node(build)) { |
| 329 | isl_schedule_node *node; |
| 330 | node = isl_ast_build_get_schedule_node(build); |
| 331 | build = isl_ast_build_reset_schedule_node(build); |
| 332 | return build_ast_from_child(build, node, executed); |
| 333 | } |
| 334 | |
| 335 | if (build->create_leaf) |
| 336 | return call_create_leaf(executed, build); |
| 337 | |
| 338 | ctx = isl_union_map_get_ctx(umap: executed); |
| 339 | data.list = isl_ast_graft_list_alloc(ctx, n: 0); |
| 340 | if (isl_union_map_foreach_map(umap: executed, fn: &generate_domain, user: &data) < 0) |
| 341 | data.list = isl_ast_graft_list_free(list: data.list); |
| 342 | |
| 343 | if (0) |
| 344 | error: data.list = NULL; |
| 345 | isl_ast_build_free(build); |
| 346 | isl_union_map_free(umap: executed); |
| 347 | return data.list; |
| 348 | } |
| 349 | |
| 350 | /* Call the before_each_for callback, if requested by the user. |
| 351 | */ |
| 352 | static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node, |
| 353 | __isl_keep isl_ast_build *build) |
| 354 | { |
| 355 | isl_id *id; |
| 356 | |
| 357 | if (!node || !build) |
| 358 | return isl_ast_node_free(node); |
| 359 | if (!build->before_each_for) |
| 360 | return node; |
| 361 | id = build->before_each_for(build, build->before_each_for_user); |
| 362 | node = isl_ast_node_set_annotation(node, annotation: id); |
| 363 | return node; |
| 364 | } |
| 365 | |
| 366 | /* Call the after_each_for callback, if requested by the user. |
| 367 | */ |
| 368 | static __isl_give isl_ast_graft *after_each_for(__isl_take isl_ast_graft *graft, |
| 369 | __isl_keep isl_ast_build *build) |
| 370 | { |
| 371 | if (!graft || !build) |
| 372 | return isl_ast_graft_free(graft); |
| 373 | if (!build->after_each_for) |
| 374 | return graft; |
| 375 | graft->node = build->after_each_for(graft->node, build, |
| 376 | build->after_each_for_user); |
| 377 | if (!graft->node) |
| 378 | return isl_ast_graft_free(graft); |
| 379 | return graft; |
| 380 | } |
| 381 | |
| 382 | /* Plug in all the know values of the current and outer dimensions |
| 383 | * in the domain of "executed". In principle, we only need to plug |
| 384 | * in the known value of the current dimension since the values of |
| 385 | * outer dimensions have been plugged in already. |
| 386 | * However, it turns out to be easier to just plug in all known values. |
| 387 | */ |
| 388 | static __isl_give isl_union_map *plug_in_values( |
| 389 | __isl_take isl_union_map *executed, __isl_keep isl_ast_build *build) |
| 390 | { |
| 391 | return isl_ast_build_substitute_values_union_map_domain(build, |
| 392 | umap: executed); |
| 393 | } |
| 394 | |
| 395 | /* Check if the constraint "c" is a lower bound on dimension "pos", |
| 396 | * an upper bound, or independent of dimension "pos". |
| 397 | */ |
| 398 | static int constraint_type(isl_constraint *c, int pos) |
| 399 | { |
| 400 | if (isl_constraint_is_lower_bound(constraint: c, type: isl_dim_set, pos)) |
| 401 | return 1; |
| 402 | if (isl_constraint_is_upper_bound(constraint: c, type: isl_dim_set, pos)) |
| 403 | return 2; |
| 404 | return 0; |
| 405 | } |
| 406 | |
| 407 | /* Compare the types of the constraints "a" and "b", |
| 408 | * resulting in constraints that are independent of "depth" |
| 409 | * to be sorted before the lower bounds on "depth", which in |
| 410 | * turn are sorted before the upper bounds on "depth". |
| 411 | */ |
| 412 | static int cmp_constraint(__isl_keep isl_constraint *a, |
| 413 | __isl_keep isl_constraint *b, void *user) |
| 414 | { |
| 415 | int *depth = user; |
| 416 | int t1 = constraint_type(c: a, pos: *depth); |
| 417 | int t2 = constraint_type(c: b, pos: *depth); |
| 418 | |
| 419 | return t1 - t2; |
| 420 | } |
| 421 | |
| 422 | /* Extract a lower bound on dimension "pos" from constraint "c". |
| 423 | * |
| 424 | * If the constraint is of the form |
| 425 | * |
| 426 | * a x + f(...) >= 0 |
| 427 | * |
| 428 | * then we essentially return |
| 429 | * |
| 430 | * l = ceil(-f(...)/a) |
| 431 | * |
| 432 | * However, if the current dimension is strided, then we need to make |
| 433 | * sure that the lower bound we construct is of the form |
| 434 | * |
| 435 | * f + s a |
| 436 | * |
| 437 | * with f the offset and s the stride. |
| 438 | * We therefore compute |
| 439 | * |
| 440 | * f + s * ceil((l - f)/s) |
| 441 | */ |
| 442 | static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c, |
| 443 | int pos, __isl_keep isl_ast_build *build) |
| 444 | { |
| 445 | isl_aff *aff; |
| 446 | |
| 447 | aff = isl_constraint_get_bound(constraint: c, type: isl_dim_set, pos); |
| 448 | aff = isl_aff_ceil(aff); |
| 449 | |
| 450 | if (isl_ast_build_has_stride(build, pos)) { |
| 451 | isl_aff *offset; |
| 452 | isl_val *stride; |
| 453 | |
| 454 | offset = isl_ast_build_get_offset(build, pos); |
| 455 | stride = isl_ast_build_get_stride(build, pos); |
| 456 | |
| 457 | aff = isl_aff_sub(aff1: aff, aff2: isl_aff_copy(aff: offset)); |
| 458 | aff = isl_aff_scale_down_val(aff, v: isl_val_copy(v: stride)); |
| 459 | aff = isl_aff_ceil(aff); |
| 460 | aff = isl_aff_scale_val(aff, v: stride); |
| 461 | aff = isl_aff_add(aff1: aff, aff2: offset); |
| 462 | } |
| 463 | |
| 464 | aff = isl_ast_build_compute_gist_aff(build, aff); |
| 465 | |
| 466 | return aff; |
| 467 | } |
| 468 | |
| 469 | /* Return the exact lower bound (or upper bound if "upper" is set) |
| 470 | * of "domain" as a piecewise affine expression. |
| 471 | * |
| 472 | * If we are computing a lower bound (of a strided dimension), then |
| 473 | * we need to make sure it is of the form |
| 474 | * |
| 475 | * f + s a |
| 476 | * |
| 477 | * where f is the offset and s is the stride. |
| 478 | * We therefore need to include the stride constraint before computing |
| 479 | * the minimum. |
| 480 | */ |
| 481 | static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain, |
| 482 | __isl_keep isl_ast_build *build, int upper) |
| 483 | { |
| 484 | isl_set *stride; |
| 485 | isl_map *it_map; |
| 486 | isl_pw_aff *pa; |
| 487 | isl_pw_multi_aff *pma; |
| 488 | |
| 489 | domain = isl_set_copy(set: domain); |
| 490 | if (!upper) { |
| 491 | stride = isl_ast_build_get_stride_constraint(build); |
| 492 | domain = isl_set_intersect(set1: domain, set2: stride); |
| 493 | } |
| 494 | it_map = isl_ast_build_map_to_iterator(build, set: domain); |
| 495 | if (upper) |
| 496 | pma = isl_map_lexmax_pw_multi_aff(map: it_map); |
| 497 | else |
| 498 | pma = isl_map_lexmin_pw_multi_aff(map: it_map); |
| 499 | pa = isl_pw_multi_aff_get_pw_aff(pma, pos: 0); |
| 500 | isl_pw_multi_aff_free(pma); |
| 501 | pa = isl_ast_build_compute_gist_pw_aff(build, pa); |
| 502 | pa = isl_pw_aff_coalesce(pa); |
| 503 | |
| 504 | return pa; |
| 505 | } |
| 506 | |
| 507 | /* Callback for sorting the isl_pw_aff_list passed to reduce_list and |
| 508 | * remove_redundant_lower_bounds. |
| 509 | */ |
| 510 | static int reduce_list_cmp(__isl_keep isl_pw_aff *a, __isl_keep isl_pw_aff *b, |
| 511 | void *user) |
| 512 | { |
| 513 | return isl_pw_aff_plain_cmp(pa1: a, pa2: b); |
| 514 | } |
| 515 | |
| 516 | /* Given a list of lower bounds "list", remove those that are redundant |
| 517 | * with respect to the other bounds in "list" and the domain of "build". |
| 518 | * |
| 519 | * We first sort the bounds in the same way as they would be sorted |
| 520 | * by set_for_node_expressions so that we can try and remove the last |
| 521 | * bounds first. |
| 522 | * |
| 523 | * For a lower bound to be effective, there needs to be at least |
| 524 | * one domain element for which it is larger than all other lower bounds. |
| 525 | * For each lower bound we therefore intersect the domain with |
| 526 | * the conditions that it is larger than all other bounds and |
| 527 | * check whether the result is empty. If so, the bound can be removed. |
| 528 | */ |
| 529 | static __isl_give isl_pw_aff_list *remove_redundant_lower_bounds( |
| 530 | __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build) |
| 531 | { |
| 532 | int i, j; |
| 533 | isl_size n; |
| 534 | isl_set *domain; |
| 535 | |
| 536 | list = isl_pw_aff_list_sort(list, cmp: &reduce_list_cmp, NULL); |
| 537 | |
| 538 | n = isl_pw_aff_list_n_pw_aff(list); |
| 539 | if (n < 0) |
| 540 | return isl_pw_aff_list_free(list); |
| 541 | if (n <= 1) |
| 542 | return list; |
| 543 | |
| 544 | domain = isl_ast_build_get_domain(build); |
| 545 | |
| 546 | for (i = n - 1; i >= 0; --i) { |
| 547 | isl_pw_aff *pa_i; |
| 548 | isl_set *domain_i; |
| 549 | int empty; |
| 550 | |
| 551 | domain_i = isl_set_copy(set: domain); |
| 552 | pa_i = isl_pw_aff_list_get_pw_aff(list, index: i); |
| 553 | |
| 554 | for (j = 0; j < n; ++j) { |
| 555 | isl_pw_aff *pa_j; |
| 556 | isl_set *better; |
| 557 | |
| 558 | if (j == i) |
| 559 | continue; |
| 560 | |
| 561 | pa_j = isl_pw_aff_list_get_pw_aff(list, index: j); |
| 562 | better = isl_pw_aff_gt_set(pwaff1: isl_pw_aff_copy(pwaff: pa_i), pwaff2: pa_j); |
| 563 | domain_i = isl_set_intersect(set1: domain_i, set2: better); |
| 564 | } |
| 565 | |
| 566 | empty = isl_set_is_empty(set: domain_i); |
| 567 | |
| 568 | isl_set_free(set: domain_i); |
| 569 | isl_pw_aff_free(pwaff: pa_i); |
| 570 | |
| 571 | if (empty < 0) |
| 572 | goto error; |
| 573 | if (!empty) |
| 574 | continue; |
| 575 | list = isl_pw_aff_list_drop(list, first: i, n: 1); |
| 576 | n--; |
| 577 | } |
| 578 | |
| 579 | isl_set_free(set: domain); |
| 580 | |
| 581 | return list; |
| 582 | error: |
| 583 | isl_set_free(set: domain); |
| 584 | return isl_pw_aff_list_free(list); |
| 585 | } |
| 586 | |
| 587 | /* Extract a lower bound on dimension "pos" from each constraint |
| 588 | * in "constraints" and return the list of lower bounds. |
| 589 | * If "constraints" has zero elements, then we extract a lower bound |
| 590 | * from "domain" instead. |
| 591 | * |
| 592 | * If the current dimension is strided, then the lower bound |
| 593 | * is adjusted by lower_bound to match the stride information. |
| 594 | * This modification may make one or more lower bounds redundant |
| 595 | * with respect to the other lower bounds. We therefore check |
| 596 | * for this condition and remove the redundant lower bounds. |
| 597 | */ |
| 598 | static __isl_give isl_pw_aff_list *lower_bounds( |
| 599 | __isl_keep isl_constraint_list *constraints, int pos, |
| 600 | __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) |
| 601 | { |
| 602 | isl_ctx *ctx; |
| 603 | isl_pw_aff_list *list; |
| 604 | int i; |
| 605 | isl_size n; |
| 606 | |
| 607 | if (!build) |
| 608 | return NULL; |
| 609 | |
| 610 | n = isl_constraint_list_n_constraint(list: constraints); |
| 611 | if (n < 0) |
| 612 | return NULL; |
| 613 | if (n == 0) { |
| 614 | isl_pw_aff *pa; |
| 615 | pa = exact_bound(domain, build, upper: 0); |
| 616 | return isl_pw_aff_list_from_pw_aff(el: pa); |
| 617 | } |
| 618 | |
| 619 | ctx = isl_ast_build_get_ctx(build); |
| 620 | list = isl_pw_aff_list_alloc(ctx,n); |
| 621 | |
| 622 | for (i = 0; i < n; ++i) { |
| 623 | isl_aff *aff; |
| 624 | isl_constraint *c; |
| 625 | |
| 626 | c = isl_constraint_list_get_constraint(list: constraints, index: i); |
| 627 | aff = lower_bound(c, pos, build); |
| 628 | isl_constraint_free(c); |
| 629 | list = isl_pw_aff_list_add(list, el: isl_pw_aff_from_aff(aff)); |
| 630 | } |
| 631 | |
| 632 | if (isl_ast_build_has_stride(build, pos)) |
| 633 | list = remove_redundant_lower_bounds(list, build); |
| 634 | |
| 635 | return list; |
| 636 | } |
| 637 | |
| 638 | /* Extract an upper bound on dimension "pos" from each constraint |
| 639 | * in "constraints" and return the list of upper bounds. |
| 640 | * If "constraints" has zero elements, then we extract an upper bound |
| 641 | * from "domain" instead. |
| 642 | */ |
| 643 | static __isl_give isl_pw_aff_list *upper_bounds( |
| 644 | __isl_keep isl_constraint_list *constraints, int pos, |
| 645 | __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) |
| 646 | { |
| 647 | isl_ctx *ctx; |
| 648 | isl_pw_aff_list *list; |
| 649 | int i; |
| 650 | isl_size n; |
| 651 | |
| 652 | n = isl_constraint_list_n_constraint(list: constraints); |
| 653 | if (n < 0) |
| 654 | return NULL; |
| 655 | if (n == 0) { |
| 656 | isl_pw_aff *pa; |
| 657 | pa = exact_bound(domain, build, upper: 1); |
| 658 | return isl_pw_aff_list_from_pw_aff(el: pa); |
| 659 | } |
| 660 | |
| 661 | ctx = isl_ast_build_get_ctx(build); |
| 662 | list = isl_pw_aff_list_alloc(ctx,n); |
| 663 | |
| 664 | for (i = 0; i < n; ++i) { |
| 665 | isl_aff *aff; |
| 666 | isl_constraint *c; |
| 667 | |
| 668 | c = isl_constraint_list_get_constraint(list: constraints, index: i); |
| 669 | aff = isl_constraint_get_bound(constraint: c, type: isl_dim_set, pos); |
| 670 | isl_constraint_free(c); |
| 671 | aff = isl_aff_floor(aff); |
| 672 | list = isl_pw_aff_list_add(list, el: isl_pw_aff_from_aff(aff)); |
| 673 | } |
| 674 | |
| 675 | return list; |
| 676 | } |
| 677 | |
| 678 | /* Return an isl_ast_expr that performs the reduction of type "type" |
| 679 | * on AST expressions corresponding to the elements in "list". |
| 680 | * |
| 681 | * The list is assumed to contain at least one element. |
| 682 | * If the list contains exactly one element, then the returned isl_ast_expr |
| 683 | * simply computes that affine expression. |
| 684 | * If the list contains more than one element, then we sort it |
| 685 | * using a fairly arbitrary but hopefully reasonably stable order. |
| 686 | */ |
| 687 | static __isl_give isl_ast_expr *reduce_list(enum isl_ast_expr_op_type type, |
| 688 | __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build) |
| 689 | { |
| 690 | int i; |
| 691 | isl_size n; |
| 692 | isl_ctx *ctx; |
| 693 | isl_ast_expr *expr; |
| 694 | |
| 695 | n = isl_pw_aff_list_n_pw_aff(list); |
| 696 | if (n < 0) |
| 697 | return NULL; |
| 698 | |
| 699 | if (n == 1) |
| 700 | return isl_ast_build_expr_from_pw_aff_internal(build, |
| 701 | pa: isl_pw_aff_list_get_pw_aff(list, index: 0)); |
| 702 | |
| 703 | ctx = isl_pw_aff_list_get_ctx(list); |
| 704 | expr = isl_ast_expr_alloc_op(ctx, op: type, n_arg: n); |
| 705 | |
| 706 | list = isl_pw_aff_list_copy(list); |
| 707 | list = isl_pw_aff_list_sort(list, cmp: &reduce_list_cmp, NULL); |
| 708 | if (!list) |
| 709 | return isl_ast_expr_free(expr); |
| 710 | |
| 711 | for (i = 0; i < n; ++i) { |
| 712 | isl_ast_expr *expr_i; |
| 713 | |
| 714 | expr_i = isl_ast_build_expr_from_pw_aff_internal(build, |
| 715 | pa: isl_pw_aff_list_get_pw_aff(list, index: i)); |
| 716 | expr = isl_ast_expr_op_add_arg(expr, arg: expr_i); |
| 717 | } |
| 718 | |
| 719 | isl_pw_aff_list_free(list); |
| 720 | return expr; |
| 721 | } |
| 722 | |
| 723 | /* Add guards implied by the "generated constraints", |
| 724 | * but not (necessarily) enforced by the generated AST to "guard". |
| 725 | * In particular, if there is any stride constraints, |
| 726 | * then add the guard implied by those constraints. |
| 727 | * If we have generated a degenerate loop, then add the guard |
| 728 | * implied by "bounds" on the outer dimensions, i.e., the guard |
| 729 | * that ensures that the single value actually exists. |
| 730 | * Since there may also be guards implied by a combination |
| 731 | * of these constraints, we first combine them before |
| 732 | * deriving the implied constraints. |
| 733 | */ |
| 734 | static __isl_give isl_set *add_implied_guards(__isl_take isl_set *guard, |
| 735 | int degenerate, __isl_keep isl_basic_set *bounds, |
| 736 | __isl_keep isl_ast_build *build) |
| 737 | { |
| 738 | isl_size depth; |
| 739 | isl_bool has_stride; |
| 740 | isl_space *space; |
| 741 | isl_set *dom, *set; |
| 742 | |
| 743 | depth = isl_ast_build_get_depth(build); |
| 744 | has_stride = isl_ast_build_has_stride(build, pos: depth); |
| 745 | if (depth < 0 || has_stride < 0) |
| 746 | return isl_set_free(set: guard); |
| 747 | if (!has_stride && !degenerate) |
| 748 | return guard; |
| 749 | |
| 750 | space = isl_basic_set_get_space(bset: bounds); |
| 751 | dom = isl_set_universe(space); |
| 752 | |
| 753 | if (degenerate) { |
| 754 | bounds = isl_basic_set_copy(bset: bounds); |
| 755 | bounds = isl_basic_set_drop_constraints_not_involving_dims( |
| 756 | bset: bounds, type: isl_dim_set, first: depth, n: 1); |
| 757 | set = isl_set_from_basic_set(bset: bounds); |
| 758 | dom = isl_set_intersect(set1: dom, set2: set); |
| 759 | } |
| 760 | |
| 761 | if (has_stride) { |
| 762 | set = isl_ast_build_get_stride_constraint(build); |
| 763 | dom = isl_set_intersect(set1: dom, set2: set); |
| 764 | } |
| 765 | |
| 766 | dom = isl_set_eliminate(set: dom, type: isl_dim_set, first: depth, n: 1); |
| 767 | dom = isl_ast_build_compute_gist(build, set: dom); |
| 768 | guard = isl_set_intersect(set1: guard, set2: dom); |
| 769 | |
| 770 | return guard; |
| 771 | } |
| 772 | |
| 773 | /* Update "graft" based on "sub_build" for the degenerate case. |
| 774 | * |
| 775 | * "build" is the build in which graft->node was created |
| 776 | * "sub_build" contains information about the current level itself, |
| 777 | * including the single value attained. |
| 778 | * |
| 779 | * We set the initialization part of the for loop to the single |
| 780 | * value attained by the current dimension. |
| 781 | * The increment and condition are not strictly needed as they are known |
| 782 | * to be "1" and "iterator <= value" respectively. |
| 783 | */ |
| 784 | static __isl_give isl_ast_graft *refine_degenerate( |
| 785 | __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build, |
| 786 | __isl_keep isl_ast_build *sub_build) |
| 787 | { |
| 788 | isl_pw_aff *value; |
| 789 | isl_ast_expr *init; |
| 790 | |
| 791 | if (!graft || !sub_build) |
| 792 | return isl_ast_graft_free(graft); |
| 793 | |
| 794 | value = isl_pw_aff_copy(pwaff: sub_build->value); |
| 795 | |
| 796 | init = isl_ast_build_expr_from_pw_aff_internal(build, pa: value); |
| 797 | graft->node = isl_ast_node_for_set_init(node: graft->node, init); |
| 798 | if (!graft->node) |
| 799 | return isl_ast_graft_free(graft); |
| 800 | |
| 801 | return graft; |
| 802 | } |
| 803 | |
| 804 | /* Return the intersection of constraints in "list" as a set. |
| 805 | */ |
| 806 | static __isl_give isl_set *intersect_constraints( |
| 807 | __isl_keep isl_constraint_list *list) |
| 808 | { |
| 809 | int i; |
| 810 | isl_size n; |
| 811 | isl_basic_set *bset; |
| 812 | |
| 813 | n = isl_constraint_list_n_constraint(list); |
| 814 | if (n < 0) |
| 815 | return NULL; |
| 816 | if (n < 1) |
| 817 | isl_die(isl_constraint_list_get_ctx(list), isl_error_internal, |
| 818 | "expecting at least one constraint" , return NULL); |
| 819 | |
| 820 | bset = isl_basic_set_from_constraint( |
| 821 | constraint: isl_constraint_list_get_constraint(list, index: 0)); |
| 822 | for (i = 1; i < n; ++i) { |
| 823 | isl_basic_set *bset_i; |
| 824 | |
| 825 | bset_i = isl_basic_set_from_constraint( |
| 826 | constraint: isl_constraint_list_get_constraint(list, index: i)); |
| 827 | bset = isl_basic_set_intersect(bset1: bset, bset2: bset_i); |
| 828 | } |
| 829 | |
| 830 | return isl_set_from_basic_set(bset); |
| 831 | } |
| 832 | |
| 833 | /* Compute the constraints on the outer dimensions enforced by |
| 834 | * graft->node and add those constraints to graft->enforced, |
| 835 | * in case the upper bound is expressed as a set "upper". |
| 836 | * |
| 837 | * In particular, if l(...) is a lower bound in "lower", and |
| 838 | * |
| 839 | * -a i + f(...) >= 0 or a i <= f(...) |
| 840 | * |
| 841 | * is an upper bound ocnstraint on the current dimension i, |
| 842 | * then the for loop enforces the constraint |
| 843 | * |
| 844 | * -a l(...) + f(...) >= 0 or a l(...) <= f(...) |
| 845 | * |
| 846 | * We therefore simply take each lower bound in turn, plug it into |
| 847 | * the upper bounds and compute the intersection over all lower bounds. |
| 848 | * |
| 849 | * If a lower bound is a rational expression, then |
| 850 | * isl_basic_set_preimage_multi_aff will force this rational |
| 851 | * expression to have only integer values. However, the loop |
| 852 | * itself does not enforce this integrality constraint. We therefore |
| 853 | * use the ceil of the lower bounds instead of the lower bounds themselves. |
| 854 | * Other constraints will make sure that the for loop is only executed |
| 855 | * when each of the lower bounds attains an integral value. |
| 856 | * In particular, potentially rational values only occur in |
| 857 | * lower_bound if the offset is a (seemingly) rational expression, |
| 858 | * but then outer conditions will make sure that this rational expression |
| 859 | * only attains integer values. |
| 860 | */ |
| 861 | static __isl_give isl_ast_graft *set_enforced_from_set( |
| 862 | __isl_take isl_ast_graft *graft, |
| 863 | __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper) |
| 864 | { |
| 865 | isl_space *space; |
| 866 | isl_basic_set *enforced; |
| 867 | isl_pw_multi_aff *pma; |
| 868 | int i; |
| 869 | isl_size n; |
| 870 | |
| 871 | n = isl_pw_aff_list_n_pw_aff(list: lower); |
| 872 | if (!graft || n < 0) |
| 873 | return isl_ast_graft_free(graft); |
| 874 | |
| 875 | space = isl_set_get_space(set: upper); |
| 876 | enforced = isl_basic_set_universe(space: isl_space_copy(space)); |
| 877 | |
| 878 | space = isl_space_map_from_set(space); |
| 879 | pma = isl_pw_multi_aff_identity(space); |
| 880 | |
| 881 | for (i = 0; i < n; ++i) { |
| 882 | isl_pw_aff *pa; |
| 883 | isl_set *enforced_i; |
| 884 | isl_basic_set *hull; |
| 885 | isl_pw_multi_aff *pma_i; |
| 886 | |
| 887 | pa = isl_pw_aff_list_get_pw_aff(list: lower, index: i); |
| 888 | pa = isl_pw_aff_ceil(pwaff: pa); |
| 889 | pma_i = isl_pw_multi_aff_copy(pma); |
| 890 | pma_i = isl_pw_multi_aff_set_pw_aff(pma: pma_i, pos, pa); |
| 891 | enforced_i = isl_set_copy(set: upper); |
| 892 | enforced_i = isl_set_preimage_pw_multi_aff(set: enforced_i, pma: pma_i); |
| 893 | hull = isl_set_simple_hull(set: enforced_i); |
| 894 | enforced = isl_basic_set_intersect(bset1: enforced, bset2: hull); |
| 895 | } |
| 896 | |
| 897 | isl_pw_multi_aff_free(pma); |
| 898 | |
| 899 | graft = isl_ast_graft_enforce(graft, enforced); |
| 900 | |
| 901 | return graft; |
| 902 | } |
| 903 | |
| 904 | /* Compute the constraints on the outer dimensions enforced by |
| 905 | * graft->node and add those constraints to graft->enforced, |
| 906 | * in case the upper bound is expressed as |
| 907 | * a list of affine expressions "upper". |
| 908 | * |
| 909 | * The enforced condition is that each lower bound expression is less |
| 910 | * than or equal to each upper bound expression. |
| 911 | */ |
| 912 | static __isl_give isl_ast_graft *set_enforced_from_list( |
| 913 | __isl_take isl_ast_graft *graft, |
| 914 | __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper) |
| 915 | { |
| 916 | isl_set *cond; |
| 917 | isl_basic_set *enforced; |
| 918 | |
| 919 | lower = isl_pw_aff_list_copy(list: lower); |
| 920 | upper = isl_pw_aff_list_copy(list: upper); |
| 921 | cond = isl_pw_aff_list_le_set(list1: lower, list2: upper); |
| 922 | enforced = isl_set_simple_hull(set: cond); |
| 923 | graft = isl_ast_graft_enforce(graft, enforced); |
| 924 | |
| 925 | return graft; |
| 926 | } |
| 927 | |
| 928 | /* Does "aff" have a negative constant term? |
| 929 | */ |
| 930 | static isl_bool aff_constant_is_negative(__isl_keep isl_set *set, |
| 931 | __isl_keep isl_aff *aff, void *user) |
| 932 | { |
| 933 | isl_bool is_neg; |
| 934 | isl_val *v; |
| 935 | |
| 936 | v = isl_aff_get_constant_val(aff); |
| 937 | is_neg = isl_val_is_neg(v); |
| 938 | isl_val_free(v); |
| 939 | |
| 940 | return is_neg; |
| 941 | } |
| 942 | |
| 943 | /* Does "pa" have a negative constant term over its entire domain? |
| 944 | */ |
| 945 | static isl_bool pw_aff_constant_is_negative(__isl_keep isl_pw_aff *pa, |
| 946 | void *user) |
| 947 | { |
| 948 | return isl_pw_aff_every_piece(pa, test: &aff_constant_is_negative, NULL); |
| 949 | } |
| 950 | |
| 951 | /* Does each element in "list" have a negative constant term? |
| 952 | */ |
| 953 | static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list) |
| 954 | { |
| 955 | return isl_pw_aff_list_every(list, test: &pw_aff_constant_is_negative, NULL); |
| 956 | } |
| 957 | |
| 958 | /* Add 1 to each of the elements in "list", where each of these elements |
| 959 | * is defined over the internal schedule space of "build". |
| 960 | */ |
| 961 | static __isl_give isl_pw_aff_list *list_add_one( |
| 962 | __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build) |
| 963 | { |
| 964 | int i; |
| 965 | isl_size n; |
| 966 | isl_space *space; |
| 967 | isl_aff *aff; |
| 968 | isl_pw_aff *one; |
| 969 | |
| 970 | n = isl_pw_aff_list_n_pw_aff(list); |
| 971 | if (n < 0) |
| 972 | return isl_pw_aff_list_free(list); |
| 973 | |
| 974 | space = isl_ast_build_get_space(build, internal: 1); |
| 975 | aff = isl_aff_zero_on_domain(ls: isl_local_space_from_space(space)); |
| 976 | aff = isl_aff_add_constant_si(aff, v: 1); |
| 977 | one = isl_pw_aff_from_aff(aff); |
| 978 | |
| 979 | for (i = 0; i < n; ++i) { |
| 980 | isl_pw_aff *pa; |
| 981 | pa = isl_pw_aff_list_get_pw_aff(list, index: i); |
| 982 | pa = isl_pw_aff_add(pwaff1: pa, pwaff2: isl_pw_aff_copy(pwaff: one)); |
| 983 | list = isl_pw_aff_list_set_pw_aff(list, index: i, el: pa); |
| 984 | } |
| 985 | |
| 986 | isl_pw_aff_free(pwaff: one); |
| 987 | |
| 988 | return list; |
| 989 | } |
| 990 | |
| 991 | /* Set the condition part of the for node graft->node in case |
| 992 | * the upper bound is represented as a list of piecewise affine expressions. |
| 993 | * |
| 994 | * In particular, set the condition to |
| 995 | * |
| 996 | * iterator <= min(list of upper bounds) |
| 997 | * |
| 998 | * If each of the upper bounds has a negative constant term, then |
| 999 | * set the condition to |
| 1000 | * |
| 1001 | * iterator < min(list of (upper bound + 1)s) |
| 1002 | * |
| 1003 | */ |
| 1004 | static __isl_give isl_ast_graft *set_for_cond_from_list( |
| 1005 | __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list, |
| 1006 | __isl_keep isl_ast_build *build) |
| 1007 | { |
| 1008 | int neg; |
| 1009 | isl_ast_expr *bound, *iterator, *cond; |
| 1010 | enum isl_ast_expr_op_type type = isl_ast_expr_op_le; |
| 1011 | |
| 1012 | if (!graft || !list) |
| 1013 | return isl_ast_graft_free(graft); |
| 1014 | |
| 1015 | neg = list_constant_is_negative(list); |
| 1016 | if (neg < 0) |
| 1017 | return isl_ast_graft_free(graft); |
| 1018 | list = isl_pw_aff_list_copy(list); |
| 1019 | if (neg) { |
| 1020 | list = list_add_one(list, build); |
| 1021 | type = isl_ast_expr_op_lt; |
| 1022 | } |
| 1023 | |
| 1024 | bound = reduce_list(type: isl_ast_expr_op_min, list, build); |
| 1025 | iterator = isl_ast_expr_copy(expr: graft->node->u.f.iterator); |
| 1026 | cond = isl_ast_expr_alloc_binary(type, expr1: iterator, expr2: bound); |
| 1027 | graft->node = isl_ast_node_for_set_cond(node: graft->node, init: cond); |
| 1028 | |
| 1029 | isl_pw_aff_list_free(list); |
| 1030 | if (!graft->node) |
| 1031 | return isl_ast_graft_free(graft); |
| 1032 | return graft; |
| 1033 | } |
| 1034 | |
| 1035 | /* Set the condition part of the for node graft->node in case |
| 1036 | * the upper bound is represented as a set. |
| 1037 | */ |
| 1038 | static __isl_give isl_ast_graft *set_for_cond_from_set( |
| 1039 | __isl_take isl_ast_graft *graft, __isl_keep isl_set *set, |
| 1040 | __isl_keep isl_ast_build *build) |
| 1041 | { |
| 1042 | isl_ast_expr *cond; |
| 1043 | |
| 1044 | if (!graft) |
| 1045 | return NULL; |
| 1046 | |
| 1047 | cond = isl_ast_build_expr_from_set_internal(build, set: isl_set_copy(set)); |
| 1048 | graft->node = isl_ast_node_for_set_cond(node: graft->node, init: cond); |
| 1049 | if (!graft->node) |
| 1050 | return isl_ast_graft_free(graft); |
| 1051 | return graft; |
| 1052 | } |
| 1053 | |
| 1054 | /* Construct an isl_ast_expr for the increment (i.e., stride) of |
| 1055 | * the current dimension. |
| 1056 | */ |
| 1057 | static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build) |
| 1058 | { |
| 1059 | isl_size depth; |
| 1060 | isl_val *v; |
| 1061 | isl_ctx *ctx; |
| 1062 | |
| 1063 | depth = isl_ast_build_get_depth(build); |
| 1064 | if (depth < 0) |
| 1065 | return NULL; |
| 1066 | ctx = isl_ast_build_get_ctx(build); |
| 1067 | |
| 1068 | if (!isl_ast_build_has_stride(build, pos: depth)) |
| 1069 | return isl_ast_expr_alloc_int_si(ctx, i: 1); |
| 1070 | |
| 1071 | v = isl_ast_build_get_stride(build, pos: depth); |
| 1072 | return isl_ast_expr_from_val(v); |
| 1073 | } |
| 1074 | |
| 1075 | /* Should we express the loop condition as |
| 1076 | * |
| 1077 | * iterator <= min(list of upper bounds) |
| 1078 | * |
| 1079 | * or as a conjunction of constraints? |
| 1080 | * |
| 1081 | * The first is constructed from a list of upper bounds. |
| 1082 | * The second is constructed from a set. |
| 1083 | * |
| 1084 | * If there are no upper bounds in "constraints", then this could mean |
| 1085 | * that "domain" simply doesn't have an upper bound or that we didn't |
| 1086 | * pick any upper bound. In the first case, we want to generate the |
| 1087 | * loop condition as a(n empty) conjunction of constraints |
| 1088 | * In the second case, we will compute |
| 1089 | * a single upper bound from "domain" and so we use the list form. |
| 1090 | * |
| 1091 | * If there are upper bounds in "constraints", |
| 1092 | * then we use the list form iff the atomic_upper_bound option is set. |
| 1093 | */ |
| 1094 | static int use_upper_bound_list(isl_ctx *ctx, int n_upper, |
| 1095 | __isl_keep isl_set *domain, int depth) |
| 1096 | { |
| 1097 | if (n_upper > 0) |
| 1098 | return isl_options_get_ast_build_atomic_upper_bound(ctx); |
| 1099 | else |
| 1100 | return isl_set_dim_has_upper_bound(set: domain, type: isl_dim_set, pos: depth); |
| 1101 | } |
| 1102 | |
| 1103 | /* Fill in the expressions of the for node in graft->node. |
| 1104 | * |
| 1105 | * In particular, |
| 1106 | * - set the initialization part of the loop to the maximum of the lower bounds |
| 1107 | * - extract the increment from the stride of the current dimension |
| 1108 | * - construct the for condition either based on a list of upper bounds |
