| 1 | /* |
| 2 | * Copyright 2006-2007 Universiteit Leiden |
| 3 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
| 4 | * Copyright 2010 INRIA Saclay |
| 5 | * |
| 6 | * Use of this software is governed by the MIT license |
| 7 | * |
| 8 | * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science, |
| 9 | * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands |
| 10 | * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A, |
| 11 | * B-3001 Leuven, Belgium |
| 12 | * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, |
| 13 | * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France |
| 14 | */ |
| 15 | |
| 16 | #include <isl_ctx_private.h> |
| 17 | #include <isl_map_private.h> |
| 18 | #include <isl/set.h> |
| 19 | #include <isl_seq.h> |
| 20 | #include <isl_morph.h> |
| 21 | #include <isl_factorization.h> |
| 22 | #include <isl_vertices_private.h> |
| 23 | #include <isl_polynomial_private.h> |
| 24 | #include <isl_options_private.h> |
| 25 | #include <isl_vec_private.h> |
| 26 | #include <isl_bernstein.h> |
| 27 | |
| 28 | struct bernstein_data { |
| 29 | enum isl_fold type; |
| 30 | isl_qpolynomial *poly; |
| 31 | int check_tight; |
| 32 | |
| 33 | isl_cell *cell; |
| 34 | |
| 35 | isl_qpolynomial_fold *fold; |
| 36 | isl_qpolynomial_fold *fold_tight; |
| 37 | isl_pw_qpolynomial_fold *pwf; |
| 38 | isl_pw_qpolynomial_fold *pwf_tight; |
| 39 | }; |
| 40 | |
| 41 | static isl_bool vertex_is_integral(__isl_keep isl_basic_set *vertex) |
| 42 | { |
| 43 | isl_size nvar; |
| 44 | isl_size nparam; |
| 45 | int i; |
| 46 | |
| 47 | nvar = isl_basic_set_dim(bset: vertex, type: isl_dim_set); |
| 48 | nparam = isl_basic_set_dim(bset: vertex, type: isl_dim_param); |
| 49 | if (nvar < 0 || nparam < 0) |
| 50 | return isl_bool_error; |
| 51 | for (i = 0; i < nvar; ++i) { |
| 52 | int r = nvar - 1 - i; |
| 53 | if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) && |
| 54 | !isl_int_is_negone(vertex->eq[r][1 + nparam + i])) |
| 55 | return isl_bool_false; |
| 56 | } |
| 57 | |
| 58 | return isl_bool_true; |
| 59 | } |
| 60 | |
| 61 | static __isl_give isl_qpolynomial *vertex_coordinate( |
| 62 | __isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *space) |
| 63 | { |
| 64 | isl_size nvar; |
| 65 | isl_size nparam; |
| 66 | isl_size total; |
| 67 | int r; |
| 68 | isl_int denom; |
| 69 | isl_qpolynomial *v; |
| 70 | |
| 71 | isl_int_init(denom); |
| 72 | |
| 73 | nvar = isl_basic_set_dim(bset: vertex, type: isl_dim_set); |
| 74 | nparam = isl_basic_set_dim(bset: vertex, type: isl_dim_param); |
| 75 | total = isl_basic_set_dim(bset: vertex, type: isl_dim_all); |
| 76 | if (nvar < 0 || nparam < 0 || total < 0) |
| 77 | goto error; |
| 78 | r = nvar - 1 - i; |
| 79 | |
| 80 | isl_int_set(denom, vertex->eq[r][1 + nparam + i]); |
| 81 | isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error); |
| 82 | |
| 83 | if (isl_int_is_pos(denom)) |
| 84 | isl_seq_neg(dst: vertex->eq[r], src: vertex->eq[r], len: 1 + total); |
| 85 | else |
| 86 | isl_int_neg(denom, denom); |
| 87 | |
| 88 | v = isl_qpolynomial_from_affine(space, f: vertex->eq[r], denom); |
| 89 | isl_int_clear(denom); |
