1 | /* |
2 | * Copyright 2012-2014 Ecole Normale Superieure |
3 | * Copyright 2014 INRIA Rocquencourt |
4 | * |
5 | * Use of this software is governed by the MIT license |
6 | * |
7 | * Written by Sven Verdoolaege, |
8 | * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France |
9 | * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, |
10 | * B.P. 105 - 78153 Le Chesnay, France |
11 | */ |
12 | |
13 | #include <limits.h> |
14 | #include <isl/id.h> |
15 | #include <isl/val.h> |
16 | #include <isl/space.h> |
17 | #include <isl/aff.h> |
18 | #include <isl/constraint.h> |
19 | #include <isl/set.h> |
20 | #include <isl/ilp.h> |
21 | #include <isl/union_set.h> |
22 | #include <isl/union_map.h> |
23 | #include <isl/schedule_node.h> |
24 | #include <isl/options.h> |
25 | #include <isl_sort.h> |
26 | #include <isl_tarjan.h> |
27 | #include <isl_ast_private.h> |
28 | #include <isl_ast_build_expr.h> |
29 | #include <isl_ast_build_private.h> |
30 | #include <isl_ast_graft_private.h> |
31 | |
32 | /* Try and reduce the number of disjuncts in the representation of "set", |
33 | * without dropping explicit representations of local variables. |
34 | */ |
35 | static __isl_give isl_set *isl_set_coalesce_preserve(__isl_take isl_set *set) |
36 | { |
37 | isl_ctx *ctx; |
38 | int save_preserve; |
39 | |
40 | if (!set) |
41 | return NULL; |
42 | |
43 | ctx = isl_set_get_ctx(set); |
44 | save_preserve = isl_options_get_coalesce_preserve_locals(ctx); |
45 | isl_options_set_coalesce_preserve_locals(ctx, val: 1); |
46 | set = isl_set_coalesce(set); |
47 | isl_options_set_coalesce_preserve_locals(ctx, val: save_preserve); |
48 | return set; |
49 | } |
50 | |
51 | /* Data used in generate_domain. |
52 | * |
53 | * "build" is the input build. |
54 | * "list" collects the results. |
55 | */ |
56 | struct isl_generate_domain_data { |
57 | isl_ast_build *build; |
58 | |
59 | isl_ast_graft_list *list; |
60 | }; |
61 | |
62 | static __isl_give isl_ast_graft_list *generate_next_level( |
63 | __isl_take isl_union_map *executed, |
64 | __isl_take isl_ast_build *build); |
65 | static __isl_give isl_ast_graft_list *generate_code( |
66 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build, |
67 | int internal); |
68 | |
69 | /* Generate an AST for a single domain based on |
70 | * the (non single valued) inverse schedule "executed". |
71 | * |
72 | * We extend the schedule with the iteration domain |
73 | * and continue generating through a call to generate_code. |
74 | * |
75 | * In particular, if executed has the form |
76 | * |
77 | * S -> D |
78 | * |
79 | * then we continue generating code on |
80 | * |
81 | * [S -> D] -> D |
82 | * |
83 | * The extended inverse schedule is clearly single valued |
84 | * ensuring that the nested generate_code will not reach this function, |
85 | * but will instead create calls to all elements of D that need |
86 | * to be executed from the current schedule domain. |
87 | */ |
88 | static isl_stat generate_non_single_valued(__isl_take isl_map *executed, |
89 | struct isl_generate_domain_data *data) |
90 | { |
91 | isl_map *identity; |
92 | isl_ast_build *build; |
93 | isl_ast_graft_list *list; |
94 | |
95 | build = isl_ast_build_copy(build: data->build); |
96 | |
97 | identity = isl_set_identity(set: isl_map_range(map: isl_map_copy(map: executed))); |
98 | executed = isl_map_domain_product(map1: executed, map2: identity); |
99 | build = isl_ast_build_set_single_valued(build, sv: 1); |
100 | |
101 | list = generate_code(executed: isl_union_map_from_map(map: executed), build, internal: 1); |
102 | |
103 | data->list = isl_ast_graft_list_concat(list1: data->list, list2: list); |
104 | |
105 | return isl_stat_ok; |
106 | } |
107 | |
108 | /* Call the at_each_domain callback, if requested by the user, |
109 | * after recording the current inverse schedule in the build. |
110 | */ |
111 | static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft, |
112 | __isl_keep isl_map *executed, __isl_keep isl_ast_build *build) |
113 | { |
114 | if (!graft || !build) |
115 | return isl_ast_graft_free(graft); |
116 | if (!build->at_each_domain) |
117 | return graft; |
118 | |
119 | build = isl_ast_build_copy(build); |
120 | build = isl_ast_build_set_executed(build, |
121 | executed: isl_union_map_from_map(map: isl_map_copy(map: executed))); |
122 | if (!build) |
123 | return isl_ast_graft_free(graft); |
124 | |
125 | graft->node = build->at_each_domain(graft->node, |
126 | build, build->at_each_domain_user); |
127 | isl_ast_build_free(build); |
128 | |
129 | if (!graft->node) |
130 | graft = isl_ast_graft_free(graft); |
131 | |
132 | return graft; |
133 | } |
134 | |
135 | /* Generate a call expression for the single executed |
136 | * domain element "map" and put a guard around it based its (simplified) |
137 | * domain. "executed" is the original inverse schedule from which "map" |
138 | * has been derived. In particular, "map" is either identical to "executed" |
139 | * or it is the result of gisting "executed" with respect to the build domain. |
140 | * "executed" is only used if there is an at_each_domain callback. |
141 | * |
142 | * At this stage, any pending constraints in the build can no longer |
143 | * be simplified with respect to any enforced constraints since |
144 | * the call node does not have any enforced constraints. |
145 | * Since all pending constraints not covered by any enforced constraints |
146 | * will be added as a guard to the graft in create_node_scaled, |
147 | * even in the eliminated case, the pending constraints |
148 | * can be considered to have been generated by outer constructs. |
149 | * |
150 | * If the user has set an at_each_domain callback, it is called |
151 | * on the constructed call expression node. |
152 | */ |
153 | static isl_stat add_domain(__isl_take isl_map *executed, |
154 | __isl_take isl_map *map, struct isl_generate_domain_data *data) |
155 | { |
156 | isl_ast_build *build; |
157 | isl_ast_graft *graft; |
158 | isl_ast_graft_list *list; |
159 | isl_set *guard, *pending; |
160 | |
161 | build = isl_ast_build_copy(build: data->build); |
162 | pending = isl_ast_build_get_pending(build); |
163 | build = isl_ast_build_replace_pending_by_guard(build, guard: pending); |
164 | |
165 | guard = isl_map_domain(bmap: isl_map_copy(map)); |
166 | guard = isl_set_compute_divs(set: guard); |
167 | guard = isl_set_coalesce_preserve(set: guard); |
168 | guard = isl_set_gist(set: guard, context: isl_ast_build_get_generated(build)); |
169 | guard = isl_ast_build_specialize(build, set: guard); |
170 | |
171 | graft = isl_ast_graft_alloc_domain(schedule: map, build); |
172 | graft = at_each_domain(graft, executed, build); |
173 | isl_ast_build_free(build); |
174 | isl_map_free(map: executed); |
175 | graft = isl_ast_graft_add_guard(graft, guard, build: data->build); |
176 | |
177 | list = isl_ast_graft_list_from_ast_graft(el: graft); |
178 | data->list = isl_ast_graft_list_concat(list1: data->list, list2: list); |
179 | |
180 | return isl_stat_ok; |
181 | } |
182 | |
183 | /* Generate an AST for a single domain based on |
184 | * the inverse schedule "executed" and add it to data->list. |
185 | * |
186 | * If there is more than one domain element associated to the current |
187 | * schedule "time", then we need to continue the generation process |
188 | * in generate_non_single_valued. |
189 | * Note that the inverse schedule being single-valued may depend |
190 | * on constraints that are only available in the original context |
191 | * domain specified by the user. We therefore first introduce |
192 | * some of the constraints of data->build->domain. In particular, |
193 | * we intersect with a single-disjunct approximation of this set. |
194 | * We perform this approximation to avoid further splitting up |
195 | * the executed relation, possibly introducing a disjunctive guard |
196 | * on the statement. |
197 | * |
198 | * On the other hand, we only perform the test after having taken the gist |
199 | * of the domain as the resulting map is the one from which the call |
200 | * expression is constructed. Using this map to construct the call |
201 | * expression usually yields simpler results in cases where the original |
202 | * map is not obviously single-valued. |
203 | * If the original map is obviously single-valued, then the gist |
204 | * operation is skipped. |
205 | * |
206 | * Because we perform the single-valuedness test on the gisted map, |
207 | * we may in rare cases fail to recognize that the inverse schedule |
208 | * is single-valued. This becomes problematic if this happens |
209 | * from the recursive call through generate_non_single_valued |
210 | * as we would then end up in an infinite recursion. |
211 | * We therefore check if we are inside a call to generate_non_single_valued |
212 | * and revert to the ungisted map if the gisted map turns out not to be |
213 | * single-valued. |
214 | * |
215 | * Otherwise, call add_domain to generate a call expression (with guard) and |
216 | * to call the at_each_domain callback, if any. |
217 | */ |
218 | static isl_stat generate_domain(__isl_take isl_map *executed, void *user) |
219 | { |
220 | struct isl_generate_domain_data *data = user; |
221 | isl_set *domain; |
222 | isl_map *map = NULL; |
223 | int empty, sv; |
224 | |
225 | domain = isl_ast_build_get_domain(build: data->build); |
226 | domain = isl_set_from_basic_set(bset: isl_set_simple_hull(set: domain)); |
227 | executed = isl_map_intersect_domain(map: executed, set: domain); |
228 | empty = isl_map_is_empty(map: executed); |
229 | if (empty < 0) |
230 | goto error; |
231 | if (empty) { |
232 | isl_map_free(map: executed); |
233 | return isl_stat_ok; |
234 | } |
235 | |
236 | sv = isl_map_plain_is_single_valued(map: executed); |
237 | if (sv < 0) |
238 | goto error; |
239 | if (sv) |
240 | return add_domain(executed, map: isl_map_copy(map: executed), data); |
241 | |
242 | executed = isl_map_coalesce(map: executed); |
243 | map = isl_map_copy(map: executed); |
244 | map = isl_ast_build_compute_gist_map_domain(build: data->build, map); |
245 | sv = isl_map_is_single_valued(map); |
246 | if (sv < 0) |
247 | goto error; |
248 | if (!sv) { |
249 | isl_map_free(map); |
250 | if (data->build->single_valued) |
251 | map = isl_map_copy(map: executed); |
252 | else |
253 | return generate_non_single_valued(executed, data); |
254 | } |
255 | |
256 | return add_domain(executed, map, data); |
257 | error: |
258 | isl_map_free(map); |
259 | isl_map_free(map: executed); |
260 | return isl_stat_error; |
261 | } |
262 | |
263 | /* Call build->create_leaf to a create "leaf" node in the AST, |
264 | * encapsulate the result in an isl_ast_graft and return the result |
265 | * as a 1-element list. |
266 | * |
267 | * Note that the node returned by the user may be an entire tree. |
268 | * |
269 | * Since the node itself cannot enforce any constraints, we turn |
270 | * all pending constraints into guards and add them to the resulting |
271 | * graft to ensure that they will be generated. |
272 | * |
273 | * Before we pass control to the user, we first clear some information |
274 | * from the build that is (presumbably) only meaningful |
275 | * for the current code generation. |
276 | * This includes the create_leaf callback itself, so we make a copy |
277 | * of the build first. |
278 | */ |
279 | static __isl_give isl_ast_graft_list *call_create_leaf( |
280 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
281 | { |
282 | isl_set *guard; |
283 | isl_ast_node *node; |
284 | isl_ast_graft *graft; |
285 | isl_ast_build *user_build; |
286 | |
287 | guard = isl_ast_build_get_pending(build); |
288 | user_build = isl_ast_build_copy(build); |
289 | user_build = isl_ast_build_replace_pending_by_guard(build: user_build, |
290 | guard: isl_set_copy(set: guard)); |
291 | user_build = isl_ast_build_set_executed(build: user_build, executed); |
292 | user_build = isl_ast_build_clear_local_info(build: user_build); |
293 | if (!user_build) |
294 | node = NULL; |
295 | else |
296 | node = build->create_leaf(user_build, build->create_leaf_user); |
297 | graft = isl_ast_graft_alloc(node, build); |
298 | graft = isl_ast_graft_add_guard(graft, guard, build); |
299 | isl_ast_build_free(build); |
300 | return isl_ast_graft_list_from_ast_graft(el: graft); |
301 | } |
302 | |
303 | static __isl_give isl_ast_graft_list *build_ast_from_child( |
304 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
305 | __isl_take isl_union_map *executed); |
306 | |
307 | /* Generate an AST after having handled the complete schedule |
308 | * of this call to the code generator or the complete band |
309 | * if we are generating an AST from a schedule tree. |
310 | * |
311 | * If we are inside a band node, then move on to the child of the band. |
312 | * |
313 | * If the user has specified a create_leaf callback, control |
314 | * is passed to the user in call_create_leaf. |
315 | * |
316 | * Otherwise, we generate one or more calls for each individual |
317 | * domain in generate_domain. |
318 | */ |
319 | static __isl_give isl_ast_graft_list *generate_inner_level( |
320 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
321 | { |
322 | isl_ctx *ctx; |
323 | struct isl_generate_domain_data data = { build }; |
324 | |
325 | if (!build || !executed) |
326 | goto error; |
327 | |
328 | if (isl_ast_build_has_schedule_node(build)) { |
329 | isl_schedule_node *node; |
330 | node = isl_ast_build_get_schedule_node(build); |
331 | build = isl_ast_build_reset_schedule_node(build); |
332 | return build_ast_from_child(build, node, executed); |
333 | } |
334 | |
335 | if (build->create_leaf) |
336 | return call_create_leaf(executed, build); |
337 | |
338 | ctx = isl_union_map_get_ctx(umap: executed); |
339 | data.list = isl_ast_graft_list_alloc(ctx, n: 0); |
340 | if (isl_union_map_foreach_map(umap: executed, fn: &generate_domain, user: &data) < 0) |
341 | data.list = isl_ast_graft_list_free(list: data.list); |
342 | |
343 | if (0) |
344 | error: data.list = NULL; |
345 | isl_ast_build_free(build); |
346 | isl_union_map_free(umap: executed); |
347 | return data.list; |
348 | } |
349 | |
350 | /* Call the before_each_for callback, if requested by the user. |
351 | */ |
352 | static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node, |
353 | __isl_keep isl_ast_build *build) |
354 | { |
355 | isl_id *id; |
356 | |
357 | if (!node || !build) |
358 | return isl_ast_node_free(node); |
359 | if (!build->before_each_for) |
360 | return node; |
361 | id = build->before_each_for(build, build->before_each_for_user); |
362 | node = isl_ast_node_set_annotation(node, annotation: id); |
363 | return node; |
364 | } |
365 | |
366 | /* Call the after_each_for callback, if requested by the user. |
367 | */ |
368 | static __isl_give isl_ast_graft *after_each_for(__isl_take isl_ast_graft *graft, |
369 | __isl_keep isl_ast_build *build) |
370 | { |
371 | if (!graft || !build) |
372 | return isl_ast_graft_free(graft); |
373 | if (!build->after_each_for) |
374 | return graft; |
375 | graft->node = build->after_each_for(graft->node, build, |
376 | build->after_each_for_user); |
377 | if (!graft->node) |
378 | return isl_ast_graft_free(graft); |
379 | return graft; |
380 | } |
381 | |
382 | /* Plug in all the know values of the current and outer dimensions |
383 | * in the domain of "executed". In principle, we only need to plug |
384 | * in the known value of the current dimension since the values of |
385 | * outer dimensions have been plugged in already. |
386 | * However, it turns out to be easier to just plug in all known values. |
387 | */ |
388 | static __isl_give isl_union_map *plug_in_values( |
389 | __isl_take isl_union_map *executed, __isl_keep isl_ast_build *build) |
390 | { |
391 | return isl_ast_build_substitute_values_union_map_domain(build, |
392 | umap: executed); |
393 | } |
394 | |
395 | /* Check if the constraint "c" is a lower bound on dimension "pos", |
396 | * an upper bound, or independent of dimension "pos". |
397 | */ |
398 | static int constraint_type(isl_constraint *c, int pos) |
399 | { |
400 | if (isl_constraint_is_lower_bound(constraint: c, type: isl_dim_set, pos)) |
401 | return 1; |
402 | if (isl_constraint_is_upper_bound(constraint: c, type: isl_dim_set, pos)) |
403 | return 2; |
404 | return 0; |
405 | } |
406 | |
407 | /* Compare the types of the constraints "a" and "b", |
408 | * resulting in constraints that are independent of "depth" |
409 | * to be sorted before the lower bounds on "depth", which in |
410 | * turn are sorted before the upper bounds on "depth". |
411 | */ |
412 | static int cmp_constraint(__isl_keep isl_constraint *a, |
413 | __isl_keep isl_constraint *b, void *user) |
414 | { |
415 | int *depth = user; |
416 | int t1 = constraint_type(c: a, pos: *depth); |
417 | int t2 = constraint_type(c: b, pos: *depth); |
418 | |
419 | return t1 - t2; |
420 | } |
421 | |
422 | /* Extract a lower bound on dimension "pos" from constraint "c". |
423 | * |
424 | * If the constraint is of the form |
425 | * |
426 | * a x + f(...) >= 0 |
427 | * |
428 | * then we essentially return |
429 | * |
430 | * l = ceil(-f(...)/a) |
431 | * |
432 | * However, if the current dimension is strided, then we need to make |
433 | * sure that the lower bound we construct is of the form |
434 | * |
435 | * f + s a |
436 | * |
437 | * with f the offset and s the stride. |
438 | * We therefore compute |
439 | * |
440 | * f + s * ceil((l - f)/s) |
441 | */ |
442 | static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c, |
443 | int pos, __isl_keep isl_ast_build *build) |
444 | { |
445 | isl_aff *aff; |
446 | |
447 | aff = isl_constraint_get_bound(constraint: c, type: isl_dim_set, pos); |
448 | aff = isl_aff_ceil(aff); |
449 | |
450 | if (isl_ast_build_has_stride(build, pos)) { |
451 | isl_aff *offset; |
452 | isl_val *stride; |
453 | |
454 | offset = isl_ast_build_get_offset(build, pos); |
455 | stride = isl_ast_build_get_stride(build, pos); |
456 | |
457 | aff = isl_aff_sub(aff1: aff, aff2: isl_aff_copy(aff: offset)); |
458 | aff = isl_aff_scale_down_val(aff, v: isl_val_copy(v: stride)); |
459 | aff = isl_aff_ceil(aff); |
460 | aff = isl_aff_scale_val(aff, v: stride); |
461 | aff = isl_aff_add(aff1: aff, aff2: offset); |
462 | } |
463 | |
464 | aff = isl_ast_build_compute_gist_aff(build, aff); |
465 | |
466 | return aff; |
467 | } |
468 | |
469 | /* Return the exact lower bound (or upper bound if "upper" is set) |
470 | * of "domain" as a piecewise affine expression. |
471 | * |
472 | * If we are computing a lower bound (of a strided dimension), then |
473 | * we need to make sure it is of the form |
474 | * |
475 | * f + s a |
476 | * |
477 | * where f is the offset and s is the stride. |
478 | * We therefore need to include the stride constraint before computing |
479 | * the minimum. |
480 | */ |
481 | static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain, |
482 | __isl_keep isl_ast_build *build, int upper) |
483 | { |
484 | isl_set *stride; |
485 | isl_map *it_map; |
486 | isl_pw_aff *pa; |
487 | isl_pw_multi_aff *pma; |
488 | |
489 | domain = isl_set_copy(set: domain); |
490 | if (!upper) { |
491 | stride = isl_ast_build_get_stride_constraint(build); |
492 | domain = isl_set_intersect(set1: domain, set2: stride); |
493 | } |
494 | it_map = isl_ast_build_map_to_iterator(build, set: domain); |
495 | if (upper) |
496 | pma = isl_map_lexmax_pw_multi_aff(map: it_map); |
497 | else |
498 | pma = isl_map_lexmin_pw_multi_aff(map: it_map); |
499 | pa = isl_pw_multi_aff_get_pw_aff(pma, pos: 0); |
500 | isl_pw_multi_aff_free(pma); |
501 | pa = isl_ast_build_compute_gist_pw_aff(build, pa); |
502 | pa = isl_pw_aff_coalesce(pa); |
503 | |
504 | return pa; |
505 | } |
506 | |
507 | /* Callback for sorting the isl_pw_aff_list passed to reduce_list and |
508 | * remove_redundant_lower_bounds. |
509 | */ |
510 | static int reduce_list_cmp(__isl_keep isl_pw_aff *a, __isl_keep isl_pw_aff *b, |
511 | void *user) |
512 | { |
513 | return isl_pw_aff_plain_cmp(pa1: a, pa2: b); |
514 | } |
515 | |
516 | /* Given a list of lower bounds "list", remove those that are redundant |
517 | * with respect to the other bounds in "list" and the domain of "build". |
518 | * |
519 | * We first sort the bounds in the same way as they would be sorted |
520 | * by set_for_node_expressions so that we can try and remove the last |
521 | * bounds first. |
522 | * |
523 | * For a lower bound to be effective, there needs to be at least |
524 | * one domain element for which it is larger than all other lower bounds. |
525 | * For each lower bound we therefore intersect the domain with |
526 | * the conditions that it is larger than all other bounds and |
527 | * check whether the result is empty. If so, the bound can be removed. |
528 | */ |
529 | static __isl_give isl_pw_aff_list *remove_redundant_lower_bounds( |
530 | __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build) |
531 | { |
532 | int i, j; |
533 | isl_size n; |
534 | isl_set *domain; |
535 | |
536 | list = isl_pw_aff_list_sort(list, cmp: &reduce_list_cmp, NULL); |
537 | |
538 | n = isl_pw_aff_list_n_pw_aff(list); |
539 | if (n < 0) |
540 | return isl_pw_aff_list_free(list); |
541 | if (n <= 1) |
542 | return list; |
543 | |
544 | domain = isl_ast_build_get_domain(build); |
545 | |
546 | for (i = n - 1; i >= 0; --i) { |
547 | isl_pw_aff *pa_i; |
548 | isl_set *domain_i; |
549 | int empty; |
550 | |
551 | domain_i = isl_set_copy(set: domain); |
552 | pa_i = isl_pw_aff_list_get_pw_aff(list, index: i); |
553 | |
554 | for (j = 0; j < n; ++j) { |
555 | isl_pw_aff *pa_j; |
556 | isl_set *better; |
557 | |
558 | if (j == i) |
559 | continue; |
560 | |
561 | pa_j = isl_pw_aff_list_get_pw_aff(list, index: j); |
562 | better = isl_pw_aff_gt_set(pwaff1: isl_pw_aff_copy(pwaff: pa_i), pwaff2: pa_j); |
563 | domain_i = isl_set_intersect(set1: domain_i, set2: better); |
564 | } |
565 | |
566 | empty = isl_set_is_empty(set: domain_i); |
567 | |
568 | isl_set_free(set: domain_i); |
569 | isl_pw_aff_free(pwaff: pa_i); |
570 | |
571 | if (empty < 0) |
572 | goto error; |
573 | if (!empty) |
574 | continue; |
575 | list = isl_pw_aff_list_drop(list, first: i, n: 1); |
576 | n--; |
577 | } |
578 | |
579 | isl_set_free(set: domain); |
580 | |
581 | return list; |
582 | error: |
583 | isl_set_free(set: domain); |
584 | return isl_pw_aff_list_free(list); |
585 | } |
586 | |
587 | /* Extract a lower bound on dimension "pos" from each constraint |
588 | * in "constraints" and return the list of lower bounds. |
589 | * If "constraints" has zero elements, then we extract a lower bound |
590 | * from "domain" instead. |
591 | * |
592 | * If the current dimension is strided, then the lower bound |
593 | * is adjusted by lower_bound to match the stride information. |
594 | * This modification may make one or more lower bounds redundant |
595 | * with respect to the other lower bounds. We therefore check |
596 | * for this condition and remove the redundant lower bounds. |
597 | */ |
598 | static __isl_give isl_pw_aff_list *lower_bounds( |
599 | __isl_keep isl_constraint_list *constraints, int pos, |
600 | __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) |
601 | { |
602 | isl_ctx *ctx; |
603 | isl_pw_aff_list *list; |
604 | int i; |
605 | isl_size n; |
606 | |
607 | if (!build) |
608 | return NULL; |
609 | |
610 | n = isl_constraint_list_n_constraint(list: constraints); |
611 | if (n < 0) |
612 | return NULL; |
613 | if (n == 0) { |
614 | isl_pw_aff *pa; |
615 | pa = exact_bound(domain, build, upper: 0); |
616 | return isl_pw_aff_list_from_pw_aff(el: pa); |
617 | } |
618 | |
619 | ctx = isl_ast_build_get_ctx(build); |
620 | list = isl_pw_aff_list_alloc(ctx,n); |
621 | |
622 | for (i = 0; i < n; ++i) { |
623 | isl_aff *aff; |
624 | isl_constraint *c; |
625 | |
626 | c = isl_constraint_list_get_constraint(list: constraints, index: i); |
627 | aff = lower_bound(c, pos, build); |
628 | isl_constraint_free(c); |
629 | list = isl_pw_aff_list_add(list, el: isl_pw_aff_from_aff(aff)); |
630 | } |
631 | |
632 | if (isl_ast_build_has_stride(build, pos)) |
633 | list = remove_redundant_lower_bounds(list, build); |
634 | |
635 | return list; |
636 | } |
637 | |
638 | /* Extract an upper bound on dimension "pos" from each constraint |
639 | * in "constraints" and return the list of upper bounds. |
640 | * If "constraints" has zero elements, then we extract an upper bound |
641 | * from "domain" instead. |
642 | */ |
643 | static __isl_give isl_pw_aff_list *upper_bounds( |
644 | __isl_keep isl_constraint_list *constraints, int pos, |
645 | __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) |
646 | { |
647 | isl_ctx *ctx; |
648 | isl_pw_aff_list *list; |
649 | int i; |
650 | isl_size n; |
651 | |
652 | n = isl_constraint_list_n_constraint(list: constraints); |
653 | if (n < 0) |
654 | return NULL; |
655 | if (n == 0) { |
656 | isl_pw_aff *pa; |
657 | pa = exact_bound(domain, build, upper: 1); |
658 | return isl_pw_aff_list_from_pw_aff(el: pa); |
659 | } |
660 | |
661 | ctx = isl_ast_build_get_ctx(build); |
662 | list = isl_pw_aff_list_alloc(ctx,n); |
663 | |
664 | for (i = 0; i < n; ++i) { |
665 | isl_aff *aff; |
666 | isl_constraint *c; |
667 | |
668 | c = isl_constraint_list_get_constraint(list: constraints, index: i); |
669 | aff = isl_constraint_get_bound(constraint: c, type: isl_dim_set, pos); |
670 | isl_constraint_free(c); |
671 | aff = isl_aff_floor(aff); |
672 | list = isl_pw_aff_list_add(list, el: isl_pw_aff_from_aff(aff)); |
673 | } |
674 | |
675 | return list; |
676 | } |
677 | |
678 | /* Return an isl_ast_expr that performs the reduction of type "type" |
679 | * on AST expressions corresponding to the elements in "list". |
680 | * |
681 | * The list is assumed to contain at least one element. |
682 | * If the list contains exactly one element, then the returned isl_ast_expr |
683 | * simply computes that affine expression. |
684 | * If the list contains more than one element, then we sort it |
685 | * using a fairly arbitrary but hopefully reasonably stable order. |
686 | */ |
687 | static __isl_give isl_ast_expr *reduce_list(enum isl_ast_expr_op_type type, |
688 | __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build) |
689 | { |
690 | int i; |
691 | isl_size n; |
692 | isl_ctx *ctx; |
693 | isl_ast_expr *expr; |
694 | |
695 | n = isl_pw_aff_list_n_pw_aff(list); |
696 | if (n < 0) |
697 | return NULL; |
698 | |
699 | if (n == 1) |
700 | return isl_ast_build_expr_from_pw_aff_internal(build, |
701 | pa: isl_pw_aff_list_get_pw_aff(list, index: 0)); |
702 | |
703 | ctx = isl_pw_aff_list_get_ctx(list); |
704 | expr = isl_ast_expr_alloc_op(ctx, op: type, n_arg: n); |
705 | |
706 | list = isl_pw_aff_list_copy(list); |
707 | list = isl_pw_aff_list_sort(list, cmp: &reduce_list_cmp, NULL); |
708 | if (!list) |
709 | return isl_ast_expr_free(expr); |
710 | |
711 | for (i = 0; i < n; ++i) { |
712 | isl_ast_expr *expr_i; |
713 | |
714 | expr_i = isl_ast_build_expr_from_pw_aff_internal(build, |
715 | pa: isl_pw_aff_list_get_pw_aff(list, index: i)); |
716 | expr = isl_ast_expr_op_add_arg(expr, arg: expr_i); |
717 | } |
718 | |
719 | isl_pw_aff_list_free(list); |
720 | return expr; |
721 | } |
722 | |
723 | /* Add guards implied by the "generated constraints", |
724 | * but not (necessarily) enforced by the generated AST to "guard". |
725 | * In particular, if there is any stride constraints, |
726 | * then add the guard implied by those constraints. |
727 | * If we have generated a degenerate loop, then add the guard |
728 | * implied by "bounds" on the outer dimensions, i.e., the guard |
729 | * that ensures that the single value actually exists. |
730 | * Since there may also be guards implied by a combination |
731 | * of these constraints, we first combine them before |
732 | * deriving the implied constraints. |
733 | */ |
734 | static __isl_give isl_set *add_implied_guards(__isl_take isl_set *guard, |
735 | int degenerate, __isl_keep isl_basic_set *bounds, |
736 | __isl_keep isl_ast_build *build) |
737 | { |
738 | isl_size depth; |
739 | isl_bool has_stride; |
740 | isl_space *space; |
741 | isl_set *dom, *set; |
742 | |
743 | depth = isl_ast_build_get_depth(build); |
744 | has_stride = isl_ast_build_has_stride(build, pos: depth); |
745 | if (depth < 0 || has_stride < 0) |
746 | return isl_set_free(set: guard); |
747 | if (!has_stride && !degenerate) |
748 | return guard; |
749 | |
750 | space = isl_basic_set_get_space(bset: bounds); |
751 | dom = isl_set_universe(space); |
752 | |
753 | if (degenerate) { |
754 | bounds = isl_basic_set_copy(bset: bounds); |
755 | bounds = isl_basic_set_drop_constraints_not_involving_dims( |
756 | bset: bounds, type: isl_dim_set, first: depth, n: 1); |
757 | set = isl_set_from_basic_set(bset: bounds); |
758 | dom = isl_set_intersect(set1: dom, set2: set); |
759 | } |
760 | |
761 | if (has_stride) { |
762 | set = isl_ast_build_get_stride_constraint(build); |
763 | dom = isl_set_intersect(set1: dom, set2: set); |
764 | } |
765 | |
766 | dom = isl_set_eliminate(set: dom, type: isl_dim_set, first: depth, n: 1); |
767 | dom = isl_ast_build_compute_gist(build, set: dom); |
768 | guard = isl_set_intersect(set1: guard, set2: dom); |
769 | |
770 | return guard; |
771 | } |
772 | |
773 | /* Update "graft" based on "sub_build" for the degenerate case. |
774 | * |
775 | * "build" is the build in which graft->node was created |
776 | * "sub_build" contains information about the current level itself, |
777 | * including the single value attained. |
778 | * |
779 | * We set the initialization part of the for loop to the single |
780 | * value attained by the current dimension. |
781 | * The increment and condition are not strictly needed as they are known |
782 | * to be "1" and "iterator <= value" respectively. |
783 | */ |
784 | static __isl_give isl_ast_graft *refine_degenerate( |
785 | __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build, |
786 | __isl_keep isl_ast_build *sub_build) |
787 | { |
788 | isl_pw_aff *value; |
789 | isl_ast_expr *init; |
790 | |
791 | if (!graft || !sub_build) |
792 | return isl_ast_graft_free(graft); |
793 | |
794 | value = isl_pw_aff_copy(pwaff: sub_build->value); |
795 | |
796 | init = isl_ast_build_expr_from_pw_aff_internal(build, pa: value); |
797 | graft->node = isl_ast_node_for_set_init(node: graft->node, init); |
798 | if (!graft->node) |
799 | return isl_ast_graft_free(graft); |
800 | |