| 1109 | * or on a set of upper bound constraints. |
| 1110 | */ |
| 1111 | static __isl_give isl_ast_graft *set_for_node_expressions( |
| 1112 | __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower, |
| 1113 | int use_list, __isl_keep isl_pw_aff_list *upper_list, |
| 1114 | __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build) |
| 1115 | { |
| 1116 | isl_ast_expr *init; |
| 1117 | |
| 1118 | if (!graft) |
| 1119 | return NULL; |
| 1120 | |
| 1121 | init = reduce_list(type: isl_ast_expr_op_max, list: lower, build); |
| 1122 | graft->node = isl_ast_node_for_set_init(node: graft->node, init); |
| 1123 | graft->node = isl_ast_node_for_set_inc(node: graft->node, init: for_inc(build)); |
| 1124 | |
| 1125 | if (!graft->node) |
| 1126 | graft = isl_ast_graft_free(graft); |
| 1127 | |
| 1128 | if (use_list) |
| 1129 | graft = set_for_cond_from_list(graft, list: upper_list, build); |
| 1130 | else |
| 1131 | graft = set_for_cond_from_set(graft, set: upper_set, build); |
| 1132 | |
| 1133 | return graft; |
| 1134 | } |
| 1135 | |
| 1136 | /* Update "graft" based on "bounds" and "domain" for the generic, |
| 1137 | * non-degenerate, case. |
| 1138 | * |
| 1139 | * "c_lower" and "c_upper" contain the lower and upper bounds |
| 1140 | * that the loop node should express. |
| 1141 | * "domain" is the subset of the intersection of the constraints |
| 1142 | * for which some code is executed. |
| 1143 | * |
| 1144 | * There may be zero lower bounds or zero upper bounds in "constraints" |
| 1145 | * in case the list of constraints was created |
| 1146 | * based on the atomic option or based on separation with explicit bounds. |
| 1147 | * In that case, we use "domain" to derive lower and/or upper bounds. |
| 1148 | * |
| 1149 | * We first compute a list of one or more lower bounds. |
| 1150 | * |
| 1151 | * Then we decide if we want to express the condition as |
| 1152 | * |
| 1153 | * iterator <= min(list of upper bounds) |
| 1154 | * |
| 1155 | * or as a conjunction of constraints. |
| 1156 | * |
| 1157 | * The set of enforced constraints is then computed either based on |
| 1158 | * a list of upper bounds or on a set of upper bound constraints. |
| 1159 | * We do not compute any enforced constraints if we were forced |
| 1160 | * to compute a lower or upper bound using exact_bound. The domains |
| 1161 | * of the resulting expressions may imply some bounds on outer dimensions |
| 1162 | * that we do not want to appear in the enforced constraints since |
| 1163 | * they are not actually enforced by the corresponding code. |
| 1164 | * |
| 1165 | * Finally, we fill in the expressions of the for node. |
| 1166 | */ |
| 1167 | static __isl_give isl_ast_graft *refine_generic_bounds( |
| 1168 | __isl_take isl_ast_graft *graft, |
| 1169 | __isl_take isl_constraint_list *c_lower, |
| 1170 | __isl_take isl_constraint_list *c_upper, |
| 1171 | __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) |
| 1172 | { |
| 1173 | isl_size depth; |
| 1174 | isl_ctx *ctx; |
| 1175 | isl_pw_aff_list *lower; |
| 1176 | int use_list; |
| 1177 | isl_set *upper_set = NULL; |
| 1178 | isl_pw_aff_list *upper_list = NULL; |
| 1179 | isl_size n_lower, n_upper; |
| 1180 | |
| 1181 | depth = isl_ast_build_get_depth(build); |
| 1182 | if (!graft || !c_lower || !c_upper || depth < 0) |
| 1183 | goto error; |
| 1184 | |
| 1185 | ctx = isl_ast_graft_get_ctx(graft); |
| 1186 | |
| 1187 | n_lower = isl_constraint_list_n_constraint(list: c_lower); |
| 1188 | n_upper = isl_constraint_list_n_constraint(list: c_upper); |
| 1189 | if (n_lower < 0 || n_upper < 0) |
| 1190 | goto error; |
| 1191 | |
| 1192 | use_list = use_upper_bound_list(ctx, n_upper, domain, depth); |
| 1193 | |
| 1194 | lower = lower_bounds(constraints: c_lower, pos: depth, domain, build); |
| 1195 | |
| 1196 | if (use_list) |
| 1197 | upper_list = upper_bounds(constraints: c_upper, pos: depth, domain, build); |
| 1198 | else if (n_upper > 0) |
| 1199 | upper_set = intersect_constraints(list: c_upper); |
| 1200 | else |
| 1201 | upper_set = isl_set_universe(space: isl_set_get_space(set: domain)); |
| 1202 | |
| 1203 | if (n_lower == 0 || n_upper == 0) |
| 1204 | ; |
| 1205 | else if (use_list) |
| 1206 | graft = set_enforced_from_list(graft, lower, upper: upper_list); |
| 1207 | else |
| 1208 | graft = set_enforced_from_set(graft, lower, pos: depth, upper: upper_set); |
| 1209 | |
| 1210 | graft = set_for_node_expressions(graft, lower, use_list, upper_list, |
| 1211 | upper_set, build); |
| 1212 | |
| 1213 | isl_pw_aff_list_free(list: lower); |
| 1214 | isl_pw_aff_list_free(list: upper_list); |
| 1215 | isl_set_free(set: upper_set); |
| 1216 | isl_constraint_list_free(list: c_lower); |
| 1217 | isl_constraint_list_free(list: c_upper); |
| 1218 | |
| 1219 | return graft; |
| 1220 | error: |
| 1221 | isl_constraint_list_free(list: c_lower); |
| 1222 | isl_constraint_list_free(list: c_upper); |
| 1223 | return isl_ast_graft_free(graft); |
| 1224 | } |
| 1225 | |
| 1226 | /* Internal data structure used inside count_constraints to keep |
| 1227 | * track of the number of constraints that are independent of dimension "pos", |
| 1228 | * the lower bounds in "pos" and the upper bounds in "pos". |
| 1229 | */ |
| 1230 | struct isl_ast_count_constraints_data { |
| 1231 | int pos; |
| 1232 | |
| 1233 | int n_indep; |
| 1234 | int n_lower; |
| 1235 | int n_upper; |
| 1236 | }; |
| 1237 | |
| 1238 | /* Increment data->n_indep, data->lower or data->upper depending |
| 1239 | * on whether "c" is independent of dimensions data->pos, |
| 1240 | * a lower bound or an upper bound. |
| 1241 | */ |
| 1242 | static isl_stat count_constraints(__isl_take isl_constraint *c, void *user) |
| 1243 | { |
| 1244 | struct isl_ast_count_constraints_data *data = user; |
| 1245 | |
| 1246 | if (isl_constraint_is_lower_bound(constraint: c, type: isl_dim_set, pos: data->pos)) |
| 1247 | data->n_lower++; |
| 1248 | else if (isl_constraint_is_upper_bound(constraint: c, type: isl_dim_set, pos: data->pos)) |
| 1249 | data->n_upper++; |
| 1250 | else |
| 1251 | data->n_indep++; |
| 1252 | |
| 1253 | isl_constraint_free(c); |
| 1254 | |
| 1255 | return isl_stat_ok; |
| 1256 | } |
| 1257 | |
| 1258 | /* Update "graft" based on "bounds" and "domain" for the generic, |
| 1259 | * non-degenerate, case. |
| 1260 | * |
| 1261 | * "list" respresent the list of bounds that need to be encoded by |
| 1262 | * the for loop. Only the constraints that involve the iterator |
| 1263 | * are relevant here. The other constraints are taken care of by |
| 1264 | * the caller and are included in the generated constraints of "build". |
| 1265 | * "domain" is the subset of the intersection of the constraints |
| 1266 | * for which some code is executed. |
| 1267 | * "build" is the build in which graft->node was created. |
| 1268 | * |
| 1269 | * We separate lower bounds, upper bounds and constraints that |
| 1270 | * are independent of the loop iterator. |
| 1271 | * |
| 1272 | * The actual for loop bounds are generated in refine_generic_bounds. |
| 1273 | */ |
| 1274 | static __isl_give isl_ast_graft *refine_generic_split( |
| 1275 | __isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list, |
| 1276 | __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) |
| 1277 | { |
| 1278 | struct isl_ast_count_constraints_data data; |
| 1279 | isl_size depth; |
| 1280 | isl_constraint_list *lower; |
| 1281 | isl_constraint_list *upper; |
| 1282 | |
| 1283 | depth = isl_ast_build_get_depth(build); |
| 1284 | if (depth < 0) |
| 1285 | list = isl_constraint_list_free(list); |
| 1286 | if (!list) |
| 1287 | return isl_ast_graft_free(graft); |
| 1288 | |
| 1289 | data.pos = depth; |
| 1290 | |
| 1291 | list = isl_constraint_list_sort(list, cmp: &cmp_constraint, user: &data.pos); |
| 1292 | if (!list) |
| 1293 | return isl_ast_graft_free(graft); |
| 1294 | |
| 1295 | data.n_indep = data.n_lower = data.n_upper = 0; |
| 1296 | if (isl_constraint_list_foreach(list, fn: &count_constraints, user: &data) < 0) { |
| 1297 | isl_constraint_list_free(list); |
| 1298 | return isl_ast_graft_free(graft); |
| 1299 | } |
| 1300 | |
| 1301 | lower = isl_constraint_list_drop(list, first: 0, n: data.n_indep); |
| 1302 | upper = isl_constraint_list_copy(list: lower); |
| 1303 | lower = isl_constraint_list_drop(list: lower, first: data.n_lower, n: data.n_upper); |
| 1304 | upper = isl_constraint_list_drop(list: upper, first: 0, n: data.n_lower); |
| 1305 | |
| 1306 | return refine_generic_bounds(graft, c_lower: lower, c_upper: upper, domain, build); |
| 1307 | } |
| 1308 | |
| 1309 | /* Update "graft" based on "bounds" and "domain" for the generic, |
| 1310 | * non-degenerate, case. |
| 1311 | * |
| 1312 | * "bounds" respresent the bounds that need to be encoded by |
| 1313 | * the for loop (or a guard around the for loop). |
| 1314 | * "domain" is the subset of "bounds" for which some code is executed. |
| 1315 | * "build" is the build in which graft->node was created. |
| 1316 | * |
| 1317 | * We break up "bounds" into a list of constraints and continue with |
| 1318 | * refine_generic_split. |
| 1319 | */ |
| 1320 | static __isl_give isl_ast_graft *refine_generic( |
| 1321 | __isl_take isl_ast_graft *graft, |
| 1322 | __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain, |
| 1323 | __isl_keep isl_ast_build *build) |
| 1324 | { |
| 1325 | isl_constraint_list *list; |
| 1326 | |
| 1327 | if (!build || !graft) |
| 1328 | return isl_ast_graft_free(graft); |
| 1329 | |
| 1330 | list = isl_basic_set_get_constraint_list(bset: bounds); |
| 1331 | |
| 1332 | graft = refine_generic_split(graft, list, domain, build); |
| 1333 | |
| 1334 | return graft; |
| 1335 | } |
| 1336 | |
| 1337 | /* Create a for node for the current level. |
| 1338 | * |
| 1339 | * Mark the for node degenerate if "degenerate" is set. |
| 1340 | */ |
| 1341 | static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build, |
| 1342 | int degenerate) |
| 1343 | { |
| 1344 | isl_size depth; |
| 1345 | isl_id *id; |
| 1346 | isl_ast_node *node; |
| 1347 | |
| 1348 | depth = isl_ast_build_get_depth(build); |
| 1349 | if (depth < 0) |
| 1350 | return NULL; |
| 1351 | |
| 1352 | id = isl_ast_build_get_iterator_id(build, pos: depth); |
| 1353 | node = isl_ast_node_alloc_for(id); |
| 1354 | if (degenerate) |
| 1355 | node = isl_ast_node_for_mark_degenerate(node); |
| 1356 | |
| 1357 | return node; |
| 1358 | } |
| 1359 | |
| 1360 | /* If the ast_build_exploit_nested_bounds option is set, then return |
| 1361 | * the constraints enforced by all elements in "list". |
| 1362 | * Otherwise, return the universe. |
| 1363 | */ |
| 1364 | static __isl_give isl_basic_set *( |
| 1365 | __isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build) |
| 1366 | { |
| 1367 | isl_ctx *ctx; |
| 1368 | isl_space *space; |
| 1369 | |
| 1370 | if (!list) |
| 1371 | return NULL; |
| 1372 | |
| 1373 | ctx = isl_ast_graft_list_get_ctx(list); |
| 1374 | if (isl_options_get_ast_build_exploit_nested_bounds(ctx)) |
| 1375 | return isl_ast_graft_list_extract_shared_enforced(list, build); |
| 1376 | |
| 1377 | space = isl_ast_build_get_space(build, internal: 1); |
| 1378 | return isl_basic_set_universe(space); |
| 1379 | } |
| 1380 | |
| 1381 | /* Return the pending constraints of "build" that are not already taken |
| 1382 | * care of (by a combination of "enforced" and the generated constraints |
| 1383 | * of "build"). |
| 1384 | */ |
| 1385 | static __isl_give isl_set *(__isl_keep isl_ast_build *build, |
| 1386 | __isl_keep isl_basic_set *enforced) |
| 1387 | { |
| 1388 | isl_set *guard, *context; |
| 1389 | |
| 1390 | guard = isl_ast_build_get_pending(build); |
| 1391 | context = isl_set_from_basic_set(bset: isl_basic_set_copy(bset: enforced)); |
| 1392 | context = isl_set_intersect(set1: context, |
| 1393 | set2: isl_ast_build_get_generated(build)); |
| 1394 | return isl_set_gist(set: guard, context); |
| 1395 | } |
| 1396 | |
| 1397 | /* Create an AST node for the current dimension based on |
| 1398 | * the schedule domain "bounds" and return the node encapsulated |
| 1399 | * in an isl_ast_graft. |
| 1400 | * |
| 1401 | * "executed" is the current inverse schedule, taking into account |
| 1402 | * the bounds in "bounds" |
| 1403 | * "domain" is the domain of "executed", with inner dimensions projected out. |
| 1404 | * It may be a strict subset of "bounds" in case "bounds" was created |
| 1405 | * based on the atomic option or based on separation with explicit bounds. |
| 1406 | * |
| 1407 | * "domain" may satisfy additional equalities that result |
| 1408 | * from intersecting "executed" with "bounds" in add_node. |
| 1409 | * It may also satisfy some global constraints that were dropped out because |
| 1410 | * we performed separation with explicit bounds. |
| 1411 | * The very first step is then to copy these constraints to "bounds". |
| 1412 | * |
| 1413 | * Since we may be calling before_each_for and after_each_for |
| 1414 | * callbacks, we record the current inverse schedule in the build. |
| 1415 | * |
| 1416 | * We consider three builds, |
| 1417 | * "build" is the one in which the current level is created, |
| 1418 | * "body_build" is the build in which the next level is created, |
| 1419 | * "sub_build" is essentially the same as "body_build", except that |
| 1420 | * the depth has not been increased yet. |
| 1421 | * |
| 1422 | * "build" already contains information (in strides and offsets) |
| 1423 | * about the strides at the current level, but this information is not |
| 1424 | * reflected in the build->domain. |
| 1425 | * We first add this information and the "bounds" to the sub_build->domain. |
| 1426 | * isl_ast_build_set_loop_bounds adds the stride information and |
| 1427 | * checks whether the current dimension attains |
| 1428 | * only a single value and whether this single value can be represented using |
| 1429 | * a single affine expression. |
| 1430 | * In the first case, the current level is considered "degenerate". |
| 1431 | * In the second, sub-case, the current level is considered "eliminated". |
| 1432 | * Eliminated levels don't need to be reflected in the AST since we can |
| 1433 | * simply plug in the affine expression. For degenerate, but non-eliminated, |
| 1434 | * levels, we do introduce a for node, but mark is as degenerate so that |
| 1435 | * it can be printed as an assignment of the single value to the loop |
| 1436 | * "iterator". |
| 1437 | * |
| 1438 | * If the current level is eliminated, we explicitly plug in the value |
| 1439 | * for the current level found by isl_ast_build_set_loop_bounds in the |
| 1440 | * inverse schedule. This ensures that if we are working on a slice |
| 1441 | * of the domain based on information available in the inverse schedule |
| 1442 | * and the build domain, that then this information is also reflected |
| 1443 | * in the inverse schedule. This operation also eliminates the current |
| 1444 | * dimension from the inverse schedule making sure no inner dimensions depend |
| 1445 | * on the current dimension. Otherwise, we create a for node, marking |
| 1446 | * it degenerate if appropriate. The initial for node is still incomplete |
| 1447 | * and will be completed in either refine_degenerate or refine_generic. |
| 1448 | * |
| 1449 | * We then generate a sequence of grafts for the next level, |
| 1450 | * create a surrounding graft for the current level and insert |
| 1451 | * the for node we created (if the current level is not eliminated). |
| 1452 | * Before creating a graft for the current level, we first extract |
| 1453 | * hoistable constraints from the child guards and combine them |
| 1454 | * with the pending constraints in the build. These constraints |
| 1455 | * are used to simplify the child guards and then added to the guard |
| 1456 | * of the current graft to ensure that they will be generated. |
| 1457 | * If the hoisted guard is a disjunction, then we use it directly |
| 1458 | * to gist the guards on the children before intersect it with the |
| 1459 | * pending constraints. We do so because this disjunction is typically |
| 1460 | * identical to the guards on the children such that these guards |
| 1461 | * can be effectively removed completely. After the intersection, |
| 1462 | * the gist operation would have a harder time figuring this out. |
| 1463 | * |
| 1464 | * Finally, we set the bounds of the for loop in either |
| 1465 | * refine_degenerate or refine_generic. |
| 1466 | * We do so in a context where the pending constraints of the build |
| 1467 | * have been replaced by the guard of the current graft. |
| 1468 | */ |
| 1469 | static __isl_give isl_ast_graft *create_node_scaled( |
| 1470 | __isl_take isl_union_map *executed, |
| 1471 | __isl_take isl_basic_set *bounds, __isl_take isl_set *domain, |
| 1472 | __isl_take isl_ast_build *build) |
| 1473 | { |
| 1474 | isl_size depth; |
| 1475 | int degenerate; |
| 1476 | isl_bool eliminated; |
| 1477 | isl_size n; |
| 1478 | isl_basic_set *hull; |
| 1479 | isl_basic_set *enforced; |
| 1480 | isl_set *guard, *hoisted; |
| 1481 | isl_ast_node *node = NULL; |
| 1482 | isl_ast_graft *graft; |
| 1483 | isl_ast_graft_list *children; |
| 1484 | isl_ast_build *sub_build; |
| 1485 | isl_ast_build *body_build; |
| 1486 | |
| 1487 | domain = isl_ast_build_eliminate_divs(build, set: domain); |
| 1488 | domain = isl_set_detect_equalities(set: domain); |
| 1489 | hull = isl_set_unshifted_simple_hull(set: isl_set_copy(set: domain)); |
| 1490 | bounds = isl_basic_set_intersect(bset1: bounds, bset2: hull); |
| 1491 | build = isl_ast_build_set_executed(build, executed: isl_union_map_copy(umap: executed)); |
| 1492 | |
| 1493 | depth = isl_ast_build_get_depth(build); |
| 1494 | if (depth < 0) |
| 1495 | build = isl_ast_build_free(build); |
| 1496 | sub_build = isl_ast_build_copy(build); |
| 1497 | bounds = isl_basic_set_remove_redundancies(bset: bounds); |
| 1498 | bounds = isl_ast_build_specialize_basic_set(build: sub_build, bset: bounds); |
| 1499 | sub_build = isl_ast_build_set_loop_bounds(build: sub_build, |
| 1500 | bounds: isl_basic_set_copy(bset: bounds)); |
| 1501 | degenerate = isl_ast_build_has_value(build: sub_build); |
| 1502 | eliminated = isl_ast_build_has_affine_value(build: sub_build, pos: depth); |
| 1503 | if (degenerate < 0 || eliminated < 0) |
| 1504 | executed = isl_union_map_free(umap: executed); |
| 1505 | if (!degenerate) |
| 1506 | bounds = isl_ast_build_compute_gist_basic_set(build, bset: bounds); |
| 1507 | sub_build = isl_ast_build_set_pending_generated(build: sub_build, |
| 1508 | bounds: isl_basic_set_copy(bset: bounds)); |
| 1509 | if (eliminated) |
| 1510 | executed = plug_in_values(executed, build: sub_build); |
| 1511 | else |
| 1512 | node = create_for(build, degenerate); |
| 1513 | |
| 1514 | body_build = isl_ast_build_copy(build: sub_build); |
| 1515 | body_build = isl_ast_build_increase_depth(build: body_build); |
| 1516 | if (!eliminated) |
| 1517 | node = before_each_for(node, build: body_build); |
| 1518 | children = generate_next_level(executed, |
| 1519 | build: isl_ast_build_copy(build: body_build)); |
| 1520 | |
| 1521 | enforced = extract_shared_enforced(list: children, build); |
| 1522 | guard = extract_pending(build: sub_build, enforced); |
| 1523 | hoisted = isl_ast_graft_list_extract_hoistable_guard(list: children, build); |
| 1524 | n = isl_set_n_basic_set(set: hoisted); |
| 1525 | if (n < 0) |
| 1526 | children = isl_ast_graft_list_free(list: children); |
| 1527 | if (n > 1) |
| 1528 | children = isl_ast_graft_list_gist_guards(list: children, |
| 1529 | context: isl_set_copy(set: hoisted)); |
| 1530 | guard = isl_set_intersect(set1: guard, set2: hoisted); |
| 1531 | if (!eliminated) |
| 1532 | guard = add_implied_guards(guard, degenerate, bounds, build); |
| 1533 | |
| 1534 | graft = isl_ast_graft_alloc_from_children(list: children, |
| 1535 | guard: isl_set_copy(set: guard), enforced, build, sub_build); |
| 1536 | |
| 1537 | if (!eliminated) { |
| 1538 | isl_ast_build *for_build; |
| 1539 | |
| 1540 | graft = isl_ast_graft_insert_for(graft, node); |
| 1541 | for_build = isl_ast_build_copy(build); |
| 1542 | for_build = isl_ast_build_replace_pending_by_guard(build: for_build, |
| 1543 | guard: isl_set_copy(set: guard)); |
| 1544 | if (degenerate) |
| 1545 | graft = refine_degenerate(graft, build: for_build, sub_build); |
| 1546 | else |
| 1547 | graft = refine_generic(graft, bounds, |
| 1548 | domain, build: for_build); |
| 1549 | isl_ast_build_free(build: for_build); |
| 1550 | } |
| 1551 | isl_set_free(set: guard); |
| 1552 | if (!eliminated) |
| 1553 | graft = after_each_for(graft, build: body_build); |
| 1554 | |
| 1555 | isl_ast_build_free(build: body_build); |
| 1556 | isl_ast_build_free(build: sub_build); |
| 1557 | isl_ast_build_free(build); |
| 1558 | isl_basic_set_free(bset: bounds); |
| 1559 | isl_set_free(set: domain); |
| 1560 | |
| 1561 | return graft; |
| 1562 | } |
| 1563 | |
| 1564 | /* Internal data structure for checking if all constraints involving |
| 1565 | * the input dimension "depth" are such that the other coefficients |
| 1566 | * are multiples of "m", reducing "m" if they are not. |
| 1567 | * If "m" is reduced all the way down to "1", then the check has failed |
| 1568 | * and we break out of the iteration. |
| 1569 | */ |
| 1570 | struct isl_check_scaled_data { |
| 1571 | int depth; |
| 1572 | isl_val *m; |
| 1573 | }; |
| 1574 | |
| 1575 | /* If constraint "c" involves the input dimension data->depth, |
| 1576 | * then make sure that all the other coefficients are multiples of data->m, |
| 1577 | * reducing data->m if needed. |
| 1578 | * Break out of the iteration if data->m has become equal to "1". |
| 1579 | */ |
| 1580 | static isl_stat constraint_check_scaled(__isl_take isl_constraint *c, |
| 1581 | void *user) |
| 1582 | { |
| 1583 | struct isl_check_scaled_data *data = user; |
| 1584 | int i, j; |
| 1585 | isl_size n; |
| 1586 | enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out, |
| 1587 | isl_dim_div }; |
| 1588 | |
| 1589 | if (!isl_constraint_involves_dims(constraint: c, type: isl_dim_in, first: data->depth, n: 1)) { |
| 1590 | isl_constraint_free(c); |
| 1591 | return isl_stat_ok; |
| 1592 | } |
| 1593 | |
| 1594 | for (i = 0; i < 4; ++i) { |
| 1595 | n = isl_constraint_dim(constraint: c, type: t[i]); |
| 1596 | if (n < 0) |
| 1597 | break; |
| 1598 | for (j = 0; j < n; ++j) { |
| 1599 | isl_val *d; |
| 1600 | |
| 1601 | if (t[i] == isl_dim_in && j == data->depth) |
| 1602 | continue; |
| 1603 | if (!isl_constraint_involves_dims(constraint: c, type: t[i], first: j, n: 1)) |
| 1604 | continue; |
| 1605 | d = isl_constraint_get_coefficient_val(constraint: c, type: t[i], pos: j); |
| 1606 | data->m = isl_val_gcd(v1: data->m, v2: d); |
| 1607 | if (isl_val_is_one(v: data->m)) |
| 1608 | break; |
| 1609 | } |
| 1610 | if (j < n) |
| 1611 | break; |
| 1612 | } |
| 1613 | |
| 1614 | isl_constraint_free(c); |
| 1615 | |
| 1616 | return i < 4 ? isl_stat_error : isl_stat_ok; |
| 1617 | } |
| 1618 | |
| 1619 | /* For each constraint of "bmap" that involves the input dimension data->depth, |
| 1620 | * make sure that all the other coefficients are multiples of data->m, |
| 1621 | * reducing data->m if needed. |
| 1622 | * Break out of the iteration if data->m has become equal to "1". |
| 1623 | */ |
| 1624 | static isl_stat basic_map_check_scaled(__isl_take isl_basic_map *bmap, |
| 1625 | void *user) |
| 1626 | { |
| 1627 | isl_stat r; |
| 1628 | |
| 1629 | r = isl_basic_map_foreach_constraint(bmap, |
| 1630 | fn: &constraint_check_scaled, user); |
| 1631 | isl_basic_map_free(bmap); |
| 1632 | |
| 1633 | return r; |
| 1634 | } |
| 1635 | |
| 1636 | /* For each constraint of "map" that involves the input dimension data->depth, |
| 1637 | * make sure that all the other coefficients are multiples of data->m, |
| 1638 | * reducing data->m if needed. |
| 1639 | * Break out of the iteration if data->m has become equal to "1". |
| 1640 | */ |
| 1641 | static isl_stat map_check_scaled(__isl_take isl_map *map, void *user) |
| 1642 | { |
| 1643 | isl_stat r; |
| 1644 | |
| 1645 | r = isl_map_foreach_basic_map(map, fn: &basic_map_check_scaled, user); |
| 1646 | isl_map_free(map); |
| 1647 | |
| 1648 | return r; |
| 1649 | } |
| 1650 | |
| 1651 | /* Create an AST node for the current dimension based on |
| 1652 | * the schedule domain "bounds" and return the node encapsulated |
| 1653 | * in an isl_ast_graft. |
| 1654 | * |
| 1655 | * "executed" is the current inverse schedule, taking into account |
| 1656 | * the bounds in "bounds" |
| 1657 | * "domain" is the domain of "executed", with inner dimensions projected out. |
| 1658 | * |
| 1659 | * |
| 1660 | * Before moving on to the actual AST node construction in create_node_scaled, |
| 1661 | * we first check if the current dimension is strided and if we can scale |
| 1662 | * down this stride. Note that we only do this if the ast_build_scale_strides |
| 1663 | * option is set. |
| 1664 | * |
| 1665 | * In particular, let the current dimension take on values |
| 1666 | * |
| 1667 | * f + s a |
| 1668 | * |
| 1669 | * with a an integer. We check if we can find an integer m that (obviously) |
| 1670 | * divides both f and s. |
| 1671 | * |
| 1672 | * If so, we check if the current dimension only appears in constraints |
| 1673 | * where the coefficients of the other variables are multiples of m. |
| 1674 | * We perform this extra check to avoid the risk of introducing |
| 1675 | * divisions by scaling down the current dimension. |
| 1676 | * |
| 1677 | * If so, we scale the current dimension down by a factor of m. |
| 1678 | * That is, we plug in |
| 1679 | * |
| 1680 | * i = m i' (1) |
| 1681 | * |
| 1682 | * Note that in principle we could always scale down strided loops |
| 1683 | * by plugging in |
| 1684 | * |
| 1685 | * i = f + s i' |
| 1686 | * |
| 1687 | * but this may result in i' taking on larger values than the original i, |
| 1688 | * due to the shift by "f". |
| 1689 | * By constrast, the scaling in (1) can only reduce the (absolute) value "i". |
| 1690 | */ |
| 1691 | static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed, |
| 1692 | __isl_take isl_basic_set *bounds, __isl_take isl_set *domain, |
| 1693 | __isl_take isl_ast_build *build) |
| 1694 | { |
| 1695 | struct isl_check_scaled_data data; |
| 1696 | isl_size depth; |
| 1697 | isl_ctx *ctx; |
| 1698 | isl_aff *offset; |
| 1699 | isl_val *d; |
| 1700 | |
| 1701 | ctx = isl_ast_build_get_ctx(build); |
| 1702 | if (!isl_options_get_ast_build_scale_strides(ctx)) |
| 1703 | return create_node_scaled(executed, bounds, domain, build); |
| 1704 | |
| 1705 | depth = isl_ast_build_get_depth(build); |
| 1706 | if (depth < 0) |
| 1707 | build = isl_ast_build_free(build); |
| 1708 | data.depth = depth; |
| 1709 | if (!isl_ast_build_has_stride(build, pos: data.depth)) |
| 1710 | return create_node_scaled(executed, bounds, domain, build); |
| 1711 | |
| 1712 | offset = isl_ast_build_get_offset(build, pos: data.depth); |
| 1713 | data.m = isl_ast_build_get_stride(build, pos: data.depth); |
| 1714 | if (!data.m) |
| 1715 | offset = isl_aff_free(aff: offset); |
| 1716 | offset = isl_aff_scale_down_val(aff: offset, v: isl_val_copy(v: data.m)); |
| 1717 | d = isl_aff_get_denominator_val(aff: offset); |
| 1718 | if (!d) |
| 1719 | executed = isl_union_map_free(umap: executed); |
| 1720 | |
| 1721 | if (executed && isl_val_is_divisible_by(v1: data.m, v2: d)) |
| 1722 | data.m = isl_val_div(v1: data.m, v2: d); |
| 1723 | else { |
| 1724 | data.m = isl_val_set_si(v: data.m, i: 1); |
| 1725 | isl_val_free(v: d); |
| 1726 | } |
| 1727 | |
| 1728 | if (!isl_val_is_one(v: data.m)) { |
| 1729 | if (isl_union_map_foreach_map(umap: executed, fn: &map_check_scaled, |
| 1730 | user: &data) < 0 && |
| 1731 | !isl_val_is_one(v: data.m)) |
| 1732 | executed = isl_union_map_free(umap: executed); |
| 1733 | } |
| 1734 | |
| 1735 | if (!isl_val_is_one(v: data.m)) { |
| 1736 | isl_space *space; |
| 1737 | isl_multi_aff *ma; |
| 1738 | isl_aff *aff; |
| 1739 | isl_map *map; |
| 1740 | isl_union_map *umap; |
| 1741 | |
| 1742 | space = isl_ast_build_get_space(build, internal: 1); |
| 1743 | space = isl_space_map_from_set(space); |
| 1744 | ma = isl_multi_aff_identity(space); |
| 1745 | aff = isl_multi_aff_get_aff(multi: ma, pos: data.depth); |
| 1746 | aff = isl_aff_scale_val(aff, v: isl_val_copy(v: data.m)); |
| 1747 | ma = isl_multi_aff_set_aff(multi: ma, pos: data.depth, el: aff); |
| 1748 | |
| 1749 | bounds = isl_basic_set_preimage_multi_aff(bset: bounds, |
| 1750 | ma: isl_multi_aff_copy(multi: ma)); |
| 1751 | domain = isl_set_preimage_multi_aff(set: domain, |
| 1752 | ma: isl_multi_aff_copy(multi: ma)); |
| 1753 | map = isl_map_reverse(map: isl_map_from_multi_aff(maff: ma)); |
| 1754 | umap = isl_union_map_from_map(map); |
| 1755 | executed = isl_union_map_apply_domain(umap1: executed, |
| 1756 | umap2: isl_union_map_copy(umap)); |
| 1757 | build = isl_ast_build_scale_down(build, m: isl_val_copy(v: data.m), |
| 1758 | umap); |
| 1759 | } |
| 1760 | isl_aff_free(aff: offset); |
| 1761 | isl_val_free(v: data.m); |
| 1762 | |
| 1763 | return create_node_scaled(executed, bounds, domain, build); |
| 1764 | } |
| 1765 | |
| 1766 | /* Add the basic set to the list that "user" points to. |
| 1767 | */ |
| 1768 | static isl_stat collect_basic_set(__isl_take isl_basic_set *bset, void *user) |
| 1769 | { |
| 1770 | isl_basic_set_list **list = user; |
| 1771 | |
| 1772 | *list = isl_basic_set_list_add(list: *list, el: bset); |
| 1773 | |
| 1774 | return isl_stat_ok; |
| 1775 | } |
| 1776 | |
| 1777 | /* Extract the basic sets of "set" and collect them in an isl_basic_set_list. |
| 1778 | */ |
| 1779 | static __isl_give isl_basic_set_list *isl_basic_set_list_from_set( |
| 1780 | __isl_take isl_set *set) |
| 1781 | { |
| 1782 | isl_size n; |
| 1783 | isl_ctx *ctx; |
| 1784 | isl_basic_set_list *list; |
| 1785 | |
| 1786 | n = isl_set_n_basic_set(set); |
| 1787 | if (n < 0) |
| 1788 | set = isl_set_free(set); |
| 1789 | if (!set) |
| 1790 | return NULL; |
| 1791 | |
| 1792 | ctx = isl_set_get_ctx(set); |
| 1793 | |