| 90 | |
| 91 | return v; |
| 92 | error: |
| 93 | isl_space_free(space); |
| 94 | isl_int_clear(denom); |
| 95 | return NULL; |
| 96 | } |
| 97 | |
| 98 | /* Check whether the bound associated to the selection "k" is tight, |
| 99 | * which is the case if we select exactly one vertex (i.e., one of the |
| 100 | * exponents in "k" is exactly "d") and if that vertex |
| 101 | * is integral for all values of the parameters. |
| 102 | * |
| 103 | * If the degree "d" is zero, then there are no exponents. |
| 104 | * Since the polynomial is a constant expression in this case, |
| 105 | * the bound is necessarily tight. |
| 106 | */ |
| 107 | static isl_bool is_tight(int *k, int n, int d, isl_cell *cell) |
| 108 | { |
| 109 | int i; |
| 110 | |
| 111 | if (d == 0) |
| 112 | return isl_bool_true; |
| 113 | |
| 114 | for (i = 0; i < n; ++i) { |
| 115 | int v; |
| 116 | if (!k[i]) |
| 117 | continue; |
| 118 | if (k[i] != d) |
| 119 | return isl_bool_false; |
| 120 | v = cell->ids[n - 1 - i]; |
| 121 | return vertex_is_integral(vertex: cell->vertices->v[v].vertex); |
| 122 | } |
| 123 | |
| 124 | return isl_bool_false; |
| 125 | } |
| 126 | |
| 127 | static isl_stat add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom, |
| 128 | int *k, int n, int d, struct bernstein_data *data) |
| 129 | { |
| 130 | isl_qpolynomial_fold *fold; |
| 131 | isl_bool tight; |
| 132 | |
| 133 | fold = isl_qpolynomial_fold_alloc(type: data->type, qp: b); |
| 134 | |
| 135 | tight = isl_bool_false; |
| 136 | if (data->check_tight) |
| 137 | tight = is_tight(k, n, d, cell: data->cell); |
| 138 | if (tight < 0) |
| 139 | return isl_stat_error; |
| 140 | if (tight) |
| 141 | data->fold_tight = isl_qpolynomial_fold_fold_on_domain(set: dom, |
| 142 | fold1: data->fold_tight, fold2: fold); |
| 143 | else |
| 144 | data->fold = isl_qpolynomial_fold_fold_on_domain(set: dom, |
| 145 | fold1: data->fold, fold2: fold); |
| 146 | return isl_stat_ok; |
| 147 | } |
| 148 | |
| 149 | /* Extract the coefficients of the Bernstein base polynomials and store |
| 150 | * them in data->fold and data->fold_tight. |
| 151 | * |
| 152 | * In particular, the coefficient of each monomial |
| 153 | * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding |
| 154 | * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]! |
| 155 | * |
| 156 | * c[i] contains the coefficient of the selected powers of the first i+1 vars. |
| 157 | * multinom[i] contains the partial multinomial coefficient. |
| 158 | */ |
| 159 | static isl_stat (isl_qpolynomial *poly, |
| 160 | __isl_keep isl_set *dom, struct bernstein_data *data) |
| 161 | { |
| 162 | int i; |
| 163 | int d; |
| 164 | isl_size n; |
| 165 | isl_ctx *ctx; |
| 166 | isl_qpolynomial **c = NULL; |
| 167 | int *k = NULL; |
| 168 | int *left = NULL; |
| 169 | isl_vec *multinom = NULL; |
| 170 | |
| 171 | n = isl_qpolynomial_dim(qp: poly, type: isl_dim_in); |
| 172 | if (n < 0) |
| 173 | return isl_stat_error; |
| 174 | |
| 175 | ctx = isl_qpolynomial_get_ctx(qp: poly); |
| 176 | d = isl_qpolynomial_degree(poly); |
| 177 | isl_assert(ctx, n >= 2, return isl_stat_error); |
| 178 | |
| 179 | c = isl_calloc_array(ctx, isl_qpolynomial *, n); |