801 | return graft; |
802 | } |
803 | |
804 | /* Return the intersection of constraints in "list" as a set. |
805 | */ |
806 | static __isl_give isl_set *intersect_constraints( |
807 | __isl_keep isl_constraint_list *list) |
808 | { |
809 | int i; |
810 | isl_size n; |
811 | isl_basic_set *bset; |
812 | |
813 | n = isl_constraint_list_n_constraint(list); |
814 | if (n < 0) |
815 | return NULL; |
816 | if (n < 1) |
817 | isl_die(isl_constraint_list_get_ctx(list), isl_error_internal, |
818 | "expecting at least one constraint" , return NULL); |
819 | |
820 | bset = isl_basic_set_from_constraint( |
821 | constraint: isl_constraint_list_get_constraint(list, index: 0)); |
822 | for (i = 1; i < n; ++i) { |
823 | isl_basic_set *bset_i; |
824 | |
825 | bset_i = isl_basic_set_from_constraint( |
826 | constraint: isl_constraint_list_get_constraint(list, index: i)); |
827 | bset = isl_basic_set_intersect(bset1: bset, bset2: bset_i); |
828 | } |
829 | |
830 | return isl_set_from_basic_set(bset); |
831 | } |
832 | |
833 | /* Compute the constraints on the outer dimensions enforced by |
834 | * graft->node and add those constraints to graft->enforced, |
835 | * in case the upper bound is expressed as a set "upper". |
836 | * |
837 | * In particular, if l(...) is a lower bound in "lower", and |
838 | * |
839 | * -a i + f(...) >= 0 or a i <= f(...) |
840 | * |
841 | * is an upper bound ocnstraint on the current dimension i, |
842 | * then the for loop enforces the constraint |
843 | * |
844 | * -a l(...) + f(...) >= 0 or a l(...) <= f(...) |
845 | * |
846 | * We therefore simply take each lower bound in turn, plug it into |
847 | * the upper bounds and compute the intersection over all lower bounds. |
848 | * |
849 | * If a lower bound is a rational expression, then |
850 | * isl_basic_set_preimage_multi_aff will force this rational |
851 | * expression to have only integer values. However, the loop |
852 | * itself does not enforce this integrality constraint. We therefore |
853 | * use the ceil of the lower bounds instead of the lower bounds themselves. |
854 | * Other constraints will make sure that the for loop is only executed |
855 | * when each of the lower bounds attains an integral value. |
856 | * In particular, potentially rational values only occur in |
857 | * lower_bound if the offset is a (seemingly) rational expression, |
858 | * but then outer conditions will make sure that this rational expression |
859 | * only attains integer values. |
860 | */ |
861 | static __isl_give isl_ast_graft *set_enforced_from_set( |
862 | __isl_take isl_ast_graft *graft, |
863 | __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper) |
864 | { |
865 | isl_space *space; |
866 | isl_basic_set *enforced; |
867 | isl_pw_multi_aff *pma; |
868 | int i; |
869 | isl_size n; |
870 | |
871 | n = isl_pw_aff_list_n_pw_aff(list: lower); |
872 | if (!graft || n < 0) |
873 | return isl_ast_graft_free(graft); |
874 | |
875 | space = isl_set_get_space(set: upper); |
876 | enforced = isl_basic_set_universe(space: isl_space_copy(space)); |
877 | |
878 | space = isl_space_map_from_set(space); |
879 | pma = isl_pw_multi_aff_identity(space); |
880 | |
881 | for (i = 0; i < n; ++i) { |
882 | isl_pw_aff *pa; |
883 | isl_set *enforced_i; |
884 | isl_basic_set *hull; |
885 | isl_pw_multi_aff *pma_i; |
886 | |
887 | pa = isl_pw_aff_list_get_pw_aff(list: lower, index: i); |
888 | pa = isl_pw_aff_ceil(pwaff: pa); |
889 | pma_i = isl_pw_multi_aff_copy(pma); |
890 | pma_i = isl_pw_multi_aff_set_pw_aff(pma: pma_i, pos, pa); |
891 | enforced_i = isl_set_copy(set: upper); |
892 | enforced_i = isl_set_preimage_pw_multi_aff(set: enforced_i, pma: pma_i); |
893 | hull = isl_set_simple_hull(set: enforced_i); |
894 | enforced = isl_basic_set_intersect(bset1: enforced, bset2: hull); |
895 | } |
896 | |
897 | isl_pw_multi_aff_free(pma); |
898 | |
899 | graft = isl_ast_graft_enforce(graft, enforced); |
900 | |
901 | return graft; |
902 | } |
903 | |
904 | /* Compute the constraints on the outer dimensions enforced by |
905 | * graft->node and add those constraints to graft->enforced, |
906 | * in case the upper bound is expressed as |
907 | * a list of affine expressions "upper". |
908 | * |
909 | * The enforced condition is that each lower bound expression is less |
910 | * than or equal to each upper bound expression. |
911 | */ |
912 | static __isl_give isl_ast_graft *set_enforced_from_list( |
913 | __isl_take isl_ast_graft *graft, |
914 | __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper) |
915 | { |
916 | isl_set *cond; |
917 | isl_basic_set *enforced; |
918 | |
919 | lower = isl_pw_aff_list_copy(list: lower); |
920 | upper = isl_pw_aff_list_copy(list: upper); |
921 | cond = isl_pw_aff_list_le_set(list1: lower, list2: upper); |
922 | enforced = isl_set_simple_hull(set: cond); |
923 | graft = isl_ast_graft_enforce(graft, enforced); |
924 | |
925 | return graft; |
926 | } |
927 | |
928 | /* Does "aff" have a negative constant term? |
929 | */ |
930 | static isl_bool aff_constant_is_negative(__isl_keep isl_set *set, |
931 | __isl_keep isl_aff *aff, void *user) |
932 | { |
933 | isl_bool is_neg; |
934 | isl_val *v; |
935 | |
936 | v = isl_aff_get_constant_val(aff); |
937 | is_neg = isl_val_is_neg(v); |
938 | isl_val_free(v); |
939 | |
940 | return is_neg; |
941 | } |
942 | |
943 | /* Does "pa" have a negative constant term over its entire domain? |
944 | */ |
945 | static isl_bool pw_aff_constant_is_negative(__isl_keep isl_pw_aff *pa, |
946 | void *user) |
947 | { |
948 | return isl_pw_aff_every_piece(pa, test: &aff_constant_is_negative, NULL); |
949 | } |
950 | |
951 | /* Does each element in "list" have a negative constant term? |
952 | */ |
953 | static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list) |
954 | { |
955 | return isl_pw_aff_list_every(list, test: &pw_aff_constant_is_negative, NULL); |
956 | } |
957 | |
958 | /* Add 1 to each of the elements in "list", where each of these elements |
959 | * is defined over the internal schedule space of "build". |
960 | */ |
961 | static __isl_give isl_pw_aff_list *list_add_one( |
962 | __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build) |
963 | { |
964 | int i; |
965 | isl_size n; |
966 | isl_space *space; |
967 | isl_aff *aff; |
968 | isl_pw_aff *one; |
969 | |
970 | n = isl_pw_aff_list_n_pw_aff(list); |
971 | if (n < 0) |
972 | return isl_pw_aff_list_free(list); |
973 | |
974 | space = isl_ast_build_get_space(build, internal: 1); |
975 | aff = isl_aff_zero_on_domain(ls: isl_local_space_from_space(space)); |
976 | aff = isl_aff_add_constant_si(aff, v: 1); |
977 | one = isl_pw_aff_from_aff(aff); |
978 | |
979 | for (i = 0; i < n; ++i) { |
980 | isl_pw_aff *pa; |
981 | pa = isl_pw_aff_list_get_pw_aff(list, index: i); |
982 | pa = isl_pw_aff_add(pwaff1: pa, pwaff2: isl_pw_aff_copy(pwaff: one)); |
983 | list = isl_pw_aff_list_set_pw_aff(list, index: i, el: pa); |
984 | } |
985 | |
986 | isl_pw_aff_free(pwaff: one); |
987 | |
988 | return list; |
989 | } |
990 | |
991 | /* Set the condition part of the for node graft->node in case |
992 | * the upper bound is represented as a list of piecewise affine expressions. |
993 | * |
994 | * In particular, set the condition to |
995 | * |
996 | * iterator <= min(list of upper bounds) |
997 | * |
998 | * If each of the upper bounds has a negative constant term, then |
999 | * set the condition to |
1000 | * |
1001 | * iterator < min(list of (upper bound + 1)s) |
1002 | * |
1003 | */ |
1004 | static __isl_give isl_ast_graft *set_for_cond_from_list( |
1005 | __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list, |
1006 | __isl_keep isl_ast_build *build) |
1007 | { |
1008 | int neg; |
1009 | isl_ast_expr *bound, *iterator, *cond; |
1010 | enum isl_ast_expr_op_type type = isl_ast_expr_op_le; |
1011 | |
1012 | if (!graft || !list) |
1013 | return isl_ast_graft_free(graft); |
1014 | |
1015 | neg = list_constant_is_negative(list); |
1016 | if (neg < 0) |
1017 | return isl_ast_graft_free(graft); |
1018 | list = isl_pw_aff_list_copy(list); |
1019 | if (neg) { |
1020 | list = list_add_one(list, build); |
1021 | type = isl_ast_expr_op_lt; |
1022 | } |
1023 | |
1024 | bound = reduce_list(type: isl_ast_expr_op_min, list, build); |
1025 | iterator = isl_ast_expr_copy(expr: graft->node->u.f.iterator); |
1026 | cond = isl_ast_expr_alloc_binary(type, expr1: iterator, expr2: bound); |
1027 | graft->node = isl_ast_node_for_set_cond(node: graft->node, init: cond); |
1028 | |
1029 | isl_pw_aff_list_free(list); |
1030 | if (!graft->node) |
1031 | return isl_ast_graft_free(graft); |
1032 | return graft; |
1033 | } |
1034 | |
1035 | /* Set the condition part of the for node graft->node in case |
1036 | * the upper bound is represented as a set. |
1037 | */ |
1038 | static __isl_give isl_ast_graft *set_for_cond_from_set( |
1039 | __isl_take isl_ast_graft *graft, __isl_keep isl_set *set, |
1040 | __isl_keep isl_ast_build *build) |
1041 | { |
1042 | isl_ast_expr *cond; |
1043 | |
1044 | if (!graft) |
1045 | return NULL; |
1046 | |
1047 | cond = isl_ast_build_expr_from_set_internal(build, set: isl_set_copy(set)); |
1048 | graft->node = isl_ast_node_for_set_cond(node: graft->node, init: cond); |
1049 | if (!graft->node) |
1050 | return isl_ast_graft_free(graft); |
1051 | return graft; |
1052 | } |
1053 | |
1054 | /* Construct an isl_ast_expr for the increment (i.e., stride) of |
1055 | * the current dimension. |
1056 | */ |
1057 | static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build) |
1058 | { |
1059 | isl_size depth; |
1060 | isl_val *v; |
1061 | isl_ctx *ctx; |
1062 | |
1063 | depth = isl_ast_build_get_depth(build); |
1064 | if (depth < 0) |
1065 | return NULL; |
1066 | ctx = isl_ast_build_get_ctx(build); |
1067 | |
1068 | if (!isl_ast_build_has_stride(build, pos: depth)) |
1069 | return isl_ast_expr_alloc_int_si(ctx, i: 1); |
1070 | |
1071 | v = isl_ast_build_get_stride(build, pos: depth); |
1072 | return isl_ast_expr_from_val(v); |
1073 | } |
1074 | |
1075 | /* Should we express the loop condition as |
1076 | * |
1077 | * iterator <= min(list of upper bounds) |
1078 | * |
1079 | * or as a conjunction of constraints? |
1080 | * |
1081 | * The first is constructed from a list of upper bounds. |
1082 | * The second is constructed from a set. |
1083 | * |
1084 | * If there are no upper bounds in "constraints", then this could mean |
1085 | * that "domain" simply doesn't have an upper bound or that we didn't |
1086 | * pick any upper bound. In the first case, we want to generate the |
1087 | * loop condition as a(n empty) conjunction of constraints |
1088 | * In the second case, we will compute |
1089 | * a single upper bound from "domain" and so we use the list form. |
1090 | * |
1091 | * If there are upper bounds in "constraints", |
1092 | * then we use the list form iff the atomic_upper_bound option is set. |
1093 | */ |
1094 | static int use_upper_bound_list(isl_ctx *ctx, int n_upper, |
1095 | __isl_keep isl_set *domain, int depth) |
1096 | { |
1097 | if (n_upper > 0) |
1098 | return isl_options_get_ast_build_atomic_upper_bound(ctx); |
1099 | else |
1100 | return isl_set_dim_has_upper_bound(set: domain, type: isl_dim_set, pos: depth); |
1101 | } |
1102 | |
1103 | /* Fill in the expressions of the for node in graft->node. |
1104 | * |
1105 | * In particular, |
1106 | * - set the initialization part of the loop to the maximum of the lower bounds |
1107 | * - extract the increment from the stride of the current dimension |
1108 | * - construct the for condition either based on a list of upper bounds |
1109 | * or on a set of upper bound constraints. |
1110 | */ |
1111 | static __isl_give isl_ast_graft *set_for_node_expressions( |
1112 | __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower, |
1113 | int use_list, __isl_keep isl_pw_aff_list *upper_list, |
1114 | __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build) |
1115 | { |
1116 | isl_ast_expr *init; |
1117 | |
1118 | if (!graft) |
1119 | return NULL; |
1120 | |
1121 | init = reduce_list(type: isl_ast_expr_op_max, list: lower, build); |
1122 | graft->node = isl_ast_node_for_set_init(node: graft->node, init); |
1123 | graft->node = isl_ast_node_for_set_inc(node: graft->node, init: for_inc(build)); |
1124 | |
1125 | if (!graft->node) |
1126 | graft = isl_ast_graft_free(graft); |
1127 | |
1128 | if (use_list) |
1129 | graft = set_for_cond_from_list(graft, list: upper_list, build); |
1130 | else |
1131 | graft = set_for_cond_from_set(graft, set: upper_set, build); |
1132 | |
1133 | return graft; |
1134 | } |
1135 | |
1136 | /* Update "graft" based on "bounds" and "domain" for the generic, |
1137 | * non-degenerate, case. |
1138 | * |
1139 | * "c_lower" and "c_upper" contain the lower and upper bounds |
1140 | * that the loop node should express. |
1141 | * "domain" is the subset of the intersection of the constraints |
1142 | * for which some code is executed. |
1143 | * |
1144 | * There may be zero lower bounds or zero upper bounds in "constraints" |
1145 | * in case the list of constraints was created |
1146 | * based on the atomic option or based on separation with explicit bounds. |
1147 | * In that case, we use "domain" to derive lower and/or upper bounds. |
1148 | * |
1149 | * We first compute a list of one or more lower bounds. |
1150 | * |
1151 | * Then we decide if we want to express the condition as |
1152 | * |
1153 | * iterator <= min(list of upper bounds) |
1154 | * |
1155 | * or as a conjunction of constraints. |
1156 | * |
1157 | * The set of enforced constraints is then computed either based on |
1158 | * a list of upper bounds or on a set of upper bound constraints. |
1159 | * We do not compute any enforced constraints if we were forced |
1160 | * to compute a lower or upper bound using exact_bound. The domains |
1161 | * of the resulting expressions may imply some bounds on outer dimensions |
1162 | * that we do not want to appear in the enforced constraints since |
1163 | * they are not actually enforced by the corresponding code. |
1164 | * |
1165 | * Finally, we fill in the expressions of the for node. |
1166 | */ |
1167 | static __isl_give isl_ast_graft *refine_generic_bounds( |
1168 | __isl_take isl_ast_graft *graft, |
1169 | __isl_take isl_constraint_list *c_lower, |
1170 | __isl_take isl_constraint_list *c_upper, |
1171 | __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) |
1172 | { |
1173 | isl_size depth; |
1174 | isl_ctx *ctx; |
1175 | isl_pw_aff_list *lower; |
1176 | int use_list; |
1177 | isl_set *upper_set = NULL; |
1178 | isl_pw_aff_list *upper_list = NULL; |
1179 | isl_size n_lower, n_upper; |
1180 | |
1181 | depth = isl_ast_build_get_depth(build); |
1182 | if (!graft || !c_lower || !c_upper || depth < 0) |
1183 | goto error; |
1184 | |
1185 | ctx = isl_ast_graft_get_ctx(graft); |
1186 | |
1187 | n_lower = isl_constraint_list_n_constraint(list: c_lower); |
1188 | n_upper = isl_constraint_list_n_constraint(list: c_upper); |
1189 | if (n_lower < 0 || n_upper < 0) |
1190 | goto error; |
1191 | |
1192 | use_list = use_upper_bound_list(ctx, n_upper, domain, depth); |
1193 | |
1194 | lower = lower_bounds(constraints: c_lower, pos: depth, domain, build); |
1195 | |
1196 | if (use_list) |
1197 | upper_list = upper_bounds(constraints: c_upper, pos: depth, domain, build); |
1198 | else if (n_upper > 0) |
1199 | upper_set = intersect_constraints(list: c_upper); |
1200 | else |
1201 | upper_set = isl_set_universe(space: isl_set_get_space(set: domain)); |
1202 | |
1203 | if (n_lower == 0 || n_upper == 0) |
1204 | ; |
1205 | else if (use_list) |
1206 | graft = set_enforced_from_list(graft, lower, upper: upper_list); |
1207 | else |
1208 | graft = set_enforced_from_set(graft, lower, pos: depth, upper: upper_set); |
1209 | |
1210 | graft = set_for_node_expressions(graft, lower, use_list, upper_list, |
1211 | upper_set, build); |
1212 | |
1213 | isl_pw_aff_list_free(list: lower); |
1214 | isl_pw_aff_list_free(list: upper_list); |
1215 | isl_set_free(set: upper_set); |
1216 | isl_constraint_list_free(list: c_lower); |
1217 | isl_constraint_list_free(list: c_upper); |
1218 | |
1219 | return graft; |
1220 | error: |
1221 | isl_constraint_list_free(list: c_lower); |
1222 | isl_constraint_list_free(list: c_upper); |
1223 | return isl_ast_graft_free(graft); |
1224 | } |
1225 | |
1226 | /* Internal data structure used inside count_constraints to keep |
1227 | * track of the number of constraints that are independent of dimension "pos", |
1228 | * the lower bounds in "pos" and the upper bounds in "pos". |
1229 | */ |
1230 | struct isl_ast_count_constraints_data { |
1231 | int pos; |
1232 | |
1233 | int n_indep; |
1234 | int n_lower; |
1235 | int n_upper; |
1236 | }; |
1237 | |
1238 | /* Increment data->n_indep, data->lower or data->upper depending |
1239 | * on whether "c" is independent of dimensions data->pos, |
1240 | * a lower bound or an upper bound. |
1241 | */ |
1242 | static isl_stat count_constraints(__isl_take isl_constraint *c, void *user) |
1243 | { |
1244 | struct isl_ast_count_constraints_data *data = user; |
1245 | |
1246 | if (isl_constraint_is_lower_bound(constraint: c, type: isl_dim_set, pos: data->pos)) |
1247 | data->n_lower++; |
1248 | else if (isl_constraint_is_upper_bound(constraint: c, type: isl_dim_set, pos: data->pos)) |
1249 | data->n_upper++; |
1250 | else |
1251 | data->n_indep++; |
1252 | |
1253 | isl_constraint_free(c); |
1254 | |
1255 | return isl_stat_ok; |
1256 | } |
1257 | |
1258 | /* Update "graft" based on "bounds" and "domain" for the generic, |
1259 | * non-degenerate, case. |
1260 | * |
1261 | * "list" respresent the list of bounds that need to be encoded by |
1262 | * the for loop. Only the constraints that involve the iterator |
1263 | * are relevant here. The other constraints are taken care of by |
1264 | * the caller and are included in the generated constraints of "build". |
1265 | * "domain" is the subset of the intersection of the constraints |
1266 | * for which some code is executed. |
1267 | * "build" is the build in which graft->node was created. |
1268 | * |
1269 | * We separate lower bounds, upper bounds and constraints that |
1270 | * are independent of the loop iterator. |
1271 | * |
1272 | * The actual for loop bounds are generated in refine_generic_bounds. |
1273 | */ |
1274 | static __isl_give isl_ast_graft *refine_generic_split( |
1275 | __isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list, |
1276 | __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) |
1277 | { |
1278 | struct isl_ast_count_constraints_data data; |
1279 | isl_size depth; |
1280 | isl_constraint_list *lower; |
1281 | isl_constraint_list *upper; |
1282 | |
1283 | depth = isl_ast_build_get_depth(build); |
1284 | if (depth < 0) |
1285 | list = isl_constraint_list_free(list); |
1286 | if (!list) |
1287 | return isl_ast_graft_free(graft); |
1288 | |
1289 | data.pos = depth; |
1290 | |
1291 | list = isl_constraint_list_sort(list, cmp: &cmp_constraint, user: &data.pos); |
1292 | if (!list) |
1293 | return isl_ast_graft_free(graft); |
1294 | |
1295 | data.n_indep = data.n_lower = data.n_upper = 0; |
1296 | if (isl_constraint_list_foreach(list, fn: &count_constraints, user: &data) < 0) { |
1297 | isl_constraint_list_free(list); |
1298 | return isl_ast_graft_free(graft); |
1299 | } |
1300 | |
1301 | lower = isl_constraint_list_drop(list, first: 0, n: data.n_indep); |
1302 | upper = isl_constraint_list_copy(list: lower); |
1303 | lower = isl_constraint_list_drop(list: lower, first: data.n_lower, n: data.n_upper); |
1304 | upper = isl_constraint_list_drop(list: upper, first: 0, n: data.n_lower); |
1305 | |
1306 | return refine_generic_bounds(graft, c_lower: lower, c_upper: upper, domain, build); |
1307 | } |
1308 | |
1309 | /* Update "graft" based on "bounds" and "domain" for the generic, |
1310 | * non-degenerate, case. |
1311 | * |
1312 | * "bounds" respresent the bounds that need to be encoded by |
1313 | * the for loop (or a guard around the for loop). |
1314 | * "domain" is the subset of "bounds" for which some code is executed. |
1315 | * "build" is the build in which graft->node was created. |
1316 | * |
1317 | * We break up "bounds" into a list of constraints and continue with |
1318 | * refine_generic_split. |
1319 | */ |
1320 | static __isl_give isl_ast_graft *refine_generic( |
1321 | __isl_take isl_ast_graft *graft, |
1322 | __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain, |
1323 | __isl_keep isl_ast_build *build) |
1324 | { |
1325 | isl_constraint_list *list; |
1326 | |
1327 | if (!build || !graft) |
1328 | return isl_ast_graft_free(graft); |
1329 | |
1330 | list = isl_basic_set_get_constraint_list(bset: bounds); |
1331 | |
1332 | graft = refine_generic_split(graft, list, domain, build); |
1333 | |
1334 | return graft; |
1335 | } |
1336 | |
1337 | /* Create a for node for the current level. |
1338 | * |
1339 | * Mark the for node degenerate if "degenerate" is set. |
1340 | */ |
1341 | static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build, |
1342 | int degenerate) |
1343 | { |
1344 | isl_size depth; |
1345 | isl_id *id; |
1346 | isl_ast_node *node; |
1347 | |
1348 | depth = isl_ast_build_get_depth(build); |
1349 | if (depth < 0) |
1350 | return NULL; |
1351 | |
1352 | id = isl_ast_build_get_iterator_id(build, pos: depth); |
1353 | node = isl_ast_node_alloc_for(id); |
1354 | if (degenerate) |
1355 | node = isl_ast_node_for_mark_degenerate(node); |
1356 | |
1357 | return node; |
1358 | } |
1359 | |
1360 | /* If the ast_build_exploit_nested_bounds option is set, then return |
1361 | * the constraints enforced by all elements in "list". |
1362 | * Otherwise, return the universe. |
1363 | */ |
1364 | static __isl_give isl_basic_set *( |
1365 | __isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build) |
1366 | { |
1367 | isl_ctx *ctx; |
1368 | isl_space *space; |
1369 | |
1370 | if (!list) |
1371 | return NULL; |
1372 | |
1373 | ctx = isl_ast_graft_list_get_ctx(list); |
1374 | if (isl_options_get_ast_build_exploit_nested_bounds(ctx)) |
1375 | return isl_ast_graft_list_extract_shared_enforced(list, build); |
1376 | |
1377 | space = isl_ast_build_get_space(build, internal: 1); |
1378 | return isl_basic_set_universe(space); |
1379 | } |
1380 | |
1381 | /* Return the pending constraints of "build" that are not already taken |
1382 | * care of (by a combination of "enforced" and the generated constraints |
1383 | * of "build"). |
1384 | */ |
1385 | static __isl_give isl_set *(__isl_keep isl_ast_build *build, |
1386 | __isl_keep isl_basic_set *enforced) |
1387 | { |
1388 | isl_set *guard, *context; |
1389 | |
1390 | guard = isl_ast_build_get_pending(build); |
1391 | context = isl_set_from_basic_set(bset: isl_basic_set_copy(bset: enforced)); |
1392 | context = isl_set_intersect(set1: context, |
1393 | set2: isl_ast_build_get_generated(build)); |
1394 | return isl_set_gist(set: guard, context); |
1395 | } |
1396 | |
1397 | /* Create an AST node for the current dimension based on |
1398 | * the schedule domain "bounds" and return the node encapsulated |
1399 | * in an isl_ast_graft. |
1400 | * |
1401 | * "executed" is the current inverse schedule, taking into account |
1402 | * the bounds in "bounds" |
1403 | * "domain" is the domain of "executed", with inner dimensions projected out. |
1404 | * It may be a strict subset of "bounds" in case "bounds" was created |
1405 | * based on the atomic option or based on separation with explicit bounds. |
1406 | * |
1407 | * "domain" may satisfy additional equalities that result |
1408 | * from intersecting "executed" with "bounds" in add_node. |
1409 | * It may also satisfy some global constraints that were dropped out because |
1410 | * we performed separation with explicit bounds. |
1411 | * The very first step is then to copy these constraints to "bounds". |
1412 | * |
1413 | * Since we may be calling before_each_for and after_each_for |
1414 | * callbacks, we record the current inverse schedule in the build. |
1415 | * |
1416 | * We consider three builds, |
1417 | * "build" is the one in which the current level is created, |
1418 | * "body_build" is the build in which the next level is created, |
1419 | * "sub_build" is essentially the same as "body_build", except that |
1420 | * the depth has not been increased yet. |
1421 | * |
1422 | * "build" already contains information (in strides and offsets) |
1423 | * about the strides at the current level, but this information is not |
1424 | * reflected in the build->domain. |
1425 | * We first add this information and the "bounds" to the sub_build->domain. |
1426 | * isl_ast_build_set_loop_bounds adds the stride information and |
1427 | * checks whether the current dimension attains |
1428 | * only a single value and whether this single value can be represented using |
1429 | * a single affine expression. |
1430 | * In the first case, the current level is considered "degenerate". |
1431 | * In the second, sub-case, the current level is considered "eliminated". |
1432 | * Eliminated levels don't need to be reflected in the AST since we can |
1433 | * simply plug in the affine expression. For degenerate, but non-eliminated, |
1434 | * levels, we do introduce a for node, but mark is as degenerate so that |
1435 | * it can be printed as an assignment of the single value to the loop |
1436 | * "iterator". |
1437 | * |
1438 | * If the current level is eliminated, we explicitly plug in the value |
1439 | * for the current level found by isl_ast_build_set_loop_bounds in the |
1440 | * inverse schedule. This ensures that if we are working on a slice |
1441 | * of the domain based on information available in the inverse schedule |
1442 | * and the build domain, that then this information is also reflected |
1443 | * in the inverse schedule. This operation also eliminates the current |
1444 | * dimension from the inverse schedule making sure no inner dimensions depend |
1445 | * on the current dimension. Otherwise, we create a for node, marking |
1446 | * it degenerate if appropriate. The initial for node is still incomplete |
1447 | * and will be completed in either refine_degenerate or refine_generic. |
1448 | * |
1449 | * We then generate a sequence of grafts for the next level, |
1450 | * create a surrounding graft for the current level and insert |
1451 | * the for node we created (if the current level is not eliminated). |
1452 | * Before creating a graft for the current level, we first extract |
1453 | * hoistable constraints from the child guards and combine them |
1454 | * with the pending constraints in the build. These constraints |
1455 | * are used to simplify the child guards and then added to the guard |
1456 | * of the current graft to ensure that they will be generated. |
1457 | * If the hoisted guard is a disjunction, then we use it directly |
1458 | * to gist the guards on the children before intersect it with the |
1459 | * pending constraints. We do so because this disjunction is typically |
1460 | * identical to the guards on the children such that these guards |
1461 | * can be effectively removed completely. After the intersection, |
1462 | * the gist operation would have a harder time figuring this out. |
1463 | * |
1464 | * Finally, we set the bounds of the for loop in either |
1465 | * refine_degenerate or refine_generic. |
1466 | * We do so in a context where the pending constraints of the build |
1467 | * have been replaced by the guard of the current graft. |
1468 | */ |
1469 | static __isl_give isl_ast_graft *create_node_scaled( |
1470 | __isl_take isl_union_map *executed, |
1471 | __isl_take isl_basic_set *bounds, __isl_take isl_set *domain, |
1472 | __isl_take isl_ast_build *build) |
1473 | { |
1474 | isl_size depth; |
1475 | int degenerate; |
1476 | isl_bool eliminated; |
1477 | isl_size n; |
1478 | isl_basic_set *hull; |
1479 | isl_basic_set *enforced; |
1480 | isl_set *guard, *hoisted; |
1481 | isl_ast_node *node = NULL; |
1482 | isl_ast_graft *graft; |
1483 | isl_ast_graft_list *children; |
1484 | isl_ast_build *sub_build; |
1485 | isl_ast_build *body_build; |
1486 | |
1487 | domain = isl_ast_build_eliminate_divs(build, set: domain); |
1488 | domain = isl_set_detect_equalities(set: domain); |
1489 | hull = isl_set_unshifted_simple_hull(set: isl_set_copy(set: domain)); |
1490 | bounds = isl_basic_set_intersect(bset1: bounds, bset2: hull); |
1491 | build = isl_ast_build_set_executed(build, executed: isl_union_map_copy(umap: executed)); |
1492 | |
1493 | depth = isl_ast_build_get_depth(build); |
1494 | if (depth < 0) |
1495 | build = isl_ast_build_free(build); |
1496 | sub_build = isl_ast_build_copy(build); |
1497 | bounds = isl_basic_set_remove_redundancies(bset: bounds); |
1498 | bounds = isl_ast_build_specialize_basic_set(build: sub_build, bset: bounds); |
1499 | sub_build = isl_ast_build_set_loop_bounds(build: sub_build, |
1500 | bounds: isl_basic_set_copy(bset: bounds)); |
1501 | degenerate = isl_ast_build_has_value(build: sub_build); |
1502 | eliminated = isl_ast_build_has_affine_value(build: sub_build, pos: depth); |
1503 | if (degenerate < 0 || eliminated < 0) |
1504 | executed = isl_union_map_free(umap: executed); |
1505 | if (!degenerate) |
1506 | bounds = isl_ast_build_compute_gist_basic_set(build, bset: bounds); |
1507 | sub_build = isl_ast_build_set_pending_generated(build: sub_build, |
1508 | bounds: isl_basic_set_copy(bset: bounds)); |
1509 | if (eliminated) |
1510 | executed = plug_in_values(executed, build: sub_build); |
1511 | else |
1512 | node = create_for(build, degenerate); |
1513 | |
1514 | body_build = isl_ast_build_copy(build: sub_build); |
1515 | body_build = isl_ast_build_increase_depth(build: body_build); |
1516 | if (!eliminated) |
1517 | node = before_each_for(node, build: body_build); |
1518 | children = generate_next_level(executed, |
1519 | build: isl_ast_build_copy(build: body_build)); |
1520 | |
1521 | enforced = extract_shared_enforced(list: children, build); |
1522 | guard = extract_pending(build: sub_build, enforced); |
1523 | hoisted = isl_ast_graft_list_extract_hoistable_guard(list: children, build); |
1524 | n = isl_set_n_basic_set(set: hoisted); |
1525 | if (n < 0) |
1526 | children = isl_ast_graft_list_free(list: children); |
1527 | if (n > 1) |
1528 | children = isl_ast_graft_list_gist_guards(list: children, |
1529 | context: isl_set_copy(set: hoisted)); |
1530 | guard = isl_set_intersect(set1: guard, set2: hoisted); |
1531 | if (!eliminated) |