| 1794 | list = isl_basic_set_list_alloc(ctx, n); |
| 1795 | if (isl_set_foreach_basic_set(set, fn: &collect_basic_set, user: &list) < 0) |
| 1796 | list = isl_basic_set_list_free(list); |
| 1797 | |
| 1798 | isl_set_free(set); |
| 1799 | return list; |
| 1800 | } |
| 1801 | |
| 1802 | /* Generate code for the schedule domain "bounds" |
| 1803 | * and add the result to "list". |
| 1804 | * |
| 1805 | * We mainly detect strides here and check if the bounds do not |
| 1806 | * conflict with the current build domain |
| 1807 | * and then pass over control to create_node. |
| 1808 | * |
| 1809 | * "bounds" reflects the bounds on the current dimension and possibly |
| 1810 | * some extra conditions on outer dimensions. |
| 1811 | * It does not, however, include any divs involving the current dimension, |
| 1812 | * so it does not capture any stride constraints. |
| 1813 | * We therefore need to compute that part of the schedule domain that |
| 1814 | * intersects with "bounds" and derive the strides from the result. |
| 1815 | */ |
| 1816 | static __isl_give isl_ast_graft_list *add_node( |
| 1817 | __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed, |
| 1818 | __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build) |
| 1819 | { |
| 1820 | isl_ast_graft *graft; |
| 1821 | isl_set *domain = NULL; |
| 1822 | isl_union_set *uset; |
| 1823 | int empty, disjoint; |
| 1824 | |
| 1825 | uset = isl_union_set_from_basic_set(bset: isl_basic_set_copy(bset: bounds)); |
| 1826 | executed = isl_union_map_intersect_domain(umap: executed, uset); |
| 1827 | empty = isl_union_map_is_empty(umap: executed); |
| 1828 | if (empty < 0) |
| 1829 | goto error; |
| 1830 | if (empty) |
| 1831 | goto done; |
| 1832 | |
| 1833 | uset = isl_union_map_domain(umap: isl_union_map_copy(umap: executed)); |
| 1834 | domain = isl_set_from_union_set(uset); |
| 1835 | domain = isl_ast_build_specialize(build, set: domain); |
| 1836 | |
| 1837 | domain = isl_set_compute_divs(set: domain); |
| 1838 | domain = isl_ast_build_eliminate_inner(build, set: domain); |
| 1839 | disjoint = isl_set_is_disjoint(set1: domain, set2: build->domain); |
| 1840 | if (disjoint < 0) |
| 1841 | goto error; |
| 1842 | if (disjoint) |
| 1843 | goto done; |
| 1844 | |
| 1845 | build = isl_ast_build_detect_strides(build, set: isl_set_copy(set: domain)); |
| 1846 | |
| 1847 | graft = create_node(executed, bounds, domain, |
| 1848 | build: isl_ast_build_copy(build)); |
| 1849 | list = isl_ast_graft_list_add(list, el: graft); |
| 1850 | isl_ast_build_free(build); |
| 1851 | return list; |
| 1852 | error: |
| 1853 | list = isl_ast_graft_list_free(list); |
| 1854 | done: |
| 1855 | isl_set_free(set: domain); |
| 1856 | isl_basic_set_free(bset: bounds); |
| 1857 | isl_union_map_free(umap: executed); |
| 1858 | isl_ast_build_free(build); |
| 1859 | return list; |
| 1860 | } |
| 1861 | |
| 1862 | /* Does any element of i follow or coincide with any element of j |
| 1863 | * at the current depth for equal values of the outer dimensions? |
| 1864 | */ |
| 1865 | static isl_bool domain_follows_at_depth(__isl_keep isl_basic_set *i, |
| 1866 | __isl_keep isl_basic_set *j, void *user) |
| 1867 | { |
| 1868 | int depth = *(int *) user; |
| 1869 | isl_basic_map *test; |
| 1870 | isl_bool empty; |
| 1871 | int l; |
| 1872 | |
| 1873 | test = isl_basic_map_from_domain_and_range(domain: isl_basic_set_copy(bset: i), |
| 1874 | range: isl_basic_set_copy(bset: j)); |
| 1875 | for (l = 0; l < depth; ++l) |
| 1876 | test = isl_basic_map_equate(bmap: test, type1: isl_dim_in, pos1: l, |
| 1877 | type2: isl_dim_out, pos2: l); |
| 1878 | test = isl_basic_map_order_ge(bmap: test, type1: isl_dim_in, pos1: depth, |
| 1879 | type2: isl_dim_out, pos2: depth); |
| 1880 | empty = isl_basic_map_is_empty(bmap: test); |
| 1881 | isl_basic_map_free(bmap: test); |
| 1882 | |
| 1883 | return isl_bool_not(b: empty); |
| 1884 | } |
| 1885 | |
| 1886 | /* Split up each element of "list" into a part that is related to "bset" |
| 1887 | * according to "gt" and a part that is not. |
| 1888 | * Return a list that consist of "bset" and all the pieces. |
| 1889 | */ |
| 1890 | static __isl_give isl_basic_set_list *add_split_on( |
| 1891 | __isl_take isl_basic_set_list *list, __isl_take isl_basic_set *bset, |
| 1892 | __isl_keep isl_basic_map *gt) |
| 1893 | { |
| 1894 | int i; |
| 1895 | isl_size n; |
| 1896 | isl_basic_set_list *res; |
| 1897 | |
| 1898 | n = isl_basic_set_list_n_basic_set(list); |
| 1899 | if (n < 0) |
| 1900 | bset = isl_basic_set_free(bset); |
| 1901 | |
| 1902 | gt = isl_basic_map_copy(bmap: gt); |
| 1903 | gt = isl_basic_map_intersect_domain(bmap: gt, bset: isl_basic_set_copy(bset)); |
| 1904 | res = isl_basic_set_list_from_basic_set(el: bset); |
| 1905 | for (i = 0; res && i < n; ++i) { |
| 1906 | isl_basic_set *bset; |
| 1907 | isl_set *set1, *set2; |
| 1908 | isl_basic_map *bmap; |
| 1909 | int empty; |
| 1910 | |
| 1911 | bset = isl_basic_set_list_get_basic_set(list, index: i); |
| 1912 | bmap = isl_basic_map_copy(bmap: gt); |
| 1913 | bmap = isl_basic_map_intersect_range(bmap, bset); |
| 1914 | bset = isl_basic_map_range(bmap); |
| 1915 | empty = isl_basic_set_is_empty(bset); |
| 1916 | if (empty < 0) |
| 1917 | res = isl_basic_set_list_free(list: res); |
| 1918 | if (empty) { |
| 1919 | isl_basic_set_free(bset); |
| 1920 | bset = isl_basic_set_list_get_basic_set(list, index: i); |
| 1921 | res = isl_basic_set_list_add(list: res, el: bset); |
| 1922 | continue; |
| 1923 | } |
| 1924 | |
| 1925 | res = isl_basic_set_list_add(list: res, el: isl_basic_set_copy(bset)); |
| 1926 | set1 = isl_set_from_basic_set(bset); |
| 1927 | bset = isl_basic_set_list_get_basic_set(list, index: i); |
| 1928 | set2 = isl_set_from_basic_set(bset); |
| 1929 | set1 = isl_set_subtract(set1: set2, set2: set1); |
| 1930 | set1 = isl_set_make_disjoint(set: set1); |
| 1931 | |
| 1932 | res = isl_basic_set_list_concat(list1: res, |
| 1933 | list2: isl_basic_set_list_from_set(set: set1)); |
| 1934 | } |
| 1935 | isl_basic_map_free(bmap: gt); |
| 1936 | isl_basic_set_list_free(list); |
| 1937 | return res; |
| 1938 | } |
| 1939 | |
| 1940 | static __isl_give isl_ast_graft_list *generate_sorted_domains( |
| 1941 | __isl_keep isl_basic_set_list *domain_list, |
| 1942 | __isl_keep isl_union_map *executed, |
| 1943 | __isl_keep isl_ast_build *build); |
| 1944 | |
| 1945 | /* Internal data structure for add_nodes. |
| 1946 | * |
| 1947 | * "executed" and "build" are extra arguments to be passed to add_node. |
| 1948 | * "list" collects the results. |
| 1949 | */ |
| 1950 | struct isl_add_nodes_data { |
| 1951 | isl_union_map *executed; |
| 1952 | isl_ast_build *build; |
| 1953 | |
| 1954 | isl_ast_graft_list *list; |
| 1955 | }; |
| 1956 | |
| 1957 | /* Generate code for the schedule domains in "scc" |
| 1958 | * and add the results to "list". |
| 1959 | * |
| 1960 | * The domains in "scc" form a strongly connected component in the ordering. |
| 1961 | * If the number of domains in "scc" is larger than 1, then this means |
| 1962 | * that we cannot determine a valid ordering for the domains in the component. |
| 1963 | * This should be fairly rare because the individual domains |
| 1964 | * have been made disjoint first. |
| 1965 | * The problem is that the domains may be integrally disjoint but not |
| 1966 | * rationally disjoint. For example, we may have domains |
| 1967 | * |
| 1968 | * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 } |
| 1969 | * |
| 1970 | * These two domains have an empty intersection, but their rational |
| 1971 | * relaxations do intersect. It is impossible to order these domains |
| 1972 | * in the second dimension because the first should be ordered before |
| 1973 | * the second for outer dimension equal to 0, while it should be ordered |
| 1974 | * after for outer dimension equal to 1. |
| 1975 | * |
| 1976 | * This may happen in particular in case of unrolling since the domain |
| 1977 | * of each slice is replaced by its simple hull. |
| 1978 | * |
| 1979 | * For each basic set i in "scc" and for each of the following basic sets j, |
| 1980 | * we split off that part of the basic set i that shares the outer dimensions |
| 1981 | * with j and lies before j in the current dimension. |
| 1982 | * We collect all the pieces in a new list that replaces "scc". |
| 1983 | * |
| 1984 | * While the elements in "scc" should be disjoint, we double-check |
| 1985 | * this property to avoid running into an infinite recursion in case |
| 1986 | * they intersect due to some internal error. |
| 1987 | */ |
| 1988 | static isl_stat add_nodes(__isl_take isl_basic_set_list *scc, void *user) |
| 1989 | { |
| 1990 | struct isl_add_nodes_data *data = user; |
| 1991 | int i; |
| 1992 | isl_size depth; |
| 1993 | isl_size n; |
| 1994 | isl_basic_set *bset, *first; |
| 1995 | isl_basic_set_list *list; |
| 1996 | isl_space *space; |
| 1997 | isl_basic_map *gt; |
| 1998 | |
| 1999 | n = isl_basic_set_list_n_basic_set(list: scc); |
| 2000 | if (n < 0) |
| 2001 | goto error; |
| 2002 | bset = isl_basic_set_list_get_basic_set(list: scc, index: 0); |
| 2003 | if (n == 1) { |
| 2004 | isl_basic_set_list_free(list: scc); |
| 2005 | data->list = add_node(list: data->list, |
| 2006 | executed: isl_union_map_copy(umap: data->executed), bounds: bset, |
| 2007 | build: isl_ast_build_copy(build: data->build)); |
| 2008 | return data->list ? isl_stat_ok : isl_stat_error; |
| 2009 | } |
| 2010 | |
| 2011 | depth = isl_ast_build_get_depth(build: data->build); |
| 2012 | if (depth < 0) |
| 2013 | bset = isl_basic_set_free(bset); |
| 2014 | space = isl_basic_set_get_space(bset); |
| 2015 | space = isl_space_map_from_set(space); |
| 2016 | gt = isl_basic_map_universe(space); |
| 2017 | for (i = 0; i < depth; ++i) |
| 2018 | gt = isl_basic_map_equate(bmap: gt, type1: isl_dim_in, pos1: i, type2: isl_dim_out, pos2: i); |
| 2019 | gt = isl_basic_map_order_gt(bmap: gt, type1: isl_dim_in, pos1: depth, type2: isl_dim_out, pos2: depth); |
| 2020 | |
| 2021 | first = isl_basic_set_copy(bset); |
| 2022 | list = isl_basic_set_list_from_basic_set(el: bset); |
| 2023 | for (i = 1; i < n; ++i) { |
| 2024 | int disjoint; |
| 2025 | |
| 2026 | bset = isl_basic_set_list_get_basic_set(list: scc, index: i); |
| 2027 | |
| 2028 | disjoint = isl_basic_set_is_disjoint(bset1: bset, bset2: first); |
| 2029 | if (disjoint < 0) |
| 2030 | list = isl_basic_set_list_free(list); |
| 2031 | else if (!disjoint) |
| 2032 | isl_die(isl_basic_set_list_get_ctx(scc), |
| 2033 | isl_error_internal, |
| 2034 | "basic sets in scc are assumed to be disjoint" , |
| 2035 | list = isl_basic_set_list_free(list)); |
| 2036 | |
| 2037 | list = add_split_on(list, bset, gt); |
| 2038 | } |
| 2039 | isl_basic_set_free(bset: first); |
| 2040 | isl_basic_map_free(bmap: gt); |
| 2041 | isl_basic_set_list_free(list: scc); |
| 2042 | scc = list; |
| 2043 | data->list = isl_ast_graft_list_concat(list1: data->list, |
| 2044 | list2: generate_sorted_domains(domain_list: scc, executed: data->executed, build: data->build)); |
| 2045 | isl_basic_set_list_free(list: scc); |
| 2046 | |
| 2047 | return data->list ? isl_stat_ok : isl_stat_error; |
| 2048 | error: |
| 2049 | isl_basic_set_list_free(list: scc); |
| 2050 | return isl_stat_error; |
| 2051 | } |
| 2052 | |
| 2053 | /* Sort the domains in "domain_list" according to the execution order |
| 2054 | * at the current depth (for equal values of the outer dimensions), |
| 2055 | * generate code for each of them, collecting the results in a list. |
| 2056 | * If no code is generated (because the intersection of the inverse schedule |
| 2057 | * with the domains turns out to be empty), then an empty list is returned. |
| 2058 | * |
| 2059 | * The caller is responsible for ensuring that the basic sets in "domain_list" |
| 2060 | * are pair-wise disjoint. It can, however, in principle happen that |
| 2061 | * two basic sets should be ordered one way for one value of the outer |
| 2062 | * dimensions and the other way for some other value of the outer dimensions. |
| 2063 | * We therefore play safe and look for strongly connected components. |
| 2064 | * The function add_nodes takes care of handling non-trivial components. |
| 2065 | */ |
| 2066 | static __isl_give isl_ast_graft_list *generate_sorted_domains( |
| 2067 | __isl_keep isl_basic_set_list *domain_list, |
| 2068 | __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build) |
| 2069 | { |
| 2070 | isl_ctx *ctx; |
| 2071 | struct isl_add_nodes_data data; |
| 2072 | isl_size depth; |
| 2073 | isl_size n; |
| 2074 | |
| 2075 | n = isl_basic_set_list_n_basic_set(list: domain_list); |
| 2076 | if (n < 0) |
| 2077 | return NULL; |
| 2078 | |
| 2079 | ctx = isl_basic_set_list_get_ctx(list: domain_list); |
| 2080 | data.list = isl_ast_graft_list_alloc(ctx, n); |
| 2081 | if (n == 0) |
| 2082 | return data.list; |
| 2083 | if (n == 1) |
| 2084 | return add_node(list: data.list, executed: isl_union_map_copy(umap: executed), |
| 2085 | bounds: isl_basic_set_list_get_basic_set(list: domain_list, index: 0), |
| 2086 | build: isl_ast_build_copy(build)); |
| 2087 | |
| 2088 | depth = isl_ast_build_get_depth(build); |
| 2089 | data.executed = executed; |
| 2090 | data.build = build; |
| 2091 | if (depth < 0 || isl_basic_set_list_foreach_scc(list: domain_list, |
| 2092 | follows: &domain_follows_at_depth, follows_user: &depth, |
| 2093 | fn: &add_nodes, fn_user: &data) < 0) |
| 2094 | data.list = isl_ast_graft_list_free(list: data.list); |
| 2095 | |
| 2096 | return data.list; |
| 2097 | } |
| 2098 | |
| 2099 | /* Do i and j share any values for the outer dimensions? |
| 2100 | */ |
| 2101 | static isl_bool shared_outer(__isl_keep isl_basic_set *i, |
| 2102 | __isl_keep isl_basic_set *j, void *user) |
| 2103 | { |
| 2104 | int depth = *(int *) user; |
| 2105 | isl_basic_map *test; |
| 2106 | isl_bool empty; |
| 2107 | int l; |
| 2108 | |
| 2109 | test = isl_basic_map_from_domain_and_range(domain: isl_basic_set_copy(bset: i), |
| 2110 | range: isl_basic_set_copy(bset: j)); |
| 2111 | for (l = 0; l < depth; ++l) |
| 2112 | test = isl_basic_map_equate(bmap: test, type1: isl_dim_in, pos1: l, |
| 2113 | type2: isl_dim_out, pos2: l); |
| 2114 | empty = isl_basic_map_is_empty(bmap: test); |
| 2115 | isl_basic_map_free(bmap: test); |
| 2116 | |
| 2117 | return isl_bool_not(b: empty); |
| 2118 | } |
| 2119 | |
| 2120 | /* Internal data structure for generate_sorted_domains_wrap. |
| 2121 | * |
| 2122 | * "n" is the total number of basic sets |
| 2123 | * "executed" and "build" are extra arguments to be passed |
| 2124 | * to generate_sorted_domains. |
| 2125 | * |
| 2126 | * "single" is set to 1 by generate_sorted_domains_wrap if there |
| 2127 | * is only a single component. |
| 2128 | * "list" collects the results. |
| 2129 | */ |
| 2130 | struct isl_ast_generate_parallel_domains_data { |
| 2131 | isl_size n; |
| 2132 | isl_union_map *executed; |
| 2133 | isl_ast_build *build; |
| 2134 | |
| 2135 | int single; |
| 2136 | isl_ast_graft_list *list; |
| 2137 | }; |
| 2138 | |
| 2139 | /* Call generate_sorted_domains on "scc", fuse the result into a list |
| 2140 | * with either zero or one graft and collect the these single element |
| 2141 | * lists into data->list. |
| 2142 | * |
| 2143 | * If there is only one component, i.e., if the number of basic sets |
| 2144 | * in the current component is equal to the total number of basic sets, |
| 2145 | * then data->single is set to 1 and the result of generate_sorted_domains |
| 2146 | * is not fused. |
| 2147 | */ |
| 2148 | static isl_stat generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc, |
| 2149 | void *user) |
| 2150 | { |
| 2151 | struct isl_ast_generate_parallel_domains_data *data = user; |
| 2152 | isl_ast_graft_list *list; |
| 2153 | isl_size n; |
| 2154 | |
| 2155 | n = isl_basic_set_list_n_basic_set(list: scc); |
| 2156 | if (n < 0) |
| 2157 | scc = isl_basic_set_list_free(list: scc); |
| 2158 | list = generate_sorted_domains(domain_list: scc, executed: data->executed, build: data->build); |
| 2159 | data->single = n == data->n; |
| 2160 | if (!data->single) |
| 2161 | list = isl_ast_graft_list_fuse(children: list, build: data->build); |
| 2162 | if (!data->list) |
| 2163 | data->list = list; |
| 2164 | else |
| 2165 | data->list = isl_ast_graft_list_concat(list1: data->list, list2: list); |
| 2166 | |
| 2167 | isl_basic_set_list_free(list: scc); |
| 2168 | if (!data->list) |
| 2169 | return isl_stat_error; |
| 2170 | |
| 2171 | return isl_stat_ok; |
| 2172 | } |
| 2173 | |
| 2174 | /* Look for any (weakly connected) components in the "domain_list" |
| 2175 | * of domains that share some values of the outer dimensions. |
| 2176 | * That is, domains in different components do not share any values |
| 2177 | * of the outer dimensions. This means that these components |
| 2178 | * can be freely reordered. |
| 2179 | * Within each of the components, we sort the domains according |
| 2180 | * to the execution order at the current depth. |
| 2181 | * |
| 2182 | * If there is more than one component, then generate_sorted_domains_wrap |
| 2183 | * fuses the result of each call to generate_sorted_domains |
| 2184 | * into a list with either zero or one graft and collects these (at most) |
| 2185 | * single element lists into a bigger list. This means that the elements of the |
| 2186 | * final list can be freely reordered. In particular, we sort them |
| 2187 | * according to an arbitrary but fixed ordering to ease merging of |
| 2188 | * graft lists from different components. |
| 2189 | */ |
| 2190 | static __isl_give isl_ast_graft_list *generate_parallel_domains( |
| 2191 | __isl_keep isl_basic_set_list *domain_list, |
| 2192 | __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build) |
| 2193 | { |
| 2194 | isl_size depth; |
| 2195 | struct isl_ast_generate_parallel_domains_data data; |
| 2196 | |
| 2197 | data.n = isl_basic_set_list_n_basic_set(list: domain_list); |
| 2198 | if (data.n < 0) |
| 2199 | return NULL; |
| 2200 | |
| 2201 | if (data.n <= 1) |
| 2202 | return generate_sorted_domains(domain_list, executed, build); |
| 2203 | |
| 2204 | depth = isl_ast_build_get_depth(build); |
| 2205 | if (depth < 0) |
| 2206 | return NULL; |
| 2207 | data.list = NULL; |
| 2208 | data.executed = executed; |
| 2209 | data.build = build; |
| 2210 | data.single = 0; |
| 2211 | if (isl_basic_set_list_foreach_scc(list: domain_list, follows: &shared_outer, follows_user: &depth, |
| 2212 | fn: &generate_sorted_domains_wrap, |
| 2213 | fn_user: &data) < 0) |
| 2214 | data.list = isl_ast_graft_list_free(list: data.list); |
| 2215 | |
| 2216 | if (!data.single) |
| 2217 | data.list = isl_ast_graft_list_sort_guard(list: data.list); |
| 2218 | |
| 2219 | return data.list; |
| 2220 | } |
| 2221 | |
| 2222 | /* Internal data for separate_domain. |
| 2223 | * |
| 2224 | * "explicit" is set if we only want to use explicit bounds. |
| 2225 | * |
| 2226 | * "domain" collects the separated domains. |
| 2227 | */ |
| 2228 | struct isl_separate_domain_data { |
| 2229 | isl_ast_build *build; |
| 2230 | int explicit; |
| 2231 | isl_set *domain; |
| 2232 | }; |
| 2233 | |
| 2234 | /* Extract implicit bounds on the current dimension for the executed "map". |
| 2235 | * |
| 2236 | * The domain of "map" may involve inner dimensions, so we |
| 2237 | * need to eliminate them. |
| 2238 | */ |
| 2239 | static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map, |
| 2240 | __isl_keep isl_ast_build *build) |
| 2241 | { |
| 2242 | isl_set *domain; |
| 2243 | |
| 2244 | domain = isl_map_domain(bmap: map); |
| 2245 | domain = isl_ast_build_eliminate(build, domain); |
| 2246 | |
| 2247 | return domain; |
| 2248 | } |
| 2249 | |
| 2250 | /* Extract explicit bounds on the current dimension for the executed "map". |
| 2251 | * |
| 2252 | * Rather than eliminating the inner dimensions as in implicit_bounds, |
| 2253 | * we simply drop any constraints involving those inner dimensions. |
| 2254 | * The idea is that most bounds that are implied by constraints on the |
| 2255 | * inner dimensions will be enforced by for loops and not by explicit guards. |
| 2256 | * There is then no need to separate along those bounds. |
| 2257 | */ |
| 2258 | static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map, |
| 2259 | __isl_keep isl_ast_build *build) |
| 2260 | { |
| 2261 | isl_set *domain; |
| 2262 | isl_size depth; |
| 2263 | isl_size dim; |
| 2264 | |
| 2265 | depth = isl_ast_build_get_depth(build); |
| 2266 | dim = isl_map_dim(map, type: isl_dim_out); |
| 2267 | if (depth < 0 || dim < 0) |
| 2268 | return isl_map_domain(bmap: isl_map_free(map)); |
| 2269 | map = isl_map_drop_constraints_involving_dims(map, type: isl_dim_out, first: 0, n: dim); |
| 2270 | |
| 2271 | domain = isl_map_domain(bmap: map); |
| 2272 | dim = isl_set_dim(set: domain, type: isl_dim_set); |
| 2273 | domain = isl_set_detect_equalities(set: domain); |
| 2274 | domain = isl_set_drop_constraints_involving_dims(set: domain, |
| 2275 | type: isl_dim_set, first: depth + 1, n: dim - (depth + 1)); |
| 2276 | domain = isl_set_remove_divs_involving_dims(set: domain, |
| 2277 | type: isl_dim_set, first: depth, n: 1); |
| 2278 | domain = isl_set_remove_unknown_divs(set: domain); |
| 2279 | |
| 2280 | return domain; |
| 2281 | } |
| 2282 | |
| 2283 | /* Split data->domain into pieces that intersect with the range of "map" |
| 2284 | * and pieces that do not intersect with the range of "map" |
| 2285 | * and then add that part of the range of "map" that does not intersect |
| 2286 | * with data->domain. |
| 2287 | */ |
| 2288 | static isl_stat separate_domain(__isl_take isl_map *map, void *user) |
| 2289 | { |
| 2290 | struct isl_separate_domain_data *data = user; |
| 2291 | isl_set *domain; |
| 2292 | isl_set *d1, *d2; |
| 2293 | |
| 2294 | if (data->explicit) |
| 2295 | domain = explicit_bounds(map, build: data->build); |
| 2296 | else |
| 2297 | domain = implicit_bounds(map, build: data->build); |
| 2298 | |
| 2299 | domain = isl_set_coalesce(set: domain); |
| 2300 | domain = isl_set_make_disjoint(set: domain); |
| 2301 | d1 = isl_set_subtract(set1: isl_set_copy(set: domain), set2: isl_set_copy(set: data->domain)); |
| 2302 | d2 = isl_set_subtract(set1: isl_set_copy(set: data->domain), set2: isl_set_copy(set: domain)); |
| 2303 | data->domain = isl_set_intersect(set1: data->domain, set2: domain); |
| 2304 | data->domain = isl_set_union(set1: data->domain, set2: d1); |
| 2305 | data->domain = isl_set_union(set1: data->domain, set2: d2); |
| 2306 | |
| 2307 | return isl_stat_ok; |
| 2308 | } |
| 2309 | |
| 2310 | /* Separate the schedule domains of "executed". |
| 2311 | * |
| 2312 | * That is, break up the domain of "executed" into basic sets, |
| 2313 | * such that for each basic set S, every element in S is associated with |
| 2314 | * the same domain spaces. |
| 2315 | * |
| 2316 | * "space" is the (single) domain space of "executed". |
| 2317 | */ |
| 2318 | static __isl_give isl_set *separate_schedule_domains( |
| 2319 | __isl_take isl_space *space, __isl_take isl_union_map *executed, |
| 2320 | __isl_keep isl_ast_build *build) |
| 2321 | { |
| 2322 | struct isl_separate_domain_data data = { build }; |
| 2323 | isl_ctx *ctx; |
| 2324 | |
| 2325 | ctx = isl_ast_build_get_ctx(build); |
| 2326 | data.explicit = isl_options_get_ast_build_separation_bounds(ctx) == |
| 2327 | ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT; |
| 2328 | data.domain = isl_set_empty(space); |
| 2329 | if (isl_union_map_foreach_map(umap: executed, fn: &separate_domain, user: &data) < 0) |
| 2330 | data.domain = isl_set_free(set: data.domain); |
| 2331 | |
| 2332 | isl_union_map_free(umap: executed); |
| 2333 | return data.domain; |
| 2334 | } |
| 2335 | |
| 2336 | /* Temporary data used during the search for a lower bound for unrolling. |
| 2337 | * |
| 2338 | * "build" is the build in which the unrolling will be performed |
| 2339 | * "domain" is the original set for which to find a lower bound |
| 2340 | * "depth" is the dimension for which to find a lower boudn |
| 2341 | * "expansion" is the expansion that needs to be applied to "domain" |
| 2342 | * in the unrolling that will be performed |
| 2343 | * |
| 2344 | * "lower" is the best lower bound found so far. It is NULL if we have not |
| 2345 | * found any yet. |
| 2346 | * "n" is the corresponding size. If lower is NULL, then the value of n |
| 2347 | * is undefined. |
| 2348 | * "n_div" is the maximal number of integer divisions in the first |
| 2349 | * unrolled iteration (after expansion). It is set to -1 if it hasn't |
| 2350 | * been computed yet. |
| 2351 | */ |
| 2352 | struct isl_find_unroll_data { |
| 2353 | isl_ast_build *build; |
| 2354 | isl_set *domain; |
| 2355 | int depth; |
| 2356 | isl_basic_map *expansion; |
| 2357 | |
| 2358 | isl_aff *lower; |
| 2359 | int *n; |
| 2360 | int n_div; |
| 2361 | }; |
| 2362 | |
| 2363 | /* Return the constraint |
| 2364 | * |
| 2365 | * i_"depth" = aff + offset |
| 2366 | */ |
| 2367 | static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff, |
| 2368 | int offset) |
| 2369 | { |
| 2370 | aff = isl_aff_copy(aff); |
| 2371 | aff = isl_aff_add_coefficient_si(aff, type: isl_dim_in, pos: depth, v: -1); |
| 2372 | aff = isl_aff_add_constant_si(aff, v: offset); |
| 2373 | return isl_equality_from_aff(aff); |
| 2374 | } |
| 2375 | |
| 2376 | /* Update *user to the number of integer divisions in the first element |
| 2377 | * of "ma", if it is larger than the current value. |
| 2378 | */ |
| 2379 | static isl_stat update_n_div(__isl_take isl_set *set, |
| 2380 | __isl_take isl_multi_aff *ma, void *user) |
| 2381 | { |
| 2382 | isl_aff *aff; |
| 2383 | int *n = user; |
| 2384 | isl_size n_div; |
| 2385 | |
| 2386 | aff = isl_multi_aff_get_aff(multi: ma, pos: 0); |
| 2387 | n_div = isl_aff_dim(aff, type: isl_dim_div); |
| 2388 | isl_aff_free(aff); |
| 2389 | isl_multi_aff_free(multi: ma); |
| 2390 | isl_set_free(set); |
| 2391 | |
| 2392 | if (n_div > *n) |
| 2393 | *n = n_div; |
| 2394 | |
| 2395 | return n_div >= 0 ? isl_stat_ok : isl_stat_error; |
| 2396 | } |
| 2397 | |
| 2398 | /* Get the number of integer divisions in the expression for the iterator |
| 2399 | * value at the first slice in the unrolling based on lower bound "lower", |
| 2400 | * taking into account the expansion that needs to be performed on this slice. |
| 2401 | */ |
| 2402 | static int get_expanded_n_div(struct isl_find_unroll_data *data, |
| 2403 | __isl_keep isl_aff *lower) |
| 2404 | { |
| 2405 | isl_constraint *c; |
| 2406 | isl_set *set; |
| 2407 | isl_map *it_map, *expansion; |
| 2408 | isl_pw_multi_aff *pma; |
| 2409 | int n; |
| 2410 | |
| 2411 | c = at_offset(depth: data->depth, aff: lower, offset: 0); |
| 2412 | set = isl_set_copy(set: data->domain); |
| 2413 | set = isl_set_add_constraint(set, constraint: c); |
| 2414 | expansion = isl_map_from_basic_map(bmap: isl_basic_map_copy(bmap: data->expansion)); |
| 2415 | set = isl_set_apply(set, map: expansion); |
| 2416 | it_map = isl_ast_build_map_to_iterator(build: data->build, set); |
| 2417 | pma = isl_pw_multi_aff_from_map(map: it_map); |
| 2418 | n = 0; |
| 2419 | if (isl_pw_multi_aff_foreach_piece(pma, fn: &update_n_div, user: &n) < 0) |
| 2420 | n = -1; |
| 2421 | isl_pw_multi_aff_free(pma); |
| 2422 | |
| 2423 | return n; |
| 2424 | } |
| 2425 | |
| 2426 | /* Is the lower bound "lower" with corresponding iteration count "n" |
| 2427 | * better than the one stored in "data"? |
| 2428 | * If there is no upper bound on the iteration count ("n" is infinity) or |
| 2429 | * if the count is too large, then we cannot use this lower bound. |
| 2430 | * Otherwise, if there was no previous lower bound or |
| 2431 | * if the iteration count of the new lower bound is smaller than |
| 2432 | * the iteration count of the previous lower bound, then we consider |
| 2433 | * the new lower bound to be better. |
| 2434 | * If the iteration count is the same, then compare the number |
| 2435 | * of integer divisions that would be needed to express |
| 2436 | * the iterator value at the first slice in the unrolling |
| 2437 | * according to the lower bound. If we end up computing this |
| 2438 | * number, then store the lowest value in data->n_div. |
| 2439 | */ |
| 2440 | static int is_better_lower_bound(struct isl_find_unroll_data *data, |
| 2441 | __isl_keep isl_aff *lower, __isl_keep isl_val *n) |
| 2442 | { |
| 2443 | int cmp; |
| 2444 | int n_div; |
| 2445 | |
| 2446 | if (!n) |
| 2447 | return -1; |
| 2448 | if (isl_val_is_infty(v: n)) |
| 2449 | return 0; |
| 2450 | if (isl_val_cmp_si(v: n, INT_MAX) > 0) |
| 2451 | return 0; |
| 2452 | if (!data->lower) |
| 2453 | return 1; |
| 2454 | cmp = isl_val_cmp_si(v: n, i: *data->n); |
| 2455 | if (cmp < 0) |
| 2456 | return 1; |
| 2457 | if (cmp > 0) |
| 2458 | return 0; |
| 2459 | if (data->n_div < 0) |
| 2460 | data->n_div = get_expanded_n_div(data, lower: data->lower); |
| 2461 | if (data->n_div < 0) |
| 2462 | return -1; |
| 2463 | if (data->n_div == 0) |
| 2464 | return 0; |
| 2465 | n_div = get_expanded_n_div(data, lower); |
| 2466 | if (n_div < 0) |
| 2467 | return -1; |
| 2468 | if (n_div >= data->n_div) |
| 2469 | return 0; |
| 2470 | data->n_div = n_div; |
| 2471 | |
| 2472 | return 1; |
| 2473 | } |
| 2474 | |
| 2475 | /* Check if we can use "c" as a lower bound and if it is better than |
| 2476 | * any previously found lower bound. |
| 2477 | * |
| 2478 | * If "c" does not involve the dimension at the current depth, |
| 2479 | * then we cannot use it. |
| 2480 | * Otherwise, let "c" be of the form |
| 2481 | * |
| 2482 | * i >= f(j)/a |
| 2483 | * |
| 2484 | * We compute the maximal value of |
| 2485 | * |
| 2486 | * -ceil(f(j)/a)) + i + 1 |
| 2487 | * |
| 2488 | * over the domain. If there is such a value "n", then we know |
| 2489 | * |
| 2490 | * -ceil(f(j)/a)) + i + 1 <= n |
| 2491 | * |
| 2492 | * or |
| 2493 | * |
| 2494 | * i < ceil(f(j)/a)) + n |
| 2495 | * |
| 2496 | * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling. |
| 2497 | * We just need to check if we have found any lower bound before and |
| 2498 | * if the new lower bound is better (smaller n or fewer integer divisions) |