| 180 | k = isl_alloc_array(ctx, int, n); |
| 181 | left = isl_alloc_array(ctx, int, n); |
| 182 | multinom = isl_vec_alloc(ctx, size: n); |
| 183 | if (!c || !k || !left || !multinom) |
| 184 | goto error; |
| 185 | |
| 186 | isl_int_set_si(multinom->el[0], 1); |
| 187 | for (k[0] = d; k[0] >= 0; --k[0]) { |
| 188 | int i = 1; |
| 189 | isl_qpolynomial_free(qp: c[0]); |
| 190 | c[0] = isl_qpolynomial_coeff(poly, type: isl_dim_in, pos: n - 1, deg: k[0]); |
| 191 | left[0] = d - k[0]; |
| 192 | k[1] = -1; |
| 193 | isl_int_set(multinom->el[1], multinom->el[0]); |
| 194 | while (i > 0) { |
| 195 | if (i == n - 1) { |
| 196 | int j; |
| 197 | isl_space *space; |
| 198 | isl_qpolynomial *b; |
| 199 | isl_qpolynomial *f; |
| 200 | for (j = 2; j <= left[i - 1]; ++j) |
| 201 | isl_int_divexact_ui(multinom->el[i], |
| 202 | multinom->el[i], j); |
| 203 | b = isl_qpolynomial_coeff(poly: c[i - 1], type: isl_dim_in, |
| 204 | pos: n - 1 - i, deg: left[i - 1]); |
| 205 | b = isl_qpolynomial_project_domain_on_params(qp: b); |
| 206 | space = isl_qpolynomial_get_domain_space(qp: b); |
| 207 | f = isl_qpolynomial_rat_cst_on_domain(domain: space, |
| 208 | n: ctx->one, d: multinom->el[i]); |
| 209 | b = isl_qpolynomial_mul(qp1: b, qp2: f); |
| 210 | k[n - 1] = left[n - 2]; |
| 211 | if (add_fold(b, dom, k, n, d, data) < 0) |
| 212 | goto error; |
| 213 | --i; |
| 214 | continue; |
| 215 | } |
| 216 | if (k[i] >= left[i - 1]) { |
| 217 | --i; |
| 218 | continue; |
| 219 | } |
| 220 | ++k[i]; |
| 221 | if (k[i]) |
| 222 | isl_int_divexact_ui(multinom->el[i], |
| 223 | multinom->el[i], k[i]); |
| 224 | isl_qpolynomial_free(qp: c[i]); |
| 225 | c[i] = isl_qpolynomial_coeff(poly: c[i - 1], type: isl_dim_in, |
| 226 | pos: n - 1 - i, deg: k[i]); |
| 227 | left[i] = left[i - 1] - k[i]; |
| 228 | k[i + 1] = -1; |
| 229 | isl_int_set(multinom->el[i + 1], multinom->el[i]); |
| 230 | ++i; |
| 231 | } |
| 232 | isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]); |
| 233 | } |
| 234 | |
| 235 | for (i = 0; i < n; ++i) |
| 236 | isl_qpolynomial_free(qp: c[i]); |
| 237 | |
| 238 | isl_vec_free(vec: multinom); |
| 239 | free(ptr: left); |
| 240 | free(ptr: k); |
| 241 | free(ptr: c); |
| 242 | return isl_stat_ok; |
| 243 | error: |
| 244 | isl_vec_free(vec: multinom); |
| 245 | free(ptr: left); |
| 246 | free(ptr: k); |
| 247 | if (c) |
| 248 | for (i = 0; i < n; ++i) |
| 249 | isl_qpolynomial_free(qp: c[i]); |
| 250 | free(ptr: c); |
| 251 | return isl_stat_error; |
| 252 | } |
| 253 | |
| 254 | /* Perform bernstein expansion on the parametric vertices that are active |
| 255 | * on "cell". |
| 256 | * |
| 257 | * data->poly has been homogenized in the calling function. |
| 258 | * |
| 259 | * We plug in the barycentric coordinates for the set variables |
| 260 | * |
| 261 | * \vec x = \sum_i \alpha_i v_i(\vec p) |
| 262 | * |
| 263 | * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension. |
| 264 | * Next, we extract the coefficients of the Bernstein base polynomials. |
| 265 | */ |
| 266 | static isl_stat bernstein_coefficients_cell(__isl_take isl_cell *cell, |
| 267 | void *user) |