1532 | guard = add_implied_guards(guard, degenerate, bounds, build); |
1533 | |
1534 | graft = isl_ast_graft_alloc_from_children(list: children, |
1535 | guard: isl_set_copy(set: guard), enforced, build, sub_build); |
1536 | |
1537 | if (!eliminated) { |
1538 | isl_ast_build *for_build; |
1539 | |
1540 | graft = isl_ast_graft_insert_for(graft, node); |
1541 | for_build = isl_ast_build_copy(build); |
1542 | for_build = isl_ast_build_replace_pending_by_guard(build: for_build, |
1543 | guard: isl_set_copy(set: guard)); |
1544 | if (degenerate) |
1545 | graft = refine_degenerate(graft, build: for_build, sub_build); |
1546 | else |
1547 | graft = refine_generic(graft, bounds, |
1548 | domain, build: for_build); |
1549 | isl_ast_build_free(build: for_build); |
1550 | } |
1551 | isl_set_free(set: guard); |
1552 | if (!eliminated) |
1553 | graft = after_each_for(graft, build: body_build); |
1554 | |
1555 | isl_ast_build_free(build: body_build); |
1556 | isl_ast_build_free(build: sub_build); |
1557 | isl_ast_build_free(build); |
1558 | isl_basic_set_free(bset: bounds); |
1559 | isl_set_free(set: domain); |
1560 | |
1561 | return graft; |
1562 | } |
1563 | |
1564 | /* Internal data structure for checking if all constraints involving |
1565 | * the input dimension "depth" are such that the other coefficients |
1566 | * are multiples of "m", reducing "m" if they are not. |
1567 | * If "m" is reduced all the way down to "1", then the check has failed |
1568 | * and we break out of the iteration. |
1569 | */ |
1570 | struct isl_check_scaled_data { |
1571 | int depth; |
1572 | isl_val *m; |
1573 | }; |
1574 | |
1575 | /* If constraint "c" involves the input dimension data->depth, |
1576 | * then make sure that all the other coefficients are multiples of data->m, |
1577 | * reducing data->m if needed. |
1578 | * Break out of the iteration if data->m has become equal to "1". |
1579 | */ |
1580 | static isl_stat constraint_check_scaled(__isl_take isl_constraint *c, |
1581 | void *user) |
1582 | { |
1583 | struct isl_check_scaled_data *data = user; |
1584 | int i, j; |
1585 | isl_size n; |
1586 | enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out, |
1587 | isl_dim_div }; |
1588 | |
1589 | if (!isl_constraint_involves_dims(constraint: c, type: isl_dim_in, first: data->depth, n: 1)) { |
1590 | isl_constraint_free(c); |
1591 | return isl_stat_ok; |
1592 | } |
1593 | |
1594 | for (i = 0; i < 4; ++i) { |
1595 | n = isl_constraint_dim(constraint: c, type: t[i]); |
1596 | if (n < 0) |
1597 | break; |
1598 | for (j = 0; j < n; ++j) { |
1599 | isl_val *d; |
1600 | |
1601 | if (t[i] == isl_dim_in && j == data->depth) |
1602 | continue; |
1603 | if (!isl_constraint_involves_dims(constraint: c, type: t[i], first: j, n: 1)) |
1604 | continue; |
1605 | d = isl_constraint_get_coefficient_val(constraint: c, type: t[i], pos: j); |
1606 | data->m = isl_val_gcd(v1: data->m, v2: d); |
1607 | if (isl_val_is_one(v: data->m)) |
1608 | break; |
1609 | } |
1610 | if (j < n) |
1611 | break; |
1612 | } |
1613 | |
1614 | isl_constraint_free(c); |
1615 | |
1616 | return i < 4 ? isl_stat_error : isl_stat_ok; |
1617 | } |
1618 | |
1619 | /* For each constraint of "bmap" that involves the input dimension data->depth, |
1620 | * make sure that all the other coefficients are multiples of data->m, |
1621 | * reducing data->m if needed. |
1622 | * Break out of the iteration if data->m has become equal to "1". |
1623 | */ |
1624 | static isl_stat basic_map_check_scaled(__isl_take isl_basic_map *bmap, |
1625 | void *user) |
1626 | { |
1627 | isl_stat r; |
1628 | |
1629 | r = isl_basic_map_foreach_constraint(bmap, |
1630 | fn: &constraint_check_scaled, user); |
1631 | isl_basic_map_free(bmap); |
1632 | |
1633 | return r; |
1634 | } |
1635 | |
1636 | /* For each constraint of "map" that involves the input dimension data->depth, |
1637 | * make sure that all the other coefficients are multiples of data->m, |
1638 | * reducing data->m if needed. |
1639 | * Break out of the iteration if data->m has become equal to "1". |
1640 | */ |
1641 | static isl_stat map_check_scaled(__isl_take isl_map *map, void *user) |
1642 | { |
1643 | isl_stat r; |
1644 | |
1645 | r = isl_map_foreach_basic_map(map, fn: &basic_map_check_scaled, user); |
1646 | isl_map_free(map); |
1647 | |
1648 | return r; |
1649 | } |
1650 | |
1651 | /* Create an AST node for the current dimension based on |
1652 | * the schedule domain "bounds" and return the node encapsulated |
1653 | * in an isl_ast_graft. |
1654 | * |
1655 | * "executed" is the current inverse schedule, taking into account |
1656 | * the bounds in "bounds" |
1657 | * "domain" is the domain of "executed", with inner dimensions projected out. |
1658 | * |
1659 | * |
1660 | * Before moving on to the actual AST node construction in create_node_scaled, |
1661 | * we first check if the current dimension is strided and if we can scale |
1662 | * down this stride. Note that we only do this if the ast_build_scale_strides |
1663 | * option is set. |
1664 | * |
1665 | * In particular, let the current dimension take on values |
1666 | * |
1667 | * f + s a |
1668 | * |
1669 | * with a an integer. We check if we can find an integer m that (obviously) |
1670 | * divides both f and s. |
1671 | * |
1672 | * If so, we check if the current dimension only appears in constraints |
1673 | * where the coefficients of the other variables are multiples of m. |
1674 | * We perform this extra check to avoid the risk of introducing |
1675 | * divisions by scaling down the current dimension. |
1676 | * |
1677 | * If so, we scale the current dimension down by a factor of m. |
1678 | * That is, we plug in |
1679 | * |
1680 | * i = m i' (1) |
1681 | * |
1682 | * Note that in principle we could always scale down strided loops |
1683 | * by plugging in |
1684 | * |
1685 | * i = f + s i' |
1686 | * |
1687 | * but this may result in i' taking on larger values than the original i, |
1688 | * due to the shift by "f". |
1689 | * By constrast, the scaling in (1) can only reduce the (absolute) value "i". |
1690 | */ |
1691 | static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed, |
1692 | __isl_take isl_basic_set *bounds, __isl_take isl_set *domain, |
1693 | __isl_take isl_ast_build *build) |
1694 | { |
1695 | struct isl_check_scaled_data data; |
1696 | isl_size depth; |
1697 | isl_ctx *ctx; |
1698 | isl_aff *offset; |
1699 | isl_val *d; |
1700 | |
1701 | ctx = isl_ast_build_get_ctx(build); |
1702 | if (!isl_options_get_ast_build_scale_strides(ctx)) |
1703 | return create_node_scaled(executed, bounds, domain, build); |
1704 | |
1705 | depth = isl_ast_build_get_depth(build); |
1706 | if (depth < 0) |
1707 | build = isl_ast_build_free(build); |
1708 | data.depth = depth; |
1709 | if (!isl_ast_build_has_stride(build, pos: data.depth)) |
1710 | return create_node_scaled(executed, bounds, domain, build); |
1711 | |
1712 | offset = isl_ast_build_get_offset(build, pos: data.depth); |
1713 | data.m = isl_ast_build_get_stride(build, pos: data.depth); |
1714 | if (!data.m) |
1715 | offset = isl_aff_free(aff: offset); |
1716 | offset = isl_aff_scale_down_val(aff: offset, v: isl_val_copy(v: data.m)); |
1717 | d = isl_aff_get_denominator_val(aff: offset); |
1718 | if (!d) |
1719 | executed = isl_union_map_free(umap: executed); |
1720 | |
1721 | if (executed && isl_val_is_divisible_by(v1: data.m, v2: d)) |
1722 | data.m = isl_val_div(v1: data.m, v2: d); |
1723 | else { |
1724 | data.m = isl_val_set_si(v: data.m, i: 1); |
1725 | isl_val_free(v: d); |
1726 | } |
1727 | |
1728 | if (!isl_val_is_one(v: data.m)) { |
1729 | if (isl_union_map_foreach_map(umap: executed, fn: &map_check_scaled, |
1730 | user: &data) < 0 && |
1731 | !isl_val_is_one(v: data.m)) |
1732 | executed = isl_union_map_free(umap: executed); |
1733 | } |
1734 | |
1735 | if (!isl_val_is_one(v: data.m)) { |
1736 | isl_space *space; |
1737 | isl_multi_aff *ma; |
1738 | isl_aff *aff; |
1739 | isl_map *map; |
1740 | isl_union_map *umap; |
1741 | |
1742 | space = isl_ast_build_get_space(build, internal: 1); |
1743 | space = isl_space_map_from_set(space); |
1744 | ma = isl_multi_aff_identity(space); |
1745 | aff = isl_multi_aff_get_aff(multi: ma, pos: data.depth); |
1746 | aff = isl_aff_scale_val(aff, v: isl_val_copy(v: data.m)); |
1747 | ma = isl_multi_aff_set_aff(multi: ma, pos: data.depth, el: aff); |
1748 | |
1749 | bounds = isl_basic_set_preimage_multi_aff(bset: bounds, |
1750 | ma: isl_multi_aff_copy(multi: ma)); |
1751 | domain = isl_set_preimage_multi_aff(set: domain, |
1752 | ma: isl_multi_aff_copy(multi: ma)); |
1753 | map = isl_map_reverse(map: isl_map_from_multi_aff(maff: ma)); |
1754 | umap = isl_union_map_from_map(map); |
1755 | executed = isl_union_map_apply_domain(umap1: executed, |
1756 | umap2: isl_union_map_copy(umap)); |
1757 | build = isl_ast_build_scale_down(build, m: isl_val_copy(v: data.m), |
1758 | umap); |
1759 | } |
1760 | isl_aff_free(aff: offset); |
1761 | isl_val_free(v: data.m); |
1762 | |
1763 | return create_node_scaled(executed, bounds, domain, build); |
1764 | } |
1765 | |
1766 | /* Add the basic set to the list that "user" points to. |
1767 | */ |
1768 | static isl_stat collect_basic_set(__isl_take isl_basic_set *bset, void *user) |
1769 | { |
1770 | isl_basic_set_list **list = user; |
1771 | |
1772 | *list = isl_basic_set_list_add(list: *list, el: bset); |
1773 | |
1774 | return isl_stat_ok; |
1775 | } |
1776 | |
1777 | /* Extract the basic sets of "set" and collect them in an isl_basic_set_list. |
1778 | */ |
1779 | static __isl_give isl_basic_set_list *isl_basic_set_list_from_set( |
1780 | __isl_take isl_set *set) |
1781 | { |
1782 | isl_size n; |
1783 | isl_ctx *ctx; |
1784 | isl_basic_set_list *list; |
1785 | |
1786 | n = isl_set_n_basic_set(set); |
1787 | if (n < 0) |
1788 | set = isl_set_free(set); |
1789 | if (!set) |
1790 | return NULL; |
1791 | |
1792 | ctx = isl_set_get_ctx(set); |
1793 | |
1794 | list = isl_basic_set_list_alloc(ctx, n); |
1795 | if (isl_set_foreach_basic_set(set, fn: &collect_basic_set, user: &list) < 0) |
1796 | list = isl_basic_set_list_free(list); |
1797 | |
1798 | isl_set_free(set); |
1799 | return list; |
1800 | } |
1801 | |
1802 | /* Generate code for the schedule domain "bounds" |
1803 | * and add the result to "list". |
1804 | * |
1805 | * We mainly detect strides here and check if the bounds do not |
1806 | * conflict with the current build domain |
1807 | * and then pass over control to create_node. |
1808 | * |
1809 | * "bounds" reflects the bounds on the current dimension and possibly |
1810 | * some extra conditions on outer dimensions. |
1811 | * It does not, however, include any divs involving the current dimension, |
1812 | * so it does not capture any stride constraints. |
1813 | * We therefore need to compute that part of the schedule domain that |
1814 | * intersects with "bounds" and derive the strides from the result. |
1815 | */ |
1816 | static __isl_give isl_ast_graft_list *add_node( |
1817 | __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed, |
1818 | __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build) |
1819 | { |
1820 | isl_ast_graft *graft; |
1821 | isl_set *domain = NULL; |
1822 | isl_union_set *uset; |
1823 | int empty, disjoint; |
1824 | |
1825 | uset = isl_union_set_from_basic_set(bset: isl_basic_set_copy(bset: bounds)); |
1826 | executed = isl_union_map_intersect_domain(umap: executed, uset); |
1827 | empty = isl_union_map_is_empty(umap: executed); |
1828 | if (empty < 0) |
1829 | goto error; |
1830 | if (empty) |
1831 | goto done; |
1832 | |
1833 | uset = isl_union_map_domain(umap: isl_union_map_copy(umap: executed)); |
1834 | domain = isl_set_from_union_set(uset); |
1835 | domain = isl_ast_build_specialize(build, set: domain); |
1836 | |
1837 | domain = isl_set_compute_divs(set: domain); |
1838 | domain = isl_ast_build_eliminate_inner(build, set: domain); |
1839 | disjoint = isl_set_is_disjoint(set1: domain, set2: build->domain); |
1840 | if (disjoint < 0) |
1841 | goto error; |
1842 | if (disjoint) |
1843 | goto done; |
1844 | |
1845 | build = isl_ast_build_detect_strides(build, set: isl_set_copy(set: domain)); |
1846 | |
1847 | graft = create_node(executed, bounds, domain, |
1848 | build: isl_ast_build_copy(build)); |
1849 | list = isl_ast_graft_list_add(list, el: graft); |
1850 | isl_ast_build_free(build); |
1851 | return list; |
1852 | error: |
1853 | list = isl_ast_graft_list_free(list); |
1854 | done: |
1855 | isl_set_free(set: domain); |
1856 | isl_basic_set_free(bset: bounds); |
1857 | isl_union_map_free(umap: executed); |
1858 | isl_ast_build_free(build); |
1859 | return list; |
1860 | } |
1861 | |
1862 | /* Does any element of i follow or coincide with any element of j |
1863 | * at the current depth for equal values of the outer dimensions? |
1864 | */ |
1865 | static isl_bool domain_follows_at_depth(__isl_keep isl_basic_set *i, |
1866 | __isl_keep isl_basic_set *j, void *user) |
1867 | { |
1868 | int depth = *(int *) user; |
1869 | isl_basic_map *test; |
1870 | isl_bool empty; |
1871 | int l; |
1872 | |
1873 | test = isl_basic_map_from_domain_and_range(domain: isl_basic_set_copy(bset: i), |
1874 | range: isl_basic_set_copy(bset: j)); |
1875 | for (l = 0; l < depth; ++l) |
1876 | test = isl_basic_map_equate(bmap: test, type1: isl_dim_in, pos1: l, |
1877 | type2: isl_dim_out, pos2: l); |
1878 | test = isl_basic_map_order_ge(bmap: test, type1: isl_dim_in, pos1: depth, |
1879 | type2: isl_dim_out, pos2: depth); |
1880 | empty = isl_basic_map_is_empty(bmap: test); |
1881 | isl_basic_map_free(bmap: test); |
1882 | |
1883 | return isl_bool_not(b: empty); |
1884 | } |
1885 | |
1886 | /* Split up each element of "list" into a part that is related to "bset" |
1887 | * according to "gt" and a part that is not. |
1888 | * Return a list that consist of "bset" and all the pieces. |
1889 | */ |
1890 | static __isl_give isl_basic_set_list *add_split_on( |
1891 | __isl_take isl_basic_set_list *list, __isl_take isl_basic_set *bset, |
1892 | __isl_keep isl_basic_map *gt) |
1893 | { |
1894 | int i; |
1895 | isl_size n; |
1896 | isl_basic_set_list *res; |
1897 | |
1898 | n = isl_basic_set_list_n_basic_set(list); |
1899 | if (n < 0) |
1900 | bset = isl_basic_set_free(bset); |
1901 | |
1902 | gt = isl_basic_map_copy(bmap: gt); |
1903 | gt = isl_basic_map_intersect_domain(bmap: gt, bset: isl_basic_set_copy(bset)); |
1904 | res = isl_basic_set_list_from_basic_set(el: bset); |
1905 | for (i = 0; res && i < n; ++i) { |
1906 | isl_basic_set *bset; |
1907 | isl_set *set1, *set2; |
1908 | isl_basic_map *bmap; |
1909 | int empty; |
1910 | |
1911 | bset = isl_basic_set_list_get_basic_set(list, index: i); |
1912 | bmap = isl_basic_map_copy(bmap: gt); |
1913 | bmap = isl_basic_map_intersect_range(bmap, bset); |
1914 | bset = isl_basic_map_range(bmap); |
1915 | empty = isl_basic_set_is_empty(bset); |
1916 | if (empty < 0) |
1917 | res = isl_basic_set_list_free(list: res); |
1918 | if (empty) { |
1919 | isl_basic_set_free(bset); |
1920 | bset = isl_basic_set_list_get_basic_set(list, index: i); |
1921 | res = isl_basic_set_list_add(list: res, el: bset); |
1922 | continue; |
1923 | } |
1924 | |
1925 | res = isl_basic_set_list_add(list: res, el: isl_basic_set_copy(bset)); |
1926 | set1 = isl_set_from_basic_set(bset); |
1927 | bset = isl_basic_set_list_get_basic_set(list, index: i); |
1928 | set2 = isl_set_from_basic_set(bset); |
1929 | set1 = isl_set_subtract(set1: set2, set2: set1); |
1930 | set1 = isl_set_make_disjoint(set: set1); |
1931 | |
1932 | res = isl_basic_set_list_concat(list1: res, |
1933 | list2: isl_basic_set_list_from_set(set: set1)); |
1934 | } |
1935 | isl_basic_map_free(bmap: gt); |
1936 | isl_basic_set_list_free(list); |
1937 | return res; |
1938 | } |
1939 | |
1940 | static __isl_give isl_ast_graft_list *generate_sorted_domains( |
1941 | __isl_keep isl_basic_set_list *domain_list, |
1942 | __isl_keep isl_union_map *executed, |
1943 | __isl_keep isl_ast_build *build); |
1944 | |
1945 | /* Internal data structure for add_nodes. |
1946 | * |
1947 | * "executed" and "build" are extra arguments to be passed to add_node. |
1948 | * "list" collects the results. |
1949 | */ |
1950 | struct isl_add_nodes_data { |
1951 | isl_union_map *executed; |
1952 | isl_ast_build *build; |
1953 | |
1954 | isl_ast_graft_list *list; |
1955 | }; |
1956 | |
1957 | /* Generate code for the schedule domains in "scc" |
1958 | * and add the results to "list". |
1959 | * |
1960 | * The domains in "scc" form a strongly connected component in the ordering. |
1961 | * If the number of domains in "scc" is larger than 1, then this means |
1962 | * that we cannot determine a valid ordering for the domains in the component. |
1963 | * This should be fairly rare because the individual domains |
1964 | * have been made disjoint first. |
1965 | * The problem is that the domains may be integrally disjoint but not |
1966 | * rationally disjoint. For example, we may have domains |
1967 | * |
1968 | * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 } |
1969 | * |
1970 | * These two domains have an empty intersection, but their rational |
1971 | * relaxations do intersect. It is impossible to order these domains |
1972 | * in the second dimension because the first should be ordered before |
1973 | * the second for outer dimension equal to 0, while it should be ordered |
1974 | * after for outer dimension equal to 1. |
1975 | * |
1976 | * This may happen in particular in case of unrolling since the domain |
1977 | * of each slice is replaced by its simple hull. |
1978 | * |
1979 | * For each basic set i in "scc" and for each of the following basic sets j, |
1980 | * we split off that part of the basic set i that shares the outer dimensions |
1981 | * with j and lies before j in the current dimension. |
1982 | * We collect all the pieces in a new list that replaces "scc". |
1983 | * |
1984 | * While the elements in "scc" should be disjoint, we double-check |
1985 | * this property to avoid running into an infinite recursion in case |
1986 | * they intersect due to some internal error. |
1987 | */ |
1988 | static isl_stat add_nodes(__isl_take isl_basic_set_list *scc, void *user) |
1989 | { |
1990 | struct isl_add_nodes_data *data = user; |
1991 | int i; |
1992 | isl_size depth; |
1993 | isl_size n; |
1994 | isl_basic_set *bset, *first; |
1995 | isl_basic_set_list *list; |
1996 | isl_space *space; |
1997 | isl_basic_map *gt; |
1998 | |
1999 | n = isl_basic_set_list_n_basic_set(list: scc); |
2000 | if (n < 0) |
2001 | goto error; |
2002 | bset = isl_basic_set_list_get_basic_set(list: scc, index: 0); |
2003 | if (n == 1) { |
2004 | isl_basic_set_list_free(list: scc); |
2005 | data->list = add_node(list: data->list, |
2006 | executed: isl_union_map_copy(umap: data->executed), bounds: bset, |
2007 | build: isl_ast_build_copy(build: data->build)); |
2008 | return data->list ? isl_stat_ok : isl_stat_error; |
2009 | } |
2010 | |
2011 | depth = isl_ast_build_get_depth(build: data->build); |
2012 | if (depth < 0) |
2013 | bset = isl_basic_set_free(bset); |
2014 | space = isl_basic_set_get_space(bset); |
2015 | space = isl_space_map_from_set(space); |
2016 | gt = isl_basic_map_universe(space); |
2017 | for (i = 0; i < depth; ++i) |
2018 | gt = isl_basic_map_equate(bmap: gt, type1: isl_dim_in, pos1: i, type2: isl_dim_out, pos2: i); |
2019 | gt = isl_basic_map_order_gt(bmap: gt, type1: isl_dim_in, pos1: depth, type2: isl_dim_out, pos2: depth); |
2020 | |
2021 | first = isl_basic_set_copy(bset); |
2022 | list = isl_basic_set_list_from_basic_set(el: bset); |
2023 | for (i = 1; i < n; ++i) { |
2024 | int disjoint; |
2025 | |
2026 | bset = isl_basic_set_list_get_basic_set(list: scc, index: i); |
2027 | |
2028 | disjoint = isl_basic_set_is_disjoint(bset1: bset, bset2: first); |
2029 | if (disjoint < 0) |
2030 | list = isl_basic_set_list_free(list); |
2031 | else if (!disjoint) |
2032 | isl_die(isl_basic_set_list_get_ctx(scc), |
2033 | isl_error_internal, |
2034 | "basic sets in scc are assumed to be disjoint" , |
2035 | list = isl_basic_set_list_free(list)); |
2036 | |
2037 | list = add_split_on(list, bset, gt); |
2038 | } |
2039 | isl_basic_set_free(bset: first); |
2040 | isl_basic_map_free(bmap: gt); |
2041 | isl_basic_set_list_free(list: scc); |
2042 | scc = list; |
2043 | data->list = isl_ast_graft_list_concat(list1: data->list, |
2044 | list2: generate_sorted_domains(domain_list: scc, executed: data->executed, build: data->build)); |
2045 | isl_basic_set_list_free(list: scc); |
2046 | |
2047 | return data->list ? isl_stat_ok : isl_stat_error; |
2048 | error: |
2049 | isl_basic_set_list_free(list: scc); |
2050 | return isl_stat_error; |
2051 | } |
2052 | |
2053 | /* Sort the domains in "domain_list" according to the execution order |
2054 | * at the current depth (for equal values of the outer dimensions), |
2055 | * generate code for each of them, collecting the results in a list. |
2056 | * If no code is generated (because the intersection of the inverse schedule |
2057 | * with the domains turns out to be empty), then an empty list is returned. |
2058 | * |
2059 | * The caller is responsible for ensuring that the basic sets in "domain_list" |
2060 | * are pair-wise disjoint. It can, however, in principle happen that |
2061 | * two basic sets should be ordered one way for one value of the outer |
2062 | * dimensions and the other way for some other value of the outer dimensions. |
2063 | * We therefore play safe and look for strongly connected components. |
2064 | * The function add_nodes takes care of handling non-trivial components. |
2065 | */ |
2066 | static __isl_give isl_ast_graft_list *generate_sorted_domains( |
2067 | __isl_keep isl_basic_set_list *domain_list, |
2068 | __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build) |
2069 | { |
2070 | isl_ctx *ctx; |
2071 | struct isl_add_nodes_data data; |
2072 | isl_size depth; |
2073 | isl_size n; |
2074 | |
2075 | n = isl_basic_set_list_n_basic_set(list: domain_list); |
2076 | if (n < 0) |
2077 | return NULL; |
2078 | |
2079 | ctx = isl_basic_set_list_get_ctx(list: domain_list); |
2080 | data.list = isl_ast_graft_list_alloc(ctx, n); |
2081 | if (n == 0) |
2082 | return data.list; |
2083 | if (n == 1) |
2084 | return add_node(list: data.list, executed: isl_union_map_copy(umap: executed), |
2085 | bounds: isl_basic_set_list_get_basic_set(list: domain_list, index: 0), |
2086 | build: isl_ast_build_copy(build)); |
2087 | |
2088 | depth = isl_ast_build_get_depth(build); |
2089 | data.executed = executed; |
2090 | data.build = build; |
2091 | if (depth < 0 || isl_basic_set_list_foreach_scc(list: domain_list, |
2092 | follows: &domain_follows_at_depth, follows_user: &depth, |
2093 | fn: &add_nodes, fn_user: &data) < 0) |
2094 | data.list = isl_ast_graft_list_free(list: data.list); |
2095 | |
2096 | return data.list; |
2097 | } |
2098 | |
2099 | /* Do i and j share any values for the outer dimensions? |
2100 | */ |
2101 | static isl_bool shared_outer(__isl_keep isl_basic_set *i, |
2102 | __isl_keep isl_basic_set *j, void *user) |
2103 | { |
2104 | int depth = *(int *) user; |
2105 | isl_basic_map *test; |
2106 | isl_bool empty; |
2107 | int l; |
2108 | |
2109 | test = isl_basic_map_from_domain_and_range(domain: isl_basic_set_copy(bset: i), |
2110 | range: isl_basic_set_copy(bset: j)); |
2111 | for (l = 0; l < depth; ++l) |
2112 | test = isl_basic_map_equate(bmap: test, type1: isl_dim_in, pos1: l, |
2113 | type2: isl_dim_out, pos2: l); |
2114 | empty = isl_basic_map_is_empty(bmap: test); |
2115 | isl_basic_map_free(bmap: test); |
2116 | |
2117 | return isl_bool_not(b: empty); |
2118 | } |
2119 | |
2120 | /* Internal data structure for generate_sorted_domains_wrap. |
2121 | * |
2122 | * "n" is the total number of basic sets |
2123 | * "executed" and "build" are extra arguments to be passed |
2124 | * to generate_sorted_domains. |
2125 | * |
2126 | * "single" is set to 1 by generate_sorted_domains_wrap if there |
2127 | * is only a single component. |
2128 | * "list" collects the results. |
2129 | */ |
2130 | struct isl_ast_generate_parallel_domains_data { |
2131 | isl_size n; |
2132 | isl_union_map *executed; |
2133 | isl_ast_build *build; |
2134 | |
2135 | int single; |
2136 | isl_ast_graft_list *list; |
2137 | }; |
2138 | |
2139 | /* Call generate_sorted_domains on "scc", fuse the result into a list |
2140 | * with either zero or one graft and collect the these single element |
2141 | * lists into data->list. |
2142 | * |
2143 | * If there is only one component, i.e., if the number of basic sets |
2144 | * in the current component is equal to the total number of basic sets, |
2145 | * then data->single is set to 1 and the result of generate_sorted_domains |
2146 | * is not fused. |
2147 | */ |
2148 | static isl_stat generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc, |
2149 | void *user) |
2150 | { |
2151 | struct isl_ast_generate_parallel_domains_data *data = user; |
2152 | isl_ast_graft_list *list; |
2153 | isl_size n; |
2154 | |
2155 | n = isl_basic_set_list_n_basic_set(list: scc); |
2156 | if (n < 0) |
2157 | scc = isl_basic_set_list_free(list: scc); |
2158 | list = generate_sorted_domains(domain_list: scc, executed: data->executed, build: data->build); |
2159 | data->single = n == data->n; |
2160 | if (!data->single) |
2161 | list = isl_ast_graft_list_fuse(children: list, build: data->build); |
2162 | if (!data->list) |
2163 | data->list = list; |
2164 | else |
2165 | data->list = isl_ast_graft_list_concat(list1: data->list, list2: list); |
2166 | |
2167 | isl_basic_set_list_free(list: scc); |
2168 | if (!data->list) |
2169 | return isl_stat_error; |
2170 | |
2171 | return isl_stat_ok; |
2172 | } |
2173 | |
2174 | /* Look for any (weakly connected) components in the "domain_list" |
2175 | * of domains that share some values of the outer dimensions. |
2176 | * That is, domains in different components do not share any values |
2177 | * of the outer dimensions. This means that these components |
2178 | * can be freely reordered. |
2179 | * Within each of the components, we sort the domains according |
2180 | * to the execution order at the current depth. |
2181 | * |
2182 | * If there is more than one component, then generate_sorted_domains_wrap |
2183 | * fuses the result of each call to generate_sorted_domains |
2184 | * into a list with either zero or one graft and collects these (at most) |
2185 | * single element lists into a bigger list. This means that the elements of the |
2186 | * final list can be freely reordered. In particular, we sort them |
2187 | * according to an arbitrary but fixed ordering to ease merging of |
2188 | * graft lists from different components. |
2189 | */ |
2190 | static __isl_give isl_ast_graft_list *generate_parallel_domains( |
2191 | __isl_keep isl_basic_set_list *domain_list, |
2192 | __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build) |
2193 | { |
2194 | isl_size depth; |
2195 | struct isl_ast_generate_parallel_domains_data data; |
2196 | |
2197 | data.n = isl_basic_set_list_n_basic_set(list: domain_list); |
2198 | if (data.n < 0) |
2199 | return NULL; |
2200 | |
2201 | if (data.n <= 1) |
2202 | return generate_sorted_domains(domain_list, executed, build); |
2203 | |
2204 | depth = isl_ast_build_get_depth(build); |
2205 | if (depth < 0) |
2206 | return NULL; |
2207 | data.list = NULL; |
2208 | data.executed = executed; |
2209 | data.build = build; |
2210 | data.single = 0; |
2211 | if (isl_basic_set_list_foreach_scc(list: domain_list, follows: &shared_outer, follows_user: &depth, |
2212 | fn: &generate_sorted_domains_wrap, |
2213 | fn_user: &data) < 0) |
2214 | data.list = isl_ast_graft_list_free(list: data.list); |
2215 | |
2216 | if (!data.single) |
2217 | data.list = isl_ast_graft_list_sort_guard(list: data.list); |
2218 | |
2219 | return data.list; |
2220 | } |
2221 | |
2222 | /* Internal data for separate_domain. |
2223 | * |
2224 | * "explicit" is set if we only want to use explicit bounds. |
2225 | * |
2226 | * "domain" collects the separated domains. |
2227 | */ |
2228 | struct isl_separate_domain_data { |
2229 | isl_ast_build *build; |
2230 | int explicit; |
2231 | isl_set *domain; |
2232 | }; |
2233 | |
2234 | /* Extract implicit bounds on the current dimension for the executed "map". |
2235 | * |
2236 | * The domain of "map" may involve inner dimensions, so we |
2237 | * need to eliminate them. |
2238 | */ |
2239 | static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map, |
2240 | __isl_keep isl_ast_build *build) |
2241 | { |
2242 | isl_set *domain; |
2243 | |
2244 | domain = isl_map_domain(bmap: map); |
2245 | domain = isl_ast_build_eliminate(build, domain); |
2246 | |
2247 | return domain; |
2248 | } |
2249 | |
2250 | /* Extract explicit bounds on the current dimension for the executed "map". |
2251 | * |
2252 | * Rather than eliminating the inner dimensions as in implicit_bounds, |
2253 | * we simply drop any constraints involving those inner dimensions. |
2254 | * The idea is that most bounds that are implied by constraints on the |
2255 | * inner dimensions will be enforced by for loops and not by explicit guards. |
2256 | * There is then no need to separate along those bounds. |
2257 | */ |
2258 | static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map, |
2259 | __isl_keep isl_ast_build *build) |
2260 | { |
2261 | isl_set *domain; |
2262 | isl_size depth; |
2263 | isl_size dim; |
2264 | |
2265 | depth = isl_ast_build_get_depth(build); |
2266 | dim = isl_map_dim(map, type: isl_dim_out); |
2267 | if (depth < 0 || dim < 0) |
2268 | return isl_map_domain(bmap: isl_map_free(map)); |
2269 | map = isl_map_drop_constraints_involving_dims(map, type: isl_dim_out, first: 0, n: dim); |
2270 | |
2271 | domain = isl_map_domain(bmap: map); |
2272 | dim = isl_set_dim(set: domain, type: isl_dim_set); |
2273 | domain = isl_set_detect_equalities(set: domain); |
2274 | domain = isl_set_drop_constraints_involving_dims(set: domain, |
2275 | type: isl_dim_set, first: depth + 1, n: dim - (depth + 1)); |
2276 | domain = isl_set_remove_divs_involving_dims(set: domain, |
2277 | type: isl_dim_set, first: depth, n: 1); |
2278 | domain = isl_set_remove_unknown_divs(set: domain); |
2279 | |
2280 | return domain; |
2281 | } |
2282 | |
2283 | /* Split data->domain into pieces that intersect with the range of "map" |
2284 | * and pieces that do not intersect with the range of "map" |
2285 | * and then add that part of the range of "map" that does not intersect |