| 2499 | * than the previously found lower bounds. |
| 2500 | */ |
| 2501 | static isl_stat update_unrolling_lower_bound(struct isl_find_unroll_data *data, |
| 2502 | __isl_keep isl_constraint *c) |
| 2503 | { |
| 2504 | isl_aff *aff, *lower; |
| 2505 | isl_val *max; |
| 2506 | int better; |
| 2507 | |
| 2508 | if (!isl_constraint_is_lower_bound(constraint: c, type: isl_dim_set, pos: data->depth)) |
| 2509 | return isl_stat_ok; |
| 2510 | |
| 2511 | lower = isl_constraint_get_bound(constraint: c, type: isl_dim_set, pos: data->depth); |
| 2512 | lower = isl_aff_ceil(aff: lower); |
| 2513 | aff = isl_aff_copy(aff: lower); |
| 2514 | aff = isl_aff_neg(aff); |
| 2515 | aff = isl_aff_add_coefficient_si(aff, type: isl_dim_in, pos: data->depth, v: 1); |
| 2516 | aff = isl_aff_add_constant_si(aff, v: 1); |
| 2517 | max = isl_set_max_val(set: data->domain, obj: aff); |
| 2518 | isl_aff_free(aff); |
| 2519 | |
| 2520 | better = is_better_lower_bound(data, lower, n: max); |
| 2521 | if (better < 0 || !better) { |
| 2522 | isl_val_free(v: max); |
| 2523 | isl_aff_free(aff: lower); |
| 2524 | return better < 0 ? isl_stat_error : isl_stat_ok; |
| 2525 | } |
| 2526 | |
| 2527 | isl_aff_free(aff: data->lower); |
| 2528 | data->lower = lower; |
| 2529 | *data->n = isl_val_get_num_si(v: max); |
| 2530 | isl_val_free(v: max); |
| 2531 | |
| 2532 | return isl_stat_ok; |
| 2533 | } |
| 2534 | |
| 2535 | /* Check if we can use "c" as a lower bound and if it is better than |
| 2536 | * any previously found lower bound. |
| 2537 | */ |
| 2538 | static isl_stat constraint_find_unroll(__isl_take isl_constraint *c, void *user) |
| 2539 | { |
| 2540 | struct isl_find_unroll_data *data; |
| 2541 | isl_stat r; |
| 2542 | |
| 2543 | data = (struct isl_find_unroll_data *) user; |
| 2544 | r = update_unrolling_lower_bound(data, c); |
| 2545 | isl_constraint_free(c); |
| 2546 | |
| 2547 | return r; |
| 2548 | } |
| 2549 | |
| 2550 | /* Look for a lower bound l(i) on the dimension at "depth" |
| 2551 | * and a size n such that "domain" is a subset of |
| 2552 | * |
| 2553 | * { [i] : l(i) <= i_d < l(i) + n } |
| 2554 | * |
| 2555 | * where d is "depth" and l(i) depends only on earlier dimensions. |
| 2556 | * Furthermore, try and find a lower bound such that n is as small as possible. |
| 2557 | * In particular, "n" needs to be finite. |
| 2558 | * "build" is the build in which the unrolling will be performed. |
| 2559 | * "expansion" is the expansion that needs to be applied to "domain" |
| 2560 | * in the unrolling that will be performed. |
| 2561 | * |
| 2562 | * Inner dimensions have been eliminated from "domain" by the caller. |
| 2563 | * |
| 2564 | * We first construct a collection of lower bounds on the input set |
| 2565 | * by computing its simple hull. We then iterate through them, |
| 2566 | * discarding those that we cannot use (either because they do not |
| 2567 | * involve the dimension at "depth" or because they have no corresponding |
| 2568 | * upper bound, meaning that "n" would be unbounded) and pick out the |
| 2569 | * best from the remaining ones. |
| 2570 | * |
| 2571 | * If we cannot find a suitable lower bound, then we consider that |
| 2572 | * to be an error. |
| 2573 | */ |
| 2574 | static __isl_give isl_aff *find_unroll_lower_bound( |
| 2575 | __isl_keep isl_ast_build *build, __isl_keep isl_set *domain, |
| 2576 | int depth, __isl_keep isl_basic_map *expansion, int *n) |
| 2577 | { |
| 2578 | struct isl_find_unroll_data data = |
| 2579 | { build, domain, depth, expansion, NULL, n, -1 }; |
| 2580 | isl_basic_set *hull; |
| 2581 | |
| 2582 | hull = isl_set_simple_hull(set: isl_set_copy(set: domain)); |
| 2583 | |
| 2584 | if (isl_basic_set_foreach_constraint(bset: hull, |
| 2585 | fn: &constraint_find_unroll, user: &data) < 0) |
| 2586 | goto error; |
| 2587 | |
| 2588 | isl_basic_set_free(bset: hull); |
| 2589 | |
| 2590 | if (!data.lower) |
| 2591 | isl_die(isl_set_get_ctx(domain), isl_error_invalid, |
| 2592 | "cannot find lower bound for unrolling" , return NULL); |
| 2593 | |
| 2594 | return data.lower; |
| 2595 | error: |
| 2596 | isl_basic_set_free(bset: hull); |
| 2597 | return isl_aff_free(aff: data.lower); |
| 2598 | } |
| 2599 | |
| 2600 | /* Call "fn" on each iteration of the current dimension of "domain". |
| 2601 | * If "init" is not NULL, then it is called with the number of |
| 2602 | * iterations before any call to "fn". |
| 2603 | * Return -1 on failure. |
| 2604 | * |
| 2605 | * Since we are going to be iterating over the individual values, |
| 2606 | * we first check if there are any strides on the current dimension. |
| 2607 | * If there is, we rewrite the current dimension i as |
| 2608 | * |
| 2609 | * i = stride i' + offset |
| 2610 | * |
| 2611 | * and then iterate over individual values of i' instead. |
| 2612 | * |
| 2613 | * We then look for a lower bound on i' and a size such that the domain |
| 2614 | * is a subset of |
| 2615 | * |
| 2616 | * { [j,i'] : l(j) <= i' < l(j) + n } |
| 2617 | * |
| 2618 | * and then take slices of the domain at values of i' |
| 2619 | * between l(j) and l(j) + n - 1. |
| 2620 | * |
| 2621 | * We compute the unshifted simple hull of each slice to ensure that |
| 2622 | * we have a single basic set per offset. The slicing constraint |
| 2623 | * may get simplified away before the unshifted simple hull is taken |
| 2624 | * and may therefore in some rare cases disappear from the result. |
| 2625 | * We therefore explicitly add the constraint back after computing |
| 2626 | * the unshifted simple hull to ensure that the basic sets |
| 2627 | * remain disjoint. The constraints that are dropped by taking the hull |
| 2628 | * will be taken into account at the next level, as in the case of the |
| 2629 | * atomic option. |
| 2630 | * |
| 2631 | * Finally, we map i' back to i and call "fn". |
| 2632 | */ |
| 2633 | static int foreach_iteration(__isl_take isl_set *domain, |
| 2634 | __isl_keep isl_ast_build *build, int (*init)(int n, void *user), |
| 2635 | int (*fn)(__isl_take isl_basic_set *bset, void *user), void *user) |
| 2636 | { |
| 2637 | int i, n; |
| 2638 | isl_bool empty; |
| 2639 | isl_size depth; |
| 2640 | isl_multi_aff *expansion; |
| 2641 | isl_basic_map *bmap; |
| 2642 | isl_aff *lower = NULL; |
| 2643 | isl_ast_build *stride_build; |
| 2644 | |
| 2645 | depth = isl_ast_build_get_depth(build); |
| 2646 | if (depth < 0) |
| 2647 | domain = isl_set_free(set: domain); |
| 2648 | |
| 2649 | domain = isl_ast_build_eliminate_inner(build, set: domain); |
| 2650 | domain = isl_set_intersect(set1: domain, set2: isl_ast_build_get_domain(build)); |
| 2651 | stride_build = isl_ast_build_copy(build); |
| 2652 | stride_build = isl_ast_build_detect_strides(build: stride_build, |
| 2653 | set: isl_set_copy(set: domain)); |
| 2654 | expansion = isl_ast_build_get_stride_expansion(build: stride_build); |
| 2655 | |
| 2656 | domain = isl_set_preimage_multi_aff(set: domain, |
| 2657 | ma: isl_multi_aff_copy(multi: expansion)); |
| 2658 | domain = isl_ast_build_eliminate_divs(build: stride_build, set: domain); |
| 2659 | isl_ast_build_free(build: stride_build); |
| 2660 | |
| 2661 | bmap = isl_basic_map_from_multi_aff(maff: expansion); |
| 2662 | |
| 2663 | empty = isl_set_is_empty(set: domain); |
| 2664 | if (empty < 0) { |
| 2665 | n = -1; |
| 2666 | } else if (empty) { |
| 2667 | n = 0; |
| 2668 | } else { |
| 2669 | lower = find_unroll_lower_bound(build, domain, depth, expansion: bmap, n: &n); |
| 2670 | if (!lower) |
| 2671 | n = -1; |
| 2672 | } |
| 2673 | if (n >= 0 && init && init(n, user) < 0) |
| 2674 | n = -1; |
| 2675 | for (i = 0; i < n; ++i) { |
| 2676 | isl_set *set; |
| 2677 | isl_basic_set *bset; |
| 2678 | isl_constraint *slice; |
| 2679 | |
| 2680 | slice = at_offset(depth, aff: lower, offset: i); |
| 2681 | set = isl_set_copy(set: domain); |
| 2682 | set = isl_set_add_constraint(set, constraint: isl_constraint_copy(c: slice)); |
| 2683 | bset = isl_set_unshifted_simple_hull(set); |
| 2684 | bset = isl_basic_set_add_constraint(bset, constraint: slice); |
| 2685 | bset = isl_basic_set_apply(bset, bmap: isl_basic_map_copy(bmap)); |
| 2686 | |
| 2687 | if (fn(bset, user) < 0) |
| 2688 | break; |
| 2689 | } |
| 2690 | |
| 2691 | isl_aff_free(aff: lower); |
| 2692 | isl_set_free(set: domain); |
| 2693 | isl_basic_map_free(bmap); |
| 2694 | |
| 2695 | return n < 0 || i < n ? -1 : 0; |
| 2696 | } |
| 2697 | |
| 2698 | /* Data structure for storing the results and the intermediate objects |
| 2699 | * of compute_domains. |
| 2700 | * |
| 2701 | * "list" is the main result of the function and contains a list |
| 2702 | * of disjoint basic sets for which code should be generated. |
| 2703 | * |
| 2704 | * "executed" and "build" are inputs to compute_domains. |
| 2705 | * "schedule_domain" is the domain of "executed". |
| 2706 | * |
| 2707 | * "option" contains the domains at the current depth that should by |
| 2708 | * atomic, separated or unrolled. These domains are as specified by |
| 2709 | * the user, except that inner dimensions have been eliminated and |
| 2710 | * that they have been made pair-wise disjoint. |
| 2711 | * |
| 2712 | * "sep_class" contains the user-specified split into separation classes |
| 2713 | * specialized to the current depth. |
| 2714 | * "done" contains the union of the separation domains that have already |
| 2715 | * been handled. |
| 2716 | */ |
| 2717 | struct isl_codegen_domains { |
| 2718 | isl_basic_set_list *list; |
| 2719 | |
| 2720 | isl_union_map *executed; |
| 2721 | isl_ast_build *build; |
| 2722 | isl_set *schedule_domain; |
| 2723 | |
| 2724 | isl_set *option[4]; |
| 2725 | |
| 2726 | isl_map *sep_class; |
| 2727 | isl_set *done; |
| 2728 | }; |
| 2729 | |
| 2730 | /* Internal data structure for do_unroll. |
| 2731 | * |
| 2732 | * "domains" stores the results of compute_domains. |
| 2733 | * "class_domain" is the original class domain passed to do_unroll. |
| 2734 | * "unroll_domain" collects the unrolled iterations. |
| 2735 | */ |
| 2736 | struct isl_ast_unroll_data { |
| 2737 | struct isl_codegen_domains *domains; |
| 2738 | isl_set *class_domain; |
| 2739 | isl_set *unroll_domain; |
| 2740 | }; |
| 2741 | |
| 2742 | /* Given an iteration of an unrolled domain represented by "bset", |
| 2743 | * add it to data->domains->list. |
| 2744 | * Since we may have dropped some constraints, we intersect with |
| 2745 | * the class domain again to ensure that each element in the list |
| 2746 | * is disjoint from the other class domains. |
| 2747 | */ |
| 2748 | static int do_unroll_iteration(__isl_take isl_basic_set *bset, void *user) |
| 2749 | { |
| 2750 | struct isl_ast_unroll_data *data = user; |
| 2751 | isl_set *set; |
| 2752 | isl_basic_set_list *list; |
| 2753 | |
| 2754 | set = isl_set_from_basic_set(bset); |
| 2755 | data->unroll_domain = isl_set_union(set1: data->unroll_domain, |
| 2756 | set2: isl_set_copy(set)); |
| 2757 | set = isl_set_intersect(set1: set, set2: isl_set_copy(set: data->class_domain)); |
| 2758 | set = isl_set_make_disjoint(set); |
| 2759 | list = isl_basic_set_list_from_set(set); |
| 2760 | data->domains->list = isl_basic_set_list_concat(list1: data->domains->list, |
| 2761 | list2: list); |
| 2762 | |
| 2763 | return 0; |
| 2764 | } |
| 2765 | |
| 2766 | /* Extend domains->list with a list of basic sets, one for each value |
| 2767 | * of the current dimension in "domain" and remove the corresponding |
| 2768 | * sets from the class domain. Return the updated class domain. |
| 2769 | * The divs that involve the current dimension have not been projected out |
| 2770 | * from this domain. |
| 2771 | * |
| 2772 | * We call foreach_iteration to iterate over the individual values and |
| 2773 | * in do_unroll_iteration we collect the individual basic sets in |
| 2774 | * domains->list and their union in data->unroll_domain, which is then |
| 2775 | * used to update the class domain. |
| 2776 | */ |
| 2777 | static __isl_give isl_set *do_unroll(struct isl_codegen_domains *domains, |
| 2778 | __isl_take isl_set *domain, __isl_take isl_set *class_domain) |
| 2779 | { |
| 2780 | struct isl_ast_unroll_data data; |
| 2781 | |
| 2782 | if (!domain) |
| 2783 | return isl_set_free(set: class_domain); |
| 2784 | if (!class_domain) |
| 2785 | return isl_set_free(set: domain); |
| 2786 | |
| 2787 | data.domains = domains; |
| 2788 | data.class_domain = class_domain; |
| 2789 | data.unroll_domain = isl_set_empty(space: isl_set_get_space(set: domain)); |
| 2790 | |
| 2791 | if (foreach_iteration(domain, build: domains->build, NULL, |
| 2792 | fn: &do_unroll_iteration, user: &data) < 0) |
| 2793 | data.unroll_domain = isl_set_free(set: data.unroll_domain); |
| 2794 | |
| 2795 | class_domain = isl_set_subtract(set1: class_domain, set2: data.unroll_domain); |
| 2796 | |
| 2797 | return class_domain; |
| 2798 | } |
| 2799 | |
| 2800 | /* Add domains to domains->list for each individual value of the current |
| 2801 | * dimension, for that part of the schedule domain that lies in the |
| 2802 | * intersection of the option domain and the class domain. |
| 2803 | * Remove the corresponding sets from the class domain and |
| 2804 | * return the updated class domain. |
| 2805 | * |
| 2806 | * We first break up the unroll option domain into individual pieces |
| 2807 | * and then handle each of them separately. The unroll option domain |
| 2808 | * has been made disjoint in compute_domains_init_options, |
| 2809 | * |
| 2810 | * Note that we actively want to combine different pieces of the |
| 2811 | * schedule domain that have the same value at the current dimension. |
| 2812 | * We therefore need to break up the unroll option domain before |
| 2813 | * intersecting with class and schedule domain, hoping that the |
| 2814 | * unroll option domain specified by the user is relatively simple. |
| 2815 | */ |
| 2816 | static __isl_give isl_set *compute_unroll_domains( |
| 2817 | struct isl_codegen_domains *domains, __isl_take isl_set *class_domain) |
| 2818 | { |
| 2819 | isl_set *unroll_domain; |
| 2820 | isl_basic_set_list *unroll_list; |
| 2821 | int i; |
| 2822 | isl_size n; |
| 2823 | isl_bool empty; |
| 2824 | |
| 2825 | empty = isl_set_is_empty(set: domains->option[isl_ast_loop_unroll]); |
| 2826 | if (empty < 0) |
| 2827 | return isl_set_free(set: class_domain); |
| 2828 | if (empty) |
| 2829 | return class_domain; |
| 2830 | |
| 2831 | unroll_domain = isl_set_copy(set: domains->option[isl_ast_loop_unroll]); |
| 2832 | unroll_list = isl_basic_set_list_from_set(set: unroll_domain); |
| 2833 | |
| 2834 | n = isl_basic_set_list_n_basic_set(list: unroll_list); |
| 2835 | if (n < 0) |
| 2836 | class_domain = isl_set_free(set: class_domain); |
| 2837 | for (i = 0; i < n; ++i) { |
| 2838 | isl_basic_set *bset; |
| 2839 | |
| 2840 | bset = isl_basic_set_list_get_basic_set(list: unroll_list, index: i); |
| 2841 | unroll_domain = isl_set_from_basic_set(bset); |
| 2842 | unroll_domain = isl_set_intersect(set1: unroll_domain, |
| 2843 | set2: isl_set_copy(set: class_domain)); |
| 2844 | unroll_domain = isl_set_intersect(set1: unroll_domain, |
| 2845 | set2: isl_set_copy(set: domains->schedule_domain)); |
| 2846 | |
| 2847 | empty = isl_set_is_empty(set: unroll_domain); |
| 2848 | if (empty >= 0 && empty) { |
| 2849 | isl_set_free(set: unroll_domain); |
| 2850 | continue; |
| 2851 | } |
| 2852 | |
| 2853 | class_domain = do_unroll(domains, domain: unroll_domain, class_domain); |
| 2854 | } |
| 2855 | |
| 2856 | isl_basic_set_list_free(list: unroll_list); |
| 2857 | |
| 2858 | return class_domain; |
| 2859 | } |
| 2860 | |
| 2861 | /* Try and construct a single basic set that includes the intersection of |
| 2862 | * the schedule domain, the atomic option domain and the class domain. |
| 2863 | * Add the resulting basic set(s) to domains->list and remove them |
| 2864 | * from class_domain. Return the updated class domain. |
| 2865 | * |
| 2866 | * We construct a single domain rather than trying to combine |
| 2867 | * the schedule domains of individual domains because we are working |
| 2868 | * within a single component so that non-overlapping schedule domains |
| 2869 | * should already have been separated. |
| 2870 | * We do however need to make sure that this single domains is a subset |
| 2871 | * of the class domain so that it would not intersect with any other |
| 2872 | * class domains. This means that we may end up splitting up the atomic |
| 2873 | * domain in case separation classes are being used. |
| 2874 | * |
| 2875 | * "domain" is the intersection of the schedule domain and the class domain, |
| 2876 | * with inner dimensions projected out. |
| 2877 | */ |
| 2878 | static __isl_give isl_set *compute_atomic_domain( |
| 2879 | struct isl_codegen_domains *domains, __isl_take isl_set *class_domain) |
| 2880 | { |
| 2881 | isl_basic_set *bset; |
| 2882 | isl_basic_set_list *list; |
| 2883 | isl_set *domain, *atomic_domain; |
| 2884 | int empty; |
| 2885 | |
| 2886 | domain = isl_set_copy(set: domains->option[isl_ast_loop_atomic]); |
| 2887 | domain = isl_set_intersect(set1: domain, set2: isl_set_copy(set: class_domain)); |
| 2888 | domain = isl_set_intersect(set1: domain, |
| 2889 | set2: isl_set_copy(set: domains->schedule_domain)); |
| 2890 | empty = isl_set_is_empty(set: domain); |
| 2891 | if (empty < 0) |
| 2892 | class_domain = isl_set_free(set: class_domain); |
| 2893 | if (empty) { |
| 2894 | isl_set_free(set: domain); |
| 2895 | return class_domain; |
| 2896 | } |
| 2897 | |
| 2898 | domain = isl_ast_build_eliminate(build: domains->build, domain); |
| 2899 | domain = isl_set_coalesce_preserve(set: domain); |
| 2900 | bset = isl_set_unshifted_simple_hull(set: domain); |
| 2901 | domain = isl_set_from_basic_set(bset); |
| 2902 | atomic_domain = isl_set_copy(set: domain); |
| 2903 | domain = isl_set_intersect(set1: domain, set2: isl_set_copy(set: class_domain)); |
| 2904 | class_domain = isl_set_subtract(set1: class_domain, set2: atomic_domain); |
| 2905 | domain = isl_set_make_disjoint(set: domain); |
| 2906 | list = isl_basic_set_list_from_set(set: domain); |
| 2907 | domains->list = isl_basic_set_list_concat(list1: domains->list, list2: list); |
| 2908 | |
| 2909 | return class_domain; |
| 2910 | } |
| 2911 | |
| 2912 | /* Split up the schedule domain into uniform basic sets, |
| 2913 | * in the sense that each element in a basic set is associated to |
| 2914 | * elements of the same domains, and add the result to domains->list. |
| 2915 | * Do this for that part of the schedule domain that lies in the |
| 2916 | * intersection of "class_domain" and the separate option domain. |
| 2917 | * |
| 2918 | * "class_domain" may or may not include the constraints |
| 2919 | * of the schedule domain, but this does not make a difference |
| 2920 | * since we are going to intersect it with the domain of the inverse schedule. |
| 2921 | * If it includes schedule domain constraints, then they may involve |
| 2922 | * inner dimensions, but we will eliminate them in separation_domain. |
| 2923 | */ |
| 2924 | static int compute_separate_domain(struct isl_codegen_domains *domains, |
| 2925 | __isl_keep isl_set *class_domain) |
| 2926 | { |
| 2927 | isl_space *space; |
| 2928 | isl_set *domain; |
| 2929 | isl_union_map *executed; |
| 2930 | isl_basic_set_list *list; |
| 2931 | int empty; |
| 2932 | |
| 2933 | domain = isl_set_copy(set: domains->option[isl_ast_loop_separate]); |
| 2934 | domain = isl_set_intersect(set1: domain, set2: isl_set_copy(set: class_domain)); |
| 2935 | executed = isl_union_map_copy(umap: domains->executed); |
| 2936 | executed = isl_union_map_intersect_domain(umap: executed, |
| 2937 | uset: isl_union_set_from_set(set: domain)); |
| 2938 | empty = isl_union_map_is_empty(umap: executed); |
| 2939 | if (empty < 0 || empty) { |
| 2940 | isl_union_map_free(umap: executed); |
| 2941 | return empty < 0 ? -1 : 0; |
| 2942 | } |
| 2943 | |
| 2944 | space = isl_set_get_space(set: class_domain); |
| 2945 | domain = separate_schedule_domains(space, executed, build: domains->build); |
| 2946 | |
| 2947 | list = isl_basic_set_list_from_set(set: domain); |
| 2948 | domains->list = isl_basic_set_list_concat(list1: domains->list, list2: list); |
| 2949 | |
| 2950 | return 0; |
| 2951 | } |
| 2952 | |
| 2953 | /* Split up the domain at the current depth into disjoint |
| 2954 | * basic sets for which code should be generated separately |
| 2955 | * for the given separation class domain. |
| 2956 | * |
| 2957 | * If any separation classes have been defined, then "class_domain" |
| 2958 | * is the domain of the current class and does not refer to inner dimensions. |
| 2959 | * Otherwise, "class_domain" is the universe domain. |
| 2960 | * |
| 2961 | * We first make sure that the class domain is disjoint from |
| 2962 | * previously considered class domains. |
| 2963 | * |
| 2964 | * The separate domains can be computed directly from the "class_domain". |
| 2965 | * |
| 2966 | * The unroll, atomic and remainder domains need the constraints |
| 2967 | * from the schedule domain. |
| 2968 | * |
| 2969 | * For unrolling, the actual schedule domain is needed (with divs that |
| 2970 | * may refer to the current dimension) so that stride detection can be |
| 2971 | * performed. |
| 2972 | * |
| 2973 | * For atomic and remainder domains, inner dimensions and divs involving |
| 2974 | * the current dimensions should be eliminated. |
| 2975 | * In case we are working within a separation class, we need to intersect |
| 2976 | * the result with the current "class_domain" to ensure that the domains |
| 2977 | * are disjoint from those generated from other class domains. |
| 2978 | * |
| 2979 | * The domain that has been made atomic may be larger than specified |
| 2980 | * by the user since it needs to be representable as a single basic set. |
| 2981 | * This possibly larger domain is removed from class_domain by |
| 2982 | * compute_atomic_domain. It is computed first so that the extended domain |
| 2983 | * would not overlap with any domains computed before. |
| 2984 | * Similary, the unrolled domains may have some constraints removed and |
| 2985 | * may therefore also be larger than specified by the user. |
| 2986 | * |
| 2987 | * If anything is left after handling separate, unroll and atomic, |
| 2988 | * we split it up into basic sets and append the basic sets to domains->list. |
| 2989 | */ |
| 2990 | static isl_stat compute_partial_domains(struct isl_codegen_domains *domains, |
| 2991 | __isl_take isl_set *class_domain) |
| 2992 | { |
| 2993 | isl_basic_set_list *list; |
| 2994 | isl_set *domain; |
| 2995 | |
| 2996 | class_domain = isl_set_subtract(set1: class_domain, |
| 2997 | set2: isl_set_copy(set: domains->done)); |
| 2998 | domains->done = isl_set_union(set1: domains->done, |
| 2999 | set2: isl_set_copy(set: class_domain)); |
| 3000 | |
| 3001 | class_domain = compute_atomic_domain(domains, class_domain); |
| 3002 | class_domain = compute_unroll_domains(domains, class_domain); |
| 3003 | |
| 3004 | domain = isl_set_copy(set: class_domain); |
| 3005 | |
| 3006 | if (compute_separate_domain(domains, class_domain: domain) < 0) |
| 3007 | goto error; |
| 3008 | domain = isl_set_subtract(set1: domain, |
| 3009 | set2: isl_set_copy(set: domains->option[isl_ast_loop_separate])); |
| 3010 | |
| 3011 | domain = isl_set_intersect(set1: domain, |
| 3012 | set2: isl_set_copy(set: domains->schedule_domain)); |
| 3013 | |
| 3014 | domain = isl_ast_build_eliminate(build: domains->build, domain); |
| 3015 | domain = isl_set_intersect(set1: domain, set2: isl_set_copy(set: class_domain)); |
| 3016 | |
| 3017 | domain = isl_set_coalesce_preserve(set: domain); |
| 3018 | domain = isl_set_make_disjoint(set: domain); |
| 3019 | |
| 3020 | list = isl_basic_set_list_from_set(set: domain); |
| 3021 | domains->list = isl_basic_set_list_concat(list1: domains->list, list2: list); |
| 3022 | |
| 3023 | isl_set_free(set: class_domain); |
| 3024 | |
| 3025 | return isl_stat_ok; |
| 3026 | error: |
| 3027 | isl_set_free(set: domain); |
| 3028 | isl_set_free(set: class_domain); |
| 3029 | return isl_stat_error; |
| 3030 | } |
| 3031 | |
| 3032 | /* Split up the domain at the current depth into disjoint |
| 3033 | * basic sets for which code should be generated separately |
| 3034 | * for the separation class identified by "pnt". |
| 3035 | * |
| 3036 | * We extract the corresponding class domain from domains->sep_class, |
| 3037 | * eliminate inner dimensions and pass control to compute_partial_domains. |
| 3038 | */ |
| 3039 | static isl_stat compute_class_domains(__isl_take isl_point *pnt, void *user) |
| 3040 | { |
| 3041 | struct isl_codegen_domains *domains = user; |
| 3042 | isl_set *class_set; |
| 3043 | isl_set *domain; |
| 3044 | int disjoint; |
| 3045 | |
| 3046 | class_set = isl_set_from_point(pnt); |
| 3047 | domain = isl_map_domain(bmap: isl_map_intersect_range( |
| 3048 | map: isl_map_copy(map: domains->sep_class), set: class_set)); |
| 3049 | domain = isl_ast_build_compute_gist(build: domains->build, set: domain); |
| 3050 | domain = isl_ast_build_eliminate(build: domains->build, domain); |
| 3051 | |
| 3052 | disjoint = isl_set_plain_is_disjoint(set1: domain, set2: domains->schedule_domain); |
| 3053 | if (disjoint < 0) |
| 3054 | return isl_stat_error; |
| 3055 | if (disjoint) { |
| 3056 | isl_set_free(set: domain); |
| 3057 | return isl_stat_ok; |
| 3058 | } |
| 3059 | |
| 3060 | return compute_partial_domains(domains, class_domain: domain); |
| 3061 | } |
| 3062 | |
| 3063 | /* Extract the domains at the current depth that should be atomic, |
| 3064 | * separated or unrolled and store them in option. |
| 3065 | * |
| 3066 | * The domains specified by the user might overlap, so we make |
| 3067 | * them disjoint by subtracting earlier domains from later domains. |
| 3068 | */ |
| 3069 | static void compute_domains_init_options(isl_set *option[4], |
| 3070 | __isl_keep isl_ast_build *build) |
| 3071 | { |
| 3072 | enum isl_ast_loop_type type, type2; |
| 3073 | isl_set *unroll; |
| 3074 | |
| 3075 | for (type = isl_ast_loop_atomic; |
| 3076 | type <= isl_ast_loop_separate; ++type) { |
| 3077 | option[type] = isl_ast_build_get_option_domain(build, type); |
| 3078 | for (type2 = isl_ast_loop_atomic; type2 < type; ++type2) |
| 3079 | option[type] = isl_set_subtract(set1: option[type], |
| 3080 | set2: isl_set_copy(set: option[type2])); |
| 3081 | } |
| 3082 | |
| 3083 | unroll = option[isl_ast_loop_unroll]; |
| 3084 | unroll = isl_set_coalesce(set: unroll); |
| 3085 | unroll = isl_set_make_disjoint(set: unroll); |
| 3086 | option[isl_ast_loop_unroll] = unroll; |
| 3087 | } |
| 3088 | |
| 3089 | /* Split up the domain at the current depth into disjoint |
| 3090 | * basic sets for which code should be generated separately, |
| 3091 | * based on the user-specified options. |
| 3092 | * Return the list of disjoint basic sets. |
| 3093 | * |
| 3094 | * There are three kinds of domains that we need to keep track of. |
| 3095 | * - the "schedule domain" is the domain of "executed" |
| 3096 | * - the "class domain" is the domain corresponding to the currrent |
| 3097 | * separation class |
| 3098 | * - the "option domain" is the domain corresponding to one of the options |
| 3099 | * atomic, unroll or separate |
| 3100 | * |
| 3101 | * We first consider the individial values of the separation classes |
| 3102 | * and split up the domain for each of them separately. |
| 3103 | * Finally, we consider the remainder. If no separation classes were |
| 3104 | * specified, then we call compute_partial_domains with the universe |
| 3105 | * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain", |
| 3106 | * with inner dimensions removed. We do this because we want to |
| 3107 | * avoid computing the complement of the class domains (i.e., the difference |
| 3108 | * between the universe and domains->done). |
| 3109 | */ |
| 3110 | static __isl_give isl_basic_set_list *compute_domains( |
| 3111 | __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build) |
| 3112 | { |
| 3113 | struct isl_codegen_domains domains; |
| 3114 | isl_ctx *ctx; |
| 3115 | isl_set *domain; |
| 3116 | isl_union_set *schedule_domain; |
| 3117 | isl_set *classes; |
| 3118 | isl_space *space; |
| 3119 | int n_param; |
| 3120 | enum isl_ast_loop_type type; |
| 3121 | isl_bool empty; |
| 3122 | |
| 3123 | if (!executed) |
| 3124 | return NULL; |
| 3125 | |
| 3126 | ctx = isl_union_map_get_ctx(umap: executed); |
| 3127 | domains.list = isl_basic_set_list_alloc(ctx, n: 0); |
| 3128 | |
| 3129 | schedule_domain = isl_union_map_domain(umap: isl_union_map_copy(umap: executed)); |
| 3130 | domain = isl_set_from_union_set(uset: schedule_domain); |
| 3131 | |
| 3132 | compute_domains_init_options(option: domains.option, build); |
| 3133 | |
| 3134 | domains.sep_class = isl_ast_build_get_separation_class(build); |
| 3135 | classes = isl_map_range(map: isl_map_copy(map: domains.sep_class)); |
| 3136 | n_param = isl_set_dim(set: classes, type: isl_dim_param); |
| 3137 | if (n_param < 0) |
| 3138 | classes = isl_set_free(set: classes); |
| 3139 | classes = isl_set_project_out(set: classes, type: isl_dim_param, first: 0, n: n_param); |
| 3140 | |
| 3141 | space = isl_set_get_space(set: domain); |
| 3142 | domains.build = build; |
| 3143 | domains.schedule_domain = isl_set_copy(set: domain); |
| 3144 | domains.executed = executed; |
| 3145 | domains.done = isl_set_empty(space); |
| 3146 | |
| 3147 | if (isl_set_foreach_point(set: classes, fn: &compute_class_domains, user: &domains) < 0) |
| 3148 | domains.list = isl_basic_set_list_free(list: domains.list); |
| 3149 | isl_set_free(set: classes); |
| 3150 | |
| 3151 | empty = isl_set_is_empty(set: domains.done); |
| 3152 | if (empty < 0) { |
| 3153 | domains.list = isl_basic_set_list_free(list: domains.list); |
| 3154 | domain = isl_set_free(set: domain); |
| 3155 | } else if (empty) { |
| 3156 | isl_set_free(set: domain); |
| 3157 | domain = isl_set_universe(space: isl_set_get_space(set: domains.done)); |
| 3158 | } else { |
| 3159 | domain = isl_ast_build_eliminate(build, domain); |
| 3160 | } |