| 268 | { |
| 269 | int i, j; |
| 270 | struct bernstein_data *data = (struct bernstein_data *)user; |
| 271 | isl_space *space_param; |
| 272 | isl_space *space_dst; |
| 273 | isl_qpolynomial *poly = data->poly; |
| 274 | isl_size n_in; |
| 275 | unsigned nvar; |
| 276 | int n_vertices; |
| 277 | isl_qpolynomial **subs; |
| 278 | isl_pw_qpolynomial_fold *pwf; |
| 279 | isl_set *dom; |
| 280 | isl_ctx *ctx; |
| 281 | |
| 282 | n_in = isl_qpolynomial_dim(qp: poly, type: isl_dim_in); |
| 283 | if (n_in < 0) |
| 284 | goto error; |
| 285 | |
| 286 | nvar = n_in - 1; |
| 287 | n_vertices = cell->n_vertices; |
| 288 | |
| 289 | ctx = isl_qpolynomial_get_ctx(qp: poly); |
| 290 | if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate) |
| 291 | return isl_cell_foreach_simplex(cell, |
| 292 | fn: &bernstein_coefficients_cell, user); |
| 293 | |
| 294 | subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar); |
| 295 | if (!subs) |
| 296 | goto error; |
| 297 | |
| 298 | space_param = isl_basic_set_get_space(bset: cell->dom); |
| 299 | space_dst = isl_qpolynomial_get_domain_space(qp: poly); |
| 300 | space_dst = isl_space_add_dims(space: space_dst, type: isl_dim_set, n: n_vertices); |
| 301 | |
| 302 | for (i = 0; i < 1 + nvar; ++i) |
| 303 | subs[i] = |
| 304 | isl_qpolynomial_zero_on_domain(domain: isl_space_copy(space: space_dst)); |
| 305 | |
| 306 | for (i = 0; i < n_vertices; ++i) { |
| 307 | isl_qpolynomial *c; |
| 308 | c = isl_qpolynomial_var_on_domain(domain: isl_space_copy(space: space_dst), |
| 309 | type: isl_dim_set, pos: 1 + nvar + i); |
| 310 | for (j = 0; j < nvar; ++j) { |
| 311 | int k = cell->ids[i]; |
| 312 | isl_qpolynomial *v; |
| 313 | v = vertex_coordinate(vertex: cell->vertices->v[k].vertex, i: j, |
| 314 | space: isl_space_copy(space: space_param)); |
| 315 | v = isl_qpolynomial_add_dims(qp: v, type: isl_dim_in, |
| 316 | n: 1 + nvar + n_vertices); |
| 317 | v = isl_qpolynomial_mul(qp1: v, qp2: isl_qpolynomial_copy(qp: c)); |
| 318 | subs[1 + j] = isl_qpolynomial_add(qp1: subs[1 + j], qp2: v); |
| 319 | } |
| 320 | subs[0] = isl_qpolynomial_add(qp1: subs[0], qp2: c); |
| 321 | } |
| 322 | isl_space_free(space: space_dst); |
| 323 | |
| 324 | poly = isl_qpolynomial_copy(qp: poly); |
| 325 | |
| 326 | poly = isl_qpolynomial_add_dims(qp: poly, type: isl_dim_in, n: n_vertices); |
| 327 | poly = isl_qpolynomial_substitute(qp: poly, type: isl_dim_in, first: 0, n: 1 + nvar, subs); |
| 328 | poly = isl_qpolynomial_drop_dims(qp: poly, type: isl_dim_in, first: 0, n: 1 + nvar); |
| 329 | |
| 330 | data->cell = cell; |
| 331 | dom = isl_set_from_basic_set(bset: isl_basic_set_copy(bset: cell->dom)); |
| 332 | data->fold = isl_qpolynomial_fold_empty(type: data->type, |
| 333 | space: isl_space_copy(space: space_param)); |
| 334 | data->fold_tight = isl_qpolynomial_fold_empty(type: data->type, space: space_param); |
| 335 | if (extract_coefficients(poly, dom, data) < 0) { |
| 336 | data->fold = isl_qpolynomial_fold_free(fold: data->fold); |
| 337 | data->fold_tight = isl_qpolynomial_fold_free(fold: data->fold_tight); |
| 338 | } |
| 339 | |
| 340 | pwf = isl_pw_qpolynomial_fold_alloc(type: data->type, set: isl_set_copy(set: dom), |