2286 | * with data->domain. |
2287 | */ |
2288 | static isl_stat separate_domain(__isl_take isl_map *map, void *user) |
2289 | { |
2290 | struct isl_separate_domain_data *data = user; |
2291 | isl_set *domain; |
2292 | isl_set *d1, *d2; |
2293 | |
2294 | if (data->explicit) |
2295 | domain = explicit_bounds(map, build: data->build); |
2296 | else |
2297 | domain = implicit_bounds(map, build: data->build); |
2298 | |
2299 | domain = isl_set_coalesce(set: domain); |
2300 | domain = isl_set_make_disjoint(set: domain); |
2301 | d1 = isl_set_subtract(set1: isl_set_copy(set: domain), set2: isl_set_copy(set: data->domain)); |
2302 | d2 = isl_set_subtract(set1: isl_set_copy(set: data->domain), set2: isl_set_copy(set: domain)); |
2303 | data->domain = isl_set_intersect(set1: data->domain, set2: domain); |
2304 | data->domain = isl_set_union(set1: data->domain, set2: d1); |
2305 | data->domain = isl_set_union(set1: data->domain, set2: d2); |
2306 | |
2307 | return isl_stat_ok; |
2308 | } |
2309 | |
2310 | /* Separate the schedule domains of "executed". |
2311 | * |
2312 | * That is, break up the domain of "executed" into basic sets, |
2313 | * such that for each basic set S, every element in S is associated with |
2314 | * the same domain spaces. |
2315 | * |
2316 | * "space" is the (single) domain space of "executed". |
2317 | */ |
2318 | static __isl_give isl_set *separate_schedule_domains( |
2319 | __isl_take isl_space *space, __isl_take isl_union_map *executed, |
2320 | __isl_keep isl_ast_build *build) |
2321 | { |
2322 | struct isl_separate_domain_data data = { build }; |
2323 | isl_ctx *ctx; |
2324 | |
2325 | ctx = isl_ast_build_get_ctx(build); |
2326 | data.explicit = isl_options_get_ast_build_separation_bounds(ctx) == |
2327 | ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT; |
2328 | data.domain = isl_set_empty(space); |
2329 | if (isl_union_map_foreach_map(umap: executed, fn: &separate_domain, user: &data) < 0) |
2330 | data.domain = isl_set_free(set: data.domain); |
2331 | |
2332 | isl_union_map_free(umap: executed); |
2333 | return data.domain; |
2334 | } |
2335 | |
2336 | /* Temporary data used during the search for a lower bound for unrolling. |
2337 | * |
2338 | * "build" is the build in which the unrolling will be performed |
2339 | * "domain" is the original set for which to find a lower bound |
2340 | * "depth" is the dimension for which to find a lower boudn |
2341 | * "expansion" is the expansion that needs to be applied to "domain" |
2342 | * in the unrolling that will be performed |
2343 | * |
2344 | * "lower" is the best lower bound found so far. It is NULL if we have not |
2345 | * found any yet. |
2346 | * "n" is the corresponding size. If lower is NULL, then the value of n |
2347 | * is undefined. |
2348 | * "n_div" is the maximal number of integer divisions in the first |
2349 | * unrolled iteration (after expansion). It is set to -1 if it hasn't |
2350 | * been computed yet. |
2351 | */ |
2352 | struct isl_find_unroll_data { |
2353 | isl_ast_build *build; |
2354 | isl_set *domain; |
2355 | int depth; |
2356 | isl_basic_map *expansion; |
2357 | |
2358 | isl_aff *lower; |
2359 | int *n; |
2360 | int n_div; |
2361 | }; |
2362 | |
2363 | /* Return the constraint |
2364 | * |
2365 | * i_"depth" = aff + offset |
2366 | */ |
2367 | static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff, |
2368 | int offset) |
2369 | { |
2370 | aff = isl_aff_copy(aff); |
2371 | aff = isl_aff_add_coefficient_si(aff, type: isl_dim_in, pos: depth, v: -1); |
2372 | aff = isl_aff_add_constant_si(aff, v: offset); |
2373 | return isl_equality_from_aff(aff); |
2374 | } |
2375 | |
2376 | /* Update *user to the number of integer divisions in the first element |
2377 | * of "ma", if it is larger than the current value. |
2378 | */ |
2379 | static isl_stat update_n_div(__isl_take isl_set *set, |
2380 | __isl_take isl_multi_aff *ma, void *user) |
2381 | { |
2382 | isl_aff *aff; |
2383 | int *n = user; |
2384 | isl_size n_div; |
2385 | |
2386 | aff = isl_multi_aff_get_aff(multi: ma, pos: 0); |
2387 | n_div = isl_aff_dim(aff, type: isl_dim_div); |
2388 | isl_aff_free(aff); |
2389 | isl_multi_aff_free(multi: ma); |
2390 | isl_set_free(set); |
2391 | |
2392 | if (n_div > *n) |
2393 | *n = n_div; |
2394 | |
2395 | return n_div >= 0 ? isl_stat_ok : isl_stat_error; |
2396 | } |
2397 | |
2398 | /* Get the number of integer divisions in the expression for the iterator |
2399 | * value at the first slice in the unrolling based on lower bound "lower", |
2400 | * taking into account the expansion that needs to be performed on this slice. |
2401 | */ |
2402 | static int get_expanded_n_div(struct isl_find_unroll_data *data, |
2403 | __isl_keep isl_aff *lower) |
2404 | { |
2405 | isl_constraint *c; |
2406 | isl_set *set; |
2407 | isl_map *it_map, *expansion; |
2408 | isl_pw_multi_aff *pma; |
2409 | int n; |
2410 | |
2411 | c = at_offset(depth: data->depth, aff: lower, offset: 0); |
2412 | set = isl_set_copy(set: data->domain); |
2413 | set = isl_set_add_constraint(set, constraint: c); |
2414 | expansion = isl_map_from_basic_map(bmap: isl_basic_map_copy(bmap: data->expansion)); |
2415 | set = isl_set_apply(set, map: expansion); |
2416 | it_map = isl_ast_build_map_to_iterator(build: data->build, set); |
2417 | pma = isl_pw_multi_aff_from_map(map: it_map); |
2418 | n = 0; |
2419 | if (isl_pw_multi_aff_foreach_piece(pma, fn: &update_n_div, user: &n) < 0) |
2420 | n = -1; |
2421 | isl_pw_multi_aff_free(pma); |
2422 | |
2423 | return n; |
2424 | } |
2425 | |
2426 | /* Is the lower bound "lower" with corresponding iteration count "n" |
2427 | * better than the one stored in "data"? |
2428 | * If there is no upper bound on the iteration count ("n" is infinity) or |
2429 | * if the count is too large, then we cannot use this lower bound. |
2430 | * Otherwise, if there was no previous lower bound or |
2431 | * if the iteration count of the new lower bound is smaller than |
2432 | * the iteration count of the previous lower bound, then we consider |
2433 | * the new lower bound to be better. |
2434 | * If the iteration count is the same, then compare the number |
2435 | * of integer divisions that would be needed to express |
2436 | * the iterator value at the first slice in the unrolling |
2437 | * according to the lower bound. If we end up computing this |
2438 | * number, then store the lowest value in data->n_div. |
2439 | */ |
2440 | static int is_better_lower_bound(struct isl_find_unroll_data *data, |
2441 | __isl_keep isl_aff *lower, __isl_keep isl_val *n) |
2442 | { |
2443 | int cmp; |
2444 | int n_div; |
2445 | |
2446 | if (!n) |
2447 | return -1; |
2448 | if (isl_val_is_infty(v: n)) |
2449 | return 0; |
2450 | if (isl_val_cmp_si(v: n, INT_MAX) > 0) |
2451 | return 0; |
2452 | if (!data->lower) |
2453 | return 1; |
2454 | cmp = isl_val_cmp_si(v: n, i: *data->n); |
2455 | if (cmp < 0) |
2456 | return 1; |
2457 | if (cmp > 0) |
2458 | return 0; |
2459 | if (data->n_div < 0) |
2460 | data->n_div = get_expanded_n_div(data, lower: data->lower); |
2461 | if (data->n_div < 0) |
2462 | return -1; |
2463 | if (data->n_div == 0) |
2464 | return 0; |
2465 | n_div = get_expanded_n_div(data, lower); |
2466 | if (n_div < 0) |
2467 | return -1; |
2468 | if (n_div >= data->n_div) |
2469 | return 0; |
2470 | data->n_div = n_div; |
2471 | |
2472 | return 1; |
2473 | } |
2474 | |
2475 | /* Check if we can use "c" as a lower bound and if it is better than |
2476 | * any previously found lower bound. |
2477 | * |
2478 | * If "c" does not involve the dimension at the current depth, |
2479 | * then we cannot use it. |
2480 | * Otherwise, let "c" be of the form |
2481 | * |
2482 | * i >= f(j)/a |
2483 | * |
2484 | * We compute the maximal value of |
2485 | * |
2486 | * -ceil(f(j)/a)) + i + 1 |
2487 | * |
2488 | * over the domain. If there is such a value "n", then we know |
2489 | * |
2490 | * -ceil(f(j)/a)) + i + 1 <= n |
2491 | * |
2492 | * or |
2493 | * |
2494 | * i < ceil(f(j)/a)) + n |
2495 | * |
2496 | * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling. |
2497 | * We just need to check if we have found any lower bound before and |
2498 | * if the new lower bound is better (smaller n or fewer integer divisions) |
2499 | * than the previously found lower bounds. |
2500 | */ |
2501 | static isl_stat update_unrolling_lower_bound(struct isl_find_unroll_data *data, |
2502 | __isl_keep isl_constraint *c) |
2503 | { |
2504 | isl_aff *aff, *lower; |
2505 | isl_val *max; |
2506 | int better; |
2507 | |
2508 | if (!isl_constraint_is_lower_bound(constraint: c, type: isl_dim_set, pos: data->depth)) |
2509 | return isl_stat_ok; |
2510 | |
2511 | lower = isl_constraint_get_bound(constraint: c, type: isl_dim_set, pos: data->depth); |
2512 | lower = isl_aff_ceil(aff: lower); |
2513 | aff = isl_aff_copy(aff: lower); |
2514 | aff = isl_aff_neg(aff); |
2515 | aff = isl_aff_add_coefficient_si(aff, type: isl_dim_in, pos: data->depth, v: 1); |
2516 | aff = isl_aff_add_constant_si(aff, v: 1); |
2517 | max = isl_set_max_val(set: data->domain, obj: aff); |
2518 | isl_aff_free(aff); |
2519 | |
2520 | better = is_better_lower_bound(data, lower, n: max); |
2521 | if (better < 0 || !better) { |
2522 | isl_val_free(v: max); |
2523 | isl_aff_free(aff: lower); |
2524 | return better < 0 ? isl_stat_error : isl_stat_ok; |
2525 | } |
2526 | |
2527 | isl_aff_free(aff: data->lower); |
2528 | data->lower = lower; |
2529 | *data->n = isl_val_get_num_si(v: max); |
2530 | isl_val_free(v: max); |
2531 | |
2532 | return isl_stat_ok; |
2533 | } |
2534 | |
2535 | /* Check if we can use "c" as a lower bound and if it is better than |
2536 | * any previously found lower bound. |
2537 | */ |
2538 | static isl_stat constraint_find_unroll(__isl_take isl_constraint *c, void *user) |
2539 | { |
2540 | struct isl_find_unroll_data *data; |
2541 | isl_stat r; |
2542 | |
2543 | data = (struct isl_find_unroll_data *) user; |
2544 | r = update_unrolling_lower_bound(data, c); |
2545 | isl_constraint_free(c); |
2546 | |
2547 | return r; |
2548 | } |
2549 | |
2550 | /* Look for a lower bound l(i) on the dimension at "depth" |
2551 | * and a size n such that "domain" is a subset of |
2552 | * |
2553 | * { [i] : l(i) <= i_d < l(i) + n } |
2554 | * |
2555 | * where d is "depth" and l(i) depends only on earlier dimensions. |
2556 | * Furthermore, try and find a lower bound such that n is as small as possible. |
2557 | * In particular, "n" needs to be finite. |
2558 | * "build" is the build in which the unrolling will be performed. |
2559 | * "expansion" is the expansion that needs to be applied to "domain" |
2560 | * in the unrolling that will be performed. |
2561 | * |
2562 | * Inner dimensions have been eliminated from "domain" by the caller. |
2563 | * |
2564 | * We first construct a collection of lower bounds on the input set |
2565 | * by computing its simple hull. We then iterate through them, |
2566 | * discarding those that we cannot use (either because they do not |
2567 | * involve the dimension at "depth" or because they have no corresponding |
2568 | * upper bound, meaning that "n" would be unbounded) and pick out the |
2569 | * best from the remaining ones. |
2570 | * |
2571 | * If we cannot find a suitable lower bound, then we consider that |
2572 | * to be an error. |
2573 | */ |
2574 | static __isl_give isl_aff *find_unroll_lower_bound( |
2575 | __isl_keep isl_ast_build *build, __isl_keep isl_set *domain, |
2576 | int depth, __isl_keep isl_basic_map *expansion, int *n) |
2577 | { |
2578 | struct isl_find_unroll_data data = |
2579 | { build, domain, depth, expansion, NULL, n, -1 }; |
2580 | isl_basic_set *hull; |
2581 | |
2582 | hull = isl_set_simple_hull(set: isl_set_copy(set: domain)); |
2583 | |
2584 | if (isl_basic_set_foreach_constraint(bset: hull, |
2585 | fn: &constraint_find_unroll, user: &data) < 0) |
2586 | goto error; |
2587 | |
2588 | isl_basic_set_free(bset: hull); |
2589 | |
2590 | if (!data.lower) |
2591 | isl_die(isl_set_get_ctx(domain), isl_error_invalid, |
2592 | "cannot find lower bound for unrolling" , return NULL); |
2593 | |
2594 | return data.lower; |
2595 | error: |
2596 | isl_basic_set_free(bset: hull); |
2597 | return isl_aff_free(aff: data.lower); |
2598 | } |
2599 | |
2600 | /* Call "fn" on each iteration of the current dimension of "domain". |
2601 | * If "init" is not NULL, then it is called with the number of |
2602 | * iterations before any call to "fn". |
2603 | * Return -1 on failure. |
2604 | * |
2605 | * Since we are going to be iterating over the individual values, |
2606 | * we first check if there are any strides on the current dimension. |
2607 | * If there is, we rewrite the current dimension i as |
2608 | * |
2609 | * i = stride i' + offset |
2610 | * |
2611 | * and then iterate over individual values of i' instead. |
2612 | * |
2613 | * We then look for a lower bound on i' and a size such that the domain |
2614 | * is a subset of |
2615 | * |
2616 | * { [j,i'] : l(j) <= i' < l(j) + n } |
2617 | * |
2618 | * and then take slices of the domain at values of i' |
2619 | * between l(j) and l(j) + n - 1. |
2620 | * |
2621 | * We compute the unshifted simple hull of each slice to ensure that |
2622 | * we have a single basic set per offset. The slicing constraint |
2623 | * may get simplified away before the unshifted simple hull is taken |
2624 | * and may therefore in some rare cases disappear from the result. |
2625 | * We therefore explicitly add the constraint back after computing |
2626 | * the unshifted simple hull to ensure that the basic sets |
2627 | * remain disjoint. The constraints that are dropped by taking the hull |
2628 | * will be taken into account at the next level, as in the case of the |
2629 | * atomic option. |
2630 | * |
2631 | * Finally, we map i' back to i and call "fn". |
2632 | */ |
2633 | static int foreach_iteration(__isl_take isl_set *domain, |
2634 | __isl_keep isl_ast_build *build, int (*init)(int n, void *user), |
2635 | int (*fn)(__isl_take isl_basic_set *bset, void *user), void *user) |
2636 | { |
2637 | int i, n; |
2638 | isl_bool empty; |
2639 | isl_size depth; |
2640 | isl_multi_aff *expansion; |
2641 | isl_basic_map *bmap; |
2642 | isl_aff *lower = NULL; |
2643 | isl_ast_build *stride_build; |
2644 | |
2645 | depth = isl_ast_build_get_depth(build); |
2646 | if (depth < 0) |
2647 | domain = isl_set_free(set: domain); |
2648 | |
2649 | domain = isl_ast_build_eliminate_inner(build, set: domain); |
2650 | domain = isl_set_intersect(set1: domain, set2: isl_ast_build_get_domain(build)); |
2651 | stride_build = isl_ast_build_copy(build); |
2652 | stride_build = isl_ast_build_detect_strides(build: stride_build, |
2653 | set: isl_set_copy(set: domain)); |
2654 | expansion = isl_ast_build_get_stride_expansion(build: stride_build); |
2655 | |
2656 | domain = isl_set_preimage_multi_aff(set: domain, |
2657 | ma: isl_multi_aff_copy(multi: expansion)); |
2658 | domain = isl_ast_build_eliminate_divs(build: stride_build, set: domain); |
2659 | isl_ast_build_free(build: stride_build); |
2660 | |
2661 | bmap = isl_basic_map_from_multi_aff(maff: expansion); |
2662 | |
2663 | empty = isl_set_is_empty(set: domain); |
2664 | if (empty < 0) { |
2665 | n = -1; |
2666 | } else if (empty) { |
2667 | n = 0; |
2668 | } else { |
2669 | lower = find_unroll_lower_bound(build, domain, depth, expansion: bmap, n: &n); |
2670 | if (!lower) |
2671 | n = -1; |
2672 | } |
2673 | if (n >= 0 && init && init(n, user) < 0) |
2674 | n = -1; |
2675 | for (i = 0; i < n; ++i) { |
2676 | isl_set *set; |
2677 | isl_basic_set *bset; |
2678 | isl_constraint *slice; |
2679 | |
2680 | slice = at_offset(depth, aff: lower, offset: i); |
2681 | set = isl_set_copy(set: domain); |
2682 | set = isl_set_add_constraint(set, constraint: isl_constraint_copy(c: slice)); |
2683 | bset = isl_set_unshifted_simple_hull(set); |
2684 | bset = isl_basic_set_add_constraint(bset, constraint: slice); |
2685 | bset = isl_basic_set_apply(bset, bmap: isl_basic_map_copy(bmap)); |
2686 | |
2687 | if (fn(bset, user) < 0) |
2688 | break; |
2689 | } |
2690 | |
2691 | isl_aff_free(aff: lower); |
2692 | isl_set_free(set: domain); |
2693 | isl_basic_map_free(bmap); |
2694 | |
2695 | return n < 0 || i < n ? -1 : 0; |
2696 | } |
2697 | |
2698 | /* Data structure for storing the results and the intermediate objects |
2699 | * of compute_domains. |
2700 | * |
2701 | * "list" is the main result of the function and contains a list |
2702 | * of disjoint basic sets for which code should be generated. |
2703 | * |
2704 | * "executed" and "build" are inputs to compute_domains. |
2705 | * "schedule_domain" is the domain of "executed". |
2706 | * |
2707 | * "option" contains the domains at the current depth that should by |
2708 | * atomic, separated or unrolled. These domains are as specified by |
2709 | * the user, except that inner dimensions have been eliminated and |
2710 | * that they have been made pair-wise disjoint. |
2711 | * |
2712 | * "sep_class" contains the user-specified split into separation classes |
2713 | * specialized to the current depth. |
2714 | * "done" contains the union of the separation domains that have already |
2715 | * been handled. |
2716 | */ |
2717 | struct isl_codegen_domains { |
2718 | isl_basic_set_list *list; |
2719 | |
2720 | isl_union_map *executed; |
2721 | isl_ast_build *build; |
2722 | isl_set *schedule_domain; |
2723 | |
2724 | isl_set *option[4]; |
2725 | |
2726 | isl_map *sep_class; |
2727 | isl_set *done; |
2728 | }; |
2729 | |
2730 | /* Internal data structure for do_unroll. |
2731 | * |
2732 | * "domains" stores the results of compute_domains. |
2733 | * "class_domain" is the original class domain passed to do_unroll. |
2734 | * "unroll_domain" collects the unrolled iterations. |
2735 | */ |
2736 | struct isl_ast_unroll_data { |
2737 | struct isl_codegen_domains *domains; |
2738 | isl_set *class_domain; |
2739 | isl_set *unroll_domain; |
2740 | }; |
2741 | |
2742 | /* Given an iteration of an unrolled domain represented by "bset", |
2743 | * add it to data->domains->list. |
2744 | * Since we may have dropped some constraints, we intersect with |
2745 | * the class domain again to ensure that each element in the list |
2746 | * is disjoint from the other class domains. |
2747 | */ |
2748 | static int do_unroll_iteration(__isl_take isl_basic_set *bset, void *user) |
2749 | { |
2750 | struct isl_ast_unroll_data *data = user; |
2751 | isl_set *set; |
2752 | isl_basic_set_list *list; |
2753 | |
2754 | set = isl_set_from_basic_set(bset); |
2755 | data->unroll_domain = isl_set_union(set1: data->unroll_domain, |
2756 | set2: isl_set_copy(set)); |
2757 | set = isl_set_intersect(set1: set, set2: isl_set_copy(set: data->class_domain)); |
2758 | set = isl_set_make_disjoint(set); |
2759 | list = isl_basic_set_list_from_set(set); |
2760 | data->domains->list = isl_basic_set_list_concat(list1: data->domains->list, |
2761 | list2: list); |
2762 | |
2763 | return 0; |
2764 | } |
2765 | |
2766 | /* Extend domains->list with a list of basic sets, one for each value |
2767 | * of the current dimension in "domain" and remove the corresponding |
2768 | * sets from the class domain. Return the updated class domain. |
2769 | * The divs that involve the current dimension have not been projected out |
2770 | * from this domain. |
2771 | * |
2772 | * We call foreach_iteration to iterate over the individual values and |
2773 | * in do_unroll_iteration we collect the individual basic sets in |
2774 | * domains->list and their union in data->unroll_domain, which is then |
2775 | * used to update the class domain. |
2776 | */ |
2777 | static __isl_give isl_set *do_unroll(struct isl_codegen_domains *domains, |
2778 | __isl_take isl_set *domain, __isl_take isl_set *class_domain) |
2779 | { |
2780 | struct isl_ast_unroll_data data; |
2781 | |
2782 | if (!domain) |
2783 | return isl_set_free(set: class_domain); |
2784 | if (!class_domain) |
2785 | return isl_set_free(set: domain); |
2786 | |
2787 | data.domains = domains; |
2788 | data.class_domain = class_domain; |
2789 | data.unroll_domain = isl_set_empty(space: isl_set_get_space(set: domain)); |
2790 | |
2791 | if (foreach_iteration(domain, build: domains->build, NULL, |
2792 | fn: &do_unroll_iteration, user: &data) < 0) |
2793 | data.unroll_domain = isl_set_free(set: data.unroll_domain); |
2794 | |
2795 | class_domain = isl_set_subtract(set1: class_domain, set2: data.unroll_domain); |
2796 | |
2797 | return class_domain; |
2798 | } |
2799 | |
2800 | /* Add domains to domains->list for each individual value of the current |
2801 | * dimension, for that part of the schedule domain that lies in the |
2802 | * intersection of the option domain and the class domain. |
2803 | * Remove the corresponding sets from the class domain and |
2804 | * return the updated class domain. |
2805 | * |
2806 | * We first break up the unroll option domain into individual pieces |
2807 | * and then handle each of them separately. The unroll option domain |
2808 | * has been made disjoint in compute_domains_init_options, |
2809 | * |
2810 | * Note that we actively want to combine different pieces of the |
2811 | * schedule domain that have the same value at the current dimension. |
2812 | * We therefore need to break up the unroll option domain before |
2813 | * intersecting with class and schedule domain, hoping that the |
2814 | * unroll option domain specified by the user is relatively simple. |
2815 | */ |
2816 | static __isl_give isl_set *compute_unroll_domains( |
2817 | struct isl_codegen_domains *domains, __isl_take isl_set *class_domain) |
2818 | { |
2819 | isl_set *unroll_domain; |
2820 | isl_basic_set_list *unroll_list; |
2821 | int i; |
2822 | isl_size n; |
2823 | isl_bool empty; |
2824 | |
2825 | empty = isl_set_is_empty(set: domains->option[isl_ast_loop_unroll]); |
2826 | if (empty < 0) |
2827 | return isl_set_free(set: class_domain); |
2828 | if (empty) |
2829 | return class_domain; |
2830 | |
2831 | unroll_domain = isl_set_copy(set: domains->option[isl_ast_loop_unroll]); |
2832 | unroll_list = isl_basic_set_list_from_set(set: unroll_domain); |
2833 | |
2834 | n = isl_basic_set_list_n_basic_set(list: unroll_list); |
2835 | if (n < 0) |
2836 | class_domain = isl_set_free(set: class_domain); |
2837 | for (i = 0; i < n; ++i) { |
2838 | isl_basic_set *bset; |
2839 | |
2840 | bset = isl_basic_set_list_get_basic_set(list: unroll_list, index: i); |
2841 | unroll_domain = isl_set_from_basic_set(bset); |
2842 | unroll_domain = isl_set_intersect(set1: unroll_domain, |
2843 | set2: isl_set_copy(set: class_domain)); |
2844 | unroll_domain = isl_set_intersect(set1: unroll_domain, |
2845 | set2: isl_set_copy(set: domains->schedule_domain)); |
2846 | |
2847 | empty = isl_set_is_empty(set: unroll_domain); |
2848 | if (empty >= 0 && empty) { |
2849 | isl_set_free(set: unroll_domain); |
2850 | continue; |
2851 | } |
2852 | |
2853 | class_domain = do_unroll(domains, domain: unroll_domain, class_domain); |
2854 | } |
2855 | |
2856 | isl_basic_set_list_free(list: unroll_list); |
2857 | |
2858 | return class_domain; |
2859 | } |
2860 | |
2861 | /* Try and construct a single basic set that includes the intersection of |
2862 | * the schedule domain, the atomic option domain and the class domain. |
2863 | * Add the resulting basic set(s) to domains->list and remove them |
2864 | * from class_domain. Return the updated class domain. |
2865 | * |
2866 | * We construct a single domain rather than trying to combine |
2867 | * the schedule domains of individual domains because we are working |
2868 | * within a single component so that non-overlapping schedule domains |
2869 | * should already have been separated. |
2870 | * We do however need to make sure that this single domains is a subset |
2871 | * of the class domain so that it would not intersect with any other |
2872 | * class domains. This means that we may end up splitting up the atomic |
2873 | * domain in case separation classes are being used. |
2874 | * |
2875 | * "domain" is the intersection of the schedule domain and the class domain, |
2876 | * with inner dimensions projected out. |
2877 | */ |
2878 | static __isl_give isl_set *compute_atomic_domain( |
2879 | struct isl_codegen_domains *domains, __isl_take isl_set *class_domain) |
2880 | { |
2881 | isl_basic_set *bset; |
2882 | isl_basic_set_list *list; |
2883 | isl_set *domain, *atomic_domain; |
2884 | int empty; |
2885 | |
2886 | domain = isl_set_copy(set: domains->option[isl_ast_loop_atomic]); |
2887 | domain = isl_set_intersect(set1: domain, set2: isl_set_copy(set: class_domain)); |
2888 | domain = isl_set_intersect(set1: domain, |
2889 | set2: isl_set_copy(set: domains->schedule_domain)); |
2890 | empty = isl_set_is_empty(set: domain); |
2891 | if (empty < 0) |
2892 | class_domain = isl_set_free(set: class_domain); |
2893 | if (empty) { |
2894 | isl_set_free(set: domain); |
2895 | return class_domain; |
2896 | } |
2897 | |
2898 | domain = isl_ast_build_eliminate(build: domains->build, domain); |
2899 | domain = isl_set_coalesce_preserve(set: domain); |
2900 | bset = isl_set_unshifted_simple_hull(set: domain); |
2901 | domain = isl_set_from_basic_set(bset); |
2902 | atomic_domain = isl_set_copy(set: domain); |
2903 | domain = isl_set_intersect(set1: domain, set2: isl_set_copy(set: class_domain)); |
2904 | class_domain = isl_set_subtract(set1: class_domain, set2: atomic_domain); |
2905 | domain = isl_set_make_disjoint(set: domain); |
2906 | list = isl_basic_set_list_from_set(set: domain); |
2907 | domains->list = isl_basic_set_list_concat(list1: domains->list, list2: list); |
2908 | |
2909 | return class_domain; |
2910 | } |
2911 | |
2912 | /* Split up the schedule domain into uniform basic sets, |
2913 | * in the sense that each element in a basic set is associated to |
2914 | * elements of the same domains, and add the result to domains->list. |
2915 | * Do this for that part of the schedule domain that lies in the |
2916 | * intersection of "class_domain" and the separate option domain. |
2917 | * |
2918 | * "class_domain" may or may not include the constraints |
2919 | * of the schedule domain, but this does not make a difference |
2920 | * since we are going to intersect it with the domain of the inverse schedule. |
2921 | * If it includes schedule domain constraints, then they may involve |
2922 | * inner dimensions, but we will eliminate them in separation_domain. |
2923 | */ |
2924 | static int compute_separate_domain(struct isl_codegen_domains *domains, |
2925 | __isl_keep isl_set *class_domain) |
2926 | { |
2927 | isl_space *space; |
2928 | isl_set *domain; |
2929 | isl_union_map *executed; |
2930 | isl_basic_set_list *list; |
2931 | int empty; |
2932 | |
2933 | domain = isl_set_copy(set: domains->option[isl_ast_loop_separate]); |
2934 | domain = isl_set_intersect(set1: domain, set2: isl_set_copy(set: class_domain)); |
2935 | executed = isl_union_map_copy(umap: domains->executed); |
2936 | executed = isl_union_map_intersect_domain(umap: executed, |
2937 | uset: isl_union_set_from_set(set: domain)); |
2938 | empty = isl_union_map_is_empty(umap: executed); |
2939 | if (empty < 0 || empty) { |
2940 | isl_union_map_free(umap: executed); |
2941 | return empty < 0 ? -1 : 0; |
2942 | } |
2943 | |
2944 | space = isl_set_get_space(set: class_domain); |
2945 | domain = separate_schedule_domains(space, executed, build: domains->build); |
2946 | |
2947 | list = isl_basic_set_list_from_set(set: domain); |
2948 | domains->list = isl_basic_set_list_concat(list1: domains->list, list2: list); |
2949 | |
2950 | return 0; |
2951 | } |
2952 | |
2953 | /* Split up the domain at the current depth into disjoint |
2954 | * basic sets for which code should be generated separately |
2955 | * for the given separation class domain. |
2956 | * |
2957 | * If any separation classes have been defined, then "class_domain" |
2958 | * is the domain of the current class and does not refer to inner dimensions. |
2959 | * Otherwise, "class_domain" is the universe domain. |
2960 | * |
2961 | * We first make sure that the class domain is disjoint from |
2962 | * previously considered class domains. |
2963 | * |
2964 | * The separate domains can be computed directly from the "class_domain". |
2965 | * |
2966 | * The unroll, atomic and remainder domains need the constraints |
2967 | * from the schedule domain. |
2968 | * |
2969 | * For unrolling, the actual schedule domain is needed (with divs that |
2970 | * may refer to the current dimension) so that stride detection can be |
2971 | * performed. |
2972 | * |
2973 | * For atomic and remainder domains, inner dimensions and divs involving |
2974 | * the current dimensions should be eliminated. |
2975 | * In case we are working within a separation class, we need to intersect |
2976 | * the result with the current "class_domain" to ensure that the domains |
2977 | * are disjoint from those generated from other class domains. |
2978 | * |
2979 | * The domain that has been made atomic may be larger than specified |
2980 | * by the user since it needs to be representable as a single basic set. |
2981 | * This possibly larger domain is removed from class_domain by |
2982 | * compute_atomic_domain. It is computed first so that the extended domain |
2983 | * would not overlap with any domains computed before. |
2984 | * Similary, the unrolled domains may have some constraints removed and |
2985 | * may therefore also be larger than specified by the user. |
2986 | * |
2987 | * If anything is left after handling separate, unroll and atomic, |
2988 | * we split it up into basic sets and append the basic sets to domains->list. |
2989 | */ |
2990 | static isl_stat compute_partial_domains(struct isl_codegen_domains *domains, |
2991 | __isl_take isl_set *class_domain) |
2992 | { |
2993 | isl_basic_set_list *list; |
2994 | isl_set *domain; |
2995 | |
2996 | class_domain = isl_set_subtract(set1: class_domain, |
2997 | set2: isl_set_copy(set: domains->done)); |
2998 | domains->done = isl_set_union(set1: domains->done, |
2999 | set2: isl_set_copy(set: class_domain)); |
3000 | |
3001 | class_domain = compute_atomic_domain(domains, class_domain); |
3002 | class_domain = compute_unroll_domains(domains, class_domain); |
3003 | |
3004 | domain = isl_set_copy(set: class_domain); |
3005 | |
3006 | if (compute_separate_domain(domains, class_domain: domain) < 0) |
3007 | goto error; |