| 3161 | if (compute_partial_domains(domains: &domains, class_domain: domain) < 0) |
| 3162 | domains.list = isl_basic_set_list_free(list: domains.list); |
| 3163 | |
| 3164 | isl_set_free(set: domains.schedule_domain); |
| 3165 | isl_set_free(set: domains.done); |
| 3166 | isl_map_free(map: domains.sep_class); |
| 3167 | for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type) |
| 3168 | isl_set_free(set: domains.option[type]); |
| 3169 | |
| 3170 | return domains.list; |
| 3171 | } |
| 3172 | |
| 3173 | /* Generate code for a single component, after shifting (if any) |
| 3174 | * has been applied, in case the schedule was specified as a union map. |
| 3175 | * |
| 3176 | * We first split up the domain at the current depth into disjoint |
| 3177 | * basic sets based on the user-specified options. |
| 3178 | * Then we generated code for each of them and concatenate the results. |
| 3179 | */ |
| 3180 | static __isl_give isl_ast_graft_list *generate_shifted_component_flat( |
| 3181 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
| 3182 | { |
| 3183 | isl_basic_set_list *domain_list; |
| 3184 | isl_ast_graft_list *list = NULL; |
| 3185 | |
| 3186 | domain_list = compute_domains(executed, build); |
| 3187 | list = generate_parallel_domains(domain_list, executed, build); |
| 3188 | |
| 3189 | isl_basic_set_list_free(list: domain_list); |
| 3190 | isl_union_map_free(umap: executed); |
| 3191 | isl_ast_build_free(build); |
| 3192 | |
| 3193 | return list; |
| 3194 | } |
| 3195 | |
| 3196 | /* Generate code for a single component, after shifting (if any) |
| 3197 | * has been applied, in case the schedule was specified as a schedule tree |
| 3198 | * and the separate option was specified. |
| 3199 | * |
| 3200 | * We perform separation on the domain of "executed" and then generate |
| 3201 | * an AST for each of the resulting disjoint basic sets. |
| 3202 | */ |
| 3203 | static __isl_give isl_ast_graft_list *generate_shifted_component_tree_separate( |
| 3204 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
| 3205 | { |
| 3206 | isl_space *space; |
| 3207 | isl_set *domain; |
| 3208 | isl_basic_set_list *domain_list; |
| 3209 | isl_ast_graft_list *list; |
| 3210 | |
| 3211 | space = isl_ast_build_get_space(build, internal: 1); |
| 3212 | domain = separate_schedule_domains(space, |
| 3213 | executed: isl_union_map_copy(umap: executed), build); |
| 3214 | domain_list = isl_basic_set_list_from_set(set: domain); |
| 3215 | |
| 3216 | list = generate_parallel_domains(domain_list, executed, build); |
| 3217 | |
| 3218 | isl_basic_set_list_free(list: domain_list); |
| 3219 | isl_union_map_free(umap: executed); |
| 3220 | isl_ast_build_free(build); |
| 3221 | |
| 3222 | return list; |
| 3223 | } |
| 3224 | |
| 3225 | /* Internal data structure for generate_shifted_component_tree_unroll. |
| 3226 | * |
| 3227 | * "executed" and "build" are inputs to generate_shifted_component_tree_unroll. |
| 3228 | * "list" collects the constructs grafts. |
| 3229 | */ |
| 3230 | struct isl_ast_unroll_tree_data { |
| 3231 | isl_union_map *executed; |
| 3232 | isl_ast_build *build; |
| 3233 | isl_ast_graft_list *list; |
| 3234 | }; |
| 3235 | |
| 3236 | /* Initialize data->list to a list of "n" elements. |
| 3237 | */ |
| 3238 | static int init_unroll_tree(int n, void *user) |
| 3239 | { |
| 3240 | struct isl_ast_unroll_tree_data *data = user; |
| 3241 | isl_ctx *ctx; |
| 3242 | |
| 3243 | ctx = isl_ast_build_get_ctx(build: data->build); |
| 3244 | data->list = isl_ast_graft_list_alloc(ctx, n); |
| 3245 | |
| 3246 | return 0; |
| 3247 | } |
| 3248 | |
| 3249 | /* Given an iteration of an unrolled domain represented by "bset", |
| 3250 | * generate the corresponding AST and add the result to data->list. |
| 3251 | */ |
| 3252 | static int do_unroll_tree_iteration(__isl_take isl_basic_set *bset, void *user) |
| 3253 | { |
| 3254 | struct isl_ast_unroll_tree_data *data = user; |
| 3255 | |
| 3256 | data->list = add_node(list: data->list, executed: isl_union_map_copy(umap: data->executed), |
| 3257 | bounds: bset, build: isl_ast_build_copy(build: data->build)); |
| 3258 | |
| 3259 | return 0; |
| 3260 | } |
| 3261 | |
| 3262 | /* Generate code for a single component, after shifting (if any) |
| 3263 | * has been applied, in case the schedule was specified as a schedule tree |
| 3264 | * and the unroll option was specified. |
| 3265 | * |
| 3266 | * We call foreach_iteration to iterate over the individual values and |
| 3267 | * construct and collect the corresponding grafts in do_unroll_tree_iteration. |
| 3268 | */ |
| 3269 | static __isl_give isl_ast_graft_list *generate_shifted_component_tree_unroll( |
| 3270 | __isl_take isl_union_map *executed, __isl_take isl_set *domain, |
| 3271 | __isl_take isl_ast_build *build) |
| 3272 | { |
| 3273 | struct isl_ast_unroll_tree_data data = { executed, build, NULL }; |
| 3274 | |
| 3275 | if (foreach_iteration(domain, build, init: &init_unroll_tree, |
| 3276 | fn: &do_unroll_tree_iteration, user: &data) < 0) |
| 3277 | data.list = isl_ast_graft_list_free(list: data.list); |
| 3278 | |
| 3279 | isl_union_map_free(umap: executed); |
| 3280 | isl_ast_build_free(build); |
| 3281 | |
| 3282 | return data.list; |
| 3283 | } |
| 3284 | |
| 3285 | /* Does "domain" involve a disjunction that is purely based on |
| 3286 | * constraints involving only outer dimension? |
| 3287 | * |
| 3288 | * In particular, is there a disjunction such that the constraints |
| 3289 | * involving the current and later dimensions are the same over |
| 3290 | * all the disjuncts? |
| 3291 | */ |
| 3292 | static isl_bool has_pure_outer_disjunction(__isl_keep isl_set *domain, |
| 3293 | __isl_keep isl_ast_build *build) |
| 3294 | { |
| 3295 | isl_basic_set *hull; |
| 3296 | isl_set *shared, *inner; |
| 3297 | isl_bool equal; |
| 3298 | isl_size depth; |
| 3299 | isl_size n; |
| 3300 | isl_size dim; |
| 3301 | |
| 3302 | n = isl_set_n_basic_set(set: domain); |
| 3303 | if (n < 0) |
| 3304 | return isl_bool_error; |
| 3305 | if (n <= 1) |
| 3306 | return isl_bool_false; |
| 3307 | dim = isl_set_dim(set: domain, type: isl_dim_set); |
| 3308 | depth = isl_ast_build_get_depth(build); |
| 3309 | if (dim < 0 || depth < 0) |
| 3310 | return isl_bool_error; |
| 3311 | |
| 3312 | inner = isl_set_copy(set: domain); |
| 3313 | inner = isl_set_drop_constraints_not_involving_dims(set: inner, |
| 3314 | type: isl_dim_set, first: depth, n: dim - depth); |
| 3315 | hull = isl_set_plain_unshifted_simple_hull(set: isl_set_copy(set: inner)); |
| 3316 | shared = isl_set_from_basic_set(bset: hull); |
| 3317 | equal = isl_set_plain_is_equal(set1: inner, set2: shared); |
| 3318 | isl_set_free(set: inner); |
| 3319 | isl_set_free(set: shared); |
| 3320 | |
| 3321 | return equal; |
| 3322 | } |
| 3323 | |
| 3324 | /* Generate code for a single component, after shifting (if any) |
| 3325 | * has been applied, in case the schedule was specified as a schedule tree. |
| 3326 | * In particular, handle the base case where there is either no isolated |
| 3327 | * set or we are within the isolated set (in which case "isolated" is set) |
| 3328 | * or the iterations that precede or follow the isolated set. |
| 3329 | * |
| 3330 | * The schedule domain is broken up or combined into basic sets |
| 3331 | * according to the AST generation option specified in the current |
| 3332 | * schedule node, which may be either atomic, separate, unroll or |
| 3333 | * unspecified. If the option is unspecified, then we currently simply |
| 3334 | * split the schedule domain into disjoint basic sets. |
| 3335 | * |
| 3336 | * In case the separate option is specified, the AST generation is |
| 3337 | * handled by generate_shifted_component_tree_separate. |
| 3338 | * In the other cases, we need the global schedule domain. |
| 3339 | * In the unroll case, the AST generation is then handled by |
| 3340 | * generate_shifted_component_tree_unroll which needs the actual |
| 3341 | * schedule domain (with divs that may refer to the current dimension) |
| 3342 | * so that stride detection can be performed. |
| 3343 | * In the atomic or unspecified case, inner dimensions and divs involving |
| 3344 | * the current dimensions should be eliminated. |
| 3345 | * The result is then either combined into a single basic set or |
| 3346 | * split up into disjoint basic sets. |
| 3347 | * Finally an AST is generated for each basic set and the results are |
| 3348 | * concatenated. |
| 3349 | * |
| 3350 | * If the schedule domain involves a disjunction that is purely based on |
| 3351 | * constraints involving only outer dimension, then it is treated as |
| 3352 | * if atomic was specified. This ensures that only a single loop |
| 3353 | * is generated instead of a sequence of identical loops with |
| 3354 | * different guards. |
| 3355 | */ |
| 3356 | static __isl_give isl_ast_graft_list *generate_shifted_component_tree_base( |
| 3357 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build, |
| 3358 | int isolated) |
| 3359 | { |
| 3360 | isl_bool outer_disjunction; |
| 3361 | isl_union_set *schedule_domain; |
| 3362 | isl_set *domain; |
| 3363 | isl_basic_set_list *domain_list; |
| 3364 | isl_ast_graft_list *list; |
| 3365 | enum isl_ast_loop_type type; |
| 3366 | |
| 3367 | type = isl_ast_build_get_loop_type(build, isolated); |
| 3368 | if (type < 0) |
| 3369 | goto error; |
| 3370 | |
| 3371 | if (type == isl_ast_loop_separate) |
| 3372 | return generate_shifted_component_tree_separate(executed, |
| 3373 | build); |
| 3374 | |
| 3375 | schedule_domain = isl_union_map_domain(umap: isl_union_map_copy(umap: executed)); |
| 3376 | domain = isl_set_from_union_set(uset: schedule_domain); |
| 3377 | |
| 3378 | if (type == isl_ast_loop_unroll) |
| 3379 | return generate_shifted_component_tree_unroll(executed, domain, |
| 3380 | build); |
| 3381 | |
| 3382 | domain = isl_ast_build_eliminate(build, domain); |
| 3383 | domain = isl_set_coalesce_preserve(set: domain); |
| 3384 | |
| 3385 | outer_disjunction = has_pure_outer_disjunction(domain, build); |
| 3386 | if (outer_disjunction < 0) |
| 3387 | domain = isl_set_free(set: domain); |
| 3388 | |
| 3389 | if (outer_disjunction || type == isl_ast_loop_atomic) { |
| 3390 | isl_basic_set *hull; |
| 3391 | hull = isl_set_unshifted_simple_hull(set: domain); |
| 3392 | domain_list = isl_basic_set_list_from_basic_set(el: hull); |
| 3393 | } else { |
| 3394 | domain = isl_set_make_disjoint(set: domain); |
| 3395 | domain_list = isl_basic_set_list_from_set(set: domain); |
| 3396 | } |
| 3397 | |
| 3398 | list = generate_parallel_domains(domain_list, executed, build); |
| 3399 | |
| 3400 | isl_basic_set_list_free(list: domain_list); |
| 3401 | isl_union_map_free(umap: executed); |
| 3402 | isl_ast_build_free(build); |
| 3403 | |
| 3404 | return list; |
| 3405 | error: |
| 3406 | isl_union_map_free(umap: executed); |
| 3407 | isl_ast_build_free(build); |
| 3408 | return NULL; |
| 3409 | } |
| 3410 | |
| 3411 | /* Extract out the disjunction imposed by "domain" on the outer |
| 3412 | * schedule dimensions. |
| 3413 | * |
| 3414 | * In particular, remove all inner dimensions from "domain" (including |
| 3415 | * the current dimension) and then remove the constraints that are shared |
| 3416 | * by all disjuncts in the result. |
| 3417 | */ |
| 3418 | static __isl_give isl_set *(__isl_take isl_set *domain, |
| 3419 | __isl_keep isl_ast_build *build) |
| 3420 | { |
| 3421 | isl_set *hull; |
| 3422 | isl_size depth; |
| 3423 | isl_size dim; |
| 3424 | |
| 3425 | domain = isl_ast_build_specialize(build, set: domain); |
| 3426 | depth = isl_ast_build_get_depth(build); |
| 3427 | dim = isl_set_dim(set: domain, type: isl_dim_set); |
| 3428 | if (depth < 0 || dim < 0) |
| 3429 | return isl_set_free(set: domain); |
| 3430 | domain = isl_set_eliminate(set: domain, type: isl_dim_set, first: depth, n: dim - depth); |
| 3431 | domain = isl_set_remove_unknown_divs(set: domain); |
| 3432 | hull = isl_set_copy(set: domain); |
| 3433 | hull = isl_set_from_basic_set(bset: isl_set_unshifted_simple_hull(set: hull)); |
| 3434 | domain = isl_set_gist(set: domain, context: hull); |
| 3435 | |
| 3436 | return domain; |
| 3437 | } |
| 3438 | |
| 3439 | /* Add "guard" to the grafts in "list". |
| 3440 | * "build" is the outer AST build, while "sub_build" includes "guard" |
| 3441 | * in its generated domain. |
| 3442 | * |
| 3443 | * First combine the grafts into a single graft and then add the guard. |
| 3444 | * If the list is empty, or if some error occurred, then simply return |
| 3445 | * the list. |
| 3446 | */ |
| 3447 | static __isl_give isl_ast_graft_list *list_add_guard( |
| 3448 | __isl_take isl_ast_graft_list *list, __isl_keep isl_set *guard, |
| 3449 | __isl_keep isl_ast_build *build, __isl_keep isl_ast_build *sub_build) |
| 3450 | { |
| 3451 | isl_ast_graft *graft; |
| 3452 | isl_size n; |
| 3453 | |
| 3454 | list = isl_ast_graft_list_fuse(children: list, build: sub_build); |
| 3455 | |
| 3456 | n = isl_ast_graft_list_n_ast_graft(list); |
| 3457 | if (n < 0) |
| 3458 | return isl_ast_graft_list_free(list); |
| 3459 | if (n != 1) |
| 3460 | return list; |
| 3461 | |
| 3462 | graft = isl_ast_graft_list_get_ast_graft(list, index: 0); |
| 3463 | graft = isl_ast_graft_add_guard(graft, guard: isl_set_copy(set: guard), build); |
| 3464 | list = isl_ast_graft_list_set_ast_graft(list, index: 0, el: graft); |
| 3465 | |
| 3466 | return list; |
| 3467 | } |
| 3468 | |
| 3469 | /* Generate code for a single component, after shifting (if any) |
| 3470 | * has been applied, in case the schedule was specified as a schedule tree. |
| 3471 | * In particular, do so for the specified subset of the schedule domain. |
| 3472 | * |
| 3473 | * If we are outside of the isolated part, then "domain" may include |
| 3474 | * a disjunction. Explicitly generate this disjunction at this point |
| 3475 | * instead of relying on the disjunction getting hoisted back up |
| 3476 | * to this level. |
| 3477 | */ |
| 3478 | static __isl_give isl_ast_graft_list *generate_shifted_component_tree_part( |
| 3479 | __isl_keep isl_union_map *executed, __isl_take isl_set *domain, |
| 3480 | __isl_keep isl_ast_build *build, int isolated) |
| 3481 | { |
| 3482 | isl_union_set *uset; |
| 3483 | isl_ast_graft_list *list; |
| 3484 | isl_ast_build *sub_build; |
| 3485 | int empty; |
| 3486 | |
| 3487 | uset = isl_union_set_from_set(set: isl_set_copy(set: domain)); |
| 3488 | executed = isl_union_map_copy(umap: executed); |
| 3489 | executed = isl_union_map_intersect_domain(umap: executed, uset); |
| 3490 | empty = isl_union_map_is_empty(umap: executed); |
| 3491 | if (empty < 0) |
| 3492 | goto error; |
| 3493 | if (empty) { |
| 3494 | isl_ctx *ctx; |
| 3495 | isl_union_map_free(umap: executed); |
| 3496 | isl_set_free(set: domain); |
| 3497 | ctx = isl_ast_build_get_ctx(build); |
| 3498 | return isl_ast_graft_list_alloc(ctx, n: 0); |
| 3499 | } |
| 3500 | |
| 3501 | sub_build = isl_ast_build_copy(build); |
| 3502 | if (!isolated) { |
| 3503 | domain = extract_disjunction(domain, build); |
| 3504 | sub_build = isl_ast_build_restrict_generated(build: sub_build, |
| 3505 | set: isl_set_copy(set: domain)); |
| 3506 | } |
| 3507 | list = generate_shifted_component_tree_base(executed, |
| 3508 | build: isl_ast_build_copy(build: sub_build), isolated); |
| 3509 | if (!isolated) |
| 3510 | list = list_add_guard(list, guard: domain, build, sub_build); |
| 3511 | isl_ast_build_free(build: sub_build); |
| 3512 | isl_set_free(set: domain); |
| 3513 | return list; |
| 3514 | error: |
| 3515 | isl_union_map_free(umap: executed); |
| 3516 | isl_set_free(set: domain); |
| 3517 | return NULL; |
| 3518 | } |
| 3519 | |
| 3520 | /* Generate code for a single component, after shifting (if any) |
| 3521 | * has been applied, in case the schedule was specified as a schedule tree. |
| 3522 | * In particular, do so for the specified sequence of subsets |
| 3523 | * of the schedule domain, "before", "isolated", "after" and "other", |
| 3524 | * where only the "isolated" part is considered to be isolated. |
| 3525 | */ |
| 3526 | static __isl_give isl_ast_graft_list *generate_shifted_component_parts( |
| 3527 | __isl_take isl_union_map *executed, __isl_take isl_set *before, |
| 3528 | __isl_take isl_set *isolated, __isl_take isl_set *after, |
| 3529 | __isl_take isl_set *other, __isl_take isl_ast_build *build) |
| 3530 | { |
| 3531 | isl_ast_graft_list *list, *res; |
| 3532 | |
| 3533 | res = generate_shifted_component_tree_part(executed, domain: before, build, isolated: 0); |
| 3534 | list = generate_shifted_component_tree_part(executed, domain: isolated, |
| 3535 | build, isolated: 1); |
| 3536 | res = isl_ast_graft_list_concat(list1: res, list2: list); |
| 3537 | list = generate_shifted_component_tree_part(executed, domain: after, build, isolated: 0); |
| 3538 | res = isl_ast_graft_list_concat(list1: res, list2: list); |
| 3539 | list = generate_shifted_component_tree_part(executed, domain: other, build, isolated: 0); |
| 3540 | res = isl_ast_graft_list_concat(list1: res, list2: list); |
| 3541 | |
| 3542 | isl_union_map_free(umap: executed); |
| 3543 | isl_ast_build_free(build); |
| 3544 | |
| 3545 | return res; |
| 3546 | } |
| 3547 | |
| 3548 | /* Does "set" intersect "first", but not "second"? |
| 3549 | */ |
| 3550 | static isl_bool only_intersects_first(__isl_keep isl_set *set, |
| 3551 | __isl_keep isl_set *first, __isl_keep isl_set *second) |
| 3552 | { |
| 3553 | isl_bool disjoint; |
| 3554 | |
| 3555 | disjoint = isl_set_is_disjoint(set1: set, set2: first); |
| 3556 | if (disjoint < 0) |
| 3557 | return isl_bool_error; |
| 3558 | if (disjoint) |
| 3559 | return isl_bool_false; |
| 3560 | |
| 3561 | return isl_set_is_disjoint(set1: set, set2: second); |
| 3562 | } |
| 3563 | |
| 3564 | /* Generate code for a single component, after shifting (if any) |
| 3565 | * has been applied, in case the schedule was specified as a schedule tree. |
| 3566 | * In particular, do so in case of isolation where there is |
| 3567 | * only an "isolated" part and an "after" part. |
| 3568 | * "dead1" and "dead2" are freed by this function in order to simplify |
| 3569 | * the caller. |
| 3570 | * |
| 3571 | * The "before" and "other" parts are set to empty sets. |
| 3572 | */ |
| 3573 | static __isl_give isl_ast_graft_list *generate_shifted_component_only_after( |
| 3574 | __isl_take isl_union_map *executed, __isl_take isl_set *isolated, |
| 3575 | __isl_take isl_set *after, __isl_take isl_ast_build *build, |
| 3576 | __isl_take isl_set *dead1, __isl_take isl_set *dead2) |
| 3577 | { |
| 3578 | isl_set *empty; |
| 3579 | |
| 3580 | empty = isl_set_empty(space: isl_set_get_space(set: after)); |
| 3581 | isl_set_free(set: dead1); |
| 3582 | isl_set_free(set: dead2); |
| 3583 | return generate_shifted_component_parts(executed, before: isl_set_copy(set: empty), |
| 3584 | isolated, after, other: empty, build); |
| 3585 | } |
| 3586 | |
| 3587 | /* Generate code for a single component, after shifting (if any) |
| 3588 | * has been applied, in case the schedule was specified as a schedule tree. |
| 3589 | * |
| 3590 | * We first check if the user has specified an isolated schedule domain |
| 3591 | * and that we are not already outside of this isolated schedule domain. |
| 3592 | * If so, we break up the schedule domain into iterations that |
| 3593 | * precede the isolated domain, the isolated domain itself, |
| 3594 | * the iterations that follow the isolated domain and |
| 3595 | * the remaining iterations (those that are incomparable |
| 3596 | * to the isolated domain). |
| 3597 | * We generate an AST for each piece and concatenate the results. |
| 3598 | * |
| 3599 | * If the isolated domain is not convex, then it is replaced |
| 3600 | * by a convex superset to ensure that the sets of preceding and |
| 3601 | * following iterations are properly defined and, in particular, |
| 3602 | * that there are no intermediate iterations that do not belong |
| 3603 | * to the isolated domain. |
| 3604 | * |
| 3605 | * In the special case where at least one element of the schedule |
| 3606 | * domain that does not belong to the isolated domain needs |
| 3607 | * to be scheduled after this isolated domain, but none of those |
| 3608 | * elements need to be scheduled before, break up the schedule domain |
| 3609 | * in only two parts, the isolated domain, and a part that will be |
| 3610 | * scheduled after the isolated domain. |
| 3611 | * |
| 3612 | * If no isolated set has been specified, then we generate an |
| 3613 | * AST for the entire inverse schedule. |
| 3614 | */ |
| 3615 | static __isl_give isl_ast_graft_list *generate_shifted_component_tree( |
| 3616 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
| 3617 | { |
| 3618 | int i; |
| 3619 | isl_size depth; |
| 3620 | int empty, has_isolate; |
| 3621 | isl_space *space; |
| 3622 | isl_union_set *schedule_domain; |
| 3623 | isl_set *domain; |
| 3624 | isl_basic_set *hull; |
| 3625 | isl_set *isolated, *before, *after, *test; |
| 3626 | isl_map *gt, *lt; |
| 3627 | isl_bool pure; |
| 3628 | |
| 3629 | build = isl_ast_build_extract_isolated(build); |
| 3630 | has_isolate = isl_ast_build_has_isolated(build); |
| 3631 | if (has_isolate < 0) |
| 3632 | executed = isl_union_map_free(umap: executed); |
| 3633 | else if (!has_isolate) |
| 3634 | return generate_shifted_component_tree_base(executed, build, isolated: 0); |
| 3635 | |
| 3636 | schedule_domain = isl_union_map_domain(umap: isl_union_map_copy(umap: executed)); |
| 3637 | domain = isl_set_from_union_set(uset: schedule_domain); |
| 3638 | |
| 3639 | isolated = isl_ast_build_get_isolated(build); |
| 3640 | isolated = isl_set_intersect(set1: isolated, set2: isl_set_copy(set: domain)); |
| 3641 | test = isl_ast_build_specialize(build, set: isl_set_copy(set: isolated)); |
| 3642 | empty = isl_set_is_empty(set: test); |
| 3643 | isl_set_free(set: test); |
| 3644 | if (empty < 0) |
| 3645 | goto error; |
| 3646 | if (empty) { |
| 3647 | isl_set_free(set: isolated); |
| 3648 | isl_set_free(set: domain); |
| 3649 | return generate_shifted_component_tree_base(executed, build, isolated: 0); |
| 3650 | } |
| 3651 | depth = isl_ast_build_get_depth(build); |
| 3652 | if (depth < 0) |
| 3653 | goto error; |
| 3654 | |
| 3655 | isolated = isl_ast_build_eliminate(build, domain: isolated); |
| 3656 | hull = isl_set_unshifted_simple_hull(set: isolated); |
| 3657 | isolated = isl_set_from_basic_set(bset: hull); |
| 3658 | |
| 3659 | space = isl_space_map_from_set(space: isl_set_get_space(set: isolated)); |
| 3660 | gt = isl_map_universe(space); |
| 3661 | for (i = 0; i < depth; ++i) |
| 3662 | gt = isl_map_equate(map: gt, type1: isl_dim_in, pos1: i, type2: isl_dim_out, pos2: i); |
| 3663 | gt = isl_map_order_gt(map: gt, type1: isl_dim_in, pos1: depth, type2: isl_dim_out, pos2: depth); |
| 3664 | lt = isl_map_reverse(map: isl_map_copy(map: gt)); |
| 3665 | before = isl_set_apply(set: isl_set_copy(set: isolated), map: gt); |
| 3666 | after = isl_set_apply(set: isl_set_copy(set: isolated), map: lt); |
| 3667 | |
| 3668 | domain = isl_set_subtract(set1: domain, set2: isl_set_copy(set: isolated)); |
| 3669 | pure = only_intersects_first(set: domain, first: after, second: before); |
| 3670 | if (pure < 0) |
| 3671 | executed = isl_union_map_free(umap: executed); |
| 3672 | else if (pure) |
| 3673 | return generate_shifted_component_only_after(executed, isolated, |
| 3674 | after: domain, build, dead1: before, dead2: after); |
| 3675 | domain = isl_set_subtract(set1: domain, set2: isl_set_copy(set: before)); |
| 3676 | domain = isl_set_subtract(set1: domain, set2: isl_set_copy(set: after)); |
| 3677 | after = isl_set_subtract(set1: after, set2: isl_set_copy(set: isolated)); |
| 3678 | after = isl_set_subtract(set1: after, set2: isl_set_copy(set: before)); |
| 3679 | before = isl_set_subtract(set1: before, set2: isl_set_copy(set: isolated)); |
| 3680 | |
| 3681 | return generate_shifted_component_parts(executed, before, isolated, |
| 3682 | after, other: domain, build); |
| 3683 | error: |
| 3684 | isl_set_free(set: domain); |
| 3685 | isl_set_free(set: isolated); |
| 3686 | isl_union_map_free(umap: executed); |
| 3687 | isl_ast_build_free(build); |
| 3688 | return NULL; |
| 3689 | } |
| 3690 | |
| 3691 | /* Generate code for a single component, after shifting (if any) |
| 3692 | * has been applied. |
| 3693 | * |
| 3694 | * Call generate_shifted_component_tree or generate_shifted_component_flat |
| 3695 | * depending on whether the schedule was specified as a schedule tree. |
| 3696 | */ |
| 3697 | static __isl_give isl_ast_graft_list *generate_shifted_component( |
| 3698 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
| 3699 | { |
| 3700 | if (isl_ast_build_has_schedule_node(build)) |
| 3701 | return generate_shifted_component_tree(executed, build); |
| 3702 | else |
| 3703 | return generate_shifted_component_flat(executed, build); |
| 3704 | } |
| 3705 | |
| 3706 | struct isl_set_map_pair { |
| 3707 | isl_set *set; |
| 3708 | isl_map *map; |
| 3709 | }; |
| 3710 | |
| 3711 | /* Given an array "domain" of isl_set_map_pairs and an array "order" |
| 3712 | * of indices into the "domain" array, |
| 3713 | * return the union of the "map" fields of the elements |
| 3714 | * indexed by the first "n" elements of "order". |
| 3715 | */ |
| 3716 | static __isl_give isl_union_map *construct_component_executed( |
| 3717 | struct isl_set_map_pair *domain, int *order, int n) |
| 3718 | { |
| 3719 | int i; |
| 3720 | isl_map *map; |
| 3721 | isl_union_map *executed; |
| 3722 | |
| 3723 | map = isl_map_copy(map: domain[order[0]].map); |
| 3724 | executed = isl_union_map_from_map(map); |
| 3725 | for (i = 1; i < n; ++i) { |
| 3726 | map = isl_map_copy(map: domain[order[i]].map); |
| 3727 | executed = isl_union_map_add_map(umap: executed, map); |
| 3728 | } |
| 3729 | |
| 3730 | return executed; |
| 3731 | } |
| 3732 | |
| 3733 | /* Generate code for a single component, after shifting (if any) |
| 3734 | * has been applied. |
| 3735 | * |
| 3736 | * The component inverse schedule is specified as the "map" fields |
| 3737 | * of the elements of "domain" indexed by the first "n" elements of "order". |
| 3738 | */ |
| 3739 | static __isl_give isl_ast_graft_list *generate_shifted_component_from_list( |
| 3740 | struct isl_set_map_pair *domain, int *order, int n, |
| 3741 | __isl_take isl_ast_build *build) |
| 3742 | { |
| 3743 | isl_union_map *executed; |
| 3744 | |
| 3745 | executed = construct_component_executed(domain, order, n); |
| 3746 | return generate_shifted_component(executed, build); |
| 3747 | } |
| 3748 | |
| 3749 | /* Does set dimension "pos" of "set" have an obviously fixed value? |
| 3750 | */ |
| 3751 | static int dim_is_fixed(__isl_keep isl_set *set, int pos) |
| 3752 | { |
| 3753 | int fixed; |
| 3754 | isl_val *v; |
| 3755 | |
| 3756 | v = isl_set_plain_get_val_if_fixed(set, type: isl_dim_set, pos); |
| 3757 | if (!v) |
| 3758 | return -1; |
| 3759 | fixed = !isl_val_is_nan(v); |
| 3760 | isl_val_free(v); |
| 3761 | |
| 3762 | return fixed; |
| 3763 | } |
| 3764 | |
| 3765 | /* Given an array "domain" of isl_set_map_pairs and an array "order" |
| 3766 | * of indices into the "domain" array, |
| 3767 | * do all (except for at most one) of the "set" field of the elements |
| 3768 | * indexed by the first "n" elements of "order" have a fixed value |
| 3769 | * at position "depth"? |
| 3770 | */ |
| 3771 | static int at_most_one_non_fixed(struct isl_set_map_pair *domain, |
| 3772 | int *order, int n, int depth) |
| 3773 | { |
| 3774 | int i; |
| 3775 | int non_fixed = -1; |
| 3776 | |
| 3777 | for (i = 0; i < n; ++i) { |
| 3778 | int f; |
| 3779 | |
| 3780 | f = dim_is_fixed(set: domain[order[i]].set, pos: depth); |
| 3781 | if (f < 0) |
| 3782 | return -1; |
| 3783 | if (f) |
| 3784 | continue; |
| 3785 | if (non_fixed >= 0) |
| 3786 | return 0; |
| 3787 | non_fixed = i; |
| 3788 | } |
| 3789 | |
| 3790 | return 1; |
| 3791 | } |
| 3792 | |
| 3793 | /* Given an array "domain" of isl_set_map_pairs and an array "order" |
| 3794 | * of indices into the "domain" array, |
| 3795 | * eliminate the inner dimensions from the "set" field of the elements |
| 3796 | * indexed by the first "n" elements of "order", provided the current |
| 3797 | * dimension does not have a fixed value. |
| 3798 | * |
| 3799 | * Return the index of the first element in "order" with a corresponding |
| 3800 | * "set" field that does not have an (obviously) fixed value. |
| 3801 | */ |
| 3802 | static int eliminate_non_fixed(struct isl_set_map_pair *domain, |
| 3803 | int *order, int n, int depth, __isl_keep isl_ast_build *build) |
| 3804 | { |
| 3805 | int i; |
| 3806 | int base = -1; |
| 3807 | |
| 3808 | for (i = n - 1; i >= 0; --i) { |
| 3809 | int f; |
| 3810 | f = dim_is_fixed(set: domain[order[i]].set, pos: depth); |
| 3811 | if (f < 0) |
| 3812 | return -1; |
| 3813 | if (f) |
| 3814 | continue; |
| 3815 | domain[order[i]].set = isl_ast_build_eliminate_inner(build, |
| 3816 | set: domain[order[i]].set); |
| 3817 | base = i; |
| 3818 | } |
| 3819 | |
| 3820 | return base; |
| 3821 | } |
| 3822 | |
| 3823 | /* Given an array "domain" of isl_set_map_pairs and an array "order" |
| 3824 | * of indices into the "domain" array, |
| 3825 | * find the element of "domain" (amongst those indexed by the first "n" |
| 3826 | * elements of "order") with the "set" field that has the smallest |
| 3827 | * value for the current iterator. |
| 3828 | * |
| 3829 | * Note that the domain with the smallest value may depend on the parameters |
| 3830 | * and/or outer loop dimension. Since the result of this function is only |
| 3831 | * used as heuristic, we only make a reasonable attempt at finding the best |
| 3832 | * domain, one that should work in case a single domain provides the smallest |
| 3833 | * value for the current dimension over all values of the parameters |
| 3834 | * and outer dimensions. |
| 3835 | * |
| 3836 | * In particular, we compute the smallest value of the first domain |
| 3837 | * and replace it by that of any later domain if that later domain |
| 3838 | * has a smallest value that is smaller for at least some value |