| 341 | fold: data->fold); |
| 342 | data->pwf = isl_pw_qpolynomial_fold_fold(pwf1: data->pwf, pwf2: pwf); |
| 343 | pwf = isl_pw_qpolynomial_fold_alloc(type: data->type, set: dom, fold: data->fold_tight); |
| 344 | data->pwf_tight = isl_pw_qpolynomial_fold_fold(pwf1: data->pwf_tight, pwf2: pwf); |
| 345 | |
| 346 | isl_qpolynomial_free(qp: poly); |
| 347 | isl_cell_free(cell); |
| 348 | for (i = 0; i < 1 + nvar; ++i) |
| 349 | isl_qpolynomial_free(qp: subs[i]); |
| 350 | free(ptr: subs); |
| 351 | return isl_stat_ok; |
| 352 | error: |
| 353 | isl_cell_free(cell); |
| 354 | return isl_stat_error; |
| 355 | } |
| 356 | |
| 357 | /* Base case of applying bernstein expansion. |
| 358 | * |
| 359 | * We compute the chamber decomposition of the parametric polytope "bset" |
| 360 | * and then perform bernstein expansion on the parametric vertices |
| 361 | * that are active on each chamber. |
| 362 | * |
| 363 | * If the polynomial does not depend on the set variables |
| 364 | * (and in particular if the number of set variables is zero) |
| 365 | * then the bound is equal to the polynomial and |
| 366 | * no actual bernstein expansion needs to be performed. |
| 367 | */ |
| 368 | static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base( |
| 369 | __isl_take isl_basic_set *bset, |
| 370 | __isl_take isl_qpolynomial *poly, struct bernstein_data *data, |
| 371 | isl_bool *tight) |
| 372 | { |
| 373 | int degree; |
| 374 | isl_size nvar; |
| 375 | isl_space *space; |
| 376 | isl_vertices *vertices; |
| 377 | isl_bool covers; |
| 378 | |
| 379 | nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
| 380 | if (nvar < 0) |
| 381 | bset = isl_basic_set_free(bset); |
| 382 | if (nvar == 0) |
| 383 | return isl_qpolynomial_cst_bound(bset, poly, type: data->type, tight); |
| 384 | |
| 385 | degree = isl_qpolynomial_degree(poly); |
| 386 | if (degree < -1) |
| 387 | bset = isl_basic_set_free(bset); |
| 388 | if (degree <= 0) |
| 389 | return isl_qpolynomial_cst_bound(bset, poly, type: data->type, tight); |
| 390 | |
| 391 | space = isl_basic_set_get_space(bset); |
| 392 | space = isl_space_params(space); |
| 393 | space = isl_space_from_domain(space); |
| 394 | space = isl_space_add_dims(space, type: isl_dim_set, n: 1); |
| 395 | data->pwf = isl_pw_qpolynomial_fold_zero(space: isl_space_copy(space), |
| 396 | type: data->type); |
| 397 | data->pwf_tight = isl_pw_qpolynomial_fold_zero(space, type: data->type); |
| 398 | data->poly = isl_qpolynomial_homogenize(poly: isl_qpolynomial_copy(qp: poly)); |
| 399 | vertices = isl_basic_set_compute_vertices(bset); |
| 400 | if (isl_vertices_foreach_disjoint_cell(vertices, |
| 401 | fn: &bernstein_coefficients_cell, user: data) < 0) |
| 402 | data->pwf = isl_pw_qpolynomial_fold_free(pwf: data->pwf); |
| 403 | isl_vertices_free(vertices); |
| 404 | isl_qpolynomial_free(qp: data->poly); |
| 405 | |
| 406 | isl_basic_set_free(bset); |
| 407 | isl_qpolynomial_free(qp: poly); |
| 408 | |
| 409 | covers = isl_pw_qpolynomial_fold_covers(pwf1: data->pwf_tight, pwf2: data->pwf); |
| 410 | if (covers < 0) |
| 411 | goto error; |