3008 | domain = isl_set_subtract(set1: domain, |
3009 | set2: isl_set_copy(set: domains->option[isl_ast_loop_separate])); |
3010 | |
3011 | domain = isl_set_intersect(set1: domain, |
3012 | set2: isl_set_copy(set: domains->schedule_domain)); |
3013 | |
3014 | domain = isl_ast_build_eliminate(build: domains->build, domain); |
3015 | domain = isl_set_intersect(set1: domain, set2: isl_set_copy(set: class_domain)); |
3016 | |
3017 | domain = isl_set_coalesce_preserve(set: domain); |
3018 | domain = isl_set_make_disjoint(set: domain); |
3019 | |
3020 | list = isl_basic_set_list_from_set(set: domain); |
3021 | domains->list = isl_basic_set_list_concat(list1: domains->list, list2: list); |
3022 | |
3023 | isl_set_free(set: class_domain); |
3024 | |
3025 | return isl_stat_ok; |
3026 | error: |
3027 | isl_set_free(set: domain); |
3028 | isl_set_free(set: class_domain); |
3029 | return isl_stat_error; |
3030 | } |
3031 | |
3032 | /* Split up the domain at the current depth into disjoint |
3033 | * basic sets for which code should be generated separately |
3034 | * for the separation class identified by "pnt". |
3035 | * |
3036 | * We extract the corresponding class domain from domains->sep_class, |
3037 | * eliminate inner dimensions and pass control to compute_partial_domains. |
3038 | */ |
3039 | static isl_stat compute_class_domains(__isl_take isl_point *pnt, void *user) |
3040 | { |
3041 | struct isl_codegen_domains *domains = user; |
3042 | isl_set *class_set; |
3043 | isl_set *domain; |
3044 | int disjoint; |
3045 | |
3046 | class_set = isl_set_from_point(pnt); |
3047 | domain = isl_map_domain(bmap: isl_map_intersect_range( |
3048 | map: isl_map_copy(map: domains->sep_class), set: class_set)); |
3049 | domain = isl_ast_build_compute_gist(build: domains->build, set: domain); |
3050 | domain = isl_ast_build_eliminate(build: domains->build, domain); |
3051 | |
3052 | disjoint = isl_set_plain_is_disjoint(set1: domain, set2: domains->schedule_domain); |
3053 | if (disjoint < 0) |
3054 | return isl_stat_error; |
3055 | if (disjoint) { |
3056 | isl_set_free(set: domain); |
3057 | return isl_stat_ok; |
3058 | } |
3059 | |
3060 | return compute_partial_domains(domains, class_domain: domain); |
3061 | } |
3062 | |
3063 | /* Extract the domains at the current depth that should be atomic, |
3064 | * separated or unrolled and store them in option. |
3065 | * |
3066 | * The domains specified by the user might overlap, so we make |
3067 | * them disjoint by subtracting earlier domains from later domains. |
3068 | */ |
3069 | static void compute_domains_init_options(isl_set *option[4], |
3070 | __isl_keep isl_ast_build *build) |
3071 | { |
3072 | enum isl_ast_loop_type type, type2; |
3073 | isl_set *unroll; |
3074 | |
3075 | for (type = isl_ast_loop_atomic; |
3076 | type <= isl_ast_loop_separate; ++type) { |
3077 | option[type] = isl_ast_build_get_option_domain(build, type); |
3078 | for (type2 = isl_ast_loop_atomic; type2 < type; ++type2) |
3079 | option[type] = isl_set_subtract(set1: option[type], |
3080 | set2: isl_set_copy(set: option[type2])); |
3081 | } |
3082 | |
3083 | unroll = option[isl_ast_loop_unroll]; |
3084 | unroll = isl_set_coalesce(set: unroll); |
3085 | unroll = isl_set_make_disjoint(set: unroll); |
3086 | option[isl_ast_loop_unroll] = unroll; |
3087 | } |
3088 | |
3089 | /* Split up the domain at the current depth into disjoint |
3090 | * basic sets for which code should be generated separately, |
3091 | * based on the user-specified options. |
3092 | * Return the list of disjoint basic sets. |
3093 | * |
3094 | * There are three kinds of domains that we need to keep track of. |
3095 | * - the "schedule domain" is the domain of "executed" |
3096 | * - the "class domain" is the domain corresponding to the currrent |
3097 | * separation class |
3098 | * - the "option domain" is the domain corresponding to one of the options |
3099 | * atomic, unroll or separate |
3100 | * |
3101 | * We first consider the individial values of the separation classes |
3102 | * and split up the domain for each of them separately. |
3103 | * Finally, we consider the remainder. If no separation classes were |
3104 | * specified, then we call compute_partial_domains with the universe |
3105 | * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain", |
3106 | * with inner dimensions removed. We do this because we want to |
3107 | * avoid computing the complement of the class domains (i.e., the difference |
3108 | * between the universe and domains->done). |
3109 | */ |
3110 | static __isl_give isl_basic_set_list *compute_domains( |
3111 | __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build) |
3112 | { |
3113 | struct isl_codegen_domains domains; |
3114 | isl_ctx *ctx; |
3115 | isl_set *domain; |
3116 | isl_union_set *schedule_domain; |
3117 | isl_set *classes; |
3118 | isl_space *space; |
3119 | int n_param; |
3120 | enum isl_ast_loop_type type; |
3121 | isl_bool empty; |
3122 | |
3123 | if (!executed) |
3124 | return NULL; |
3125 | |
3126 | ctx = isl_union_map_get_ctx(umap: executed); |
3127 | domains.list = isl_basic_set_list_alloc(ctx, n: 0); |
3128 | |
3129 | schedule_domain = isl_union_map_domain(umap: isl_union_map_copy(umap: executed)); |
3130 | domain = isl_set_from_union_set(uset: schedule_domain); |
3131 | |
3132 | compute_domains_init_options(option: domains.option, build); |
3133 | |
3134 | domains.sep_class = isl_ast_build_get_separation_class(build); |
3135 | classes = isl_map_range(map: isl_map_copy(map: domains.sep_class)); |
3136 | n_param = isl_set_dim(set: classes, type: isl_dim_param); |
3137 | if (n_param < 0) |
3138 | classes = isl_set_free(set: classes); |
3139 | classes = isl_set_project_out(set: classes, type: isl_dim_param, first: 0, n: n_param); |
3140 | |
3141 | space = isl_set_get_space(set: domain); |
3142 | domains.build = build; |
3143 | domains.schedule_domain = isl_set_copy(set: domain); |
3144 | domains.executed = executed; |
3145 | domains.done = isl_set_empty(space); |
3146 | |
3147 | if (isl_set_foreach_point(set: classes, fn: &compute_class_domains, user: &domains) < 0) |
3148 | domains.list = isl_basic_set_list_free(list: domains.list); |
3149 | isl_set_free(set: classes); |
3150 | |
3151 | empty = isl_set_is_empty(set: domains.done); |
3152 | if (empty < 0) { |
3153 | domains.list = isl_basic_set_list_free(list: domains.list); |
3154 | domain = isl_set_free(set: domain); |
3155 | } else if (empty) { |
3156 | isl_set_free(set: domain); |
3157 | domain = isl_set_universe(space: isl_set_get_space(set: domains.done)); |
3158 | } else { |
3159 | domain = isl_ast_build_eliminate(build, domain); |
3160 | } |
3161 | if (compute_partial_domains(domains: &domains, class_domain: domain) < 0) |
3162 | domains.list = isl_basic_set_list_free(list: domains.list); |
3163 | |
3164 | isl_set_free(set: domains.schedule_domain); |
3165 | isl_set_free(set: domains.done); |
3166 | isl_map_free(map: domains.sep_class); |
3167 | for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type) |
3168 | isl_set_free(set: domains.option[type]); |
3169 | |
3170 | return domains.list; |
3171 | } |
3172 | |
3173 | /* Generate code for a single component, after shifting (if any) |
3174 | * has been applied, in case the schedule was specified as a union map. |
3175 | * |
3176 | * We first split up the domain at the current depth into disjoint |
3177 | * basic sets based on the user-specified options. |
3178 | * Then we generated code for each of them and concatenate the results. |
3179 | */ |
3180 | static __isl_give isl_ast_graft_list *generate_shifted_component_flat( |
3181 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
3182 | { |
3183 | isl_basic_set_list *domain_list; |
3184 | isl_ast_graft_list *list = NULL; |
3185 | |
3186 | domain_list = compute_domains(executed, build); |
3187 | list = generate_parallel_domains(domain_list, executed, build); |
3188 | |
3189 | isl_basic_set_list_free(list: domain_list); |
3190 | isl_union_map_free(umap: executed); |
3191 | isl_ast_build_free(build); |
3192 | |
3193 | return list; |
3194 | } |
3195 | |
3196 | /* Generate code for a single component, after shifting (if any) |
3197 | * has been applied, in case the schedule was specified as a schedule tree |
3198 | * and the separate option was specified. |
3199 | * |
3200 | * We perform separation on the domain of "executed" and then generate |
3201 | * an AST for each of the resulting disjoint basic sets. |
3202 | */ |
3203 | static __isl_give isl_ast_graft_list *generate_shifted_component_tree_separate( |
3204 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
3205 | { |
3206 | isl_space *space; |
3207 | isl_set *domain; |
3208 | isl_basic_set_list *domain_list; |
3209 | isl_ast_graft_list *list; |
3210 | |
3211 | space = isl_ast_build_get_space(build, internal: 1); |
3212 | domain = separate_schedule_domains(space, |
3213 | executed: isl_union_map_copy(umap: executed), build); |
3214 | domain_list = isl_basic_set_list_from_set(set: domain); |
3215 | |
3216 | list = generate_parallel_domains(domain_list, executed, build); |
3217 | |
3218 | isl_basic_set_list_free(list: domain_list); |
3219 | isl_union_map_free(umap: executed); |
3220 | isl_ast_build_free(build); |
3221 | |
3222 | return list; |
3223 | } |
3224 | |
3225 | /* Internal data structure for generate_shifted_component_tree_unroll. |
3226 | * |
3227 | * "executed" and "build" are inputs to generate_shifted_component_tree_unroll. |
3228 | * "list" collects the constructs grafts. |
3229 | */ |
3230 | struct isl_ast_unroll_tree_data { |
3231 | isl_union_map *executed; |
3232 | isl_ast_build *build; |
3233 | isl_ast_graft_list *list; |
3234 | }; |
3235 | |
3236 | /* Initialize data->list to a list of "n" elements. |
3237 | */ |
3238 | static int init_unroll_tree(int n, void *user) |
3239 | { |
3240 | struct isl_ast_unroll_tree_data *data = user; |
3241 | isl_ctx *ctx; |
3242 | |
3243 | ctx = isl_ast_build_get_ctx(build: data->build); |
3244 | data->list = isl_ast_graft_list_alloc(ctx, n); |
3245 | |
3246 | return 0; |
3247 | } |
3248 | |
3249 | /* Given an iteration of an unrolled domain represented by "bset", |
3250 | * generate the corresponding AST and add the result to data->list. |
3251 | */ |
3252 | static int do_unroll_tree_iteration(__isl_take isl_basic_set *bset, void *user) |
3253 | { |
3254 | struct isl_ast_unroll_tree_data *data = user; |
3255 | |
3256 | data->list = add_node(list: data->list, executed: isl_union_map_copy(umap: data->executed), |
3257 | bounds: bset, build: isl_ast_build_copy(build: data->build)); |
3258 | |
3259 | return 0; |
3260 | } |
3261 | |
3262 | /* Generate code for a single component, after shifting (if any) |
3263 | * has been applied, in case the schedule was specified as a schedule tree |
3264 | * and the unroll option was specified. |
3265 | * |
3266 | * We call foreach_iteration to iterate over the individual values and |
3267 | * construct and collect the corresponding grafts in do_unroll_tree_iteration. |
3268 | */ |
3269 | static __isl_give isl_ast_graft_list *generate_shifted_component_tree_unroll( |
3270 | __isl_take isl_union_map *executed, __isl_take isl_set *domain, |
3271 | __isl_take isl_ast_build *build) |
3272 | { |
3273 | struct isl_ast_unroll_tree_data data = { executed, build, NULL }; |
3274 | |
3275 | if (foreach_iteration(domain, build, init: &init_unroll_tree, |
3276 | fn: &do_unroll_tree_iteration, user: &data) < 0) |
3277 | data.list = isl_ast_graft_list_free(list: data.list); |
3278 | |
3279 | isl_union_map_free(umap: executed); |
3280 | isl_ast_build_free(build); |
3281 | |
3282 | return data.list; |
3283 | } |
3284 | |
3285 | /* Does "domain" involve a disjunction that is purely based on |
3286 | * constraints involving only outer dimension? |
3287 | * |
3288 | * In particular, is there a disjunction such that the constraints |
3289 | * involving the current and later dimensions are the same over |
3290 | * all the disjuncts? |
3291 | */ |
3292 | static isl_bool has_pure_outer_disjunction(__isl_keep isl_set *domain, |
3293 | __isl_keep isl_ast_build *build) |
3294 | { |
3295 | isl_basic_set *hull; |
3296 | isl_set *shared, *inner; |
3297 | isl_bool equal; |
3298 | isl_size depth; |
3299 | isl_size n; |
3300 | isl_size dim; |
3301 | |
3302 | n = isl_set_n_basic_set(set: domain); |
3303 | if (n < 0) |
3304 | return isl_bool_error; |
3305 | if (n <= 1) |
3306 | return isl_bool_false; |
3307 | dim = isl_set_dim(set: domain, type: isl_dim_set); |
3308 | depth = isl_ast_build_get_depth(build); |
3309 | if (dim < 0 || depth < 0) |
3310 | return isl_bool_error; |
3311 | |
3312 | inner = isl_set_copy(set: domain); |
3313 | inner = isl_set_drop_constraints_not_involving_dims(set: inner, |
3314 | type: isl_dim_set, first: depth, n: dim - depth); |
3315 | hull = isl_set_plain_unshifted_simple_hull(set: isl_set_copy(set: inner)); |
3316 | shared = isl_set_from_basic_set(bset: hull); |
3317 | equal = isl_set_plain_is_equal(set1: inner, set2: shared); |
3318 | isl_set_free(set: inner); |
3319 | isl_set_free(set: shared); |
3320 | |
3321 | return equal; |
3322 | } |
3323 | |
3324 | /* Generate code for a single component, after shifting (if any) |
3325 | * has been applied, in case the schedule was specified as a schedule tree. |
3326 | * In particular, handle the base case where there is either no isolated |
3327 | * set or we are within the isolated set (in which case "isolated" is set) |
3328 | * or the iterations that precede or follow the isolated set. |
3329 | * |
3330 | * The schedule domain is broken up or combined into basic sets |
3331 | * according to the AST generation option specified in the current |
3332 | * schedule node, which may be either atomic, separate, unroll or |
3333 | * unspecified. If the option is unspecified, then we currently simply |
3334 | * split the schedule domain into disjoint basic sets. |
3335 | * |
3336 | * In case the separate option is specified, the AST generation is |
3337 | * handled by generate_shifted_component_tree_separate. |
3338 | * In the other cases, we need the global schedule domain. |
3339 | * In the unroll case, the AST generation is then handled by |
3340 | * generate_shifted_component_tree_unroll which needs the actual |
3341 | * schedule domain (with divs that may refer to the current dimension) |
3342 | * so that stride detection can be performed. |
3343 | * In the atomic or unspecified case, inner dimensions and divs involving |
3344 | * the current dimensions should be eliminated. |
3345 | * The result is then either combined into a single basic set or |
3346 | * split up into disjoint basic sets. |
3347 | * Finally an AST is generated for each basic set and the results are |
3348 | * concatenated. |
3349 | * |
3350 | * If the schedule domain involves a disjunction that is purely based on |
3351 | * constraints involving only outer dimension, then it is treated as |
3352 | * if atomic was specified. This ensures that only a single loop |
3353 | * is generated instead of a sequence of identical loops with |
3354 | * different guards. |
3355 | */ |
3356 | static __isl_give isl_ast_graft_list *generate_shifted_component_tree_base( |
3357 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build, |
3358 | int isolated) |
3359 | { |
3360 | isl_bool outer_disjunction; |
3361 | isl_union_set *schedule_domain; |
3362 | isl_set *domain; |
3363 | isl_basic_set_list *domain_list; |
3364 | isl_ast_graft_list *list; |
3365 | enum isl_ast_loop_type type; |
3366 | |
3367 | type = isl_ast_build_get_loop_type(build, isolated); |
3368 | if (type < 0) |
3369 | goto error; |
3370 | |
3371 | if (type == isl_ast_loop_separate) |
3372 | return generate_shifted_component_tree_separate(executed, |
3373 | build); |
3374 | |
3375 | schedule_domain = isl_union_map_domain(umap: isl_union_map_copy(umap: executed)); |
3376 | domain = isl_set_from_union_set(uset: schedule_domain); |
3377 | |
3378 | if (type == isl_ast_loop_unroll) |
3379 | return generate_shifted_component_tree_unroll(executed, domain, |
3380 | build); |
3381 | |
3382 | domain = isl_ast_build_eliminate(build, domain); |
3383 | domain = isl_set_coalesce_preserve(set: domain); |
3384 | |
3385 | outer_disjunction = has_pure_outer_disjunction(domain, build); |
3386 | if (outer_disjunction < 0) |
3387 | domain = isl_set_free(set: domain); |
3388 | |
3389 | if (outer_disjunction || type == isl_ast_loop_atomic) { |
3390 | isl_basic_set *hull; |
3391 | hull = isl_set_unshifted_simple_hull(set: domain); |
3392 | domain_list = isl_basic_set_list_from_basic_set(el: hull); |
3393 | } else { |
3394 | domain = isl_set_make_disjoint(set: domain); |
3395 | domain_list = isl_basic_set_list_from_set(set: domain); |
3396 | } |
3397 | |
3398 | list = generate_parallel_domains(domain_list, executed, build); |
3399 | |
3400 | isl_basic_set_list_free(list: domain_list); |
3401 | isl_union_map_free(umap: executed); |
3402 | isl_ast_build_free(build); |
3403 | |
3404 | return list; |
3405 | error: |
3406 | isl_union_map_free(umap: executed); |
3407 | isl_ast_build_free(build); |
3408 | return NULL; |
3409 | } |
3410 | |
3411 | /* Extract out the disjunction imposed by "domain" on the outer |
3412 | * schedule dimensions. |
3413 | * |
3414 | * In particular, remove all inner dimensions from "domain" (including |
3415 | * the current dimension) and then remove the constraints that are shared |
3416 | * by all disjuncts in the result. |
3417 | */ |
3418 | static __isl_give isl_set *(__isl_take isl_set *domain, |
3419 | __isl_keep isl_ast_build *build) |
3420 | { |
3421 | isl_set *hull; |
3422 | isl_size depth; |
3423 | isl_size dim; |
3424 | |
3425 | domain = isl_ast_build_specialize(build, set: domain); |
3426 | depth = isl_ast_build_get_depth(build); |
3427 | dim = isl_set_dim(set: domain, type: isl_dim_set); |
3428 | if (depth < 0 || dim < 0) |
3429 | return isl_set_free(set: domain); |
3430 | domain = isl_set_eliminate(set: domain, type: isl_dim_set, first: depth, n: dim - depth); |
3431 | domain = isl_set_remove_unknown_divs(set: domain); |
3432 | hull = isl_set_copy(set: domain); |
3433 | hull = isl_set_from_basic_set(bset: isl_set_unshifted_simple_hull(set: hull)); |
3434 | domain = isl_set_gist(set: domain, context: hull); |
3435 | |
3436 | return domain; |
3437 | } |
3438 | |
3439 | /* Add "guard" to the grafts in "list". |
3440 | * "build" is the outer AST build, while "sub_build" includes "guard" |
3441 | * in its generated domain. |
3442 | * |
3443 | * First combine the grafts into a single graft and then add the guard. |
3444 | * If the list is empty, or if some error occurred, then simply return |
3445 | * the list. |
3446 | */ |
3447 | static __isl_give isl_ast_graft_list *list_add_guard( |
3448 | __isl_take isl_ast_graft_list *list, __isl_keep isl_set *guard, |
3449 | __isl_keep isl_ast_build *build, __isl_keep isl_ast_build *sub_build) |
3450 | { |
3451 | isl_ast_graft *graft; |
3452 | isl_size n; |
3453 | |
3454 | list = isl_ast_graft_list_fuse(children: list, build: sub_build); |
3455 | |
3456 | n = isl_ast_graft_list_n_ast_graft(list); |
3457 | if (n < 0) |
3458 | return isl_ast_graft_list_free(list); |
3459 | if (n != 1) |
3460 | return list; |
3461 | |
3462 | graft = isl_ast_graft_list_get_ast_graft(list, index: 0); |
3463 | graft = isl_ast_graft_add_guard(graft, guard: isl_set_copy(set: guard), build); |
3464 | list = isl_ast_graft_list_set_ast_graft(list, index: 0, el: graft); |
3465 | |
3466 | return list; |
3467 | } |
3468 | |
3469 | /* Generate code for a single component, after shifting (if any) |
3470 | * has been applied, in case the schedule was specified as a schedule tree. |
3471 | * In particular, do so for the specified subset of the schedule domain. |
3472 | * |
3473 | * If we are outside of the isolated part, then "domain" may include |
3474 | * a disjunction. Explicitly generate this disjunction at this point |
3475 | * instead of relying on the disjunction getting hoisted back up |
3476 | * to this level. |
3477 | */ |
3478 | static __isl_give isl_ast_graft_list *generate_shifted_component_tree_part( |
3479 | __isl_keep isl_union_map *executed, __isl_take isl_set *domain, |
3480 | __isl_keep isl_ast_build *build, int isolated) |
3481 | { |
3482 | isl_union_set *uset; |
3483 | isl_ast_graft_list *list; |
3484 | isl_ast_build *sub_build; |
3485 | int empty; |
3486 | |
3487 | uset = isl_union_set_from_set(set: isl_set_copy(set: domain)); |
3488 | executed = isl_union_map_copy(umap: executed); |
3489 | executed = isl_union_map_intersect_domain(umap: executed, uset); |
3490 | empty = isl_union_map_is_empty(umap: executed); |
3491 | if (empty < 0) |
3492 | goto error; |
3493 | if (empty) { |
3494 | isl_ctx *ctx; |
3495 | isl_union_map_free(umap: executed); |
3496 | isl_set_free(set: domain); |
3497 | ctx = isl_ast_build_get_ctx(build); |
3498 | return isl_ast_graft_list_alloc(ctx, n: 0); |
3499 | } |
3500 | |
3501 | sub_build = isl_ast_build_copy(build); |
3502 | if (!isolated) { |
3503 | domain = extract_disjunction(domain, build); |
3504 | sub_build = isl_ast_build_restrict_generated(build: sub_build, |
3505 | set: isl_set_copy(set: domain)); |
3506 | } |
3507 | list = generate_shifted_component_tree_base(executed, |
3508 | build: isl_ast_build_copy(build: sub_build), isolated); |
3509 | if (!isolated) |
3510 | list = list_add_guard(list, guard: domain, build, sub_build); |
3511 | isl_ast_build_free(build: sub_build); |
3512 | isl_set_free(set: domain); |
3513 | return list; |
3514 | error: |
3515 | isl_union_map_free(umap: executed); |
3516 | isl_set_free(set: domain); |
3517 | return NULL; |
3518 | } |
3519 | |
3520 | /* Generate code for a single component, after shifting (if any) |
3521 | * has been applied, in case the schedule was specified as a schedule tree. |
3522 | * In particular, do so for the specified sequence of subsets |
3523 | * of the schedule domain, "before", "isolated", "after" and "other", |
3524 | * where only the "isolated" part is considered to be isolated. |
3525 | */ |
3526 | static __isl_give isl_ast_graft_list *generate_shifted_component_parts( |
3527 | __isl_take isl_union_map *executed, __isl_take isl_set *before, |
3528 | __isl_take isl_set *isolated, __isl_take isl_set *after, |
3529 | __isl_take isl_set *other, __isl_take isl_ast_build *build) |
3530 | { |
3531 | isl_ast_graft_list *list, *res; |
3532 | |
3533 | res = generate_shifted_component_tree_part(executed, domain: before, build, isolated: 0); |
3534 | list = generate_shifted_component_tree_part(executed, domain: isolated, |
3535 | build, isolated: 1); |
3536 | res = isl_ast_graft_list_concat(list1: res, list2: list); |
3537 | list = generate_shifted_component_tree_part(executed, domain: after, build, isolated: 0); |
3538 | res = isl_ast_graft_list_concat(list1: res, list2: list); |
3539 | list = generate_shifted_component_tree_part(executed, domain: other, build, isolated: 0); |
3540 | res = isl_ast_graft_list_concat(list1: res, list2: list); |
3541 | |
3542 | isl_union_map_free(umap: executed); |
3543 | isl_ast_build_free(build); |
3544 | |
3545 | return res; |
3546 | } |
3547 | |
3548 | /* Does "set" intersect "first", but not "second"? |
3549 | */ |
3550 | static isl_bool only_intersects_first(__isl_keep isl_set *set, |
3551 | __isl_keep isl_set *first, __isl_keep isl_set *second) |
3552 | { |
3553 | isl_bool disjoint; |
3554 | |
3555 | disjoint = isl_set_is_disjoint(set1: set, set2: first); |
3556 | if (disjoint < 0) |
3557 | return isl_bool_error; |
3558 | if (disjoint) |
3559 | return isl_bool_false; |
3560 | |
3561 | return isl_set_is_disjoint(set1: set, set2: second); |
3562 | } |
3563 | |
3564 | /* Generate code for a single component, after shifting (if any) |
3565 | * has been applied, in case the schedule was specified as a schedule tree. |
3566 | * In particular, do so in case of isolation where there is |
3567 | * only an "isolated" part and an "after" part. |
3568 | * "dead1" and "dead2" are freed by this function in order to simplify |
3569 | * the caller. |
3570 | * |
3571 | * The "before" and "other" parts are set to empty sets. |
3572 | */ |
3573 | static __isl_give isl_ast_graft_list *generate_shifted_component_only_after( |
3574 | __isl_take isl_union_map *executed, __isl_take isl_set *isolated, |
3575 | __isl_take isl_set *after, __isl_take isl_ast_build *build, |
3576 | __isl_take isl_set *dead1, __isl_take isl_set *dead2) |
3577 | { |
3578 | isl_set *empty; |
3579 | |
3580 | empty = isl_set_empty(space: isl_set_get_space(set: after)); |
3581 | isl_set_free(set: dead1); |
3582 | isl_set_free(set: dead2); |
3583 | return generate_shifted_component_parts(executed, before: isl_set_copy(set: empty), |
3584 | isolated, after, other: empty, build); |
3585 | } |
3586 | |
3587 | /* Generate code for a single component, after shifting (if any) |
3588 | * has been applied, in case the schedule was specified as a schedule tree. |
3589 | * |
3590 | * We first check if the user has specified an isolated schedule domain |
3591 | * and that we are not already outside of this isolated schedule domain. |
3592 | * If so, we break up the schedule domain into iterations that |
3593 | * precede the isolated domain, the isolated domain itself, |
3594 | * the iterations that follow the isolated domain and |
3595 | * the remaining iterations (those that are incomparable |
3596 | * to the isolated domain). |
3597 | * We generate an AST for each piece and concatenate the results. |
3598 | * |
3599 | * If the isolated domain is not convex, then it is replaced |
3600 | * by a convex superset to ensure that the sets of preceding and |
3601 | * following iterations are properly defined and, in particular, |
3602 | * that there are no intermediate iterations that do not belong |
3603 | * to the isolated domain. |
3604 | * |
3605 | * In the special case where at least one element of the schedule |
3606 | * domain that does not belong to the isolated domain needs |
3607 | * to be scheduled after this isolated domain, but none of those |
3608 | * elements need to be scheduled before, break up the schedule domain |
3609 | * in only two parts, the isolated domain, and a part that will be |
3610 | * scheduled after the isolated domain. |
3611 | * |
3612 | * If no isolated set has been specified, then we generate an |
3613 | * AST for the entire inverse schedule. |
3614 | */ |
3615 | static __isl_give isl_ast_graft_list *generate_shifted_component_tree( |
3616 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
3617 | { |
3618 | int i; |
3619 | isl_size depth; |
3620 | int empty, has_isolate; |
3621 | isl_space *space; |
3622 | isl_union_set *schedule_domain; |
3623 | isl_set *domain; |
3624 | isl_basic_set *hull; |
3625 | isl_set *isolated, *before, *after, *test; |
3626 | isl_map *gt, *lt; |
3627 | isl_bool pure; |
3628 | |
3629 | build = isl_ast_build_extract_isolated(build); |
3630 | has_isolate = isl_ast_build_has_isolated(build); |
3631 | if (has_isolate < 0) |
3632 | executed = isl_union_map_free(umap: executed); |
3633 | else if (!has_isolate) |
3634 | return generate_shifted_component_tree_base(executed, build, isolated: 0); |
3635 | |
3636 | schedule_domain = isl_union_map_domain(umap: isl_union_map_copy(umap: executed)); |
3637 | domain = isl_set_from_union_set(uset: schedule_domain); |
3638 | |
3639 | isolated = isl_ast_build_get_isolated(build); |
3640 | isolated = isl_set_intersect(set1: isolated, set2: isl_set_copy(set: domain)); |
3641 | test = isl_ast_build_specialize(build, set: isl_set_copy(set: isolated)); |
3642 | empty = isl_set_is_empty(set: test); |
3643 | isl_set_free(set: test); |
3644 | if (empty < 0) |
3645 | goto error; |
3646 | if (empty) { |
3647 | isl_set_free(set: isolated); |
3648 | isl_set_free(set: domain); |
3649 | return generate_shifted_component_tree_base(executed, build, isolated: 0); |
3650 | } |
3651 | depth = isl_ast_build_get_depth(build); |
3652 | if (depth < 0) |
3653 | goto error; |
3654 | |
3655 | isolated = isl_ast_build_eliminate(build, domain: isolated); |
3656 | hull = isl_set_unshifted_simple_hull(set: isolated); |
3657 | isolated = isl_set_from_basic_set(bset: hull); |
3658 | |
3659 | space = isl_space_map_from_set(space: isl_set_get_space(set: isolated)); |
3660 | gt = isl_map_universe(space); |
3661 | for (i = 0; i < depth; ++i) |
3662 | gt = isl_map_equate(map: gt, type1: isl_dim_in, pos1: i, type2: isl_dim_out, pos2: i); |
3663 | gt = isl_map_order_gt(map: gt, type1: isl_dim_in, pos1: depth, type2: isl_dim_out, pos2: depth); |
3664 | lt = isl_map_reverse(map: isl_map_copy(map: gt)); |
3665 | before = isl_set_apply(set: isl_set_copy(set: isolated), map: gt); |
3666 | after = isl_set_apply(set: isl_set_copy(set: isolated), map: lt); |
3667 | |
3668 | domain = isl_set_subtract(set1: domain, set2: isl_set_copy(set: isolated)); |
3669 | pure = only_intersects_first(set: domain, first: after, second: before); |
3670 | if (pure < 0) |
3671 | executed = isl_union_map_free(umap: executed); |
3672 | else if (pure) |
3673 | return generate_shifted_component_only_after(executed, isolated, |
3674 | after: domain, build, dead1: before, dead2: after); |
3675 | domain = isl_set_subtract(set1: domain, set2: isl_set_copy(set: before)); |
3676 | domain = isl_set_subtract(set1: domain, set2: isl_set_copy(set: after)); |
3677 | after = isl_set_subtract(set1: after, set2: isl_set_copy(set: isolated)); |
3678 | after = isl_set_subtract(set1: after, set2: isl_set_copy(set: before)); |
3679 | before = isl_set_subtract(set1: before, set2: isl_set_copy(set: isolated)); |
3680 | |
3681 | return generate_shifted_component_parts(executed, before, isolated, |
3682 | after, other: domain, build); |
3683 | error: |
3684 | isl_set_free(set: domain); |
3685 | isl_set_free(set: isolated); |
3686 | isl_union_map_free(umap: executed); |
3687 | isl_ast_build_free(build); |
3688 | return NULL; |
3689 | } |
3690 | |
3691 | /* Generate code for a single component, after shifting (if any) |
3692 | * has been applied. |
3693 | * |
3694 | * Call generate_shifted_component_tree or generate_shifted_component_flat |
3695 | * depending on whether the schedule was specified as a schedule tree. |
3696 | */ |
3697 | static __isl_give isl_ast_graft_list *generate_shifted_component( |
3698 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
3699 | { |
3700 | if (isl_ast_build_has_schedule_node(build)) |
3701 | return generate_shifted_component_tree(executed, build); |
3702 | else |