| 3839 | * of the parameters and outer dimensions. |
| 3840 | */ |
| 3841 | static int first_offset(struct isl_set_map_pair *domain, int *order, int n, |
| 3842 | __isl_keep isl_ast_build *build) |
| 3843 | { |
| 3844 | int i; |
| 3845 | isl_map *min_first; |
| 3846 | int first = 0; |
| 3847 | |
| 3848 | min_first = isl_ast_build_map_to_iterator(build, |
| 3849 | set: isl_set_copy(set: domain[order[0]].set)); |
| 3850 | min_first = isl_map_lexmin(map: min_first); |
| 3851 | |
| 3852 | for (i = 1; i < n; ++i) { |
| 3853 | isl_map *min, *test; |
| 3854 | int empty; |
| 3855 | |
| 3856 | min = isl_ast_build_map_to_iterator(build, |
| 3857 | set: isl_set_copy(set: domain[order[i]].set)); |
| 3858 | min = isl_map_lexmin(map: min); |
| 3859 | test = isl_map_copy(map: min); |
| 3860 | test = isl_map_apply_domain(map1: isl_map_copy(map: min_first), map2: test); |
| 3861 | test = isl_map_order_lt(map: test, type1: isl_dim_in, pos1: 0, type2: isl_dim_out, pos2: 0); |
| 3862 | empty = isl_map_is_empty(map: test); |
| 3863 | isl_map_free(map: test); |
| 3864 | if (empty >= 0 && !empty) { |
| 3865 | isl_map_free(map: min_first); |
| 3866 | first = i; |
| 3867 | min_first = min; |
| 3868 | } else |
| 3869 | isl_map_free(map: min); |
| 3870 | |
| 3871 | if (empty < 0) |
| 3872 | break; |
| 3873 | } |
| 3874 | |
| 3875 | isl_map_free(map: min_first); |
| 3876 | |
| 3877 | return i < n ? -1 : first; |
| 3878 | } |
| 3879 | |
| 3880 | /* Construct a shifted inverse schedule based on the original inverse schedule, |
| 3881 | * the stride and the offset. |
| 3882 | * |
| 3883 | * The original inverse schedule is specified as the "map" fields |
| 3884 | * of the elements of "domain" indexed by the first "n" elements of "order". |
| 3885 | * |
| 3886 | * "stride" and "offset" are such that the difference |
| 3887 | * between the values of the current dimension of domain "i" |
| 3888 | * and the values of the current dimension for some reference domain are |
| 3889 | * equal to |
| 3890 | * |
| 3891 | * stride * integer + offset[i] |
| 3892 | * |
| 3893 | * Moreover, 0 <= offset[i] < stride. |
| 3894 | * |
| 3895 | * For each domain, we create a map |
| 3896 | * |
| 3897 | * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] } |
| 3898 | * |
| 3899 | * where j refers to the current dimension and the other dimensions are |
| 3900 | * unchanged, and apply this map to the original schedule domain. |
| 3901 | * |
| 3902 | * For example, for the original schedule |
| 3903 | * |
| 3904 | * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 } |
| 3905 | * |
| 3906 | * and assuming the offset is 0 for the A domain and 1 for the B domain, |
| 3907 | * we apply the mapping |
| 3908 | * |
| 3909 | * { [j] -> [j, 0] } |
| 3910 | * |
| 3911 | * to the schedule of the "A" domain and the mapping |
| 3912 | * |
| 3913 | * { [j - 1] -> [j, 1] } |
| 3914 | * |
| 3915 | * to the schedule of the "B" domain. |
| 3916 | * |
| 3917 | * |
| 3918 | * Note that after the transformation, the differences between pairs |
| 3919 | * of values of the current dimension over all domains are multiples |
| 3920 | * of stride and that we have therefore exposed the stride. |
| 3921 | * |
| 3922 | * |
| 3923 | * To see that the mapping preserves the lexicographic order, |
| 3924 | * first note that each of the individual maps above preserves the order. |
| 3925 | * If the value of the current iterator is j1 in one domain and j2 in another, |
| 3926 | * then if j1 = j2, we know that the same map is applied to both domains |
| 3927 | * and the order is preserved. |
| 3928 | * Otherwise, let us assume, without loss of generality, that j1 < j2. |
| 3929 | * If c1 >= c2 (with c1 and c2 the corresponding offsets), then |
| 3930 | * |
| 3931 | * j1 - c1 < j2 - c2 |
| 3932 | * |
| 3933 | * and the order is preserved. |
| 3934 | * If c1 < c2, then we know |
| 3935 | * |
| 3936 | * 0 <= c2 - c1 < s |
| 3937 | * |
| 3938 | * We also have |
| 3939 | * |
| 3940 | * j2 - j1 = n * s + r |
| 3941 | * |
| 3942 | * with n >= 0 and 0 <= r < s. |
| 3943 | * In other words, r = c2 - c1. |
| 3944 | * If n > 0, then |
| 3945 | * |
| 3946 | * j1 - c1 < j2 - c2 |
| 3947 | * |
| 3948 | * If n = 0, then |
| 3949 | * |
| 3950 | * j1 - c1 = j2 - c2 |
| 3951 | * |
| 3952 | * and so |
| 3953 | * |
| 3954 | * (j1 - c1, c1) << (j2 - c2, c2) |
| 3955 | * |
| 3956 | * with "<<" the lexicographic order, proving that the order is preserved |
| 3957 | * in all cases. |
| 3958 | */ |
| 3959 | static __isl_give isl_union_map *construct_shifted_executed( |
| 3960 | struct isl_set_map_pair *domain, int *order, int n, |
| 3961 | __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset, |
| 3962 | __isl_keep isl_ast_build *build) |
| 3963 | { |
| 3964 | int i; |
| 3965 | isl_union_map *executed; |
| 3966 | isl_space *space; |
| 3967 | isl_map *map; |
| 3968 | isl_size depth; |
| 3969 | isl_constraint *c; |
| 3970 | |
| 3971 | depth = isl_ast_build_get_depth(build); |
| 3972 | if (depth < 0) |
| 3973 | return NULL; |
| 3974 | space = isl_ast_build_get_space(build, internal: 1); |
| 3975 | executed = isl_union_map_empty(space: isl_space_copy(space)); |
| 3976 | space = isl_space_map_from_set(space); |
| 3977 | map = isl_map_identity(space: isl_space_copy(space)); |
| 3978 | map = isl_map_eliminate(map, type: isl_dim_out, first: depth, n: 1); |
| 3979 | map = isl_map_insert_dims(map, type: isl_dim_out, pos: depth + 1, n: 1); |
| 3980 | space = isl_space_insert_dims(space, type: isl_dim_out, pos: depth + 1, n: 1); |
| 3981 | |
| 3982 | c = isl_constraint_alloc_equality(ls: isl_local_space_from_space(space)); |
| 3983 | c = isl_constraint_set_coefficient_si(constraint: c, type: isl_dim_in, pos: depth, v: 1); |
| 3984 | c = isl_constraint_set_coefficient_si(constraint: c, type: isl_dim_out, pos: depth, v: -1); |
| 3985 | |
| 3986 | for (i = 0; i < n; ++i) { |
| 3987 | isl_map *map_i; |
| 3988 | isl_val *v; |
| 3989 | |
| 3990 | v = isl_multi_val_get_val(multi: offset, pos: i); |
| 3991 | if (!v) |
| 3992 | break; |
| 3993 | map_i = isl_map_copy(map); |
| 3994 | map_i = isl_map_fix_val(map: map_i, type: isl_dim_out, pos: depth + 1, |
| 3995 | v: isl_val_copy(v)); |
| 3996 | v = isl_val_neg(v); |
| 3997 | c = isl_constraint_set_constant_val(constraint: c, v); |
| 3998 | map_i = isl_map_add_constraint(map: map_i, constraint: isl_constraint_copy(c)); |
| 3999 | |
| 4000 | map_i = isl_map_apply_domain(map1: isl_map_copy(map: domain[order[i]].map), |
| 4001 | map2: map_i); |
| 4002 | executed = isl_union_map_add_map(umap: executed, map: map_i); |
| 4003 | } |
| 4004 | |
| 4005 | isl_constraint_free(c); |
| 4006 | isl_map_free(map); |
| 4007 | |
| 4008 | if (i < n) |
| 4009 | executed = isl_union_map_free(umap: executed); |
| 4010 | |
| 4011 | return executed; |
| 4012 | } |
| 4013 | |
| 4014 | /* Generate code for a single component, after exposing the stride, |
| 4015 | * given that the schedule domain is "shifted strided". |
| 4016 | * |
| 4017 | * The component inverse schedule is specified as the "map" fields |
| 4018 | * of the elements of "domain" indexed by the first "n" elements of "order". |
| 4019 | * |
| 4020 | * The schedule domain being "shifted strided" means that the differences |
| 4021 | * between the values of the current dimension of domain "i" |
| 4022 | * and the values of the current dimension for some reference domain are |
| 4023 | * equal to |
| 4024 | * |
| 4025 | * stride * integer + offset[i] |
| 4026 | * |
| 4027 | * We first look for the domain with the "smallest" value for the current |
| 4028 | * dimension and adjust the offsets such that the offset of the "smallest" |
| 4029 | * domain is equal to zero. The other offsets are reduced modulo stride. |
| 4030 | * |
| 4031 | * Based on this information, we construct a new inverse schedule in |
| 4032 | * construct_shifted_executed that exposes the stride. |
| 4033 | * Since this involves the introduction of a new schedule dimension, |
| 4034 | * the build needs to be changed accordingly. |
| 4035 | * After computing the AST, the newly introduced dimension needs |
| 4036 | * to be removed again from the list of grafts. We do this by plugging |
| 4037 | * in a mapping that represents the new schedule domain in terms of the |
| 4038 | * old schedule domain. |
| 4039 | */ |
| 4040 | static __isl_give isl_ast_graft_list *generate_shift_component( |
| 4041 | struct isl_set_map_pair *domain, int *order, int n, |
| 4042 | __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset, |
| 4043 | __isl_take isl_ast_build *build) |
| 4044 | { |
| 4045 | isl_ast_graft_list *list; |
| 4046 | int first; |
| 4047 | isl_size depth; |
| 4048 | isl_val *val; |
| 4049 | isl_multi_val *mv; |
| 4050 | isl_space *space; |
| 4051 | isl_multi_aff *ma, *zero; |
| 4052 | isl_union_map *executed; |
| 4053 | |
| 4054 | depth = isl_ast_build_get_depth(build); |
| 4055 | |
| 4056 | first = first_offset(domain, order, n, build); |
| 4057 | if (depth < 0 || first < 0) |
| 4058 | goto error; |
| 4059 | |
| 4060 | mv = isl_multi_val_copy(multi: offset); |
| 4061 | val = isl_multi_val_get_val(multi: offset, pos: first); |
| 4062 | val = isl_val_neg(v: val); |
| 4063 | mv = isl_multi_val_add_val(mv, v: val); |
| 4064 | mv = isl_multi_val_mod_val(mv, v: isl_val_copy(v: stride)); |
| 4065 | |
| 4066 | executed = construct_shifted_executed(domain, order, n, stride, offset: mv, |
| 4067 | build); |
| 4068 | space = isl_ast_build_get_space(build, internal: 1); |
| 4069 | space = isl_space_map_from_set(space); |
| 4070 | ma = isl_multi_aff_identity(space: isl_space_copy(space)); |
| 4071 | space = isl_space_from_domain(space: isl_space_domain(space)); |
| 4072 | space = isl_space_add_dims(space, type: isl_dim_out, n: 1); |
| 4073 | zero = isl_multi_aff_zero(space); |
| 4074 | ma = isl_multi_aff_range_splice(multi1: ma, pos: depth + 1, multi2: zero); |
| 4075 | build = isl_ast_build_insert_dim(build, pos: depth + 1); |
| 4076 | list = generate_shifted_component(executed, build); |
| 4077 | |
| 4078 | list = isl_ast_graft_list_preimage_multi_aff(list, ma); |
| 4079 | |
| 4080 | isl_multi_val_free(multi: mv); |
| 4081 | |
| 4082 | return list; |
| 4083 | error: |
| 4084 | isl_ast_build_free(build); |
| 4085 | return NULL; |
| 4086 | } |
| 4087 | |
| 4088 | /* Does any node in the schedule tree rooted at the current schedule node |
| 4089 | * of "build" depend on outer schedule nodes? |
| 4090 | */ |
| 4091 | static int has_anchored_subtree(__isl_keep isl_ast_build *build) |
| 4092 | { |
| 4093 | isl_schedule_node *node; |
| 4094 | int dependent = 0; |
| 4095 | |
| 4096 | node = isl_ast_build_get_schedule_node(build); |
| 4097 | dependent = isl_schedule_node_is_subtree_anchored(node); |
| 4098 | isl_schedule_node_free(node); |
| 4099 | |
| 4100 | return dependent; |
| 4101 | } |
| 4102 | |
| 4103 | /* Generate code for a single component. |
| 4104 | * |
| 4105 | * The component inverse schedule is specified as the "map" fields |
| 4106 | * of the elements of "domain" indexed by the first "n" elements of "order". |
| 4107 | * |
| 4108 | * This function may modify the "set" fields of "domain". |
| 4109 | * |
| 4110 | * Before proceeding with the actual code generation for the component, |
| 4111 | * we first check if there are any "shifted" strides, meaning that |
| 4112 | * the schedule domains of the individual domains are all strided, |
| 4113 | * but that they have different offsets, resulting in the union |
| 4114 | * of schedule domains not being strided anymore. |
| 4115 | * |
| 4116 | * The simplest example is the schedule |
| 4117 | * |
| 4118 | * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 } |
| 4119 | * |
| 4120 | * Both schedule domains are strided, but their union is not. |
| 4121 | * This function detects such cases and then rewrites the schedule to |
| 4122 | * |
| 4123 | * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 } |
| 4124 | * |
| 4125 | * In the new schedule, the schedule domains have the same offset (modulo |
| 4126 | * the stride), ensuring that the union of schedule domains is also strided. |
| 4127 | * |
| 4128 | * |
| 4129 | * If there is only a single domain in the component, then there is |
| 4130 | * nothing to do. Similarly, if the current schedule dimension has |
| 4131 | * a fixed value for almost all domains then there is nothing to be done. |
| 4132 | * In particular, we need at least two domains where the current schedule |
| 4133 | * dimension does not have a fixed value. |
| 4134 | * Finally, in case of a schedule map input, |
| 4135 | * if any of the options refer to the current schedule dimension, |
| 4136 | * then we bail out as well. It would be possible to reformulate the options |
| 4137 | * in terms of the new schedule domain, but that would introduce constraints |
| 4138 | * that separate the domains in the options and that is something we would |
| 4139 | * like to avoid. |
| 4140 | * In the case of a schedule tree input, we bail out if any of |
| 4141 | * the descendants of the current schedule node refer to outer |
| 4142 | * schedule nodes in any way. |
| 4143 | * |
| 4144 | * |
| 4145 | * To see if there is any shifted stride, we look at the differences |
| 4146 | * between the values of the current dimension in pairs of domains |
| 4147 | * for equal values of outer dimensions. These differences should be |
| 4148 | * of the form |
| 4149 | * |
| 4150 | * m x + r |
| 4151 | * |
| 4152 | * with "m" the stride and "r" a constant. Note that we cannot perform |
| 4153 | * this analysis on individual domains as the lower bound in each domain |
| 4154 | * may depend on parameters or outer dimensions and so the current dimension |
| 4155 | * itself may not have a fixed remainder on division by the stride. |
| 4156 | * |
| 4157 | * In particular, we compare the first domain that does not have an |
| 4158 | * obviously fixed value for the current dimension to itself and all |
| 4159 | * other domains and collect the offsets and the gcd of the strides. |
| 4160 | * If the gcd becomes one, then we failed to find shifted strides. |
| 4161 | * If the gcd is zero, then the differences were all fixed, meaning |
| 4162 | * that some domains had non-obviously fixed values for the current dimension. |
| 4163 | * If all the offsets are the same (for those domains that do not have |
| 4164 | * an obviously fixed value for the current dimension), then we do not |
| 4165 | * apply the transformation. |
| 4166 | * If none of the domains were skipped, then there is nothing to do. |
| 4167 | * If some of them were skipped, then if we apply separation, the schedule |
| 4168 | * domain should get split in pieces with a (non-shifted) stride. |
| 4169 | * |
| 4170 | * Otherwise, we apply a shift to expose the stride in |
| 4171 | * generate_shift_component. |
| 4172 | */ |
| 4173 | static __isl_give isl_ast_graft_list *generate_component( |
| 4174 | struct isl_set_map_pair *domain, int *order, int n, |
| 4175 | __isl_take isl_ast_build *build) |
| 4176 | { |
| 4177 | int i, d; |
| 4178 | isl_size depth; |
| 4179 | isl_ctx *ctx; |
| 4180 | isl_map *map; |
| 4181 | isl_set *deltas; |
| 4182 | isl_val *gcd = NULL; |
| 4183 | isl_multi_val *mv; |
| 4184 | int fixed, skip; |
| 4185 | int base; |
| 4186 | isl_ast_graft_list *list; |
| 4187 | int res = 0; |
| 4188 | |
| 4189 | depth = isl_ast_build_get_depth(build); |
| 4190 | if (depth < 0) |
| 4191 | goto error; |
| 4192 | |
| 4193 | skip = n == 1; |
| 4194 | if (skip >= 0 && !skip) |
| 4195 | skip = at_most_one_non_fixed(domain, order, n, depth); |
| 4196 | if (skip >= 0 && !skip) { |
| 4197 | if (isl_ast_build_has_schedule_node(build)) |
| 4198 | skip = has_anchored_subtree(build); |
| 4199 | else |
| 4200 | skip = isl_ast_build_options_involve_depth(build); |
| 4201 | } |
| 4202 | if (skip < 0) |
| 4203 | goto error; |
| 4204 | if (skip) |
| 4205 | return generate_shifted_component_from_list(domain, |
| 4206 | order, n, build); |
| 4207 | |
| 4208 | base = eliminate_non_fixed(domain, order, n, depth, build); |
| 4209 | if (base < 0) |
| 4210 | goto error; |
| 4211 | |
| 4212 | ctx = isl_ast_build_get_ctx(build); |
| 4213 | |
| 4214 | mv = isl_multi_val_zero(space: isl_space_set_alloc(ctx, nparam: 0, dim: n)); |
| 4215 | |
| 4216 | fixed = 1; |
| 4217 | for (i = 0; i < n; ++i) { |
| 4218 | isl_val *r, *m; |
| 4219 | |
| 4220 | map = isl_map_from_domain_and_range( |
| 4221 | domain: isl_set_copy(set: domain[order[base]].set), |
| 4222 | range: isl_set_copy(set: domain[order[i]].set)); |
| 4223 | for (d = 0; d < depth; ++d) |
| 4224 | map = isl_map_equate(map, type1: isl_dim_in, pos1: d, |
| 4225 | type2: isl_dim_out, pos2: d); |
| 4226 | deltas = isl_map_deltas(map); |
| 4227 | res = isl_set_dim_residue_class_val(set: deltas, pos: depth, modulo: &m, residue: &r); |
| 4228 | isl_set_free(set: deltas); |
| 4229 | if (res < 0) |
| 4230 | break; |
| 4231 | |
| 4232 | if (i == 0) |
| 4233 | gcd = m; |
| 4234 | else |
| 4235 | gcd = isl_val_gcd(v1: gcd, v2: m); |
| 4236 | if (isl_val_is_one(v: gcd)) { |
| 4237 | isl_val_free(v: r); |
| 4238 | break; |
| 4239 | } |
| 4240 | mv = isl_multi_val_set_val(multi: mv, pos: i, el: r); |
| 4241 | |
| 4242 | res = dim_is_fixed(set: domain[order[i]].set, pos: depth); |
| 4243 | if (res < 0) |
| 4244 | break; |
| 4245 | if (res) |
| 4246 | continue; |
| 4247 | |
| 4248 | if (fixed && i > base) { |
| 4249 | isl_val *a, *b; |
| 4250 | a = isl_multi_val_get_val(multi: mv, pos: i); |
| 4251 | b = isl_multi_val_get_val(multi: mv, pos: base); |
| 4252 | if (isl_val_ne(v1: a, v2: b)) |
| 4253 | fixed = 0; |
| 4254 | isl_val_free(v: a); |
| 4255 | isl_val_free(v: b); |
| 4256 | } |
| 4257 | } |
| 4258 | |
| 4259 | if (res < 0 || !gcd) { |
| 4260 | isl_ast_build_free(build); |
| 4261 | list = NULL; |
| 4262 | } else if (i < n || fixed || isl_val_is_zero(v: gcd)) { |
| 4263 | list = generate_shifted_component_from_list(domain, |
| 4264 | order, n, build); |
| 4265 | } else { |
| 4266 | list = generate_shift_component(domain, order, n, stride: gcd, offset: mv, |
| 4267 | build); |
| 4268 | } |
| 4269 | |
| 4270 | isl_val_free(v: gcd); |
| 4271 | isl_multi_val_free(multi: mv); |
| 4272 | |
| 4273 | return list; |
| 4274 | error: |
| 4275 | isl_ast_build_free(build); |
| 4276 | return NULL; |
| 4277 | } |
| 4278 | |
| 4279 | /* Store both "map" itself and its domain in the |
| 4280 | * structure pointed to by *next and advance to the next array element. |
| 4281 | */ |
| 4282 | static isl_stat extract_domain(__isl_take isl_map *map, void *user) |
| 4283 | { |
| 4284 | struct isl_set_map_pair **next = user; |
| 4285 | |
| 4286 | (*next)->map = isl_map_copy(map); |
| 4287 | (*next)->set = isl_map_domain(bmap: map); |
| 4288 | (*next)++; |
| 4289 | |
| 4290 | return isl_stat_ok; |
| 4291 | } |
| 4292 | |
| 4293 | static isl_bool after_in_tree(__isl_keep isl_union_map *umap, |
| 4294 | __isl_keep isl_schedule_node *node); |
| 4295 | |
| 4296 | /* Is any domain element of "umap" scheduled after any of |
| 4297 | * the corresponding image elements by the tree rooted at |
| 4298 | * the child of "node"? |
| 4299 | */ |
| 4300 | static isl_bool after_in_child(__isl_keep isl_union_map *umap, |
| 4301 | __isl_keep isl_schedule_node *node) |
| 4302 | { |
| 4303 | isl_schedule_node *child; |
| 4304 | isl_bool after; |
| 4305 | |
| 4306 | child = isl_schedule_node_get_child(node, pos: 0); |
| 4307 | after = after_in_tree(umap, node: child); |
| 4308 | isl_schedule_node_free(node: child); |
| 4309 | |
| 4310 | return after; |
| 4311 | } |
| 4312 | |
| 4313 | /* Is any domain element of "umap" scheduled after any of |
| 4314 | * the corresponding image elements by the tree rooted at |
| 4315 | * the band node "node"? |
| 4316 | * |
| 4317 | * We first check if any domain element is scheduled after any |
| 4318 | * of the corresponding image elements by the band node itself. |
| 4319 | * If not, we restrict "map" to those pairs of element that |
| 4320 | * are scheduled together by the band node and continue with |
| 4321 | * the child of the band node. |
| 4322 | * If there are no such pairs then the map passed to after_in_child |
| 4323 | * will be empty causing it to return 0. |
| 4324 | */ |
| 4325 | static isl_bool after_in_band(__isl_keep isl_union_map *umap, |
| 4326 | __isl_keep isl_schedule_node *node) |
| 4327 | { |
| 4328 | isl_multi_union_pw_aff *mupa; |
| 4329 | isl_union_map *partial, *test, *gt, *universe, *umap1, *umap2; |
| 4330 | isl_union_set *domain, *range; |
| 4331 | isl_space *space; |
| 4332 | isl_bool empty; |
| 4333 | isl_bool after; |
| 4334 | isl_size n; |
| 4335 | |
| 4336 | n = isl_schedule_node_band_n_member(node); |
| 4337 | if (n < 0) |
| 4338 | return isl_bool_error; |
| 4339 | if (n == 0) |
| 4340 | return after_in_child(umap, node); |
| 4341 | |
| 4342 | mupa = isl_schedule_node_band_get_partial_schedule(node); |
| 4343 | space = isl_multi_union_pw_aff_get_space(multi: mupa); |
| 4344 | partial = isl_union_map_from_multi_union_pw_aff(mupa); |
| 4345 | test = isl_union_map_copy(umap); |
| 4346 | test = isl_union_map_apply_domain(umap1: test, umap2: isl_union_map_copy(umap: partial)); |
| 4347 | test = isl_union_map_apply_range(umap1: test, umap2: isl_union_map_copy(umap: partial)); |
| 4348 | gt = isl_union_map_from_map(map: isl_map_lex_gt(set_space: space)); |
| 4349 | test = isl_union_map_intersect(umap1: test, umap2: gt); |
| 4350 | empty = isl_union_map_is_empty(umap: test); |
| 4351 | isl_union_map_free(umap: test); |
| 4352 | |
| 4353 | if (empty < 0 || !empty) { |
| 4354 | isl_union_map_free(umap: partial); |
| 4355 | return isl_bool_not(b: empty); |
| 4356 | } |
| 4357 | |
| 4358 | universe = isl_union_map_universe(umap: isl_union_map_copy(umap)); |
| 4359 | domain = isl_union_map_domain(umap: isl_union_map_copy(umap: universe)); |
| 4360 | range = isl_union_map_range(umap: universe); |
| 4361 | umap1 = isl_union_map_copy(umap: partial); |
| 4362 | umap1 = isl_union_map_intersect_domain(umap: umap1, uset: domain); |
| 4363 | umap2 = isl_union_map_intersect_domain(umap: partial, uset: range); |
| 4364 | test = isl_union_map_apply_range(umap1, umap2: isl_union_map_reverse(umap: umap2)); |
| 4365 | test = isl_union_map_intersect(umap1: test, umap2: isl_union_map_copy(umap)); |
| 4366 | after = after_in_child(umap: test, node); |
| 4367 | isl_union_map_free(umap: test); |
| 4368 | return after; |
| 4369 | } |
| 4370 | |
| 4371 | /* Is any domain element of "umap" scheduled after any of |
| 4372 | * the corresponding image elements by the tree rooted at |
| 4373 | * the context node "node"? |
| 4374 | * |
| 4375 | * The context constraints apply to the schedule domain, |
| 4376 | * so we cannot apply them directly to "umap", which contains |
| 4377 | * pairs of statement instances. Instead, we add them |
| 4378 | * to the range of the prefix schedule for both domain and |
| 4379 | * range of "umap". |
| 4380 | */ |
| 4381 | static isl_bool after_in_context(__isl_keep isl_union_map *umap, |
| 4382 | __isl_keep isl_schedule_node *node) |
| 4383 | { |
| 4384 | isl_union_map *prefix, *universe, *umap1, *umap2; |
| 4385 | isl_union_set *domain, *range; |
| 4386 | isl_set *context; |
| 4387 | isl_bool after; |
| 4388 | |
| 4389 | umap = isl_union_map_copy(umap); |
| 4390 | context = isl_schedule_node_context_get_context(node); |
| 4391 | prefix = isl_schedule_node_get_prefix_schedule_union_map(node); |
| 4392 | universe = isl_union_map_universe(umap: isl_union_map_copy(umap)); |
| 4393 | domain = isl_union_map_domain(umap: isl_union_map_copy(umap: universe)); |
| 4394 | range = isl_union_map_range(umap: universe); |
| 4395 | umap1 = isl_union_map_copy(umap: prefix); |
| 4396 | umap1 = isl_union_map_intersect_domain(umap: umap1, uset: domain); |
| 4397 | umap2 = isl_union_map_intersect_domain(umap: prefix, uset: range); |
| 4398 | umap1 = isl_union_map_intersect_range(umap: umap1, |
| 4399 | uset: isl_union_set_from_set(set: context)); |
| 4400 | umap1 = isl_union_map_apply_range(umap1, umap2: isl_union_map_reverse(umap: umap2)); |
| 4401 | umap = isl_union_map_intersect(umap1: umap, umap2: umap1); |
| 4402 | |
| 4403 | after = after_in_child(umap, node); |
| 4404 | |
| 4405 | isl_union_map_free(umap); |
| 4406 | |
| 4407 | return after; |
| 4408 | } |
| 4409 | |
| 4410 | /* Is any domain element of "umap" scheduled after any of |
| 4411 | * the corresponding image elements by the tree rooted at |
| 4412 | * the expansion node "node"? |
| 4413 | * |
| 4414 | * We apply the expansion to domain and range of "umap" and |
| 4415 | * continue with its child. |
| 4416 | */ |
| 4417 | static isl_bool after_in_expansion(__isl_keep isl_union_map *umap, |
| 4418 | __isl_keep isl_schedule_node *node) |
| 4419 | { |
| 4420 | isl_union_map *expansion; |
| 4421 | isl_bool after; |
| 4422 | |
| 4423 | expansion = isl_schedule_node_expansion_get_expansion(node); |
| 4424 | umap = isl_union_map_copy(umap); |
| 4425 | umap = isl_union_map_apply_domain(umap1: umap, umap2: isl_union_map_copy(umap: expansion)); |
| 4426 | umap = isl_union_map_apply_range(umap1: umap, umap2: expansion); |
| 4427 | |
| 4428 | after = after_in_child(umap, node); |
| 4429 | |
| 4430 | isl_union_map_free(umap); |
| 4431 | |
| 4432 | return after; |
| 4433 | } |
| 4434 | |
| 4435 | /* Is any domain element of "umap" scheduled after any of |
| 4436 | * the corresponding image elements by the tree rooted at |
| 4437 | * the extension node "node"? |
| 4438 | * |
| 4439 | * Since the extension node may add statement instances before or |
| 4440 | * after the pairs of statement instances in "umap", we return isl_bool_true |
| 4441 | * to ensure that these pairs are not broken up. |
| 4442 | */ |
| 4443 | static isl_bool after_in_extension(__isl_keep isl_union_map *umap, |
| 4444 | __isl_keep isl_schedule_node *node) |
| 4445 | { |
| 4446 | return isl_bool_true; |
| 4447 | } |
| 4448 | |
| 4449 | /* Is any domain element of "umap" scheduled after any of |
| 4450 | * the corresponding image elements by the tree rooted at |
| 4451 | * the filter node "node"? |
| 4452 | * |
| 4453 | * We intersect domain and range of "umap" with the filter and |
| 4454 | * continue with its child. |
| 4455 | */ |
| 4456 | static isl_bool after_in_filter(__isl_keep isl_union_map *umap, |
| 4457 | __isl_keep isl_schedule_node *node) |
| 4458 | { |
| 4459 | isl_union_set *filter; |
| 4460 | isl_bool after; |
| 4461 | |
| 4462 | umap = isl_union_map_copy(umap); |
| 4463 | filter = isl_schedule_node_filter_get_filter(node); |
| 4464 | umap = isl_union_map_intersect_domain(umap, uset: isl_union_set_copy(uset: filter)); |
| 4465 | umap = isl_union_map_intersect_range(umap, uset: filter); |
| 4466 | |
| 4467 | after = after_in_child(umap, node); |
| 4468 | |
| 4469 | isl_union_map_free(umap); |
| 4470 | |
| 4471 | return after; |
| 4472 | } |
| 4473 | |
| 4474 | /* Is any domain element of "umap" scheduled after any of |
| 4475 | * the corresponding image elements by the tree rooted at |
| 4476 | * the set node "node"? |
| 4477 | * |
| 4478 | * This is only the case if this condition holds in any |
| 4479 | * of the (filter) children of the set node. |
| 4480 | * In particular, if the domain and the range of "umap" |
| 4481 | * are contained in different children, then the condition |
| 4482 | * does not hold. |
| 4483 | */ |
| 4484 | static isl_bool after_in_set(__isl_keep isl_union_map *umap, |
| 4485 | __isl_keep isl_schedule_node *node) |
| 4486 | { |
| 4487 | int i; |
| 4488 | isl_size n; |
| 4489 | |
| 4490 | n = isl_schedule_node_n_children(node); |
| 4491 | if (n < 0) |
| 4492 | return isl_bool_error; |
| 4493 | for (i = 0; i < n; ++i) { |
| 4494 | isl_schedule_node *child; |
| 4495 | isl_bool after; |
| 4496 | |
| 4497 | child = isl_schedule_node_get_child(node, pos: i); |
| 4498 | after = after_in_tree(umap, node: child); |
| 4499 | isl_schedule_node_free(node: child); |
| 4500 | |
| 4501 | if (after < 0 || after) |
| 4502 | return after; |
| 4503 | } |
| 4504 | |
| 4505 | return isl_bool_false; |
| 4506 | } |
| 4507 | |
| 4508 | /* Return the filter of child "i" of "node". |
| 4509 | */ |
| 4510 | static __isl_give isl_union_set *child_filter( |
| 4511 | __isl_keep isl_schedule_node *node, int i) |
| 4512 | { |
| 4513 | isl_schedule_node *child; |
| 4514 | isl_union_set *filter; |
| 4515 | |
| 4516 | child = isl_schedule_node_get_child(node, pos: i); |
| 4517 | filter = isl_schedule_node_filter_get_filter(node: child); |
| 4518 | isl_schedule_node_free(node: child); |
| 4519 | |
| 4520 | return filter; |
| 4521 | } |
| 4522 | |
| 4523 | /* Is any domain element of "umap" scheduled after any of |
| 4524 | * the corresponding image elements by the tree rooted at |
| 4525 | * the sequence node "node"? |
| 4526 | * |
| 4527 | * This happens in particular if any domain element is |
| 4528 | * contained in a later child than one containing a range element or |
| 4529 | * if the condition holds within a given child in the sequence. |
| 4530 | * The later part of the condition is checked by after_in_set. |
| 4531 | */ |
| 4532 | static isl_bool after_in_sequence(__isl_keep isl_union_map *umap, |
| 4533 | __isl_keep isl_schedule_node *node) |
| 4534 | { |
| 4535 | int i, j; |
| 4536 | isl_size n; |
| 4537 | isl_union_map *umap_i; |
| 4538 | isl_bool empty; |
| 4539 | isl_bool after = isl_bool_false; |
| 4540 | |
| 4541 | n = isl_schedule_node_n_children(node); |
| 4542 | if (n < 0) |
| 4543 | return isl_bool_error; |
| 4544 | for (i = 1; i < n; ++i) { |
| 4545 | isl_union_set *filter_i; |
| 4546 | |
| 4547 | umap_i = isl_union_map_copy(umap); |
| 4548 | filter_i = child_filter(node, i); |
| 4549 | umap_i = isl_union_map_intersect_domain(umap: umap_i, uset: filter_i); |
| 4550 | empty = isl_union_map_is_empty(umap: umap_i); |
| 4551 | if (empty < 0) |
| 4552 | goto error; |
| 4553 | if (empty) { |
| 4554 | isl_union_map_free(umap: umap_i); |
| 4555 | continue; |
| 4556 | } |
| 4557 | |
| 4558 | for (j = 0; j < i; ++j) { |
| 4559 | isl_union_set *filter_j; |
| 4560 | isl_union_map *umap_ij; |
| 4561 | |
| 4562 | umap_ij = isl_union_map_copy(umap: umap_i); |
| 4563 | filter_j = child_filter(node, i: j); |