| 412 | |
| 413 | if (tight) |
| 414 | *tight = covers; |
| 415 | |
| 416 | if (covers) { |
| 417 | isl_pw_qpolynomial_fold_free(pwf: data->pwf); |
| 418 | return data->pwf_tight; |
| 419 | } |
| 420 | |
| 421 | data->pwf = isl_pw_qpolynomial_fold_fold(pwf1: data->pwf, pwf2: data->pwf_tight); |
| 422 | |
| 423 | return data->pwf; |
| 424 | error: |
| 425 | isl_pw_qpolynomial_fold_free(pwf: data->pwf_tight); |
| 426 | isl_pw_qpolynomial_fold_free(pwf: data->pwf); |
| 427 | return NULL; |
| 428 | } |
| 429 | |
| 430 | /* Apply bernstein expansion recursively by working in on len[i] |
| 431 | * set variables at a time, with i ranging from n_group - 1 to 0. |
| 432 | */ |
| 433 | static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive( |
| 434 | __isl_take isl_pw_qpolynomial *pwqp, |
| 435 | int n_group, int *len, struct bernstein_data *data, isl_bool *tight) |
| 436 | { |
| 437 | int i; |
| 438 | isl_size nparam; |
| 439 | isl_size nvar; |
| 440 | isl_pw_qpolynomial_fold *pwf; |
| 441 | |
| 442 | nparam = isl_pw_qpolynomial_dim(pwqp, type: isl_dim_param); |
| 443 | nvar = isl_pw_qpolynomial_dim(pwqp, type: isl_dim_in); |
| 444 | if (nparam < 0 || nvar < 0) |
| 445 | goto error; |
| 446 | |
| 447 | pwqp = isl_pw_qpolynomial_move_dims(pwqp, dst_type: isl_dim_param, dst_pos: nparam, |
| 448 | src_type: isl_dim_in, src_pos: 0, n: nvar - len[n_group - 1]); |
| 449 | pwf = isl_pw_qpolynomial_bound(pwqp, type: data->type, tight); |
| 450 | |
| 451 | for (i = n_group - 2; i >= 0; --i) { |
| 452 | nparam = isl_pw_qpolynomial_fold_dim(pwf, type: isl_dim_param); |
| 453 | if (nparam < 0) |
| 454 | return isl_pw_qpolynomial_fold_free(pwf); |
| 455 | pwf = isl_pw_qpolynomial_fold_move_dims(pwf, dst_type: isl_dim_in, dst_pos: 0, |
| 456 | src_type: isl_dim_param, src_pos: nparam - len[i], n: len[i]); |
| 457 | if (tight && !*tight) |
| 458 | tight = NULL; |
| 459 | pwf = isl_pw_qpolynomial_fold_bound(pwf, tight); |
| 460 | } |
| 461 | |
| 462 | return pwf; |
| 463 | error: |
| 464 | isl_pw_qpolynomial_free(pwqp); |
| 465 | return NULL; |
| 466 | } |
| 467 | |
| 468 | static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors( |
| 469 | __isl_take isl_basic_set *bset, |
| 470 | __isl_take isl_qpolynomial *poly, struct bernstein_data *data, |
| 471 | isl_bool *tight) |
| 472 | { |
| 473 | isl_factorizer *f; |
| 474 | isl_set *set; |
| 475 | isl_pw_qpolynomial *pwqp; |
| 476 | isl_pw_qpolynomial_fold *pwf; |
| 477 | |
| 478 | f = isl_basic_set_factorizer(bset); |
| 479 | if (!f) |
| 480 | goto error; |
| 481 | if (f->n_group == 0) { |
| 482 | isl_factorizer_free(f); |
| 483 | return bernstein_coefficients_base(bset, poly, data, tight); |
| 484 | } |
| 485 | |
| 486 | set = isl_set_from_basic_set(bset); |
| 487 | pwqp = isl_pw_qpolynomial_alloc(set, qp: poly); |
| 488 | pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph: isl_morph_copy(morph: f->morph)); |
| 489 | |
| 490 | pwf = bernstein_coefficients_recursive(pwqp, n_group: f->n_group, len: f->len, data, |
| 491 | tight); |
| 492 | |
| 493 | isl_factorizer_free(f); |
| 494 | |
| 495 | return pwf; |
| 496 | error: |
| 497 | isl_basic_set_free(bset); |