3703 | return generate_shifted_component_flat(executed, build); |
3704 | } |
3705 | |
3706 | struct isl_set_map_pair { |
3707 | isl_set *set; |
3708 | isl_map *map; |
3709 | }; |
3710 | |
3711 | /* Given an array "domain" of isl_set_map_pairs and an array "order" |
3712 | * of indices into the "domain" array, |
3713 | * return the union of the "map" fields of the elements |
3714 | * indexed by the first "n" elements of "order". |
3715 | */ |
3716 | static __isl_give isl_union_map *construct_component_executed( |
3717 | struct isl_set_map_pair *domain, int *order, int n) |
3718 | { |
3719 | int i; |
3720 | isl_map *map; |
3721 | isl_union_map *executed; |
3722 | |
3723 | map = isl_map_copy(map: domain[order[0]].map); |
3724 | executed = isl_union_map_from_map(map); |
3725 | for (i = 1; i < n; ++i) { |
3726 | map = isl_map_copy(map: domain[order[i]].map); |
3727 | executed = isl_union_map_add_map(umap: executed, map); |
3728 | } |
3729 | |
3730 | return executed; |
3731 | } |
3732 | |
3733 | /* Generate code for a single component, after shifting (if any) |
3734 | * has been applied. |
3735 | * |
3736 | * The component inverse schedule is specified as the "map" fields |
3737 | * of the elements of "domain" indexed by the first "n" elements of "order". |
3738 | */ |
3739 | static __isl_give isl_ast_graft_list *generate_shifted_component_from_list( |
3740 | struct isl_set_map_pair *domain, int *order, int n, |
3741 | __isl_take isl_ast_build *build) |
3742 | { |
3743 | isl_union_map *executed; |
3744 | |
3745 | executed = construct_component_executed(domain, order, n); |
3746 | return generate_shifted_component(executed, build); |
3747 | } |
3748 | |
3749 | /* Does set dimension "pos" of "set" have an obviously fixed value? |
3750 | */ |
3751 | static int dim_is_fixed(__isl_keep isl_set *set, int pos) |
3752 | { |
3753 | int fixed; |
3754 | isl_val *v; |
3755 | |
3756 | v = isl_set_plain_get_val_if_fixed(set, type: isl_dim_set, pos); |
3757 | if (!v) |
3758 | return -1; |
3759 | fixed = !isl_val_is_nan(v); |
3760 | isl_val_free(v); |
3761 | |
3762 | return fixed; |
3763 | } |
3764 | |
3765 | /* Given an array "domain" of isl_set_map_pairs and an array "order" |
3766 | * of indices into the "domain" array, |
3767 | * do all (except for at most one) of the "set" field of the elements |
3768 | * indexed by the first "n" elements of "order" have a fixed value |
3769 | * at position "depth"? |
3770 | */ |
3771 | static int at_most_one_non_fixed(struct isl_set_map_pair *domain, |
3772 | int *order, int n, int depth) |
3773 | { |
3774 | int i; |
3775 | int non_fixed = -1; |
3776 | |
3777 | for (i = 0; i < n; ++i) { |
3778 | int f; |
3779 | |
3780 | f = dim_is_fixed(set: domain[order[i]].set, pos: depth); |
3781 | if (f < 0) |
3782 | return -1; |
3783 | if (f) |
3784 | continue; |
3785 | if (non_fixed >= 0) |
3786 | return 0; |
3787 | non_fixed = i; |
3788 | } |
3789 | |
3790 | return 1; |
3791 | } |
3792 | |
3793 | /* Given an array "domain" of isl_set_map_pairs and an array "order" |
3794 | * of indices into the "domain" array, |
3795 | * eliminate the inner dimensions from the "set" field of the elements |
3796 | * indexed by the first "n" elements of "order", provided the current |
3797 | * dimension does not have a fixed value. |
3798 | * |
3799 | * Return the index of the first element in "order" with a corresponding |
3800 | * "set" field that does not have an (obviously) fixed value. |
3801 | */ |
3802 | static int eliminate_non_fixed(struct isl_set_map_pair *domain, |
3803 | int *order, int n, int depth, __isl_keep isl_ast_build *build) |
3804 | { |
3805 | int i; |
3806 | int base = -1; |
3807 | |
3808 | for (i = n - 1; i >= 0; --i) { |
3809 | int f; |
3810 | f = dim_is_fixed(set: domain[order[i]].set, pos: depth); |
3811 | if (f < 0) |
3812 | return -1; |
3813 | if (f) |
3814 | continue; |
3815 | domain[order[i]].set = isl_ast_build_eliminate_inner(build, |
3816 | set: domain[order[i]].set); |
3817 | base = i; |
3818 | } |
3819 | |
3820 | return base; |
3821 | } |
3822 | |
3823 | /* Given an array "domain" of isl_set_map_pairs and an array "order" |
3824 | * of indices into the "domain" array, |
3825 | * find the element of "domain" (amongst those indexed by the first "n" |
3826 | * elements of "order") with the "set" field that has the smallest |
3827 | * value for the current iterator. |
3828 | * |
3829 | * Note that the domain with the smallest value may depend on the parameters |
3830 | * and/or outer loop dimension. Since the result of this function is only |
3831 | * used as heuristic, we only make a reasonable attempt at finding the best |
3832 | * domain, one that should work in case a single domain provides the smallest |
3833 | * value for the current dimension over all values of the parameters |
3834 | * and outer dimensions. |
3835 | * |
3836 | * In particular, we compute the smallest value of the first domain |
3837 | * and replace it by that of any later domain if that later domain |
3838 | * has a smallest value that is smaller for at least some value |
3839 | * of the parameters and outer dimensions. |
3840 | */ |
3841 | static int first_offset(struct isl_set_map_pair *domain, int *order, int n, |
3842 | __isl_keep isl_ast_build *build) |
3843 | { |
3844 | int i; |
3845 | isl_map *min_first; |
3846 | int first = 0; |
3847 | |
3848 | min_first = isl_ast_build_map_to_iterator(build, |
3849 | set: isl_set_copy(set: domain[order[0]].set)); |
3850 | min_first = isl_map_lexmin(map: min_first); |
3851 | |
3852 | for (i = 1; i < n; ++i) { |
3853 | isl_map *min, *test; |
3854 | int empty; |
3855 | |
3856 | min = isl_ast_build_map_to_iterator(build, |
3857 | set: isl_set_copy(set: domain[order[i]].set)); |
3858 | min = isl_map_lexmin(map: min); |
3859 | test = isl_map_copy(map: min); |
3860 | test = isl_map_apply_domain(map1: isl_map_copy(map: min_first), map2: test); |
3861 | test = isl_map_order_lt(map: test, type1: isl_dim_in, pos1: 0, type2: isl_dim_out, pos2: 0); |
3862 | empty = isl_map_is_empty(map: test); |
3863 | isl_map_free(map: test); |
3864 | if (empty >= 0 && !empty) { |
3865 | isl_map_free(map: min_first); |
3866 | first = i; |
3867 | min_first = min; |
3868 | } else |
3869 | isl_map_free(map: min); |
3870 | |
3871 | if (empty < 0) |
3872 | break; |
3873 | } |
3874 | |
3875 | isl_map_free(map: min_first); |
3876 | |
3877 | return i < n ? -1 : first; |
3878 | } |
3879 | |
3880 | /* Construct a shifted inverse schedule based on the original inverse schedule, |
3881 | * the stride and the offset. |
3882 | * |
3883 | * The original inverse schedule is specified as the "map" fields |
3884 | * of the elements of "domain" indexed by the first "n" elements of "order". |
3885 | * |
3886 | * "stride" and "offset" are such that the difference |
3887 | * between the values of the current dimension of domain "i" |
3888 | * and the values of the current dimension for some reference domain are |
3889 | * equal to |
3890 | * |
3891 | * stride * integer + offset[i] |
3892 | * |
3893 | * Moreover, 0 <= offset[i] < stride. |
3894 | * |
3895 | * For each domain, we create a map |
3896 | * |
3897 | * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] } |
3898 | * |
3899 | * where j refers to the current dimension and the other dimensions are |
3900 | * unchanged, and apply this map to the original schedule domain. |
3901 | * |
3902 | * For example, for the original schedule |
3903 | * |
3904 | * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 } |
3905 | * |
3906 | * and assuming the offset is 0 for the A domain and 1 for the B domain, |
3907 | * we apply the mapping |
3908 | * |
3909 | * { [j] -> [j, 0] } |
3910 | * |
3911 | * to the schedule of the "A" domain and the mapping |
3912 | * |
3913 | * { [j - 1] -> [j, 1] } |
3914 | * |
3915 | * to the schedule of the "B" domain. |
3916 | * |
3917 | * |
3918 | * Note that after the transformation, the differences between pairs |
3919 | * of values of the current dimension over all domains are multiples |
3920 | * of stride and that we have therefore exposed the stride. |
3921 | * |
3922 | * |
3923 | * To see that the mapping preserves the lexicographic order, |
3924 | * first note that each of the individual maps above preserves the order. |
3925 | * If the value of the current iterator is j1 in one domain and j2 in another, |
3926 | * then if j1 = j2, we know that the same map is applied to both domains |
3927 | * and the order is preserved. |
3928 | * Otherwise, let us assume, without loss of generality, that j1 < j2. |
3929 | * If c1 >= c2 (with c1 and c2 the corresponding offsets), then |
3930 | * |
3931 | * j1 - c1 < j2 - c2 |
3932 | * |
3933 | * and the order is preserved. |
3934 | * If c1 < c2, then we know |
3935 | * |
3936 | * 0 <= c2 - c1 < s |
3937 | * |
3938 | * We also have |
3939 | * |
3940 | * j2 - j1 = n * s + r |
3941 | * |
3942 | * with n >= 0 and 0 <= r < s. |
3943 | * In other words, r = c2 - c1. |
3944 | * If n > 0, then |
3945 | * |
3946 | * j1 - c1 < j2 - c2 |
3947 | * |
3948 | * If n = 0, then |
3949 | * |
3950 | * j1 - c1 = j2 - c2 |
3951 | * |
3952 | * and so |
3953 | * |
3954 | * (j1 - c1, c1) << (j2 - c2, c2) |
3955 | * |
3956 | * with "<<" the lexicographic order, proving that the order is preserved |
3957 | * in all cases. |
3958 | */ |
3959 | static __isl_give isl_union_map *construct_shifted_executed( |
3960 | struct isl_set_map_pair *domain, int *order, int n, |
3961 | __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset, |
3962 | __isl_keep isl_ast_build *build) |
3963 | { |
3964 | int i; |
3965 | isl_union_map *executed; |
3966 | isl_space *space; |
3967 | isl_map *map; |
3968 | isl_size depth; |
3969 | isl_constraint *c; |
3970 | |
3971 | depth = isl_ast_build_get_depth(build); |
3972 | if (depth < 0) |
3973 | return NULL; |
3974 | space = isl_ast_build_get_space(build, internal: 1); |
3975 | executed = isl_union_map_empty(space: isl_space_copy(space)); |
3976 | space = isl_space_map_from_set(space); |
3977 | map = isl_map_identity(space: isl_space_copy(space)); |
3978 | map = isl_map_eliminate(map, type: isl_dim_out, first: depth, n: 1); |
3979 | map = isl_map_insert_dims(map, type: isl_dim_out, pos: depth + 1, n: 1); |
3980 | space = isl_space_insert_dims(space, type: isl_dim_out, pos: depth + 1, n: 1); |
3981 | |
3982 | c = isl_constraint_alloc_equality(ls: isl_local_space_from_space(space)); |
3983 | c = isl_constraint_set_coefficient_si(constraint: c, type: isl_dim_in, pos: depth, v: 1); |
3984 | c = isl_constraint_set_coefficient_si(constraint: c, type: isl_dim_out, pos: depth, v: -1); |
3985 | |
3986 | for (i = 0; i < n; ++i) { |
3987 | isl_map *map_i; |
3988 | isl_val *v; |
3989 | |
3990 | v = isl_multi_val_get_val(multi: offset, pos: i); |
3991 | if (!v) |
3992 | break; |
3993 | map_i = isl_map_copy(map); |
3994 | map_i = isl_map_fix_val(map: map_i, type: isl_dim_out, pos: depth + 1, |
3995 | v: isl_val_copy(v)); |
3996 | v = isl_val_neg(v); |
3997 | c = isl_constraint_set_constant_val(constraint: c, v); |
3998 | map_i = isl_map_add_constraint(map: map_i, constraint: isl_constraint_copy(c)); |
3999 | |
4000 | map_i = isl_map_apply_domain(map1: isl_map_copy(map: domain[order[i]].map), |
4001 | map2: map_i); |
4002 | executed = isl_union_map_add_map(umap: executed, map: map_i); |
4003 | } |
4004 | |
4005 | isl_constraint_free(c); |
4006 | isl_map_free(map); |
4007 | |
4008 | if (i < n) |
4009 | executed = isl_union_map_free(umap: executed); |
4010 | |
4011 | return executed; |
4012 | } |
4013 | |
4014 | /* Generate code for a single component, after exposing the stride, |
4015 | * given that the schedule domain is "shifted strided". |
4016 | * |
4017 | * The component inverse schedule is specified as the "map" fields |
4018 | * of the elements of "domain" indexed by the first "n" elements of "order". |
4019 | * |
4020 | * The schedule domain being "shifted strided" means that the differences |
4021 | * between the values of the current dimension of domain "i" |
4022 | * and the values of the current dimension for some reference domain are |
4023 | * equal to |
4024 | * |
4025 | * stride * integer + offset[i] |
4026 | * |
4027 | * We first look for the domain with the "smallest" value for the current |
4028 | * dimension and adjust the offsets such that the offset of the "smallest" |
4029 | * domain is equal to zero. The other offsets are reduced modulo stride. |
4030 | * |
4031 | * Based on this information, we construct a new inverse schedule in |
4032 | * construct_shifted_executed that exposes the stride. |
4033 | * Since this involves the introduction of a new schedule dimension, |
4034 | * the build needs to be changed accordingly. |
4035 | * After computing the AST, the newly introduced dimension needs |
4036 | * to be removed again from the list of grafts. We do this by plugging |
4037 | * in a mapping that represents the new schedule domain in terms of the |
4038 | * old schedule domain. |
4039 | */ |
4040 | static __isl_give isl_ast_graft_list *generate_shift_component( |
4041 | struct isl_set_map_pair *domain, int *order, int n, |
4042 | __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset, |
4043 | __isl_take isl_ast_build *build) |
4044 | { |
4045 | isl_ast_graft_list *list; |
4046 | int first; |
4047 | isl_size depth; |
4048 | isl_val *val; |
4049 | isl_multi_val *mv; |
4050 | isl_space *space; |
4051 | isl_multi_aff *ma, *zero; |
4052 | isl_union_map *executed; |
4053 | |
4054 | depth = isl_ast_build_get_depth(build); |
4055 | |
4056 | first = first_offset(domain, order, n, build); |
4057 | if (depth < 0 || first < 0) |
4058 | goto error; |
4059 | |
4060 | mv = isl_multi_val_copy(multi: offset); |
4061 | val = isl_multi_val_get_val(multi: offset, pos: first); |
4062 | val = isl_val_neg(v: val); |
4063 | mv = isl_multi_val_add_val(mv, v: val); |
4064 | mv = isl_multi_val_mod_val(mv, v: isl_val_copy(v: stride)); |
4065 | |
4066 | executed = construct_shifted_executed(domain, order, n, stride, offset: mv, |
4067 | build); |
4068 | space = isl_ast_build_get_space(build, internal: 1); |
4069 | space = isl_space_map_from_set(space); |
4070 | ma = isl_multi_aff_identity(space: isl_space_copy(space)); |
4071 | space = isl_space_from_domain(space: isl_space_domain(space)); |
4072 | space = isl_space_add_dims(space, type: isl_dim_out, n: 1); |
4073 | zero = isl_multi_aff_zero(space); |
4074 | ma = isl_multi_aff_range_splice(multi1: ma, pos: depth + 1, multi2: zero); |
4075 | build = isl_ast_build_insert_dim(build, pos: depth + 1); |
4076 | list = generate_shifted_component(executed, build); |
4077 | |
4078 | list = isl_ast_graft_list_preimage_multi_aff(list, ma); |
4079 | |
4080 | isl_multi_val_free(multi: mv); |
4081 | |
4082 | return list; |
4083 | error: |
4084 | isl_ast_build_free(build); |
4085 | return NULL; |
4086 | } |
4087 | |
4088 | /* Does any node in the schedule tree rooted at the current schedule node |
4089 | * of "build" depend on outer schedule nodes? |
4090 | */ |
4091 | static int has_anchored_subtree(__isl_keep isl_ast_build *build) |
4092 | { |
4093 | isl_schedule_node *node; |
4094 | int dependent = 0; |
4095 | |
4096 | node = isl_ast_build_get_schedule_node(build); |
4097 | dependent = isl_schedule_node_is_subtree_anchored(node); |
4098 | isl_schedule_node_free(node); |
4099 | |
4100 | return dependent; |
4101 | } |
4102 | |
4103 | /* Generate code for a single component. |
4104 | * |
4105 | * The component inverse schedule is specified as the "map" fields |
4106 | * of the elements of "domain" indexed by the first "n" elements of "order". |
4107 | * |
4108 | * This function may modify the "set" fields of "domain". |
4109 | * |
4110 | * Before proceeding with the actual code generation for the component, |
4111 | * we first check if there are any "shifted" strides, meaning that |
4112 | * the schedule domains of the individual domains are all strided, |
4113 | * but that they have different offsets, resulting in the union |
4114 | * of schedule domains not being strided anymore. |
4115 | * |
4116 | * The simplest example is the schedule |
4117 | * |
4118 | * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 } |
4119 | * |
4120 | * Both schedule domains are strided, but their union is not. |
4121 | * This function detects such cases and then rewrites the schedule to |
4122 | * |
4123 | * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 } |
4124 | * |
4125 | * In the new schedule, the schedule domains have the same offset (modulo |
4126 | * the stride), ensuring that the union of schedule domains is also strided. |
4127 | * |
4128 | * |
4129 | * If there is only a single domain in the component, then there is |
4130 | * nothing to do. Similarly, if the current schedule dimension has |
4131 | * a fixed value for almost all domains then there is nothing to be done. |
4132 | * In particular, we need at least two domains where the current schedule |
4133 | * dimension does not have a fixed value. |
4134 | * Finally, in case of a schedule map input, |
4135 | * if any of the options refer to the current schedule dimension, |
4136 | * then we bail out as well. It would be possible to reformulate the options |
4137 | * in terms of the new schedule domain, but that would introduce constraints |
4138 | * that separate the domains in the options and that is something we would |
4139 | * like to avoid. |
4140 | * In the case of a schedule tree input, we bail out if any of |
4141 | * the descendants of the current schedule node refer to outer |
4142 | * schedule nodes in any way. |
4143 | * |
4144 | * |
4145 | * To see if there is any shifted stride, we look at the differences |
4146 | * between the values of the current dimension in pairs of domains |
4147 | * for equal values of outer dimensions. These differences should be |
4148 | * of the form |
4149 | * |
4150 | * m x + r |
4151 | * |
4152 | * with "m" the stride and "r" a constant. Note that we cannot perform |
4153 | * this analysis on individual domains as the lower bound in each domain |
4154 | * may depend on parameters or outer dimensions and so the current dimension |
4155 | * itself may not have a fixed remainder on division by the stride. |
4156 | * |
4157 | * In particular, we compare the first domain that does not have an |
4158 | * obviously fixed value for the current dimension to itself and all |
4159 | * other domains and collect the offsets and the gcd of the strides. |
4160 | * If the gcd becomes one, then we failed to find shifted strides. |
4161 | * If the gcd is zero, then the differences were all fixed, meaning |
4162 | * that some domains had non-obviously fixed values for the current dimension. |
4163 | * If all the offsets are the same (for those domains that do not have |
4164 | * an obviously fixed value for the current dimension), then we do not |
4165 | * apply the transformation. |
4166 | * If none of the domains were skipped, then there is nothing to do. |
4167 | * If some of them were skipped, then if we apply separation, the schedule |
4168 | * domain should get split in pieces with a (non-shifted) stride. |
4169 | * |
4170 | * Otherwise, we apply a shift to expose the stride in |
4171 | * generate_shift_component. |
4172 | */ |
4173 | static __isl_give isl_ast_graft_list *generate_component( |
4174 | struct isl_set_map_pair *domain, int *order, int n, |
4175 | __isl_take isl_ast_build *build) |
4176 | { |
4177 | int i, d; |
4178 | isl_size depth; |
4179 | isl_ctx *ctx; |
4180 | isl_map *map; |
4181 | isl_set *deltas; |
4182 | isl_val *gcd = NULL; |
4183 | isl_multi_val *mv; |
4184 | int fixed, skip; |
4185 | int base; |
4186 | isl_ast_graft_list *list; |
4187 | int res = 0; |
4188 | |
4189 | depth = isl_ast_build_get_depth(build); |
4190 | if (depth < 0) |
4191 | goto error; |
4192 | |
4193 | skip = n == 1; |
4194 | if (skip >= 0 && !skip) |
4195 | skip = at_most_one_non_fixed(domain, order, n, depth); |
4196 | if (skip >= 0 && !skip) { |
4197 | if (isl_ast_build_has_schedule_node(build)) |
4198 | skip = has_anchored_subtree(build); |
4199 | else |
4200 | skip = isl_ast_build_options_involve_depth(build); |
4201 | } |
4202 | if (skip < 0) |
4203 | goto error; |
4204 | if (skip) |
4205 | return generate_shifted_component_from_list(domain, |
4206 | order, n, build); |
4207 | |
4208 | base = eliminate_non_fixed(domain, order, n, depth, build); |
4209 | if (base < 0) |
4210 | goto error; |
4211 | |
4212 | ctx = isl_ast_build_get_ctx(build); |
4213 | |
4214 | mv = isl_multi_val_zero(space: isl_space_set_alloc(ctx, nparam: 0, dim: n)); |
4215 | |
4216 | fixed = 1; |
4217 | for (i = 0; i < n; ++i) { |
4218 | isl_val *r, *m; |
4219 | |
4220 | map = isl_map_from_domain_and_range( |
4221 | domain: isl_set_copy(set: domain[order[base]].set), |
4222 | range: isl_set_copy(set: domain[order[i]].set)); |
4223 | for (d = 0; d < depth; ++d) |
4224 | map = isl_map_equate(map, type1: isl_dim_in, pos1: d, |
4225 | type2: isl_dim_out, pos2: d); |
4226 | deltas = isl_map_deltas(map); |
4227 | res = isl_set_dim_residue_class_val(set: deltas, pos: depth, modulo: &m, residue: &r); |
4228 | isl_set_free(set: deltas); |
4229 | if (res < 0) |
4230 | break; |
4231 | |
4232 | if (i == 0) |
4233 | gcd = m; |
4234 | else |
4235 | gcd = isl_val_gcd(v1: gcd, v2: m); |
4236 | if (isl_val_is_one(v: gcd)) { |
4237 | isl_val_free(v: r); |
4238 | break; |
4239 | } |
4240 | mv = isl_multi_val_set_val(multi: mv, pos: i, el: r); |
4241 | |
4242 | res = dim_is_fixed(set: domain[order[i]].set, pos: depth); |
4243 | if (res < 0) |
4244 | break; |
4245 | if (res) |
4246 | continue; |
4247 | |
4248 | if (fixed && i > base) { |
4249 | isl_val *a, *b; |
4250 | a = isl_multi_val_get_val(multi: mv, pos: i); |
4251 | b = isl_multi_val_get_val(multi: mv, pos: base); |
4252 | if (isl_val_ne(v1: a, v2: b)) |
4253 | fixed = 0; |
4254 | isl_val_free(v: a); |
4255 | isl_val_free(v: b); |
4256 | } |
4257 | } |
4258 | |
4259 | if (res < 0 || !gcd) { |
4260 | isl_ast_build_free(build); |
4261 | list = NULL; |
4262 | } else if (i < n || fixed || isl_val_is_zero(v: gcd)) { |
4263 | list = generate_shifted_component_from_list(domain, |
4264 | order, n, build); |
4265 | } else { |
4266 | list = generate_shift_component(domain, order, n, stride: gcd, offset: mv, |
4267 | build); |
4268 | } |
4269 | |
4270 | isl_val_free(v: gcd); |
4271 | isl_multi_val_free(multi: mv); |
4272 | |
4273 | return list; |
4274 | error: |
4275 | isl_ast_build_free(build); |
4276 | return NULL; |
4277 | } |
4278 | |
4279 | /* Store both "map" itself and its domain in the |
4280 | * structure pointed to by *next and advance to the next array element. |
4281 | */ |
4282 | static isl_stat extract_domain(__isl_take isl_map *map, void *user) |
4283 | { |
4284 | struct isl_set_map_pair **next = user; |
4285 | |
4286 | (*next)->map = isl_map_copy(map); |
4287 | (*next)->set = isl_map_domain(bmap: map); |
4288 | (*next)++; |
4289 | |
4290 | return isl_stat_ok; |
4291 | } |
4292 | |
4293 | static isl_bool after_in_tree(__isl_keep isl_union_map *umap, |
4294 | __isl_keep isl_schedule_node *node); |
4295 | |
4296 | /* Is any domain element of "umap" scheduled after any of |
4297 | * the corresponding image elements by the tree rooted at |
4298 | * the child of "node"? |
4299 | */ |
4300 | static isl_bool after_in_child(__isl_keep isl_union_map *umap, |
4301 | __isl_keep isl_schedule_node *node) |
4302 | { |
4303 | isl_schedule_node *child; |
4304 | isl_bool after; |
4305 | |
4306 | child = isl_schedule_node_get_child(node, pos: 0); |
4307 | after = after_in_tree(umap, node: child); |
4308 | isl_schedule_node_free(node: child); |
4309 | |
4310 | return after; |
4311 | } |
4312 | |
4313 | /* Is any domain element of "umap" scheduled after any of |
4314 | * the corresponding image elements by the tree rooted at |
4315 | * the band node "node"? |
4316 | * |
4317 | * We first check if any domain element is scheduled after any |
4318 | * of the corresponding image elements by the band node itself. |
4319 | * If not, we restrict "map" to those pairs of element that |
4320 | * are scheduled together by the band node and continue with |
4321 | * the child of the band node. |
4322 | * If there are no such pairs then the map passed to after_in_child |
4323 | * will be empty causing it to return 0. |
4324 | */ |
4325 | static isl_bool after_in_band(__isl_keep isl_union_map *umap, |
4326 | __isl_keep isl_schedule_node *node) |
4327 | { |
4328 | isl_multi_union_pw_aff *mupa; |
4329 | isl_union_map *partial, *test, *gt, *universe, *umap1, *umap2; |
4330 | isl_union_set *domain, *range; |
4331 | isl_space *space; |
4332 | isl_bool empty; |
4333 | isl_bool after; |
4334 | isl_size n; |
4335 | |
4336 | n = isl_schedule_node_band_n_member(node); |
4337 | if (n < 0) |
4338 | return isl_bool_error; |
4339 | if (n == 0) |
4340 | return after_in_child(umap, node); |
4341 | |
4342 | mupa = isl_schedule_node_band_get_partial_schedule(node); |
4343 | space = isl_multi_union_pw_aff_get_space(multi: mupa); |
4344 | partial = isl_union_map_from_multi_union_pw_aff(mupa); |
4345 | test = isl_union_map_copy(umap); |
4346 | test = isl_union_map_apply_domain(umap1: test, umap2: isl_union_map_copy(umap: partial)); |
4347 | test = isl_union_map_apply_range(umap1: test, umap2: isl_union_map_copy(umap: partial)); |
4348 | gt = isl_union_map_from_map(map: isl_map_lex_gt(set_space: space)); |
4349 | test = isl_union_map_intersect(umap1: test, umap2: gt); |
4350 | empty = isl_union_map_is_empty(umap: test); |
4351 | isl_union_map_free(umap: test); |
4352 | |
4353 | if (empty < 0 || !empty) { |
4354 | isl_union_map_free(umap: partial); |
4355 | return isl_bool_not(b: empty); |
4356 | } |
4357 | |
4358 | universe = isl_union_map_universe(umap: isl_union_map_copy(umap)); |
4359 | domain = isl_union_map_domain(umap: isl_union_map_copy(umap: universe)); |
4360 | range = isl_union_map_range(umap: universe); |
4361 | umap1 = isl_union_map_copy(umap: partial); |
4362 | umap1 = isl_union_map_intersect_domain(umap: umap1, uset: domain); |
4363 | umap2 = isl_union_map_intersect_domain(umap: partial, uset: range); |
4364 | test = isl_union_map_apply_range(umap1, umap2: isl_union_map_reverse(umap: umap2)); |
4365 | test = isl_union_map_intersect(umap1: test, umap2: isl_union_map_copy(umap)); |
4366 | after = after_in_child(umap: test, node); |
4367 | isl_union_map_free(umap: test); |
4368 | return after; |
4369 | } |
4370 | |
4371 | /* Is any domain element of "umap" scheduled after any of |
4372 | * the corresponding image elements by the tree rooted at |
4373 | * the context node "node"? |
4374 | * |
4375 | * The context constraints apply to the schedule domain, |
4376 | * so we cannot apply them directly to "umap", which contains |
4377 | * pairs of statement instances. Instead, we add them |
4378 | * to the range of the prefix schedule for both domain and |
4379 | * range of "umap". |
4380 | */ |
4381 | static isl_bool after_in_context(__isl_keep isl_union_map *umap, |
4382 | __isl_keep isl_schedule_node *node) |
4383 | { |
4384 | isl_union_map *prefix, *universe, *umap1, *umap2; |
4385 | isl_union_set *domain, *range; |
4386 | isl_set *context; |
4387 | isl_bool after; |
4388 | |
4389 | umap = isl_union_map_copy(umap); |
4390 | context = isl_schedule_node_context_get_context(node); |
4391 | prefix = isl_schedule_node_get_prefix_schedule_union_map(node); |
4392 | universe = isl_union_map_universe(umap: isl_union_map_copy(umap)); |
4393 | domain = isl_union_map_domain(umap: isl_union_map_copy(umap: universe)); |
4394 | range = isl_union_map_range(umap: universe); |
4395 | umap1 = isl_union_map_copy(umap: prefix); |
4396 | umap1 = isl_union_map_intersect_domain(umap: umap1, uset: domain); |
4397 | umap2 = isl_union_map_intersect_domain(umap: prefix, uset: range); |
4398 | umap1 = isl_union_map_intersect_range(umap: umap1, |
4399 | uset: isl_union_set_from_set(set: context)); |
4400 | umap1 = isl_union_map_apply_range(umap1, umap2: isl_union_map_reverse(umap: umap2)); |
4401 | umap = isl_union_map_intersect(umap1: umap, umap2: umap1); |
4402 | |
4403 | after = after_in_child(umap, node); |
4404 | |
4405 | isl_union_map_free(umap); |
4406 | |
4407 | return after; |
4408 | } |
4409 | |
4410 | /* Is any domain element of "umap" scheduled after any of |
4411 | * the corresponding image elements by the tree rooted at |
4412 | * the expansion node "node"? |
4413 | * |
4414 | * We apply the expansion to domain and range of "umap" and |
4415 | * continue with its child. |
4416 | */ |
4417 | static isl_bool after_in_expansion(__isl_keep isl_union_map *umap, |
4418 | __isl_keep isl_schedule_node *node) |
4419 | { |
4420 | isl_union_map *expansion; |
4421 | isl_bool after; |
4422 | |
4423 | expansion = isl_schedule_node_expansion_get_expansion(node); |
4424 | umap = isl_union_map_copy(umap); |
4425 | umap = isl_union_map_apply_domain(umap1: umap, umap2: isl_union_map_copy(umap: expansion)); |
4426 | umap = isl_union_map_apply_range(umap1: umap, umap2: expansion); |
4427 | |
4428 | after = after_in_child(umap, node); |
4429 | |
4430 | isl_union_map_free(umap); |
4431 | |
4432 | return after; |
4433 | } |
4434 | |
4435 | /* Is any domain element of "umap" scheduled after any of |
4436 | * the corresponding image elements by the tree rooted at |
4437 | * the extension node "node"? |
4438 | * |
4439 | * Since the extension node may add statement instances before or |
4440 | * after the pairs of statement instances in "umap", we return isl_bool_true |
4441 | * to ensure that these pairs are not broken up. |
4442 | */ |
4443 | static isl_bool after_in_extension(__isl_keep isl_union_map *umap, |
4444 | __isl_keep isl_schedule_node *node) |
4445 | { |
4446 | return isl_bool_true; |
4447 | } |
4448 | |
4449 | /* Is any domain element of "umap" scheduled after any of |
4450 | * the corresponding image elements by the tree rooted at |
4451 | * the filter node "node"? |
4452 | * |
4453 | * We intersect domain and range of "umap" with the filter and |
4454 | * continue with its child. |
4455 | */ |
4456 | static isl_bool after_in_filter(__isl_keep isl_union_map *umap, |
4457 | __isl_keep isl_schedule_node *node) |
4458 | { |
4459 | isl_union_set *filter; |
4460 | isl_bool after; |
4461 | |
4462 | umap = isl_union_map_copy(umap); |
4463 | filter = isl_schedule_node_filter_get_filter(node); |
4464 | umap = isl_union_map_intersect_domain(umap, uset: isl_union_set_copy(uset: filter)); |
4465 | umap = isl_union_map_intersect_range(umap, uset: filter); |