| 4564 | umap_ij = isl_union_map_intersect_range(umap: umap_ij, |
| 4565 | uset: filter_j); |
| 4566 | empty = isl_union_map_is_empty(umap: umap_ij); |
| 4567 | isl_union_map_free(umap: umap_ij); |
| 4568 | |
| 4569 | if (empty < 0) |
| 4570 | goto error; |
| 4571 | if (!empty) |
| 4572 | after = isl_bool_true; |
| 4573 | if (after) |
| 4574 | break; |
| 4575 | } |
| 4576 | |
| 4577 | isl_union_map_free(umap: umap_i); |
| 4578 | if (after) |
| 4579 | break; |
| 4580 | } |
| 4581 | |
| 4582 | if (after < 0 || after) |
| 4583 | return after; |
| 4584 | |
| 4585 | return after_in_set(umap, node); |
| 4586 | error: |
| 4587 | isl_union_map_free(umap: umap_i); |
| 4588 | return isl_bool_error; |
| 4589 | } |
| 4590 | |
| 4591 | /* Is any domain element of "umap" scheduled after any of |
| 4592 | * the corresponding image elements by the tree rooted at "node"? |
| 4593 | * |
| 4594 | * If "umap" is empty, then clearly there is no such element. |
| 4595 | * Otherwise, consider the different types of nodes separately. |
| 4596 | */ |
| 4597 | static isl_bool after_in_tree(__isl_keep isl_union_map *umap, |
| 4598 | __isl_keep isl_schedule_node *node) |
| 4599 | { |
| 4600 | isl_bool empty; |
| 4601 | enum isl_schedule_node_type type; |
| 4602 | |
| 4603 | empty = isl_union_map_is_empty(umap); |
| 4604 | if (empty < 0) |
| 4605 | return isl_bool_error; |
| 4606 | if (empty) |
| 4607 | return isl_bool_false; |
| 4608 | if (!node) |
| 4609 | return isl_bool_error; |
| 4610 | |
| 4611 | type = isl_schedule_node_get_type(node); |
| 4612 | switch (type) { |
| 4613 | case isl_schedule_node_error: |
| 4614 | return isl_bool_error; |
| 4615 | case isl_schedule_node_leaf: |
| 4616 | return isl_bool_false; |
| 4617 | case isl_schedule_node_band: |
| 4618 | return after_in_band(umap, node); |
| 4619 | case isl_schedule_node_domain: |
| 4620 | isl_die(isl_schedule_node_get_ctx(node), isl_error_internal, |
| 4621 | "unexpected internal domain node" , |
| 4622 | return isl_bool_error); |
| 4623 | case isl_schedule_node_context: |
| 4624 | return after_in_context(umap, node); |
| 4625 | case isl_schedule_node_expansion: |
| 4626 | return after_in_expansion(umap, node); |
| 4627 | case isl_schedule_node_extension: |
| 4628 | return after_in_extension(umap, node); |
| 4629 | case isl_schedule_node_filter: |
| 4630 | return after_in_filter(umap, node); |
| 4631 | case isl_schedule_node_guard: |
| 4632 | case isl_schedule_node_mark: |
| 4633 | return after_in_child(umap, node); |
| 4634 | case isl_schedule_node_set: |
| 4635 | return after_in_set(umap, node); |
| 4636 | case isl_schedule_node_sequence: |
| 4637 | return after_in_sequence(umap, node); |
| 4638 | } |
| 4639 | |
| 4640 | return isl_bool_true; |
| 4641 | } |
| 4642 | |
| 4643 | /* Is any domain element of "map1" scheduled after any domain |
| 4644 | * element of "map2" by the subtree underneath the current band node, |
| 4645 | * while at the same time being scheduled together by the current |
| 4646 | * band node, i.e., by "map1" and "map2? |
| 4647 | * |
| 4648 | * If the child of the current band node is a leaf, then |
| 4649 | * no element can be scheduled after any other element. |
| 4650 | * |
| 4651 | * Otherwise, we construct a relation between domain elements |
| 4652 | * of "map1" and domain elements of "map2" that are scheduled |
| 4653 | * together and then check if the subtree underneath the current |
| 4654 | * band node determines their relative order. |
| 4655 | */ |
| 4656 | static isl_bool after_in_subtree(__isl_keep isl_ast_build *build, |
| 4657 | __isl_keep isl_map *map1, __isl_keep isl_map *map2) |
| 4658 | { |
| 4659 | isl_schedule_node *node; |
| 4660 | isl_map *map; |
| 4661 | isl_union_map *umap; |
| 4662 | isl_bool after; |
| 4663 | |
| 4664 | node = isl_ast_build_get_schedule_node(build); |
| 4665 | if (!node) |
| 4666 | return isl_bool_error; |
| 4667 | node = isl_schedule_node_child(node, pos: 0); |
| 4668 | if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf) { |
| 4669 | isl_schedule_node_free(node); |
| 4670 | return isl_bool_false; |
| 4671 | } |
| 4672 | map = isl_map_copy(map: map2); |
| 4673 | map = isl_map_apply_domain(map1: map, map2: isl_map_copy(map: map1)); |
| 4674 | umap = isl_union_map_from_map(map); |
| 4675 | after = after_in_tree(umap, node); |
| 4676 | isl_union_map_free(umap); |
| 4677 | isl_schedule_node_free(node); |
| 4678 | return after; |
| 4679 | } |
| 4680 | |
| 4681 | /* Internal data for any_scheduled_after. |
| 4682 | * |
| 4683 | * "build" is the build in which the AST is constructed. |
| 4684 | * "depth" is the number of loops that have already been generated |
| 4685 | * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled |
| 4686 | * "domain" is an array of set-map pairs corresponding to the different |
| 4687 | * iteration domains. The set is the schedule domain, i.e., the domain |
| 4688 | * of the inverse schedule, while the map is the inverse schedule itself. |
| 4689 | */ |
| 4690 | struct isl_any_scheduled_after_data { |
| 4691 | isl_ast_build *build; |
| 4692 | int depth; |
| 4693 | int group_coscheduled; |
| 4694 | struct isl_set_map_pair *domain; |
| 4695 | }; |
| 4696 | |
| 4697 | /* Is any element of domain "i" scheduled after any element of domain "j" |
| 4698 | * (for a common iteration of the first data->depth loops)? |
| 4699 | * |
| 4700 | * data->domain[i].set contains the domain of the inverse schedule |
| 4701 | * for domain "i", i.e., elements in the schedule domain. |
| 4702 | * |
| 4703 | * If we are inside a band of a schedule tree and there is a pair |
| 4704 | * of elements in the two domains that is schedule together by |
| 4705 | * the current band, then we check if any element of "i" may be schedule |
| 4706 | * after element of "j" by the descendants of the band node. |
| 4707 | * |
| 4708 | * If data->group_coscheduled is set, then we also return 1 if there |
| 4709 | * is any pair of elements in the two domains that are scheduled together. |
| 4710 | */ |
| 4711 | static isl_bool any_scheduled_after(int i, int j, void *user) |
| 4712 | { |
| 4713 | struct isl_any_scheduled_after_data *data = user; |
| 4714 | isl_size dim = isl_set_dim(set: data->domain[i].set, type: isl_dim_set); |
| 4715 | int pos; |
| 4716 | |
| 4717 | if (dim < 0) |
| 4718 | return isl_bool_error; |
| 4719 | |
| 4720 | for (pos = data->depth; pos < dim; ++pos) { |
| 4721 | int follows; |
| 4722 | |
| 4723 | follows = isl_set_follows_at(set1: data->domain[i].set, |
| 4724 | set2: data->domain[j].set, pos); |
| 4725 | |
| 4726 | if (follows < -1) |
| 4727 | return isl_bool_error; |
| 4728 | if (follows > 0) |
| 4729 | return isl_bool_true; |
| 4730 | if (follows < 0) |
| 4731 | return isl_bool_false; |
| 4732 | } |
| 4733 | |
| 4734 | if (isl_ast_build_has_schedule_node(build: data->build)) { |
| 4735 | isl_bool after; |
| 4736 | |
| 4737 | after = after_in_subtree(build: data->build, map1: data->domain[i].map, |
| 4738 | map2: data->domain[j].map); |
| 4739 | if (after < 0 || after) |
| 4740 | return after; |
| 4741 | } |
| 4742 | |
| 4743 | return isl_bool_ok(b: data->group_coscheduled); |
| 4744 | } |
| 4745 | |
| 4746 | /* Look for independent components at the current depth and generate code |
| 4747 | * for each component separately. The resulting lists of grafts are |
| 4748 | * merged in an attempt to combine grafts with identical guards. |
| 4749 | * |
| 4750 | * Code for two domains can be generated separately if all the elements |
| 4751 | * of one domain are scheduled before (or together with) all the elements |
| 4752 | * of the other domain. We therefore consider the graph with as nodes |
| 4753 | * the domains and an edge between two nodes if any element of the first |
| 4754 | * node is scheduled after any element of the second node. |
| 4755 | * If the ast_build_group_coscheduled is set, then we also add an edge if |
| 4756 | * there is any pair of elements in the two domains that are scheduled |
| 4757 | * together. |
| 4758 | * Code is then generated (by generate_component) |
| 4759 | * for each of the strongly connected components in this graph |
| 4760 | * in their topological order. |
| 4761 | * |
| 4762 | * Since the test is performed on the domain of the inverse schedules of |
| 4763 | * the different domains, we precompute these domains and store |
| 4764 | * them in data.domain. |
| 4765 | */ |
| 4766 | static __isl_give isl_ast_graft_list *generate_components( |
| 4767 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
| 4768 | { |
| 4769 | int i; |
| 4770 | isl_ctx *ctx = isl_ast_build_get_ctx(build); |
| 4771 | isl_size n = isl_union_map_n_map(umap: executed); |
| 4772 | isl_size depth; |
| 4773 | struct isl_any_scheduled_after_data data; |
| 4774 | struct isl_set_map_pair *next; |
| 4775 | struct isl_tarjan_graph *g = NULL; |
| 4776 | isl_ast_graft_list *list = NULL; |
| 4777 | int n_domain = 0; |
| 4778 | |
| 4779 | data.domain = NULL; |
| 4780 | if (n < 0) |
| 4781 | goto error; |
| 4782 | data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n); |
| 4783 | if (!data.domain) |
| 4784 | goto error; |
| 4785 | n_domain = n; |
| 4786 | |
| 4787 | next = data.domain; |
| 4788 | if (isl_union_map_foreach_map(umap: executed, fn: &extract_domain, user: &next) < 0) |
| 4789 | goto error; |
| 4790 | |
| 4791 | depth = isl_ast_build_get_depth(build); |
| 4792 | if (depth < 0) |
| 4793 | goto error; |
| 4794 | data.build = build; |
| 4795 | data.depth = depth; |
| 4796 | data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx); |
| 4797 | g = isl_tarjan_graph_init(ctx, len: n, follows: &any_scheduled_after, user: &data); |
| 4798 | if (!g) |
| 4799 | goto error; |
| 4800 | |
| 4801 | list = isl_ast_graft_list_alloc(ctx, n: 0); |
| 4802 | |
| 4803 | i = 0; |
| 4804 | while (list && n) { |
| 4805 | isl_ast_graft_list *list_c; |
| 4806 | int first = i; |
| 4807 | |
| 4808 | if (g->order[i] == -1) |
| 4809 | isl_die(ctx, isl_error_internal, "cannot happen" , |
| 4810 | goto error); |
| 4811 | ++i; --n; |
| 4812 | while (g->order[i] != -1) { |
| 4813 | ++i; --n; |
| 4814 | } |
| 4815 | |
| 4816 | list_c = generate_component(domain: data.domain, |
| 4817 | order: g->order + first, n: i - first, |
| 4818 | build: isl_ast_build_copy(build)); |
| 4819 | list = isl_ast_graft_list_merge(list1: list, list2: list_c, build); |
| 4820 | |
| 4821 | ++i; |
| 4822 | } |
| 4823 | |
| 4824 | if (0) |
| 4825 | error: list = isl_ast_graft_list_free(list); |
| 4826 | isl_tarjan_graph_free(g); |
| 4827 | for (i = 0; i < n_domain; ++i) { |
| 4828 | isl_map_free(map: data.domain[i].map); |
| 4829 | isl_set_free(set: data.domain[i].set); |
| 4830 | } |
| 4831 | free(ptr: data.domain); |
| 4832 | isl_union_map_free(umap: executed); |
| 4833 | isl_ast_build_free(build); |
| 4834 | |
| 4835 | return list; |
| 4836 | } |
| 4837 | |
| 4838 | /* Generate code for the next level (and all inner levels). |
| 4839 | * |
| 4840 | * If "executed" is empty, i.e., no code needs to be generated, |
| 4841 | * then we return an empty list. |
| 4842 | * |
| 4843 | * If we have already generated code for all loop levels, then we pass |
| 4844 | * control to generate_inner_level. |
| 4845 | * |
| 4846 | * If "executed" lives in a single space, i.e., if code needs to be |
| 4847 | * generated for a single domain, then there can only be a single |
| 4848 | * component and we go directly to generate_shifted_component. |
| 4849 | * Otherwise, we call generate_components to detect the components |
| 4850 | * and to call generate_component on each of them separately. |
| 4851 | */ |
| 4852 | static __isl_give isl_ast_graft_list *generate_next_level( |
| 4853 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
| 4854 | { |
| 4855 | isl_size depth; |
| 4856 | isl_size dim; |
| 4857 | isl_size n; |
| 4858 | |
| 4859 | if (!build || !executed) |
| 4860 | goto error; |
| 4861 | |
| 4862 | if (isl_union_map_is_empty(umap: executed)) { |
| 4863 | isl_ctx *ctx = isl_ast_build_get_ctx(build); |
| 4864 | isl_union_map_free(umap: executed); |
| 4865 | isl_ast_build_free(build); |
| 4866 | return isl_ast_graft_list_alloc(ctx, n: 0); |
| 4867 | } |
| 4868 | |
| 4869 | depth = isl_ast_build_get_depth(build); |
| 4870 | dim = isl_ast_build_dim(build, type: isl_dim_set); |
| 4871 | if (depth < 0 || dim < 0) |
| 4872 | goto error; |
| 4873 | if (depth >= dim) |
| 4874 | return generate_inner_level(executed, build); |
| 4875 | |
| 4876 | n = isl_union_map_n_map(umap: executed); |
| 4877 | if (n < 0) |
| 4878 | goto error; |
| 4879 | if (n == 1) |
| 4880 | return generate_shifted_component(executed, build); |
| 4881 | |
| 4882 | return generate_components(executed, build); |
| 4883 | error: |
| 4884 | isl_union_map_free(umap: executed); |
| 4885 | isl_ast_build_free(build); |
| 4886 | return NULL; |
| 4887 | } |
| 4888 | |
| 4889 | /* Internal data structure used by isl_ast_build_node_from_schedule_map. |
| 4890 | * internal, executed and build are the inputs to generate_code. |
| 4891 | * list collects the output. |
| 4892 | */ |
| 4893 | struct isl_generate_code_data { |
| 4894 | int internal; |
| 4895 | isl_union_map *executed; |
| 4896 | isl_ast_build *build; |
| 4897 | |
| 4898 | isl_ast_graft_list *list; |
| 4899 | }; |
| 4900 | |
| 4901 | /* Given an inverse schedule in terms of the external build schedule, i.e., |
| 4902 | * |
| 4903 | * [E -> S] -> D |
| 4904 | * |
| 4905 | * with E the external build schedule and S the additional schedule "space", |
| 4906 | * reformulate the inverse schedule in terms of the internal schedule domain, |
| 4907 | * i.e., return |
| 4908 | * |
| 4909 | * [I -> S] -> D |
| 4910 | * |
| 4911 | * We first obtain a mapping |
| 4912 | * |
| 4913 | * I -> E |
| 4914 | * |
| 4915 | * take the inverse and the product with S -> S, resulting in |
| 4916 | * |
| 4917 | * [I -> S] -> [E -> S] |
| 4918 | * |
| 4919 | * Applying the map to the input produces the desired result. |
| 4920 | */ |
| 4921 | static __isl_give isl_union_map *internal_executed( |
| 4922 | __isl_take isl_union_map *executed, __isl_keep isl_space *space, |
| 4923 | __isl_keep isl_ast_build *build) |
| 4924 | { |
| 4925 | isl_map *id, *proj; |
| 4926 | |
| 4927 | proj = isl_ast_build_get_schedule_map(build); |
| 4928 | proj = isl_map_reverse(map: proj); |
| 4929 | space = isl_space_map_from_set(space: isl_space_copy(space)); |
| 4930 | id = isl_map_identity(space); |
| 4931 | proj = isl_map_product(map1: proj, map2: id); |
| 4932 | executed = isl_union_map_apply_domain(umap1: executed, |
| 4933 | umap2: isl_union_map_from_map(map: proj)); |
| 4934 | return executed; |
| 4935 | } |
| 4936 | |
| 4937 | /* Generate an AST that visits the elements in the range of data->executed |
| 4938 | * in the relative order specified by the corresponding domain element(s) |
| 4939 | * for those domain elements that belong to "set". |
| 4940 | * Add the result to data->list. |
| 4941 | * |
| 4942 | * The caller ensures that "set" is a universe domain. |
| 4943 | * "space" is the space of the additional part of the schedule. |
| 4944 | * It is equal to the space of "set" if build->domain is parametric. |
| 4945 | * Otherwise, it is equal to the range of the wrapped space of "set". |
| 4946 | * |
| 4947 | * If the build space is not parametric and |
| 4948 | * if isl_ast_build_node_from_schedule_map |
| 4949 | * was called from an outside user (data->internal not set), then |
| 4950 | * the (inverse) schedule refers to the external build domain and needs to |
| 4951 | * be transformed to refer to the internal build domain. |
| 4952 | * |
| 4953 | * If the build space is parametric, then we add some of the parameter |
| 4954 | * constraints to the executed relation. Adding these constraints |
| 4955 | * allows for an earlier detection of conflicts in some cases. |
| 4956 | * However, we do not want to divide the executed relation into |
| 4957 | * more disjuncts than necessary. We therefore approximate |
| 4958 | * the constraints on the parameters by a single disjunct set. |
| 4959 | * |
| 4960 | * The build is extended to include the additional part of the schedule. |
| 4961 | * If the original build space was not parametric, then the options |
| 4962 | * in data->build refer only to the additional part of the schedule |
| 4963 | * and they need to be adjusted to refer to the complete AST build |
| 4964 | * domain. |
| 4965 | * |
| 4966 | * After having adjusted inverse schedule and build, we start generating |
| 4967 | * code with the outer loop of the current code generation |
| 4968 | * in generate_next_level. |
| 4969 | * |
| 4970 | * If the original build space was not parametric, we undo the embedding |
| 4971 | * on the resulting isl_ast_node_list so that it can be used within |
| 4972 | * the outer AST build. |
| 4973 | */ |
| 4974 | static isl_stat generate_code_in_space(struct isl_generate_code_data *data, |
| 4975 | __isl_take isl_set *set, __isl_take isl_space *space) |
| 4976 | { |
| 4977 | isl_union_map *executed; |
| 4978 | isl_ast_build *build; |
| 4979 | isl_ast_graft_list *list; |
| 4980 | int embed; |
| 4981 | |
| 4982 | executed = isl_union_map_copy(umap: data->executed); |
| 4983 | executed = isl_union_map_intersect_domain(umap: executed, |
| 4984 | uset: isl_union_set_from_set(set)); |
| 4985 | |
| 4986 | embed = !isl_set_is_params(set: data->build->domain); |
| 4987 | if (embed && !data->internal) |
| 4988 | executed = internal_executed(executed, space, build: data->build); |
| 4989 | if (!embed) { |
| 4990 | isl_set *domain; |
| 4991 | domain = isl_ast_build_get_domain(build: data->build); |
| 4992 | domain = isl_set_from_basic_set(bset: isl_set_simple_hull(set: domain)); |
| 4993 | executed = isl_union_map_intersect_params(umap: executed, set: domain); |
| 4994 | } |
| 4995 | |
| 4996 | build = isl_ast_build_copy(build: data->build); |
| 4997 | build = isl_ast_build_product(build, embedding: space); |
| 4998 | |
| 4999 | list = generate_next_level(executed, build); |
| 5000 | |
| 5001 | list = isl_ast_graft_list_unembed(list, product: embed); |
| 5002 | |
| 5003 | data->list = isl_ast_graft_list_concat(list1: data->list, list2: list); |
| 5004 | |
| 5005 | return isl_stat_ok; |
| 5006 | } |
| 5007 | |
| 5008 | /* Generate an AST that visits the elements in the range of data->executed |
| 5009 | * in the relative order specified by the corresponding domain element(s) |
| 5010 | * for those domain elements that belong to "set". |
| 5011 | * Add the result to data->list. |
| 5012 | * |
| 5013 | * The caller ensures that "set" is a universe domain. |
| 5014 | * |
| 5015 | * If the build space S is not parametric, then the space of "set" |
| 5016 | * need to be a wrapped relation with S as domain. That is, it needs |
| 5017 | * to be of the form |
| 5018 | * |
| 5019 | * [S -> T] |
| 5020 | * |
| 5021 | * Check this property and pass control to generate_code_in_space |
| 5022 | * passing along T. |
| 5023 | * If the build space is not parametric, then T is the space of "set". |
| 5024 | */ |
| 5025 | static isl_stat generate_code_set(__isl_take isl_set *set, void *user) |
| 5026 | { |
| 5027 | struct isl_generate_code_data *data = user; |
| 5028 | isl_space *space, *build_space; |
| 5029 | int is_domain; |
| 5030 | |
| 5031 | space = isl_set_get_space(set); |
| 5032 | |
| 5033 | if (isl_set_is_params(set: data->build->domain)) |
| 5034 | return generate_code_in_space(data, set, space); |
| 5035 | |
| 5036 | build_space = isl_ast_build_get_space(build: data->build, internal: data->internal); |
| 5037 | space = isl_space_unwrap(space); |
| 5038 | is_domain = isl_space_is_domain(space1: build_space, space2: space); |
| 5039 | isl_space_free(space: build_space); |
| 5040 | space = isl_space_range(space); |
| 5041 | |
| 5042 | if (is_domain < 0) |
| 5043 | goto error; |
| 5044 | if (!is_domain) |
| 5045 | isl_die(isl_set_get_ctx(set), isl_error_invalid, |
| 5046 | "invalid nested schedule space" , goto error); |
| 5047 | |
| 5048 | return generate_code_in_space(data, set, space); |
| 5049 | error: |
| 5050 | isl_set_free(set); |
| 5051 | isl_space_free(space); |
| 5052 | return isl_stat_error; |
| 5053 | } |
| 5054 | |
| 5055 | /* Generate an AST that visits the elements in the range of "executed" |
| 5056 | * in the relative order specified by the corresponding domain element(s). |
| 5057 | * |
| 5058 | * "build" is an isl_ast_build that has either been constructed by |
| 5059 | * isl_ast_build_from_context or passed to a callback set by |
| 5060 | * isl_ast_build_set_create_leaf. |
| 5061 | * In the first case, the space of the isl_ast_build is typically |
| 5062 | * a parametric space, although this is currently not enforced. |
| 5063 | * In the second case, the space is never a parametric space. |
| 5064 | * If the space S is not parametric, then the domain space(s) of "executed" |
| 5065 | * need to be wrapped relations with S as domain. |
| 5066 | * |
| 5067 | * If the domain of "executed" consists of several spaces, then an AST |
| 5068 | * is generated for each of them (in arbitrary order) and the results |
| 5069 | * are concatenated. |
| 5070 | * |
| 5071 | * If "internal" is set, then the domain "S" above refers to the internal |
| 5072 | * schedule domain representation. Otherwise, it refers to the external |
| 5073 | * representation, as returned by isl_ast_build_get_schedule_space. |
| 5074 | * |
| 5075 | * We essentially run over all the spaces in the domain of "executed" |
| 5076 | * and call generate_code_set on each of them. |
| 5077 | */ |
| 5078 | static __isl_give isl_ast_graft_list *generate_code( |
| 5079 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build, |
| 5080 | int internal) |
| 5081 | { |
| 5082 | isl_ctx *ctx; |
| 5083 | struct isl_generate_code_data data = { 0 }; |
| 5084 | isl_space *space; |
| 5085 | isl_union_set *schedule_domain; |
| 5086 | isl_union_map *universe; |
| 5087 | |
| 5088 | if (!build) |
| 5089 | goto error; |
| 5090 | space = isl_ast_build_get_space(build, internal: 1); |
| 5091 | space = isl_space_align_params(space1: space, |
| 5092 | space2: isl_union_map_get_space(umap: executed)); |
| 5093 | space = isl_space_align_params(space1: space, |
| 5094 | space2: isl_union_map_get_space(umap: build->options)); |
| 5095 | build = isl_ast_build_align_params(build, model: isl_space_copy(space)); |
| 5096 | executed = isl_union_map_align_params(umap: executed, model: space); |
| 5097 | if (!executed || !build) |
| 5098 | goto error; |
| 5099 | |
| 5100 | ctx = isl_ast_build_get_ctx(build); |
| 5101 | |
| 5102 | data.internal = internal; |
| 5103 | data.executed = executed; |
| 5104 | data.build = build; |
| 5105 | data.list = isl_ast_graft_list_alloc(ctx, n: 0); |
| 5106 | |
| 5107 | universe = isl_union_map_universe(umap: isl_union_map_copy(umap: executed)); |
| 5108 | schedule_domain = isl_union_map_domain(umap: universe); |
| 5109 | if (isl_union_set_foreach_set(uset: schedule_domain, fn: &generate_code_set, |
| 5110 | user: &data) < 0) |
| 5111 | data.list = isl_ast_graft_list_free(list: data.list); |
| 5112 | |
| 5113 | isl_union_set_free(uset: schedule_domain); |
| 5114 | isl_union_map_free(umap: executed); |
| 5115 | |
| 5116 | isl_ast_build_free(build); |
| 5117 | return data.list; |
| 5118 | error: |
| 5119 | isl_union_map_free(umap: executed); |
| 5120 | isl_ast_build_free(build); |
| 5121 | return NULL; |
| 5122 | } |
| 5123 | |
| 5124 | /* Generate an AST that visits the elements in the domain of "schedule" |
| 5125 | * in the relative order specified by the corresponding image element(s). |
| 5126 | * |
| 5127 | * "build" is an isl_ast_build that has either been constructed by |
| 5128 | * isl_ast_build_from_context or passed to a callback set by |
| 5129 | * isl_ast_build_set_create_leaf. |
| 5130 | * In the first case, the space of the isl_ast_build is typically |
| 5131 | * a parametric space, although this is currently not enforced. |
| 5132 | * In the second case, the space is never a parametric space. |
| 5133 | * If the space S is not parametric, then the range space(s) of "schedule" |
| 5134 | * need to be wrapped relations with S as domain. |
| 5135 | * |
| 5136 | * If the range of "schedule" consists of several spaces, then an AST |
| 5137 | * is generated for each of them (in arbitrary order) and the results |
| 5138 | * are concatenated. |
| 5139 | * |
| 5140 | * We first initialize the local copies of the relevant options. |
| 5141 | * We do this here rather than when the isl_ast_build is created |
| 5142 | * because the options may have changed between the construction |
| 5143 | * of the isl_ast_build and the call to isl_generate_code. |
| 5144 | * |
| 5145 | * The main computation is performed on an inverse schedule (with |
| 5146 | * the schedule domain in the domain and the elements to be executed |
| 5147 | * in the range) called "executed". |
| 5148 | */ |
| 5149 | __isl_give isl_ast_node *isl_ast_build_node_from_schedule_map( |
| 5150 | __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule) |
| 5151 | { |
| 5152 | isl_ast_graft_list *list; |
| 5153 | isl_ast_node *node; |
| 5154 | isl_union_map *executed; |
| 5155 | |
| 5156 | build = isl_ast_build_copy(build); |
| 5157 | build = isl_ast_build_set_single_valued(build, sv: 0); |
| 5158 | schedule = isl_union_map_coalesce(umap: schedule); |
| 5159 | schedule = isl_union_map_remove_redundancies(umap: schedule); |
| 5160 | executed = isl_union_map_reverse(umap: schedule); |
| 5161 | list = generate_code(executed, build: isl_ast_build_copy(build), internal: 0); |
| 5162 | node = isl_ast_node_from_graft_list(list, build); |
| 5163 | isl_ast_build_free(build); |
| 5164 | |
| 5165 | return node; |
| 5166 | } |
| 5167 | |
| 5168 | /* The old name for isl_ast_build_node_from_schedule_map. |
| 5169 | * It is being kept for backward compatibility, but |
| 5170 | * it will be removed in the future. |
| 5171 | */ |
| 5172 | __isl_give isl_ast_node *isl_ast_build_ast_from_schedule( |
| 5173 | __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule) |
| 5174 | { |
| 5175 | return isl_ast_build_node_from_schedule_map(build, schedule); |
| 5176 | } |
| 5177 | |
| 5178 | /* Generate an AST that visits the elements in the domain of "executed" |
| 5179 | * in the relative order specified by the leaf node "node". |
| 5180 | * |
| 5181 | * The relation "executed" maps the outer generated loop iterators |
| 5182 | * to the domain elements executed by those iterations. |
| 5183 | * |
| 5184 | * Simply pass control to generate_inner_level. |
| 5185 | * Note that the current build does not refer to any band node, so |
| 5186 | * that generate_inner_level will not try to visit the child of |
| 5187 | * the leaf node. |
| 5188 | * |
| 5189 | * If multiple statement instances reach a leaf, |
| 5190 | * then they can be executed in any order. |
| 5191 | * Group the list of grafts based on shared guards |
| 5192 | * such that identical guards are only generated once |
| 5193 | * when the list is eventually passed on to isl_ast_graft_list_fuse. |
| 5194 | */ |
| 5195 | static __isl_give isl_ast_graft_list *build_ast_from_leaf( |
| 5196 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
| 5197 | __isl_take isl_union_map *executed) |
| 5198 | { |
| 5199 | isl_ast_graft_list *list; |
| 5200 | |
| 5201 | isl_schedule_node_free(node); |
| 5202 | list = generate_inner_level(executed, build: isl_ast_build_copy(build)); |
| 5203 | list = isl_ast_graft_list_group_on_guard(list, build); |
| 5204 | isl_ast_build_free(build); |
| 5205 | |
| 5206 | return list; |
| 5207 | } |
| 5208 | |
| 5209 | /* Check that the band partial schedule "partial" does not filter out |
| 5210 | * any statement instances, as specified by the range of "executed". |
| 5211 | */ |
| 5212 | static isl_stat check_band_schedule_total_on_instances( |
| 5213 | __isl_keep isl_multi_union_pw_aff *partial, |
| 5214 | __isl_keep isl_union_map *executed) |
| 5215 | { |
| 5216 | isl_bool subset; |
| 5217 | isl_union_set *domain, *instances; |
| 5218 | |
| 5219 | instances = isl_union_map_range(umap: isl_union_map_copy(umap: executed)); |
| 5220 | partial = isl_multi_union_pw_aff_copy(multi: partial); |
| 5221 | domain = isl_multi_union_pw_aff_domain(mupa: partial); |
| 5222 | subset = isl_union_set_is_subset(uset1: instances, uset2: domain); |
| 5223 | isl_union_set_free(uset: domain); |
| 5224 | isl_union_set_free(uset: instances); |
| 5225 | |
| 5226 | if (subset < 0) |
| 5227 | return isl_stat_error; |
| 5228 | if (!subset) |
| 5229 | isl_die(isl_union_map_get_ctx(executed), isl_error_invalid, |
| 5230 | "band node is not allowed to drop statement instances" , |
| 5231 | return isl_stat_error); |
| 5232 | return isl_stat_ok; |
| 5233 | } |
| 5234 | |
| 5235 | /* Generate an AST that visits the elements in the domain of "executed" |
| 5236 | * in the relative order specified by the band node "node" and its descendants. |
| 5237 | * |
| 5238 | * The relation "executed" maps the outer generated loop iterators |
| 5239 | * to the domain elements executed by those iterations. |
| 5240 | * |
| 5241 | * If the band is empty, we continue with its descendants. |
| 5242 | * Otherwise, we extend the build and the inverse schedule with |
| 5243 | * the additional space/partial schedule and continue generating |
| 5244 | * an AST in generate_next_level. |
| 5245 | * As soon as we have extended the inverse schedule with the additional |
| 5246 | * partial schedule, we look for equalities that may exists between |
| 5247 | * the old and the new part. |
| 5248 | */ |
| 5249 | static __isl_give isl_ast_graft_list *build_ast_from_band( |
| 5250 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
| 5251 | __isl_take isl_union_map *executed) |
| 5252 | { |
| 5253 | isl_space *space; |
| 5254 | isl_multi_union_pw_aff *; |
| 5255 | isl_union_map *; |
| 5256 | isl_ast_graft_list *list; |
| 5257 | isl_size n1, n2; |
| 5258 | isl_size n; |
| 5259 | |
| 5260 | n = isl_schedule_node_band_n_member(node); |
| 5261 | if (!build || n < 0 || !executed) |
| 5262 | goto error; |
| 5263 | |
| 5264 | if (n == 0) |
| 5265 | return build_ast_from_child(build, node, executed); |
| 5266 | |
| 5267 | extra = isl_schedule_node_band_get_partial_schedule(node); |