| 498 | isl_qpolynomial_free(qp: poly); |
| 499 | return NULL; |
| 500 | } |
| 501 | |
| 502 | static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive( |
| 503 | __isl_take isl_basic_set *bset, |
| 504 | __isl_take isl_qpolynomial *poly, struct bernstein_data *data, |
| 505 | isl_bool *tight) |
| 506 | { |
| 507 | int i; |
| 508 | int *len; |
| 509 | isl_size nvar; |
| 510 | isl_pw_qpolynomial_fold *pwf; |
| 511 | isl_set *set; |
| 512 | isl_pw_qpolynomial *pwqp; |
| 513 | |
| 514 | nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
| 515 | if (nvar < 0 || !poly) |
| 516 | goto error; |
| 517 | |
| 518 | len = isl_alloc_array(bset->ctx, int, nvar); |
| 519 | if (nvar && !len) |
| 520 | goto error; |
| 521 | |
| 522 | for (i = 0; i < nvar; ++i) |
| 523 | len[i] = 1; |
| 524 | |
| 525 | set = isl_set_from_basic_set(bset); |
| 526 | pwqp = isl_pw_qpolynomial_alloc(set, qp: poly); |
| 527 | |
| 528 | pwf = bernstein_coefficients_recursive(pwqp, n_group: nvar, len, data, tight); |
| 529 | |
| 530 | free(ptr: len); |
| 531 | |
| 532 | return pwf; |
| 533 | error: |
| 534 | isl_basic_set_free(bset); |
| 535 | isl_qpolynomial_free(qp: poly); |
| 536 | return NULL; |
| 537 | } |
| 538 | |
| 539 | /* Compute a bound on the polynomial defined over the parametric polytope |
| 540 | * using bernstein expansion and store the result |
| 541 | * in bound->pwf and bound->pwf_tight. |
| 542 | * |
| 543 | * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if |
| 544 | * the polytope can be factorized and apply bernstein expansion recursively |
| 545 | * on the factors. |
| 546 | * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply |
| 547 | * bernstein expansion recursively on each dimension. |
| 548 | * Otherwise, we apply bernstein expansion on the entire polytope. |
| 549 | */ |
| 550 | isl_stat isl_qpolynomial_bound_on_domain_bernstein( |
| 551 | __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, |
| 552 | struct isl_bound *bound) |
| 553 | { |
| 554 | struct bernstein_data data; |
| 555 | isl_pw_qpolynomial_fold *pwf; |
| 556 | isl_size nvar; |
| 557 | isl_bool tight = isl_bool_false; |
| 558 | isl_bool *tp = bound->check_tight ? &tight : NULL; |
| 559 | |
| 560 | nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
| 561 | if (nvar < 0 || !poly) |
| 562 | goto error; |
| 563 | |
| 564 | data.type = bound->type; |
| 565 | data.check_tight = bound->check_tight; |
| 566 | |
| 567 | if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS) |
| 568 | pwf = bernstein_coefficients_factors(bset, poly, data: &data, tight: tp); |
| 569 | else if (nvar > 1 && |
| 570 | (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS)) |
| 571 | pwf = bernstein_coefficients_full_recursive(bset, poly, data: &data, tight: tp); |
| 572 | else |
| 573 | pwf = bernstein_coefficients_base(bset, poly, data: &data, tight: tp); |
| 574 | |
| 575 | if (tight) |
| 576 | return isl_bound_add_tight(bound, pwf); |
| 577 | else |
| 578 | return isl_bound_add(bound, pwf); |
| 579 | error: |
| 580 | isl_basic_set_free(bset); |
| 581 | isl_qpolynomial_free(qp: poly); |
| 582 | return isl_stat_error; |
| 583 | } |
| 584 | |