4466 | |
4467 | after = after_in_child(umap, node); |
4468 | |
4469 | isl_union_map_free(umap); |
4470 | |
4471 | return after; |
4472 | } |
4473 | |
4474 | /* Is any domain element of "umap" scheduled after any of |
4475 | * the corresponding image elements by the tree rooted at |
4476 | * the set node "node"? |
4477 | * |
4478 | * This is only the case if this condition holds in any |
4479 | * of the (filter) children of the set node. |
4480 | * In particular, if the domain and the range of "umap" |
4481 | * are contained in different children, then the condition |
4482 | * does not hold. |
4483 | */ |
4484 | static isl_bool after_in_set(__isl_keep isl_union_map *umap, |
4485 | __isl_keep isl_schedule_node *node) |
4486 | { |
4487 | int i; |
4488 | isl_size n; |
4489 | |
4490 | n = isl_schedule_node_n_children(node); |
4491 | if (n < 0) |
4492 | return isl_bool_error; |
4493 | for (i = 0; i < n; ++i) { |
4494 | isl_schedule_node *child; |
4495 | isl_bool after; |
4496 | |
4497 | child = isl_schedule_node_get_child(node, pos: i); |
4498 | after = after_in_tree(umap, node: child); |
4499 | isl_schedule_node_free(node: child); |
4500 | |
4501 | if (after < 0 || after) |
4502 | return after; |
4503 | } |
4504 | |
4505 | return isl_bool_false; |
4506 | } |
4507 | |
4508 | /* Return the filter of child "i" of "node". |
4509 | */ |
4510 | static __isl_give isl_union_set *child_filter( |
4511 | __isl_keep isl_schedule_node *node, int i) |
4512 | { |
4513 | isl_schedule_node *child; |
4514 | isl_union_set *filter; |
4515 | |
4516 | child = isl_schedule_node_get_child(node, pos: i); |
4517 | filter = isl_schedule_node_filter_get_filter(node: child); |
4518 | isl_schedule_node_free(node: child); |
4519 | |
4520 | return filter; |
4521 | } |
4522 | |
4523 | /* Is any domain element of "umap" scheduled after any of |
4524 | * the corresponding image elements by the tree rooted at |
4525 | * the sequence node "node"? |
4526 | * |
4527 | * This happens in particular if any domain element is |
4528 | * contained in a later child than one containing a range element or |
4529 | * if the condition holds within a given child in the sequence. |
4530 | * The later part of the condition is checked by after_in_set. |
4531 | */ |
4532 | static isl_bool after_in_sequence(__isl_keep isl_union_map *umap, |
4533 | __isl_keep isl_schedule_node *node) |
4534 | { |
4535 | int i, j; |
4536 | isl_size n; |
4537 | isl_union_map *umap_i; |
4538 | isl_bool empty; |
4539 | isl_bool after = isl_bool_false; |
4540 | |
4541 | n = isl_schedule_node_n_children(node); |
4542 | if (n < 0) |
4543 | return isl_bool_error; |
4544 | for (i = 1; i < n; ++i) { |
4545 | isl_union_set *filter_i; |
4546 | |
4547 | umap_i = isl_union_map_copy(umap); |
4548 | filter_i = child_filter(node, i); |
4549 | umap_i = isl_union_map_intersect_domain(umap: umap_i, uset: filter_i); |
4550 | empty = isl_union_map_is_empty(umap: umap_i); |
4551 | if (empty < 0) |
4552 | goto error; |
4553 | if (empty) { |
4554 | isl_union_map_free(umap: umap_i); |
4555 | continue; |
4556 | } |
4557 | |
4558 | for (j = 0; j < i; ++j) { |
4559 | isl_union_set *filter_j; |
4560 | isl_union_map *umap_ij; |
4561 | |
4562 | umap_ij = isl_union_map_copy(umap: umap_i); |
4563 | filter_j = child_filter(node, i: j); |
4564 | umap_ij = isl_union_map_intersect_range(umap: umap_ij, |
4565 | uset: filter_j); |
4566 | empty = isl_union_map_is_empty(umap: umap_ij); |
4567 | isl_union_map_free(umap: umap_ij); |
4568 | |
4569 | if (empty < 0) |
4570 | goto error; |
4571 | if (!empty) |
4572 | after = isl_bool_true; |
4573 | if (after) |
4574 | break; |
4575 | } |
4576 | |
4577 | isl_union_map_free(umap: umap_i); |
4578 | if (after) |
4579 | break; |
4580 | } |
4581 | |
4582 | if (after < 0 || after) |
4583 | return after; |
4584 | |
4585 | return after_in_set(umap, node); |
4586 | error: |
4587 | isl_union_map_free(umap: umap_i); |
4588 | return isl_bool_error; |
4589 | } |
4590 | |
4591 | /* Is any domain element of "umap" scheduled after any of |
4592 | * the corresponding image elements by the tree rooted at "node"? |
4593 | * |
4594 | * If "umap" is empty, then clearly there is no such element. |
4595 | * Otherwise, consider the different types of nodes separately. |
4596 | */ |
4597 | static isl_bool after_in_tree(__isl_keep isl_union_map *umap, |
4598 | __isl_keep isl_schedule_node *node) |
4599 | { |
4600 | isl_bool empty; |
4601 | enum isl_schedule_node_type type; |
4602 | |
4603 | empty = isl_union_map_is_empty(umap); |
4604 | if (empty < 0) |
4605 | return isl_bool_error; |
4606 | if (empty) |
4607 | return isl_bool_false; |
4608 | if (!node) |
4609 | return isl_bool_error; |
4610 | |
4611 | type = isl_schedule_node_get_type(node); |
4612 | switch (type) { |
4613 | case isl_schedule_node_error: |
4614 | return isl_bool_error; |
4615 | case isl_schedule_node_leaf: |
4616 | return isl_bool_false; |
4617 | case isl_schedule_node_band: |
4618 | return after_in_band(umap, node); |
4619 | case isl_schedule_node_domain: |
4620 | isl_die(isl_schedule_node_get_ctx(node), isl_error_internal, |
4621 | "unexpected internal domain node" , |
4622 | return isl_bool_error); |
4623 | case isl_schedule_node_context: |
4624 | return after_in_context(umap, node); |
4625 | case isl_schedule_node_expansion: |
4626 | return after_in_expansion(umap, node); |
4627 | case isl_schedule_node_extension: |
4628 | return after_in_extension(umap, node); |
4629 | case isl_schedule_node_filter: |
4630 | return after_in_filter(umap, node); |
4631 | case isl_schedule_node_guard: |
4632 | case isl_schedule_node_mark: |
4633 | return after_in_child(umap, node); |
4634 | case isl_schedule_node_set: |
4635 | return after_in_set(umap, node); |
4636 | case isl_schedule_node_sequence: |
4637 | return after_in_sequence(umap, node); |
4638 | } |
4639 | |
4640 | return isl_bool_true; |
4641 | } |
4642 | |
4643 | /* Is any domain element of "map1" scheduled after any domain |
4644 | * element of "map2" by the subtree underneath the current band node, |
4645 | * while at the same time being scheduled together by the current |
4646 | * band node, i.e., by "map1" and "map2? |
4647 | * |
4648 | * If the child of the current band node is a leaf, then |
4649 | * no element can be scheduled after any other element. |
4650 | * |
4651 | * Otherwise, we construct a relation between domain elements |
4652 | * of "map1" and domain elements of "map2" that are scheduled |
4653 | * together and then check if the subtree underneath the current |
4654 | * band node determines their relative order. |
4655 | */ |
4656 | static isl_bool after_in_subtree(__isl_keep isl_ast_build *build, |
4657 | __isl_keep isl_map *map1, __isl_keep isl_map *map2) |
4658 | { |
4659 | isl_schedule_node *node; |
4660 | isl_map *map; |
4661 | isl_union_map *umap; |
4662 | isl_bool after; |
4663 | |
4664 | node = isl_ast_build_get_schedule_node(build); |
4665 | if (!node) |
4666 | return isl_bool_error; |
4667 | node = isl_schedule_node_child(node, pos: 0); |
4668 | if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf) { |
4669 | isl_schedule_node_free(node); |
4670 | return isl_bool_false; |
4671 | } |
4672 | map = isl_map_copy(map: map2); |
4673 | map = isl_map_apply_domain(map1: map, map2: isl_map_copy(map: map1)); |
4674 | umap = isl_union_map_from_map(map); |
4675 | after = after_in_tree(umap, node); |
4676 | isl_union_map_free(umap); |
4677 | isl_schedule_node_free(node); |
4678 | return after; |
4679 | } |
4680 | |
4681 | /* Internal data for any_scheduled_after. |
4682 | * |
4683 | * "build" is the build in which the AST is constructed. |
4684 | * "depth" is the number of loops that have already been generated |
4685 | * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled |
4686 | * "domain" is an array of set-map pairs corresponding to the different |
4687 | * iteration domains. The set is the schedule domain, i.e., the domain |
4688 | * of the inverse schedule, while the map is the inverse schedule itself. |
4689 | */ |
4690 | struct isl_any_scheduled_after_data { |
4691 | isl_ast_build *build; |
4692 | int depth; |
4693 | int group_coscheduled; |
4694 | struct isl_set_map_pair *domain; |
4695 | }; |
4696 | |
4697 | /* Is any element of domain "i" scheduled after any element of domain "j" |
4698 | * (for a common iteration of the first data->depth loops)? |
4699 | * |
4700 | * data->domain[i].set contains the domain of the inverse schedule |
4701 | * for domain "i", i.e., elements in the schedule domain. |
4702 | * |
4703 | * If we are inside a band of a schedule tree and there is a pair |
4704 | * of elements in the two domains that is schedule together by |
4705 | * the current band, then we check if any element of "i" may be schedule |
4706 | * after element of "j" by the descendants of the band node. |
4707 | * |
4708 | * If data->group_coscheduled is set, then we also return 1 if there |
4709 | * is any pair of elements in the two domains that are scheduled together. |
4710 | */ |
4711 | static isl_bool any_scheduled_after(int i, int j, void *user) |
4712 | { |
4713 | struct isl_any_scheduled_after_data *data = user; |
4714 | isl_size dim = isl_set_dim(set: data->domain[i].set, type: isl_dim_set); |
4715 | int pos; |
4716 | |
4717 | if (dim < 0) |
4718 | return isl_bool_error; |
4719 | |
4720 | for (pos = data->depth; pos < dim; ++pos) { |
4721 | int follows; |
4722 | |
4723 | follows = isl_set_follows_at(set1: data->domain[i].set, |
4724 | set2: data->domain[j].set, pos); |
4725 | |
4726 | if (follows < -1) |
4727 | return isl_bool_error; |
4728 | if (follows > 0) |
4729 | return isl_bool_true; |
4730 | if (follows < 0) |
4731 | return isl_bool_false; |
4732 | } |
4733 | |
4734 | if (isl_ast_build_has_schedule_node(build: data->build)) { |
4735 | isl_bool after; |
4736 | |
4737 | after = after_in_subtree(build: data->build, map1: data->domain[i].map, |
4738 | map2: data->domain[j].map); |
4739 | if (after < 0 || after) |
4740 | return after; |
4741 | } |
4742 | |
4743 | return isl_bool_ok(b: data->group_coscheduled); |
4744 | } |
4745 | |
4746 | /* Look for independent components at the current depth and generate code |
4747 | * for each component separately. The resulting lists of grafts are |
4748 | * merged in an attempt to combine grafts with identical guards. |
4749 | * |
4750 | * Code for two domains can be generated separately if all the elements |
4751 | * of one domain are scheduled before (or together with) all the elements |
4752 | * of the other domain. We therefore consider the graph with as nodes |
4753 | * the domains and an edge between two nodes if any element of the first |
4754 | * node is scheduled after any element of the second node. |
4755 | * If the ast_build_group_coscheduled is set, then we also add an edge if |
4756 | * there is any pair of elements in the two domains that are scheduled |
4757 | * together. |
4758 | * Code is then generated (by generate_component) |
4759 | * for each of the strongly connected components in this graph |
4760 | * in their topological order. |
4761 | * |
4762 | * Since the test is performed on the domain of the inverse schedules of |
4763 | * the different domains, we precompute these domains and store |
4764 | * them in data.domain. |
4765 | */ |
4766 | static __isl_give isl_ast_graft_list *generate_components( |
4767 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
4768 | { |
4769 | int i; |
4770 | isl_ctx *ctx = isl_ast_build_get_ctx(build); |
4771 | isl_size n = isl_union_map_n_map(umap: executed); |
4772 | isl_size depth; |
4773 | struct isl_any_scheduled_after_data data; |
4774 | struct isl_set_map_pair *next; |
4775 | struct isl_tarjan_graph *g = NULL; |
4776 | isl_ast_graft_list *list = NULL; |
4777 | int n_domain = 0; |
4778 | |
4779 | data.domain = NULL; |
4780 | if (n < 0) |
4781 | goto error; |
4782 | data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n); |
4783 | if (!data.domain) |
4784 | goto error; |
4785 | n_domain = n; |
4786 | |
4787 | next = data.domain; |
4788 | if (isl_union_map_foreach_map(umap: executed, fn: &extract_domain, user: &next) < 0) |
4789 | goto error; |
4790 | |
4791 | depth = isl_ast_build_get_depth(build); |
4792 | if (depth < 0) |
4793 | goto error; |
4794 | data.build = build; |
4795 | data.depth = depth; |
4796 | data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx); |
4797 | g = isl_tarjan_graph_init(ctx, len: n, follows: &any_scheduled_after, user: &data); |
4798 | if (!g) |
4799 | goto error; |
4800 | |
4801 | list = isl_ast_graft_list_alloc(ctx, n: 0); |
4802 | |
4803 | i = 0; |
4804 | while (list && n) { |
4805 | isl_ast_graft_list *list_c; |
4806 | int first = i; |
4807 | |
4808 | if (g->order[i] == -1) |
4809 | isl_die(ctx, isl_error_internal, "cannot happen" , |
4810 | goto error); |
4811 | ++i; --n; |
4812 | while (g->order[i] != -1) { |
4813 | ++i; --n; |
4814 | } |
4815 | |
4816 | list_c = generate_component(domain: data.domain, |
4817 | order: g->order + first, n: i - first, |
4818 | build: isl_ast_build_copy(build)); |
4819 | list = isl_ast_graft_list_merge(list1: list, list2: list_c, build); |
4820 | |
4821 | ++i; |
4822 | } |
4823 | |
4824 | if (0) |
4825 | error: list = isl_ast_graft_list_free(list); |
4826 | isl_tarjan_graph_free(g); |
4827 | for (i = 0; i < n_domain; ++i) { |
4828 | isl_map_free(map: data.domain[i].map); |
4829 | isl_set_free(set: data.domain[i].set); |
4830 | } |
4831 | free(ptr: data.domain); |
4832 | isl_union_map_free(umap: executed); |
4833 | isl_ast_build_free(build); |
4834 | |
4835 | return list; |
4836 | } |
4837 | |
4838 | /* Generate code for the next level (and all inner levels). |
4839 | * |
4840 | * If "executed" is empty, i.e., no code needs to be generated, |
4841 | * then we return an empty list. |
4842 | * |
4843 | * If we have already generated code for all loop levels, then we pass |
4844 | * control to generate_inner_level. |
4845 | * |
4846 | * If "executed" lives in a single space, i.e., if code needs to be |
4847 | * generated for a single domain, then there can only be a single |
4848 | * component and we go directly to generate_shifted_component. |
4849 | * Otherwise, we call generate_components to detect the components |
4850 | * and to call generate_component on each of them separately. |
4851 | */ |
4852 | static __isl_give isl_ast_graft_list *generate_next_level( |
4853 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
4854 | { |
4855 | isl_size depth; |
4856 | isl_size dim; |
4857 | isl_size n; |
4858 | |
4859 | if (!build || !executed) |
4860 | goto error; |
4861 | |
4862 | if (isl_union_map_is_empty(umap: executed)) { |
4863 | isl_ctx *ctx = isl_ast_build_get_ctx(build); |
4864 | isl_union_map_free(umap: executed); |
4865 | isl_ast_build_free(build); |
4866 | return isl_ast_graft_list_alloc(ctx, n: 0); |
4867 | } |
4868 | |
4869 | depth = isl_ast_build_get_depth(build); |
4870 | dim = isl_ast_build_dim(build, type: isl_dim_set); |
4871 | if (depth < 0 || dim < 0) |
4872 | goto error; |
4873 | if (depth >= dim) |
4874 | return generate_inner_level(executed, build); |
4875 | |
4876 | n = isl_union_map_n_map(umap: executed); |
4877 | if (n < 0) |
4878 | goto error; |
4879 | if (n == 1) |
4880 | return generate_shifted_component(executed, build); |
4881 | |
4882 | return generate_components(executed, build); |
4883 | error: |
4884 | isl_union_map_free(umap: executed); |
4885 | isl_ast_build_free(build); |
4886 | return NULL; |
4887 | } |
4888 | |
4889 | /* Internal data structure used by isl_ast_build_node_from_schedule_map. |
4890 | * internal, executed and build are the inputs to generate_code. |
4891 | * list collects the output. |
4892 | */ |
4893 | struct isl_generate_code_data { |
4894 | int internal; |
4895 | isl_union_map *executed; |
4896 | isl_ast_build *build; |
4897 | |
4898 | isl_ast_graft_list *list; |
4899 | }; |
4900 | |
4901 | /* Given an inverse schedule in terms of the external build schedule, i.e., |
4902 | * |
4903 | * [E -> S] -> D |
4904 | * |
4905 | * with E the external build schedule and S the additional schedule "space", |
4906 | * reformulate the inverse schedule in terms of the internal schedule domain, |
4907 | * i.e., return |
4908 | * |
4909 | * [I -> S] -> D |
4910 | * |
4911 | * We first obtain a mapping |
4912 | * |
4913 | * I -> E |
4914 | * |
4915 | * take the inverse and the product with S -> S, resulting in |
4916 | * |
4917 | * [I -> S] -> [E -> S] |
4918 | * |
4919 | * Applying the map to the input produces the desired result. |
4920 | */ |
4921 | static __isl_give isl_union_map *internal_executed( |
4922 | __isl_take isl_union_map *executed, __isl_keep isl_space *space, |
4923 | __isl_keep isl_ast_build *build) |
4924 | { |
4925 | isl_map *id, *proj; |
4926 | |
4927 | proj = isl_ast_build_get_schedule_map(build); |
4928 | proj = isl_map_reverse(map: proj); |
4929 | space = isl_space_map_from_set(space: isl_space_copy(space)); |
4930 | id = isl_map_identity(space); |
4931 | proj = isl_map_product(map1: proj, map2: id); |
4932 | executed = isl_union_map_apply_domain(umap1: executed, |
4933 | umap2: isl_union_map_from_map(map: proj)); |
4934 | return executed; |
4935 | } |
4936 | |
4937 | /* Generate an AST that visits the elements in the range of data->executed |
4938 | * in the relative order specified by the corresponding domain element(s) |
4939 | * for those domain elements that belong to "set". |
4940 | * Add the result to data->list. |
4941 | * |
4942 | * The caller ensures that "set" is a universe domain. |
4943 | * "space" is the space of the additional part of the schedule. |
4944 | * It is equal to the space of "set" if build->domain is parametric. |
4945 | * Otherwise, it is equal to the range of the wrapped space of "set". |
4946 | * |
4947 | * If the build space is not parametric and |
4948 | * if isl_ast_build_node_from_schedule_map |
4949 | * was called from an outside user (data->internal not set), then |
4950 | * the (inverse) schedule refers to the external build domain and needs to |
4951 | * be transformed to refer to the internal build domain. |
4952 | * |
4953 | * If the build space is parametric, then we add some of the parameter |
4954 | * constraints to the executed relation. Adding these constraints |
4955 | * allows for an earlier detection of conflicts in some cases. |
4956 | * However, we do not want to divide the executed relation into |
4957 | * more disjuncts than necessary. We therefore approximate |
4958 | * the constraints on the parameters by a single disjunct set. |
4959 | * |
4960 | * The build is extended to include the additional part of the schedule. |
4961 | * If the original build space was not parametric, then the options |
4962 | * in data->build refer only to the additional part of the schedule |
4963 | * and they need to be adjusted to refer to the complete AST build |
4964 | * domain. |
4965 | * |
4966 | * After having adjusted inverse schedule and build, we start generating |
4967 | * code with the outer loop of the current code generation |
4968 | * in generate_next_level. |
4969 | * |
4970 | * If the original build space was not parametric, we undo the embedding |
4971 | * on the resulting isl_ast_node_list so that it can be used within |
4972 | * the outer AST build. |
4973 | */ |
4974 | static isl_stat generate_code_in_space(struct isl_generate_code_data *data, |
4975 | __isl_take isl_set *set, __isl_take isl_space *space) |
4976 | { |
4977 | isl_union_map *executed; |
4978 | isl_ast_build *build; |
4979 | isl_ast_graft_list *list; |
4980 | int embed; |
4981 | |
4982 | executed = isl_union_map_copy(umap: data->executed); |
4983 | executed = isl_union_map_intersect_domain(umap: executed, |
4984 | uset: isl_union_set_from_set(set)); |
4985 | |
4986 | embed = !isl_set_is_params(set: data->build->domain); |
4987 | if (embed && !data->internal) |
4988 | executed = internal_executed(executed, space, build: data->build); |
4989 | if (!embed) { |
4990 | isl_set *domain; |
4991 | domain = isl_ast_build_get_domain(build: data->build); |
4992 | domain = isl_set_from_basic_set(bset: isl_set_simple_hull(set: domain)); |
4993 | executed = isl_union_map_intersect_params(umap: executed, set: domain); |
4994 | } |
4995 | |
4996 | build = isl_ast_build_copy(build: data->build); |
4997 | build = isl_ast_build_product(build, embedding: space); |
4998 | |
4999 | list = generate_next_level(executed, build); |
5000 | |
5001 | list = isl_ast_graft_list_unembed(list, product: embed); |
5002 | |
5003 | data->list = isl_ast_graft_list_concat(list1: data->list, list2: list); |
5004 | |
5005 | return isl_stat_ok; |
5006 | } |
5007 | |
5008 | /* Generate an AST that visits the elements in the range of data->executed |
5009 | * in the relative order specified by the corresponding domain element(s) |
5010 | * for those domain elements that belong to "set". |
5011 | * Add the result to data->list. |
5012 | * |
5013 | * The caller ensures that "set" is a universe domain. |
5014 | * |
5015 | * If the build space S is not parametric, then the space of "set" |
5016 | * need to be a wrapped relation with S as domain. That is, it needs |
5017 | * to be of the form |
5018 | * |
5019 | * [S -> T] |
5020 | * |
5021 | * Check this property and pass control to generate_code_in_space |
5022 | * passing along T. |
5023 | * If the build space is not parametric, then T is the space of "set". |
5024 | */ |
5025 | static isl_stat generate_code_set(__isl_take isl_set *set, void *user) |
5026 | { |
5027 | struct isl_generate_code_data *data = user; |
5028 | isl_space *space, *build_space; |
5029 | int is_domain; |
5030 | |
5031 | space = isl_set_get_space(set); |
5032 | |
5033 | if (isl_set_is_params(set: data->build->domain)) |
5034 | return generate_code_in_space(data, set, space); |
5035 | |
5036 | build_space = isl_ast_build_get_space(build: data->build, internal: data->internal); |
5037 | space = isl_space_unwrap(space); |
5038 | is_domain = isl_space_is_domain(space1: build_space, space2: space); |
5039 | isl_space_free(space: build_space); |
5040 | space = isl_space_range(space); |
5041 | |
5042 | if (is_domain < 0) |
5043 | goto error; |
5044 | if (!is_domain) |
5045 | isl_die(isl_set_get_ctx(set), isl_error_invalid, |
5046 | "invalid nested schedule space" , goto error); |
5047 | |
5048 | return generate_code_in_space(data, set, space); |
5049 | error: |
5050 | isl_set_free(set); |
5051 | isl_space_free(space); |
5052 | return isl_stat_error; |
5053 | } |
5054 | |
5055 | /* Generate an AST that visits the elements in the range of "executed" |
5056 | * in the relative order specified by the corresponding domain element(s). |
5057 | * |
5058 | * "build" is an isl_ast_build that has either been constructed by |
5059 | * isl_ast_build_from_context or passed to a callback set by |
5060 | * isl_ast_build_set_create_leaf. |
5061 | * In the first case, the space of the isl_ast_build is typically |
5062 | * a parametric space, although this is currently not enforced. |
5063 | * In the second case, the space is never a parametric space. |
5064 | * If the space S is not parametric, then the domain space(s) of "executed" |
5065 | * need to be wrapped relations with S as domain. |
5066 | * |
5067 | * If the domain of "executed" consists of several spaces, then an AST |
5068 | * is generated for each of them (in arbitrary order) and the results |
5069 | * are concatenated. |
5070 | * |
5071 | * If "internal" is set, then the domain "S" above refers to the internal |
5072 | * schedule domain representation. Otherwise, it refers to the external |
5073 | * representation, as returned by isl_ast_build_get_schedule_space. |
5074 | * |
5075 | * We essentially run over all the spaces in the domain of "executed" |
5076 | * and call generate_code_set on each of them. |
5077 | */ |
5078 | static __isl_give isl_ast_graft_list *generate_code( |
5079 | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build, |
5080 | int internal) |
5081 | { |
5082 | isl_ctx *ctx; |
5083 | struct isl_generate_code_data data = { 0 }; |
5084 | isl_space *space; |
5085 | isl_union_set *schedule_domain; |
5086 | isl_union_map *universe; |
5087 | |
5088 | if (!build) |
5089 | goto error; |
5090 | space = isl_ast_build_get_space(build, internal: 1); |
5091 | space = isl_space_align_params(space1: space, |
5092 | space2: isl_union_map_get_space(umap: executed)); |
5093 | space = isl_space_align_params(space1: space, |
5094 | space2: isl_union_map_get_space(umap: build->options)); |
5095 | build = isl_ast_build_align_params(build, model: isl_space_copy(space)); |
5096 | executed = isl_union_map_align_params(umap: executed, model: space); |
5097 | if (!executed || !build) |
5098 | goto error; |
5099 | |
5100 | ctx = isl_ast_build_get_ctx(build); |
5101 | |
5102 | data.internal = internal; |
5103 | data.executed = executed; |
5104 | data.build = build; |
5105 | data.list = isl_ast_graft_list_alloc(ctx, n: 0); |
5106 | |
5107 | universe = isl_union_map_universe(umap: isl_union_map_copy(umap: executed)); |
5108 | schedule_domain = isl_union_map_domain(umap: universe); |
5109 | if (isl_union_set_foreach_set(uset: schedule_domain, fn: &generate_code_set, |
5110 | user: &data) < 0) |
5111 | data.list = isl_ast_graft_list_free(list: data.list); |
5112 | |
5113 | isl_union_set_free(uset: schedule_domain); |
5114 | isl_union_map_free(umap: executed); |
5115 | |
5116 | isl_ast_build_free(build); |
5117 | return data.list; |
5118 | error: |
5119 | isl_union_map_free(umap: executed); |
5120 | isl_ast_build_free(build); |
5121 | return NULL; |
5122 | } |
5123 | |
5124 | /* Generate an AST that visits the elements in the domain of "schedule" |
5125 | * in the relative order specified by the corresponding image element(s). |
5126 | * |
5127 | * "build" is an isl_ast_build that has either been constructed by |
5128 | * isl_ast_build_from_context or passed to a callback set by |
5129 | * isl_ast_build_set_create_leaf. |
5130 | * In the first case, the space of the isl_ast_build is typically |
5131 | * a parametric space, although this is currently not enforced. |
5132 | * In the second case, the space is never a parametric space. |
5133 | * If the space S is not parametric, then the range space(s) of "schedule" |
5134 | * need to be wrapped relations with S as domain. |
5135 | * |
5136 | * If the range of "schedule" consists of several spaces, then an AST |
5137 | * is generated for each of them (in arbitrary order) and the results |
5138 | * are concatenated. |
5139 | * |
5140 | * We first initialize the local copies of the relevant options. |
5141 | * We do this here rather than when the isl_ast_build is created |
5142 | * because the options may have changed between the construction |
5143 | * of the isl_ast_build and the call to isl_generate_code. |
5144 | * |
5145 | * The main computation is performed on an inverse schedule (with |
5146 | * the schedule domain in the domain and the elements to be executed |
5147 | * in the range) called "executed". |
5148 | */ |
5149 | __isl_give isl_ast_node *isl_ast_build_node_from_schedule_map( |
5150 | __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule) |
5151 | { |
5152 | isl_ast_graft_list *list; |
5153 | isl_ast_node *node; |
5154 | isl_union_map *executed; |
5155 | |
5156 | build = isl_ast_build_copy(build); |
5157 | build = isl_ast_build_set_single_valued(build, sv: 0); |
5158 | schedule = isl_union_map_coalesce(umap: schedule); |
5159 | schedule = isl_union_map_remove_redundancies(umap: schedule); |
5160 | executed = isl_union_map_reverse(umap: schedule); |
5161 | list = generate_code(executed, build: isl_ast_build_copy(build), internal: 0); |
5162 | node = isl_ast_node_from_graft_list(list, build); |
5163 | isl_ast_build_free(build); |
5164 | |
5165 | return node; |
5166 | } |
5167 | |
5168 | /* The old name for isl_ast_build_node_from_schedule_map. |
5169 | * It is being kept for backward compatibility, but |
5170 | * it will be removed in the future. |
5171 | */ |
5172 | __isl_give isl_ast_node *isl_ast_build_ast_from_schedule( |
5173 | __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule) |
5174 | { |
5175 | return isl_ast_build_node_from_schedule_map(build, schedule); |
5176 | } |
5177 | |
5178 | /* Generate an AST that visits the elements in the domain of "executed" |
5179 | * in the relative order specified by the leaf node "node". |
5180 | * |
5181 | * The relation "executed" maps the outer generated loop iterators |
5182 | * to the domain elements executed by those iterations. |
5183 | * |
5184 | * Simply pass control to generate_inner_level. |
5185 | * Note that the current build does not refer to any band node, so |
5186 | * that generate_inner_level will not try to visit the child of |
5187 | * the leaf node. |
5188 | * |
5189 | * If multiple statement instances reach a leaf, |
5190 | * then they can be executed in any order. |
5191 | * Group the list of grafts based on shared guards |
5192 | * such that identical guards are only generated once |
5193 | * when the list is eventually passed on to isl_ast_graft_list_fuse. |
5194 | */ |
5195 | static __isl_give isl_ast_graft_list *build_ast_from_leaf( |
5196 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5197 | __isl_take isl_union_map *executed) |
5198 | { |
5199 | isl_ast_graft_list *list; |
5200 | |
5201 | isl_schedule_node_free(node); |
5202 | list = generate_inner_level(executed, build: isl_ast_build_copy(build)); |
5203 | list = isl_ast_graft_list_group_on_guard(list, build); |
5204 | isl_ast_build_free(build); |
5205 | |
5206 | return list; |
5207 | } |
5208 | |
5209 | /* Check that the band partial schedule "partial" does not filter out |
5210 | * any statement instances, as specified by the range of "executed". |
5211 | */ |
5212 | static isl_stat check_band_schedule_total_on_instances( |
5213 | __isl_keep isl_multi_union_pw_aff *partial, |
5214 | __isl_keep isl_union_map *executed) |
5215 | { |
5216 | isl_bool subset; |
5217 | isl_union_set *domain, *instances; |
5218 | |
5219 | instances = isl_union_map_range(umap: isl_union_map_copy(umap: executed)); |
5220 | partial = isl_multi_union_pw_aff_copy(multi: partial); |
5221 | domain = isl_multi_union_pw_aff_domain(mupa: partial); |
5222 | subset = isl_union_set_is_subset(uset1: instances, uset2: domain); |
5223 | isl_union_set_free(uset: domain); |
5224 | isl_union_set_free(uset: instances); |
5225 | |
5226 | if (subset < 0) |
5227 | return isl_stat_error; |
5228 | if (!subset) |