| 5268 | extra = isl_multi_union_pw_aff_align_params(multi: extra, |
| 5269 | model: isl_ast_build_get_space(build, internal: 1)); |
| 5270 | space = isl_multi_union_pw_aff_get_space(multi: extra); |
| 5271 | |
| 5272 | if (check_band_schedule_total_on_instances(partial: extra, executed) < 0) |
| 5273 | executed = isl_union_map_free(umap: executed); |
| 5274 | |
| 5275 | extra_umap = isl_union_map_from_multi_union_pw_aff(mupa: extra); |
| 5276 | extra_umap = isl_union_map_reverse(umap: extra_umap); |
| 5277 | |
| 5278 | executed = isl_union_map_domain_product(umap1: executed, umap2: extra_umap); |
| 5279 | executed = isl_union_map_detect_equalities(umap: executed); |
| 5280 | |
| 5281 | n1 = isl_ast_build_dim(build, type: isl_dim_param); |
| 5282 | build = isl_ast_build_product(build, embedding: space); |
| 5283 | n2 = isl_ast_build_dim(build, type: isl_dim_param); |
| 5284 | if (n1 < 0 || n2 < 0) |
| 5285 | build = isl_ast_build_free(build); |
| 5286 | else if (n2 > n1) |
| 5287 | isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, |
| 5288 | "band node is not allowed to introduce new parameters" , |
| 5289 | build = isl_ast_build_free(build)); |
| 5290 | build = isl_ast_build_set_schedule_node(build, node); |
| 5291 | |
| 5292 | list = generate_next_level(executed, build); |
| 5293 | |
| 5294 | list = isl_ast_graft_list_unembed(list, product: 1); |
| 5295 | |
| 5296 | return list; |
| 5297 | error: |
| 5298 | isl_schedule_node_free(node); |
| 5299 | isl_union_map_free(umap: executed); |
| 5300 | isl_ast_build_free(build); |
| 5301 | return NULL; |
| 5302 | } |
| 5303 | |
| 5304 | /* Hoist a list of grafts (in practice containing a single graft) |
| 5305 | * from "sub_build" (which includes extra context information) |
| 5306 | * to "build". |
| 5307 | * |
| 5308 | * In particular, project out all additional parameters introduced |
| 5309 | * by the context node from the enforced constraints and the guard |
| 5310 | * of the single graft. |
| 5311 | */ |
| 5312 | static __isl_give isl_ast_graft_list *hoist_out_of_context( |
| 5313 | __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build, |
| 5314 | __isl_keep isl_ast_build *sub_build) |
| 5315 | { |
| 5316 | isl_ast_graft *graft; |
| 5317 | isl_basic_set *enforced; |
| 5318 | isl_set *guard; |
| 5319 | isl_size n_param, ; |
| 5320 | |
| 5321 | n_param = isl_ast_build_dim(build, type: isl_dim_param); |
| 5322 | extra_param = isl_ast_build_dim(build: sub_build, type: isl_dim_param); |
| 5323 | if (n_param < 0 || extra_param < 0) |
| 5324 | return isl_ast_graft_list_free(list); |
| 5325 | |
| 5326 | if (extra_param == n_param) |
| 5327 | return list; |
| 5328 | |
| 5329 | extra_param -= n_param; |
| 5330 | enforced = isl_ast_graft_list_extract_shared_enforced(list, build: sub_build); |
| 5331 | enforced = isl_basic_set_project_out(bset: enforced, type: isl_dim_param, |
| 5332 | first: n_param, n: extra_param); |
| 5333 | enforced = isl_basic_set_remove_unknown_divs(bset: enforced); |
| 5334 | guard = isl_ast_graft_list_extract_hoistable_guard(list, build: sub_build); |
| 5335 | guard = isl_set_remove_divs_involving_dims(set: guard, type: isl_dim_param, |
| 5336 | first: n_param, n: extra_param); |
| 5337 | guard = isl_set_project_out(set: guard, type: isl_dim_param, first: n_param, n: extra_param); |
| 5338 | guard = isl_set_compute_divs(set: guard); |
| 5339 | graft = isl_ast_graft_alloc_from_children(list, guard, enforced, |
| 5340 | build, sub_build); |
| 5341 | list = isl_ast_graft_list_from_ast_graft(el: graft); |
| 5342 | |
| 5343 | return list; |
| 5344 | } |
| 5345 | |
| 5346 | /* Generate an AST that visits the elements in the domain of "executed" |
| 5347 | * in the relative order specified by the context node "node" |
| 5348 | * and its descendants. |
| 5349 | * |
| 5350 | * The relation "executed" maps the outer generated loop iterators |
| 5351 | * to the domain elements executed by those iterations. |
| 5352 | * |
| 5353 | * The context node may introduce additional parameters as well as |
| 5354 | * constraints on the outer schedule dimensions or original parameters. |
| 5355 | * |
| 5356 | * We add the extra parameters to a new build and the context |
| 5357 | * constraints to both the build and (as a single disjunct) |
| 5358 | * to the domain of "executed". Since the context constraints |
| 5359 | * are specified in terms of the input schedule, we first need |
| 5360 | * to map them to the internal schedule domain. |
| 5361 | * |
| 5362 | * After constructing the AST from the descendants of "node", |
| 5363 | * we combine the list of grafts into a single graft within |
| 5364 | * the new build, in order to be able to exploit the additional |
| 5365 | * context constraints during this combination. |
| 5366 | * |
| 5367 | * Additionally, if the current node is the outermost node in |
| 5368 | * the schedule tree (apart from the root domain node), we generate |
| 5369 | * all pending guards, again to be able to exploit the additional |
| 5370 | * context constraints. We currently do not do this for internal |
| 5371 | * context nodes since we may still want to hoist conditions |
| 5372 | * to outer AST nodes. |
| 5373 | * |
| 5374 | * If the context node introduced any new parameters, then they |
| 5375 | * are removed from the set of enforced constraints and guard |
| 5376 | * in hoist_out_of_context. |
| 5377 | */ |
| 5378 | static __isl_give isl_ast_graft_list *build_ast_from_context( |
| 5379 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
| 5380 | __isl_take isl_union_map *executed) |
| 5381 | { |
| 5382 | isl_set *context; |
| 5383 | isl_space *space; |
| 5384 | isl_multi_aff *internal2input; |
| 5385 | isl_ast_build *sub_build; |
| 5386 | isl_ast_graft_list *list; |
| 5387 | isl_size n; |
| 5388 | isl_size depth; |
| 5389 | |
| 5390 | depth = isl_schedule_node_get_tree_depth(node); |
| 5391 | if (depth < 0) |
| 5392 | build = isl_ast_build_free(build); |
| 5393 | space = isl_ast_build_get_space(build, internal: 1); |
| 5394 | context = isl_schedule_node_context_get_context(node); |
| 5395 | context = isl_set_align_params(set: context, model: space); |
| 5396 | sub_build = isl_ast_build_copy(build); |
| 5397 | space = isl_set_get_space(set: context); |
| 5398 | sub_build = isl_ast_build_align_params(build: sub_build, model: space); |
| 5399 | internal2input = isl_ast_build_get_internal2input(build: sub_build); |
| 5400 | context = isl_set_preimage_multi_aff(set: context, ma: internal2input); |
| 5401 | sub_build = isl_ast_build_restrict_generated(build: sub_build, |
| 5402 | set: isl_set_copy(set: context)); |
| 5403 | context = isl_set_from_basic_set(bset: isl_set_simple_hull(set: context)); |
| 5404 | executed = isl_union_map_intersect_domain(umap: executed, |
| 5405 | uset: isl_union_set_from_set(set: context)); |
| 5406 | |
| 5407 | list = build_ast_from_child(build: isl_ast_build_copy(build: sub_build), |
| 5408 | node, executed); |
| 5409 | n = isl_ast_graft_list_n_ast_graft(list); |
| 5410 | if (n < 0) |
| 5411 | list = isl_ast_graft_list_free(list); |
| 5412 | |
| 5413 | list = isl_ast_graft_list_fuse(children: list, build: sub_build); |
| 5414 | if (depth == 1) |
| 5415 | list = isl_ast_graft_list_insert_pending_guard_nodes(list, |
| 5416 | build: sub_build); |
| 5417 | if (n >= 1) |
| 5418 | list = hoist_out_of_context(list, build, sub_build); |
| 5419 | |
| 5420 | isl_ast_build_free(build); |
| 5421 | isl_ast_build_free(build: sub_build); |
| 5422 | |
| 5423 | return list; |
| 5424 | } |
| 5425 | |
| 5426 | /* Generate an AST that visits the elements in the domain of "executed" |
| 5427 | * in the relative order specified by the expansion node "node" and |
| 5428 | * its descendants. |
| 5429 | * |
| 5430 | * The relation "executed" maps the outer generated loop iterators |
| 5431 | * to the domain elements executed by those iterations. |
| 5432 | * |
| 5433 | * We expand the domain elements by the expansion and |
| 5434 | * continue with the descendants of the node. |
| 5435 | */ |
| 5436 | static __isl_give isl_ast_graft_list *build_ast_from_expansion( |
| 5437 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
| 5438 | __isl_take isl_union_map *executed) |
| 5439 | { |
| 5440 | isl_union_map *expansion; |
| 5441 | isl_size n1, n2; |
| 5442 | |
| 5443 | expansion = isl_schedule_node_expansion_get_expansion(node); |
| 5444 | expansion = isl_union_map_align_params(umap: expansion, |
| 5445 | model: isl_union_map_get_space(umap: executed)); |
| 5446 | |
| 5447 | n1 = isl_union_map_dim(umap: executed, type: isl_dim_param); |
| 5448 | executed = isl_union_map_apply_range(umap1: executed, umap2: expansion); |
| 5449 | n2 = isl_union_map_dim(umap: executed, type: isl_dim_param); |
| 5450 | if (n1 < 0 || n2 < 0) |
| 5451 | goto error; |
| 5452 | if (n2 > n1) |
| 5453 | isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, |
| 5454 | "expansion node is not allowed to introduce " |
| 5455 | "new parameters" , goto error); |
| 5456 | |
| 5457 | return build_ast_from_child(build, node, executed); |
| 5458 | error: |
| 5459 | isl_ast_build_free(build); |
| 5460 | isl_schedule_node_free(node); |
| 5461 | isl_union_map_free(umap: executed); |
| 5462 | return NULL; |
| 5463 | } |
| 5464 | |
| 5465 | /* Generate an AST that visits the elements in the domain of "executed" |
| 5466 | * in the relative order specified by the extension node "node" and |
| 5467 | * its descendants. |
| 5468 | * |
| 5469 | * The relation "executed" maps the outer generated loop iterators |
| 5470 | * to the domain elements executed by those iterations. |
| 5471 | * |
| 5472 | * Extend the inverse schedule with the extension applied to current |
| 5473 | * set of generated constraints. Since the extension if formulated |
| 5474 | * in terms of the input schedule, it first needs to be transformed |
| 5475 | * to refer to the internal schedule. |
| 5476 | */ |
| 5477 | static __isl_give isl_ast_graft_list *build_ast_from_extension( |
| 5478 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
| 5479 | __isl_take isl_union_map *executed) |
| 5480 | { |
| 5481 | isl_union_set *schedule_domain; |
| 5482 | isl_union_map *extension; |
| 5483 | isl_set *set; |
| 5484 | |
| 5485 | set = isl_ast_build_get_generated(build); |
| 5486 | set = isl_set_from_basic_set(bset: isl_set_simple_hull(set)); |
| 5487 | schedule_domain = isl_union_set_from_set(set); |
| 5488 | |
| 5489 | extension = isl_schedule_node_extension_get_extension(node); |
| 5490 | |
| 5491 | extension = isl_union_map_preimage_domain_multi_aff(umap: extension, |
| 5492 | ma: isl_multi_aff_copy(multi: build->internal2input)); |
| 5493 | extension = isl_union_map_intersect_domain(umap: extension, uset: schedule_domain); |
| 5494 | extension = isl_ast_build_substitute_values_union_map_domain(build, |
| 5495 | umap: extension); |
| 5496 | executed = isl_union_map_union(umap1: executed, umap2: extension); |
| 5497 | |
| 5498 | return build_ast_from_child(build, node, executed); |
| 5499 | } |
| 5500 | |
| 5501 | /* Generate an AST that visits the elements in the domain of "executed" |
| 5502 | * in the relative order specified by the filter node "node" and |
| 5503 | * its descendants. |
| 5504 | * |
| 5505 | * The relation "executed" maps the outer generated loop iterators |
| 5506 | * to the domain elements executed by those iterations. |
| 5507 | * |
| 5508 | * We simply intersect the iteration domain (i.e., the range of "executed") |
| 5509 | * with the filter and continue with the descendants of the node, |
| 5510 | * unless the resulting inverse schedule is empty, in which |
| 5511 | * case we return an empty list. |
| 5512 | * |
| 5513 | * If the result of the intersection is equal to the original "executed" |
| 5514 | * relation, then keep the original representation since the intersection |
| 5515 | * may have unnecessarily broken up the relation into a greater number |
| 5516 | * of disjuncts. |
| 5517 | */ |
| 5518 | static __isl_give isl_ast_graft_list *build_ast_from_filter( |
| 5519 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
| 5520 | __isl_take isl_union_map *executed) |
| 5521 | { |
| 5522 | isl_ctx *ctx; |
| 5523 | isl_union_set *filter; |
| 5524 | isl_union_map *orig; |
| 5525 | isl_ast_graft_list *list; |
| 5526 | int empty; |
| 5527 | isl_bool unchanged; |
| 5528 | isl_size n1, n2; |
| 5529 | |
| 5530 | orig = isl_union_map_copy(umap: executed); |
| 5531 | if (!build || !node || !executed) |
| 5532 | goto error; |
| 5533 | |
| 5534 | filter = isl_schedule_node_filter_get_filter(node); |
| 5535 | filter = isl_union_set_align_params(uset: filter, |
| 5536 | model: isl_union_map_get_space(umap: executed)); |
| 5537 | n1 = isl_union_map_dim(umap: executed, type: isl_dim_param); |
| 5538 | executed = isl_union_map_intersect_range(umap: executed, uset: filter); |
| 5539 | n2 = isl_union_map_dim(umap: executed, type: isl_dim_param); |
| 5540 | if (n1 < 0 || n2 < 0) |
| 5541 | goto error; |
| 5542 | if (n2 > n1) |
| 5543 | isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, |
| 5544 | "filter node is not allowed to introduce " |
| 5545 | "new parameters" , goto error); |
| 5546 | |
| 5547 | unchanged = isl_union_map_is_subset(umap1: orig, umap2: executed); |
| 5548 | empty = isl_union_map_is_empty(umap: executed); |
| 5549 | if (unchanged < 0 || empty < 0) |
| 5550 | goto error; |
| 5551 | if (unchanged) { |
| 5552 | isl_union_map_free(umap: executed); |
| 5553 | return build_ast_from_child(build, node, executed: orig); |
| 5554 | } |
| 5555 | isl_union_map_free(umap: orig); |
| 5556 | if (!empty) |
| 5557 | return build_ast_from_child(build, node, executed); |
| 5558 | |
| 5559 | ctx = isl_ast_build_get_ctx(build); |
| 5560 | list = isl_ast_graft_list_alloc(ctx, n: 0); |
| 5561 | isl_ast_build_free(build); |
| 5562 | isl_schedule_node_free(node); |
| 5563 | isl_union_map_free(umap: executed); |
| 5564 | return list; |
| 5565 | error: |
| 5566 | isl_ast_build_free(build); |
| 5567 | isl_schedule_node_free(node); |
| 5568 | isl_union_map_free(umap: executed); |
| 5569 | isl_union_map_free(umap: orig); |
| 5570 | return NULL; |
| 5571 | } |
| 5572 | |
| 5573 | /* Generate an AST that visits the elements in the domain of "executed" |
| 5574 | * in the relative order specified by the guard node "node" and |
| 5575 | * its descendants. |
| 5576 | * |
| 5577 | * The relation "executed" maps the outer generated loop iterators |
| 5578 | * to the domain elements executed by those iterations. |
| 5579 | * |
| 5580 | * Ensure that the associated guard is enforced by the outer AST |
| 5581 | * constructs by adding it to the guard of the graft. |
| 5582 | * Since we know that we will enforce the guard, we can also include it |
| 5583 | * in the generated constraints used to construct an AST for |
| 5584 | * the descendant nodes. |
| 5585 | */ |
| 5586 | static __isl_give isl_ast_graft_list *build_ast_from_guard( |
| 5587 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
| 5588 | __isl_take isl_union_map *executed) |
| 5589 | { |
| 5590 | isl_space *space; |
| 5591 | isl_set *guard, *hoisted; |
| 5592 | isl_basic_set *enforced; |
| 5593 | isl_ast_build *sub_build; |
| 5594 | isl_ast_graft *graft; |
| 5595 | isl_ast_graft_list *list; |
| 5596 | isl_size n1, n2, n; |
| 5597 | |
| 5598 | space = isl_ast_build_get_space(build, internal: 1); |
| 5599 | guard = isl_schedule_node_guard_get_guard(node); |
| 5600 | n1 = isl_space_dim(space, type: isl_dim_param); |
| 5601 | guard = isl_set_align_params(set: guard, model: space); |
| 5602 | n2 = isl_set_dim(set: guard, type: isl_dim_param); |
| 5603 | if (n1 < 0 || n2 < 0) |
| 5604 | guard = isl_set_free(set: guard); |
| 5605 | else if (n2 > n1) |
| 5606 | isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, |
| 5607 | "guard node is not allowed to introduce " |
| 5608 | "new parameters" , guard = isl_set_free(guard)); |
| 5609 | guard = isl_set_preimage_multi_aff(set: guard, |
| 5610 | ma: isl_multi_aff_copy(multi: build->internal2input)); |
| 5611 | guard = isl_ast_build_specialize(build, set: guard); |
| 5612 | guard = isl_set_gist(set: guard, context: isl_set_copy(set: build->generated)); |
| 5613 | |
| 5614 | sub_build = isl_ast_build_copy(build); |
| 5615 | sub_build = isl_ast_build_restrict_generated(build: sub_build, |
| 5616 | set: isl_set_copy(set: guard)); |
| 5617 | |
| 5618 | list = build_ast_from_child(build: isl_ast_build_copy(build: sub_build), |
| 5619 | node, executed); |
| 5620 | |
| 5621 | hoisted = isl_ast_graft_list_extract_hoistable_guard(list, build: sub_build); |
| 5622 | n = isl_set_n_basic_set(set: hoisted); |
| 5623 | if (n < 0) |
| 5624 | list = isl_ast_graft_list_free(list); |
| 5625 | if (n > 1) |
| 5626 | list = isl_ast_graft_list_gist_guards(list, |
| 5627 | context: isl_set_copy(set: hoisted)); |
| 5628 | guard = isl_set_intersect(set1: guard, set2: hoisted); |
| 5629 | enforced = extract_shared_enforced(list, build); |
| 5630 | graft = isl_ast_graft_alloc_from_children(list, guard, enforced, |
| 5631 | build, sub_build); |
| 5632 | |
| 5633 | isl_ast_build_free(build: sub_build); |
| 5634 | isl_ast_build_free(build); |
| 5635 | return isl_ast_graft_list_from_ast_graft(el: graft); |
| 5636 | } |
| 5637 | |
| 5638 | /* Call the before_each_mark callback, if requested by the user. |
| 5639 | * |
| 5640 | * Return 0 on success and -1 on error. |
| 5641 | * |
| 5642 | * The caller is responsible for recording the current inverse schedule |
| 5643 | * in "build". |
| 5644 | */ |
| 5645 | static isl_stat before_each_mark(__isl_keep isl_id *mark, |
| 5646 | __isl_keep isl_ast_build *build) |
| 5647 | { |
| 5648 | if (!build) |
| 5649 | return isl_stat_error; |
| 5650 | if (!build->before_each_mark) |
| 5651 | return isl_stat_ok; |
| 5652 | return build->before_each_mark(mark, build, |
| 5653 | build->before_each_mark_user); |
| 5654 | } |
| 5655 | |
| 5656 | /* Call the after_each_mark callback, if requested by the user. |
| 5657 | * |
| 5658 | * The caller is responsible for recording the current inverse schedule |
| 5659 | * in "build". |
| 5660 | */ |
| 5661 | static __isl_give isl_ast_graft *after_each_mark( |
| 5662 | __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build) |
| 5663 | { |
| 5664 | if (!graft || !build) |
| 5665 | return isl_ast_graft_free(graft); |
| 5666 | if (!build->after_each_mark) |
| 5667 | return graft; |
| 5668 | graft->node = build->after_each_mark(graft->node, build, |
| 5669 | build->after_each_mark_user); |
| 5670 | if (!graft->node) |
| 5671 | return isl_ast_graft_free(graft); |
| 5672 | return graft; |
| 5673 | } |
| 5674 | |
| 5675 | |
| 5676 | /* Generate an AST that visits the elements in the domain of "executed" |
| 5677 | * in the relative order specified by the mark node "node" and |
| 5678 | * its descendants. |
| 5679 | * |
| 5680 | * The relation "executed" maps the outer generated loop iterators |
| 5681 | * to the domain elements executed by those iterations. |
| 5682 | |
| 5683 | * Since we may be calling before_each_mark and after_each_mark |
| 5684 | * callbacks, we record the current inverse schedule in the build. |
| 5685 | * |
| 5686 | * We generate an AST for the child of the mark node, combine |
| 5687 | * the graft list into a single graft and then insert the mark |
| 5688 | * in the AST of that single graft. |
| 5689 | */ |
| 5690 | static __isl_give isl_ast_graft_list *build_ast_from_mark( |
| 5691 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
| 5692 | __isl_take isl_union_map *executed) |
| 5693 | { |
| 5694 | isl_id *mark; |
| 5695 | isl_ast_graft *graft; |
| 5696 | isl_ast_graft_list *list; |
| 5697 | isl_size n; |
| 5698 | |
| 5699 | build = isl_ast_build_set_executed(build, executed: isl_union_map_copy(umap: executed)); |
| 5700 | |
| 5701 | mark = isl_schedule_node_mark_get_id(node); |
| 5702 | if (before_each_mark(mark, build) < 0) |
| 5703 | node = isl_schedule_node_free(node); |
| 5704 | |
| 5705 | list = build_ast_from_child(build: isl_ast_build_copy(build), node, executed); |
| 5706 | list = isl_ast_graft_list_fuse(children: list, build); |
| 5707 | n = isl_ast_graft_list_n_ast_graft(list); |
| 5708 | if (n < 0) |
| 5709 | list = isl_ast_graft_list_free(list); |
| 5710 | if (n == 0) { |
| 5711 | isl_id_free(id: mark); |
| 5712 | } else { |
| 5713 | graft = isl_ast_graft_list_get_ast_graft(list, index: 0); |
| 5714 | graft = isl_ast_graft_insert_mark(graft, mark); |
| 5715 | graft = after_each_mark(graft, build); |
| 5716 | list = isl_ast_graft_list_set_ast_graft(list, index: 0, el: graft); |
| 5717 | } |
| 5718 | isl_ast_build_free(build); |
| 5719 | |
| 5720 | return list; |
| 5721 | } |
| 5722 | |
| 5723 | static __isl_give isl_ast_graft_list *build_ast_from_schedule_node( |
| 5724 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
| 5725 | __isl_take isl_union_map *executed); |
| 5726 | |
| 5727 | /* Generate an AST that visits the elements in the domain of "executed" |
| 5728 | * in the relative order specified by the sequence (or set) node "node" and |
| 5729 | * its descendants. |
| 5730 | * |
| 5731 | * The relation "executed" maps the outer generated loop iterators |
| 5732 | * to the domain elements executed by those iterations. |
| 5733 | * |
| 5734 | * We simply generate an AST for each of the children and concatenate |
| 5735 | * the results. |
| 5736 | */ |
| 5737 | static __isl_give isl_ast_graft_list *build_ast_from_sequence( |
| 5738 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
| 5739 | __isl_take isl_union_map *executed) |
| 5740 | { |
| 5741 | int i; |
| 5742 | isl_size n; |
| 5743 | isl_ctx *ctx; |
| 5744 | isl_ast_graft_list *list; |
| 5745 | |
| 5746 | ctx = isl_ast_build_get_ctx(build); |
| 5747 | list = isl_ast_graft_list_alloc(ctx, n: 0); |
| 5748 | |
| 5749 | n = isl_schedule_node_n_children(node); |
| 5750 | if (n < 0) |
| 5751 | list = isl_ast_graft_list_free(list); |
| 5752 | for (i = 0; i < n; ++i) { |
| 5753 | isl_schedule_node *child; |
| 5754 | isl_ast_graft_list *list_i; |
| 5755 | |
| 5756 | child = isl_schedule_node_get_child(node, pos: i); |
| 5757 | list_i = build_ast_from_schedule_node(build: isl_ast_build_copy(build), |
| 5758 | node: child, executed: isl_union_map_copy(umap: executed)); |
| 5759 | list = isl_ast_graft_list_concat(list1: list, list2: list_i); |
| 5760 | } |
| 5761 | isl_ast_build_free(build); |
| 5762 | isl_schedule_node_free(node); |
| 5763 | isl_union_map_free(umap: executed); |
| 5764 | |
| 5765 | return list; |
| 5766 | } |
| 5767 | |
| 5768 | /* Generate an AST that visits the elements in the domain of "executed" |
| 5769 | * in the relative order specified by the node "node" and its descendants. |
| 5770 | * |
| 5771 | * The relation "executed" maps the outer generated loop iterators |
| 5772 | * to the domain elements executed by those iterations. |
| 5773 | * |
| 5774 | * The node types are handled in separate functions. |
| 5775 | * Set nodes are currently treated in the same way as sequence nodes. |
| 5776 | * The children of a set node may be executed in any order, |
| 5777 | * including the order of the children. |
| 5778 | */ |
| 5779 | static __isl_give isl_ast_graft_list *build_ast_from_schedule_node( |
| 5780 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
| 5781 | __isl_take isl_union_map *executed) |
| 5782 | { |
| 5783 | enum isl_schedule_node_type type; |
| 5784 | |
| 5785 | type = isl_schedule_node_get_type(node); |
| 5786 | |
| 5787 | switch (type) { |
| 5788 | case isl_schedule_node_error: |
| 5789 | goto error; |
| 5790 | case isl_schedule_node_leaf: |
| 5791 | return build_ast_from_leaf(build, node, executed); |
| 5792 | case isl_schedule_node_band: |
| 5793 | return build_ast_from_band(build, node, executed); |
| 5794 | case isl_schedule_node_context: |
| 5795 | return build_ast_from_context(build, node, executed); |
| 5796 | case isl_schedule_node_domain: |
| 5797 | isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported, |
| 5798 | "unexpected internal domain node" , goto error); |
| 5799 | case isl_schedule_node_expansion: |
| 5800 | return build_ast_from_expansion(build, node, executed); |
| 5801 | case isl_schedule_node_extension: |
| 5802 | return build_ast_from_extension(build, node, executed); |
| 5803 | case isl_schedule_node_filter: |
| 5804 | return build_ast_from_filter(build, node, executed); |
| 5805 | case isl_schedule_node_guard: |
| 5806 | return build_ast_from_guard(build, node, executed); |
| 5807 | case isl_schedule_node_mark: |
| 5808 | return build_ast_from_mark(build, node, executed); |
| 5809 | case isl_schedule_node_sequence: |
| 5810 | case isl_schedule_node_set: |
| 5811 | return build_ast_from_sequence(build, node, executed); |
| 5812 | } |
| 5813 | |
| 5814 | isl_die(isl_ast_build_get_ctx(build), isl_error_internal, |
| 5815 | "unhandled type" , goto error); |
| 5816 | error: |
| 5817 | isl_union_map_free(umap: executed); |
| 5818 | isl_schedule_node_free(node); |
| 5819 | isl_ast_build_free(build); |
| 5820 | |
| 5821 | return NULL; |
| 5822 | } |
| 5823 | |
| 5824 | /* Generate an AST that visits the elements in the domain of "executed" |
| 5825 | * in the relative order specified by the (single) child of "node" and |
| 5826 | * its descendants. |
| 5827 | * |
| 5828 | * The relation "executed" maps the outer generated loop iterators |
| 5829 | * to the domain elements executed by those iterations. |
| 5830 | * |
| 5831 | * This function is never called on a leaf, set or sequence node, |
| 5832 | * so the node always has exactly one child. |
| 5833 | */ |
| 5834 | static __isl_give isl_ast_graft_list *build_ast_from_child( |
| 5835 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
| 5836 | __isl_take isl_union_map *executed) |
| 5837 | { |
| 5838 | node = isl_schedule_node_child(node, pos: 0); |
| 5839 | return build_ast_from_schedule_node(build, node, executed); |
| 5840 | } |
| 5841 | |
| 5842 | /* Generate an AST that visits the elements in the domain of the domain |
| 5843 | * node "node" in the relative order specified by its descendants. |
| 5844 | * |
| 5845 | * An initial inverse schedule is created that maps a zero-dimensional |
| 5846 | * schedule space to the node domain. |
| 5847 | * The input "build" is assumed to have a parametric domain and |
| 5848 | * is replaced by the same zero-dimensional schedule space. |
| 5849 | * |
| 5850 | * We also add some of the parameter constraints in the build domain |
| 5851 | * to the executed relation. Adding these constraints |
| 5852 | * allows for an earlier detection of conflicts in some cases. |
| 5853 | * However, we do not want to divide the executed relation into |
| 5854 | * more disjuncts than necessary. We therefore approximate |
| 5855 | * the constraints on the parameters by a single disjunct set. |
| 5856 | */ |
| 5857 | static __isl_give isl_ast_node *build_ast_from_domain( |
| 5858 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node) |
| 5859 | { |
| 5860 | isl_ctx *ctx; |
| 5861 | isl_union_set *domain, *schedule_domain; |
| 5862 | isl_union_map *executed; |
| 5863 | isl_space *space; |
| 5864 | isl_set *set; |
| 5865 | isl_ast_graft_list *list; |
| 5866 | isl_ast_node *ast; |
| 5867 | int is_params; |
| 5868 | |
| 5869 | if (!build) |
| 5870 | goto error; |
| 5871 | |
| 5872 | ctx = isl_ast_build_get_ctx(build); |
| 5873 | space = isl_ast_build_get_space(build, internal: 1); |
| 5874 | is_params = isl_space_is_params(space); |
| 5875 | isl_space_free(space); |
| 5876 | if (is_params < 0) |
| 5877 | goto error; |
| 5878 | if (!is_params) |
| 5879 | isl_die(ctx, isl_error_unsupported, |
| 5880 | "expecting parametric initial context" , goto error); |
| 5881 | |
| 5882 | domain = isl_schedule_node_domain_get_domain(node); |
| 5883 | domain = isl_union_set_coalesce(uset: domain); |
| 5884 | |
| 5885 | space = isl_union_set_get_space(uset: domain); |
| 5886 | space = isl_space_set_from_params(space); |
| 5887 | build = isl_ast_build_product(build, embedding: space); |
| 5888 | |
| 5889 | set = isl_ast_build_get_domain(build); |
| 5890 | set = isl_set_from_basic_set(bset: isl_set_simple_hull(set)); |
| 5891 | schedule_domain = isl_union_set_from_set(set); |
| 5892 | |
| 5893 | executed = isl_union_map_from_domain_and_range(domain: schedule_domain, range: domain); |
| 5894 | list = build_ast_from_child(build: isl_ast_build_copy(build), node, executed); |
| 5895 | ast = isl_ast_node_from_graft_list(list, build); |
| 5896 | isl_ast_build_free(build); |
| 5897 | |
| 5898 | return ast; |
| 5899 | error: |
| 5900 | isl_schedule_node_free(node); |
| 5901 | isl_ast_build_free(build); |
| 5902 | return NULL; |
| 5903 | } |
| 5904 | |
| 5905 | /* Generate an AST that visits the elements in the domain of "schedule" |
| 5906 | * in the relative order specified by the schedule tree. |
| 5907 | * |
| 5908 | * "build" is an isl_ast_build that has been created using |
| 5909 | * isl_ast_build_alloc or isl_ast_build_from_context based |
| 5910 | * on a parametric set. |
| 5911 | * |
| 5912 | * The construction starts at the root node of the schedule, |
| 5913 | * which is assumed to be a domain node. |
| 5914 | */ |
| 5915 | __isl_give isl_ast_node *isl_ast_build_node_from_schedule( |
| 5916 | __isl_keep isl_ast_build *build, __isl_take isl_schedule *schedule) |
| 5917 | { |
| 5918 | isl_ctx *ctx; |
| 5919 | isl_schedule_node *node; |
| 5920 | |
| 5921 | if (!build || !schedule) |
| 5922 | goto error; |
| 5923 | |
| 5924 | ctx = isl_ast_build_get_ctx(build); |
| 5925 | |
| 5926 | node = isl_schedule_get_root(schedule); |
| 5927 | if (!node) |
| 5928 | goto error; |
| 5929 | isl_schedule_free(sched: schedule); |
| 5930 | |
| 5931 | build = isl_ast_build_copy(build); |
| 5932 | build = isl_ast_build_set_single_valued(build, sv: 0); |
| 5933 | if (isl_schedule_node_get_type(node) != isl_schedule_node_domain) |
| 5934 | isl_die(ctx, isl_error_unsupported, |
| 5935 | "expecting root domain node" , |
| 5936 | build = isl_ast_build_free(build)); |
| 5937 | return build_ast_from_domain(build, node); |
| 5938 | error: |
| 5939 | isl_schedule_free(sched: schedule); |
| 5940 | return NULL; |
| 5941 | } |
| 5942 | |