5229 | isl_die(isl_union_map_get_ctx(executed), isl_error_invalid, |
5230 | "band node is not allowed to drop statement instances" , |
5231 | return isl_stat_error); |
5232 | return isl_stat_ok; |
5233 | } |
5234 | |
5235 | /* Generate an AST that visits the elements in the domain of "executed" |
5236 | * in the relative order specified by the band node "node" and its descendants. |
5237 | * |
5238 | * The relation "executed" maps the outer generated loop iterators |
5239 | * to the domain elements executed by those iterations. |
5240 | * |
5241 | * If the band is empty, we continue with its descendants. |
5242 | * Otherwise, we extend the build and the inverse schedule with |
5243 | * the additional space/partial schedule and continue generating |
5244 | * an AST in generate_next_level. |
5245 | * As soon as we have extended the inverse schedule with the additional |
5246 | * partial schedule, we look for equalities that may exists between |
5247 | * the old and the new part. |
5248 | */ |
5249 | static __isl_give isl_ast_graft_list *build_ast_from_band( |
5250 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5251 | __isl_take isl_union_map *executed) |
5252 | { |
5253 | isl_space *space; |
5254 | isl_multi_union_pw_aff *; |
5255 | isl_union_map *; |
5256 | isl_ast_graft_list *list; |
5257 | isl_size n1, n2; |
5258 | isl_size n; |
5259 | |
5260 | n = isl_schedule_node_band_n_member(node); |
5261 | if (!build || n < 0 || !executed) |
5262 | goto error; |
5263 | |
5264 | if (n == 0) |
5265 | return build_ast_from_child(build, node, executed); |
5266 | |
5267 | extra = isl_schedule_node_band_get_partial_schedule(node); |
5268 | extra = isl_multi_union_pw_aff_align_params(multi: extra, |
5269 | model: isl_ast_build_get_space(build, internal: 1)); |
5270 | space = isl_multi_union_pw_aff_get_space(multi: extra); |
5271 | |
5272 | if (check_band_schedule_total_on_instances(partial: extra, executed) < 0) |
5273 | executed = isl_union_map_free(umap: executed); |
5274 | |
5275 | extra_umap = isl_union_map_from_multi_union_pw_aff(mupa: extra); |
5276 | extra_umap = isl_union_map_reverse(umap: extra_umap); |
5277 | |
5278 | executed = isl_union_map_domain_product(umap1: executed, umap2: extra_umap); |
5279 | executed = isl_union_map_detect_equalities(umap: executed); |
5280 | |
5281 | n1 = isl_ast_build_dim(build, type: isl_dim_param); |
5282 | build = isl_ast_build_product(build, embedding: space); |
5283 | n2 = isl_ast_build_dim(build, type: isl_dim_param); |
5284 | if (n1 < 0 || n2 < 0) |
5285 | build = isl_ast_build_free(build); |
5286 | else if (n2 > n1) |
5287 | isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, |
5288 | "band node is not allowed to introduce new parameters" , |
5289 | build = isl_ast_build_free(build)); |
5290 | build = isl_ast_build_set_schedule_node(build, node); |
5291 | |
5292 | list = generate_next_level(executed, build); |
5293 | |
5294 | list = isl_ast_graft_list_unembed(list, product: 1); |
5295 | |
5296 | return list; |
5297 | error: |
5298 | isl_schedule_node_free(node); |
5299 | isl_union_map_free(umap: executed); |
5300 | isl_ast_build_free(build); |
5301 | return NULL; |
5302 | } |
5303 | |
5304 | /* Hoist a list of grafts (in practice containing a single graft) |
5305 | * from "sub_build" (which includes extra context information) |
5306 | * to "build". |
5307 | * |
5308 | * In particular, project out all additional parameters introduced |
5309 | * by the context node from the enforced constraints and the guard |
5310 | * of the single graft. |
5311 | */ |
5312 | static __isl_give isl_ast_graft_list *hoist_out_of_context( |
5313 | __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build, |
5314 | __isl_keep isl_ast_build *sub_build) |
5315 | { |
5316 | isl_ast_graft *graft; |
5317 | isl_basic_set *enforced; |
5318 | isl_set *guard; |
5319 | isl_size n_param, ; |
5320 | |
5321 | n_param = isl_ast_build_dim(build, type: isl_dim_param); |
5322 | extra_param = isl_ast_build_dim(build: sub_build, type: isl_dim_param); |
5323 | if (n_param < 0 || extra_param < 0) |
5324 | return isl_ast_graft_list_free(list); |
5325 | |
5326 | if (extra_param == n_param) |
5327 | return list; |
5328 | |
5329 | extra_param -= n_param; |
5330 | enforced = isl_ast_graft_list_extract_shared_enforced(list, build: sub_build); |
5331 | enforced = isl_basic_set_project_out(bset: enforced, type: isl_dim_param, |
5332 | first: n_param, n: extra_param); |
5333 | enforced = isl_basic_set_remove_unknown_divs(bset: enforced); |
5334 | guard = isl_ast_graft_list_extract_hoistable_guard(list, build: sub_build); |
5335 | guard = isl_set_remove_divs_involving_dims(set: guard, type: isl_dim_param, |
5336 | first: n_param, n: extra_param); |
5337 | guard = isl_set_project_out(set: guard, type: isl_dim_param, first: n_param, n: extra_param); |
5338 | guard = isl_set_compute_divs(set: guard); |
5339 | graft = isl_ast_graft_alloc_from_children(list, guard, enforced, |
5340 | build, sub_build); |
5341 | list = isl_ast_graft_list_from_ast_graft(el: graft); |
5342 | |
5343 | return list; |
5344 | } |
5345 | |
5346 | /* Generate an AST that visits the elements in the domain of "executed" |
5347 | * in the relative order specified by the context node "node" |
5348 | * and its descendants. |
5349 | * |
5350 | * The relation "executed" maps the outer generated loop iterators |
5351 | * to the domain elements executed by those iterations. |
5352 | * |
5353 | * The context node may introduce additional parameters as well as |
5354 | * constraints on the outer schedule dimensions or original parameters. |
5355 | * |
5356 | * We add the extra parameters to a new build and the context |
5357 | * constraints to both the build and (as a single disjunct) |
5358 | * to the domain of "executed". Since the context constraints |
5359 | * are specified in terms of the input schedule, we first need |
5360 | * to map them to the internal schedule domain. |
5361 | * |
5362 | * After constructing the AST from the descendants of "node", |
5363 | * we combine the list of grafts into a single graft within |
5364 | * the new build, in order to be able to exploit the additional |
5365 | * context constraints during this combination. |
5366 | * |
5367 | * Additionally, if the current node is the outermost node in |
5368 | * the schedule tree (apart from the root domain node), we generate |
5369 | * all pending guards, again to be able to exploit the additional |
5370 | * context constraints. We currently do not do this for internal |
5371 | * context nodes since we may still want to hoist conditions |
5372 | * to outer AST nodes. |
5373 | * |
5374 | * If the context node introduced any new parameters, then they |
5375 | * are removed from the set of enforced constraints and guard |
5376 | * in hoist_out_of_context. |
5377 | */ |
5378 | static __isl_give isl_ast_graft_list *build_ast_from_context( |
5379 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5380 | __isl_take isl_union_map *executed) |
5381 | { |
5382 | isl_set *context; |
5383 | isl_space *space; |
5384 | isl_multi_aff *internal2input; |
5385 | isl_ast_build *sub_build; |
5386 | isl_ast_graft_list *list; |
5387 | isl_size n; |
5388 | isl_size depth; |
5389 | |
5390 | depth = isl_schedule_node_get_tree_depth(node); |
5391 | if (depth < 0) |
5392 | build = isl_ast_build_free(build); |
5393 | space = isl_ast_build_get_space(build, internal: 1); |
5394 | context = isl_schedule_node_context_get_context(node); |
5395 | context = isl_set_align_params(set: context, model: space); |
5396 | sub_build = isl_ast_build_copy(build); |
5397 | space = isl_set_get_space(set: context); |
5398 | sub_build = isl_ast_build_align_params(build: sub_build, model: space); |
5399 | internal2input = isl_ast_build_get_internal2input(build: sub_build); |
5400 | context = isl_set_preimage_multi_aff(set: context, ma: internal2input); |
5401 | sub_build = isl_ast_build_restrict_generated(build: sub_build, |
5402 | set: isl_set_copy(set: context)); |
5403 | context = isl_set_from_basic_set(bset: isl_set_simple_hull(set: context)); |
5404 | executed = isl_union_map_intersect_domain(umap: executed, |
5405 | uset: isl_union_set_from_set(set: context)); |
5406 | |
5407 | list = build_ast_from_child(build: isl_ast_build_copy(build: sub_build), |
5408 | node, executed); |
5409 | n = isl_ast_graft_list_n_ast_graft(list); |
5410 | if (n < 0) |
5411 | list = isl_ast_graft_list_free(list); |
5412 | |
5413 | list = isl_ast_graft_list_fuse(children: list, build: sub_build); |
5414 | if (depth == 1) |
5415 | list = isl_ast_graft_list_insert_pending_guard_nodes(list, |
5416 | build: sub_build); |
5417 | if (n >= 1) |
5418 | list = hoist_out_of_context(list, build, sub_build); |
5419 | |
5420 | isl_ast_build_free(build); |
5421 | isl_ast_build_free(build: sub_build); |
5422 | |
5423 | return list; |
5424 | } |
5425 | |
5426 | /* Generate an AST that visits the elements in the domain of "executed" |
5427 | * in the relative order specified by the expansion node "node" and |
5428 | * its descendants. |
5429 | * |
5430 | * The relation "executed" maps the outer generated loop iterators |
5431 | * to the domain elements executed by those iterations. |
5432 | * |
5433 | * We expand the domain elements by the expansion and |
5434 | * continue with the descendants of the node. |
5435 | */ |
5436 | static __isl_give isl_ast_graft_list *build_ast_from_expansion( |
5437 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5438 | __isl_take isl_union_map *executed) |
5439 | { |
5440 | isl_union_map *expansion; |
5441 | isl_size n1, n2; |
5442 | |
5443 | expansion = isl_schedule_node_expansion_get_expansion(node); |
5444 | expansion = isl_union_map_align_params(umap: expansion, |
5445 | model: isl_union_map_get_space(umap: executed)); |
5446 | |
5447 | n1 = isl_union_map_dim(umap: executed, type: isl_dim_param); |
5448 | executed = isl_union_map_apply_range(umap1: executed, umap2: expansion); |
5449 | n2 = isl_union_map_dim(umap: executed, type: isl_dim_param); |
5450 | if (n1 < 0 || n2 < 0) |
5451 | goto error; |
5452 | if (n2 > n1) |
5453 | isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, |
5454 | "expansion node is not allowed to introduce " |
5455 | "new parameters" , goto error); |
5456 | |
5457 | return build_ast_from_child(build, node, executed); |
5458 | error: |
5459 | isl_ast_build_free(build); |
5460 | isl_schedule_node_free(node); |
5461 | isl_union_map_free(umap: executed); |
5462 | return NULL; |
5463 | } |
5464 | |
5465 | /* Generate an AST that visits the elements in the domain of "executed" |
5466 | * in the relative order specified by the extension node "node" and |
5467 | * its descendants. |
5468 | * |
5469 | * The relation "executed" maps the outer generated loop iterators |
5470 | * to the domain elements executed by those iterations. |
5471 | * |
5472 | * Extend the inverse schedule with the extension applied to current |
5473 | * set of generated constraints. Since the extension if formulated |
5474 | * in terms of the input schedule, it first needs to be transformed |
5475 | * to refer to the internal schedule. |
5476 | */ |
5477 | static __isl_give isl_ast_graft_list *build_ast_from_extension( |
5478 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5479 | __isl_take isl_union_map *executed) |
5480 | { |
5481 | isl_union_set *schedule_domain; |
5482 | isl_union_map *extension; |
5483 | isl_set *set; |
5484 | |
5485 | set = isl_ast_build_get_generated(build); |
5486 | set = isl_set_from_basic_set(bset: isl_set_simple_hull(set)); |
5487 | schedule_domain = isl_union_set_from_set(set); |
5488 | |
5489 | extension = isl_schedule_node_extension_get_extension(node); |
5490 | |
5491 | extension = isl_union_map_preimage_domain_multi_aff(umap: extension, |
5492 | ma: isl_multi_aff_copy(multi: build->internal2input)); |
5493 | extension = isl_union_map_intersect_domain(umap: extension, uset: schedule_domain); |
5494 | extension = isl_ast_build_substitute_values_union_map_domain(build, |
5495 | umap: extension); |
5496 | executed = isl_union_map_union(umap1: executed, umap2: extension); |
5497 | |
5498 | return build_ast_from_child(build, node, executed); |
5499 | } |
5500 | |
5501 | /* Generate an AST that visits the elements in the domain of "executed" |
5502 | * in the relative order specified by the filter node "node" and |
5503 | * its descendants. |
5504 | * |
5505 | * The relation "executed" maps the outer generated loop iterators |
5506 | * to the domain elements executed by those iterations. |
5507 | * |
5508 | * We simply intersect the iteration domain (i.e., the range of "executed") |
5509 | * with the filter and continue with the descendants of the node, |
5510 | * unless the resulting inverse schedule is empty, in which |
5511 | * case we return an empty list. |
5512 | * |
5513 | * If the result of the intersection is equal to the original "executed" |
5514 | * relation, then keep the original representation since the intersection |
5515 | * may have unnecessarily broken up the relation into a greater number |
5516 | * of disjuncts. |
5517 | */ |
5518 | static __isl_give isl_ast_graft_list *build_ast_from_filter( |
5519 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5520 | __isl_take isl_union_map *executed) |
5521 | { |
5522 | isl_ctx *ctx; |
5523 | isl_union_set *filter; |
5524 | isl_union_map *orig; |
5525 | isl_ast_graft_list *list; |
5526 | int empty; |
5527 | isl_bool unchanged; |
5528 | isl_size n1, n2; |
5529 | |
5530 | orig = isl_union_map_copy(umap: executed); |
5531 | if (!build || !node || !executed) |
5532 | goto error; |
5533 | |
5534 | filter = isl_schedule_node_filter_get_filter(node); |
5535 | filter = isl_union_set_align_params(uset: filter, |
5536 | model: isl_union_map_get_space(umap: executed)); |
5537 | n1 = isl_union_map_dim(umap: executed, type: isl_dim_param); |
5538 | executed = isl_union_map_intersect_range(umap: executed, uset: filter); |
5539 | n2 = isl_union_map_dim(umap: executed, type: isl_dim_param); |
5540 | if (n1 < 0 || n2 < 0) |
5541 | goto error; |
5542 | if (n2 > n1) |
5543 | isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, |
5544 | "filter node is not allowed to introduce " |
5545 | "new parameters" , goto error); |
5546 | |
5547 | unchanged = isl_union_map_is_subset(umap1: orig, umap2: executed); |
5548 | empty = isl_union_map_is_empty(umap: executed); |
5549 | if (unchanged < 0 || empty < 0) |
5550 | goto error; |
5551 | if (unchanged) { |
5552 | isl_union_map_free(umap: executed); |
5553 | return build_ast_from_child(build, node, executed: orig); |
5554 | } |
5555 | isl_union_map_free(umap: orig); |
5556 | if (!empty) |
5557 | return build_ast_from_child(build, node, executed); |
5558 | |
5559 | ctx = isl_ast_build_get_ctx(build); |
5560 | list = isl_ast_graft_list_alloc(ctx, n: 0); |
5561 | isl_ast_build_free(build); |
5562 | isl_schedule_node_free(node); |
5563 | isl_union_map_free(umap: executed); |
5564 | return list; |
5565 | error: |
5566 | isl_ast_build_free(build); |
5567 | isl_schedule_node_free(node); |
5568 | isl_union_map_free(umap: executed); |
5569 | isl_union_map_free(umap: orig); |
5570 | return NULL; |
5571 | } |
5572 | |
5573 | /* Generate an AST that visits the elements in the domain of "executed" |
5574 | * in the relative order specified by the guard node "node" and |
5575 | * its descendants. |
5576 | * |
5577 | * The relation "executed" maps the outer generated loop iterators |
5578 | * to the domain elements executed by those iterations. |
5579 | * |
5580 | * Ensure that the associated guard is enforced by the outer AST |
5581 | * constructs by adding it to the guard of the graft. |
5582 | * Since we know that we will enforce the guard, we can also include it |
5583 | * in the generated constraints used to construct an AST for |
5584 | * the descendant nodes. |
5585 | */ |
5586 | static __isl_give isl_ast_graft_list *build_ast_from_guard( |
5587 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5588 | __isl_take isl_union_map *executed) |
5589 | { |
5590 | isl_space *space; |
5591 | isl_set *guard, *hoisted; |
5592 | isl_basic_set *enforced; |
5593 | isl_ast_build *sub_build; |
5594 | isl_ast_graft *graft; |
5595 | isl_ast_graft_list *list; |
5596 | isl_size n1, n2, n; |
5597 | |
5598 | space = isl_ast_build_get_space(build, internal: 1); |
5599 | guard = isl_schedule_node_guard_get_guard(node); |
5600 | n1 = isl_space_dim(space, type: isl_dim_param); |
5601 | guard = isl_set_align_params(set: guard, model: space); |
5602 | n2 = isl_set_dim(set: guard, type: isl_dim_param); |
5603 | if (n1 < 0 || n2 < 0) |
5604 | guard = isl_set_free(set: guard); |
5605 | else if (n2 > n1) |
5606 | isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, |
5607 | "guard node is not allowed to introduce " |
5608 | "new parameters" , guard = isl_set_free(guard)); |
5609 | guard = isl_set_preimage_multi_aff(set: guard, |
5610 | ma: isl_multi_aff_copy(multi: build->internal2input)); |
5611 | guard = isl_ast_build_specialize(build, set: guard); |
5612 | guard = isl_set_gist(set: guard, context: isl_set_copy(set: build->generated)); |
5613 | |
5614 | sub_build = isl_ast_build_copy(build); |
5615 | sub_build = isl_ast_build_restrict_generated(build: sub_build, |
5616 | set: isl_set_copy(set: guard)); |
5617 | |
5618 | list = build_ast_from_child(build: isl_ast_build_copy(build: sub_build), |
5619 | node, executed); |
5620 | |
5621 | hoisted = isl_ast_graft_list_extract_hoistable_guard(list, build: sub_build); |
5622 | n = isl_set_n_basic_set(set: hoisted); |
5623 | if (n < 0) |
5624 | list = isl_ast_graft_list_free(list); |
5625 | if (n > 1) |
5626 | list = isl_ast_graft_list_gist_guards(list, |
5627 | context: isl_set_copy(set: hoisted)); |
5628 | guard = isl_set_intersect(set1: guard, set2: hoisted); |
5629 | enforced = extract_shared_enforced(list, build); |
5630 | graft = isl_ast_graft_alloc_from_children(list, guard, enforced, |
5631 | build, sub_build); |
5632 | |
5633 | isl_ast_build_free(build: sub_build); |
5634 | isl_ast_build_free(build); |
5635 | return isl_ast_graft_list_from_ast_graft(el: graft); |
5636 | } |
5637 | |
5638 | /* Call the before_each_mark callback, if requested by the user. |
5639 | * |
5640 | * Return 0 on success and -1 on error. |
5641 | * |
5642 | * The caller is responsible for recording the current inverse schedule |
5643 | * in "build". |
5644 | */ |
5645 | static isl_stat before_each_mark(__isl_keep isl_id *mark, |
5646 | __isl_keep isl_ast_build *build) |
5647 | { |
5648 | if (!build) |
5649 | return isl_stat_error; |
5650 | if (!build->before_each_mark) |
5651 | return isl_stat_ok; |
5652 | return build->before_each_mark(mark, build, |
5653 | build->before_each_mark_user); |
5654 | } |
5655 | |
5656 | /* Call the after_each_mark callback, if requested by the user. |
5657 | * |
5658 | * The caller is responsible for recording the current inverse schedule |
5659 | * in "build". |
5660 | */ |
5661 | static __isl_give isl_ast_graft *after_each_mark( |
5662 | __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build) |
5663 | { |
5664 | if (!graft || !build) |
5665 | return isl_ast_graft_free(graft); |
5666 | if (!build->after_each_mark) |
5667 | return graft; |
5668 | graft->node = build->after_each_mark(graft->node, build, |
5669 | build->after_each_mark_user); |
5670 | if (!graft->node) |
5671 | return isl_ast_graft_free(graft); |
5672 | return graft; |
5673 | } |
5674 | |
5675 | |
5676 | /* Generate an AST that visits the elements in the domain of "executed" |
5677 | * in the relative order specified by the mark node "node" and |
5678 | * its descendants. |
5679 | * |
5680 | * The relation "executed" maps the outer generated loop iterators |
5681 | * to the domain elements executed by those iterations. |
5682 | |
5683 | * Since we may be calling before_each_mark and after_each_mark |
5684 | * callbacks, we record the current inverse schedule in the build. |
5685 | * |
5686 | * We generate an AST for the child of the mark node, combine |
5687 | * the graft list into a single graft and then insert the mark |
5688 | * in the AST of that single graft. |
5689 | */ |
5690 | static __isl_give isl_ast_graft_list *build_ast_from_mark( |
5691 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5692 | __isl_take isl_union_map *executed) |
5693 | { |
5694 | isl_id *mark; |
5695 | isl_ast_graft *graft; |
5696 | isl_ast_graft_list *list; |
5697 | isl_size n; |
5698 | |
5699 | build = isl_ast_build_set_executed(build, executed: isl_union_map_copy(umap: executed)); |
5700 | |
5701 | mark = isl_schedule_node_mark_get_id(node); |
5702 | if (before_each_mark(mark, build) < 0) |
5703 | node = isl_schedule_node_free(node); |
5704 | |
5705 | list = build_ast_from_child(build: isl_ast_build_copy(build), node, executed); |
5706 | list = isl_ast_graft_list_fuse(children: list, build); |
5707 | n = isl_ast_graft_list_n_ast_graft(list); |
5708 | if (n < 0) |
5709 | list = isl_ast_graft_list_free(list); |
5710 | if (n == 0) { |
5711 | isl_id_free(id: mark); |
5712 | } else { |
5713 | graft = isl_ast_graft_list_get_ast_graft(list, index: 0); |
5714 | graft = isl_ast_graft_insert_mark(graft, mark); |
5715 | graft = after_each_mark(graft, build); |
5716 | list = isl_ast_graft_list_set_ast_graft(list, index: 0, el: graft); |
5717 | } |
5718 | isl_ast_build_free(build); |
5719 | |
5720 | return list; |
5721 | } |
5722 | |
5723 | static __isl_give isl_ast_graft_list *build_ast_from_schedule_node( |
5724 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5725 | __isl_take isl_union_map *executed); |
5726 | |
5727 | /* Generate an AST that visits the elements in the domain of "executed" |
5728 | * in the relative order specified by the sequence (or set) node "node" and |
5729 | * its descendants. |
5730 | * |
5731 | * The relation "executed" maps the outer generated loop iterators |
5732 | * to the domain elements executed by those iterations. |
5733 | * |
5734 | * We simply generate an AST for each of the children and concatenate |
5735 | * the results. |
5736 | */ |
5737 | static __isl_give isl_ast_graft_list *build_ast_from_sequence( |
5738 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5739 | __isl_take isl_union_map *executed) |
5740 | { |
5741 | int i; |
5742 | isl_size n; |
5743 | isl_ctx *ctx; |
5744 | isl_ast_graft_list *list; |
5745 | |
5746 | ctx = isl_ast_build_get_ctx(build); |
5747 | list = isl_ast_graft_list_alloc(ctx, n: 0); |
5748 | |
5749 | n = isl_schedule_node_n_children(node); |
5750 | if (n < 0) |
5751 | list = isl_ast_graft_list_free(list); |
5752 | for (i = 0; i < n; ++i) { |
5753 | isl_schedule_node *child; |
5754 | isl_ast_graft_list *list_i; |
5755 | |
5756 | child = isl_schedule_node_get_child(node, pos: i); |
5757 | list_i = build_ast_from_schedule_node(build: isl_ast_build_copy(build), |
5758 | node: child, executed: isl_union_map_copy(umap: executed)); |
5759 | list = isl_ast_graft_list_concat(list1: list, list2: list_i); |
5760 | } |
5761 | isl_ast_build_free(build); |
5762 | isl_schedule_node_free(node); |
5763 | isl_union_map_free(umap: executed); |
5764 | |
5765 | return list; |
5766 | } |
5767 | |
5768 | /* Generate an AST that visits the elements in the domain of "executed" |
5769 | * in the relative order specified by the node "node" and its descendants. |
5770 | * |
5771 | * The relation "executed" maps the outer generated loop iterators |
5772 | * to the domain elements executed by those iterations. |
5773 | * |
5774 | * The node types are handled in separate functions. |
5775 | * Set nodes are currently treated in the same way as sequence nodes. |
5776 | * The children of a set node may be executed in any order, |
5777 | * including the order of the children. |
5778 | */ |
5779 | static __isl_give isl_ast_graft_list *build_ast_from_schedule_node( |
5780 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5781 | __isl_take isl_union_map *executed) |
5782 | { |
5783 | enum isl_schedule_node_type type; |
5784 | |
5785 | type = isl_schedule_node_get_type(node); |
5786 | |
5787 | switch (type) { |
5788 | case isl_schedule_node_error: |
5789 | goto error; |
5790 | case isl_schedule_node_leaf: |
5791 | return build_ast_from_leaf(build, node, executed); |
5792 | case isl_schedule_node_band: |
5793 | return build_ast_from_band(build, node, executed); |
5794 | case isl_schedule_node_context: |
5795 | return build_ast_from_context(build, node, executed); |
5796 | case isl_schedule_node_domain: |
5797 | isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported, |
5798 | "unexpected internal domain node" , goto error); |
5799 | case isl_schedule_node_expansion: |
5800 | return build_ast_from_expansion(build, node, executed); |
5801 | case isl_schedule_node_extension: |
5802 | return build_ast_from_extension(build, node, executed); |
5803 | case isl_schedule_node_filter: |
5804 | return build_ast_from_filter(build, node, executed); |
5805 | case isl_schedule_node_guard: |
5806 | return build_ast_from_guard(build, node, executed); |
5807 | case isl_schedule_node_mark: |
5808 | return build_ast_from_mark(build, node, executed); |
5809 | case isl_schedule_node_sequence: |
5810 | case isl_schedule_node_set: |
5811 | return build_ast_from_sequence(build, node, executed); |
5812 | } |
5813 | |
5814 | isl_die(isl_ast_build_get_ctx(build), isl_error_internal, |
5815 | "unhandled type" , goto error); |
5816 | error: |
5817 | isl_union_map_free(umap: executed); |
5818 | isl_schedule_node_free(node); |
5819 | isl_ast_build_free(build); |
5820 | |
5821 | return NULL; |
5822 | } |
5823 | |
5824 | /* Generate an AST that visits the elements in the domain of "executed" |
5825 | * in the relative order specified by the (single) child of "node" and |
5826 | * its descendants. |
5827 | * |
5828 | * The relation "executed" maps the outer generated loop iterators |
5829 | * to the domain elements executed by those iterations. |
5830 | * |
5831 | * This function is never called on a leaf, set or sequence node, |
5832 | * so the node always has exactly one child. |
5833 | */ |
5834 | static __isl_give isl_ast_graft_list *build_ast_from_child( |
5835 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5836 | __isl_take isl_union_map *executed) |
5837 | { |
5838 | node = isl_schedule_node_child(node, pos: 0); |
5839 | return build_ast_from_schedule_node(build, node, executed); |
5840 | } |
5841 | |
5842 | /* Generate an AST that visits the elements in the domain of the domain |
5843 | * node "node" in the relative order specified by its descendants. |
5844 | * |
5845 | * An initial inverse schedule is created that maps a zero-dimensional |
5846 | * schedule space to the node domain. |
5847 | * The input "build" is assumed to have a parametric domain and |
5848 | * is replaced by the same zero-dimensional schedule space. |
5849 | * |
5850 | * We also add some of the parameter constraints in the build domain |
5851 | * to the executed relation. Adding these constraints |
5852 | * allows for an earlier detection of conflicts in some cases. |
5853 | * However, we do not want to divide the executed relation into |
5854 | * more disjuncts than necessary. We therefore approximate |
5855 | * the constraints on the parameters by a single disjunct set. |
5856 | */ |
5857 | static __isl_give isl_ast_node *build_ast_from_domain( |
5858 | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node) |
5859 | { |
5860 | isl_ctx *ctx; |
5861 | isl_union_set *domain, *schedule_domain; |
5862 | isl_union_map *executed; |
5863 | isl_space *space; |
5864 | isl_set *set; |
5865 | isl_ast_graft_list *list; |
5866 | isl_ast_node *ast; |
5867 | int is_params; |
5868 | |
5869 | if (!build) |
5870 | goto error; |
5871 | |
5872 | ctx = isl_ast_build_get_ctx(build); |
5873 | space = isl_ast_build_get_space(build, internal: 1); |
5874 | is_params = isl_space_is_params(space); |
5875 | isl_space_free(space); |
5876 | if (is_params < 0) |
5877 | goto error; |
5878 | if (!is_params) |
5879 | isl_die(ctx, isl_error_unsupported, |
5880 | "expecting parametric initial context" , goto error); |
5881 | |
5882 | domain = isl_schedule_node_domain_get_domain(node); |
5883 | domain = isl_union_set_coalesce(uset: domain); |
5884 | |
5885 | space = isl_union_set_get_space(uset: domain); |
5886 | space = isl_space_set_from_params(space); |
5887 | build = isl_ast_build_product(build, embedding: space); |
5888 | |
5889 | set = isl_ast_build_get_domain(build); |
5890 | set = isl_set_from_basic_set(bset: isl_set_simple_hull(set)); |
5891 | schedule_domain = isl_union_set_from_set(set); |
5892 | |
5893 | executed = isl_union_map_from_domain_and_range(domain: schedule_domain, range: domain); |
5894 | list = build_ast_from_child(build: isl_ast_build_copy(build), node, executed); |
5895 | ast = isl_ast_node_from_graft_list(list, build); |
5896 | isl_ast_build_free(build); |
5897 | |
5898 | return ast; |
5899 | error: |
5900 | isl_schedule_node_free(node); |
5901 | isl_ast_build_free(build); |
5902 | return NULL; |
5903 | } |
5904 | |
5905 | /* Generate an AST that visits the elements in the domain of "schedule" |
5906 | * in the relative order specified by the schedule tree. |
5907 | * |
5908 | * "build" is an isl_ast_build that has been created using |
5909 | * isl_ast_build_alloc or isl_ast_build_from_context based |
5910 | * on a parametric set. |
5911 | * |
5912 | * The construction starts at the root node of the schedule, |
5913 | * which is assumed to be a domain node. |
5914 | */ |
5915 | __isl_give isl_ast_node *isl_ast_build_node_from_schedule( |
5916 | __isl_keep isl_ast_build *build, __isl_take isl_schedule *schedule) |
5917 | { |
5918 | isl_ctx *ctx; |
5919 | isl_schedule_node *node; |
5920 | |
5921 | if (!build || !schedule) |
5922 | goto error; |
5923 | |
5924 | ctx = isl_ast_build_get_ctx(build); |
5925 | |
5926 | node = isl_schedule_get_root(schedule); |
5927 | if (!node) |
5928 | goto error; |
5929 | isl_schedule_free(sched: schedule); |
5930 | |
5931 | build = isl_ast_build_copy(build); |
5932 | build = isl_ast_build_set_single_valued(build, sv: 0); |
5933 | if (isl_schedule_node_get_type(node) != isl_schedule_node_domain) |
5934 | isl_die(ctx, isl_error_unsupported, |
5935 | "expecting root domain node" , |
5936 | build = isl_ast_build_free(build)); |
5937 | return build_ast_from_domain(build, node); |
5938 | error: |
5939 | isl_schedule_free(sched: schedule); |
5940 | return NULL; |
5941 | } |
5942 | |