1 | /* |
2 | * Copyright 2006-2007 Universiteit Leiden |
3 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
4 | * Copyright 2010 INRIA Saclay |
5 | * |
6 | * Use of this software is governed by the MIT license |
7 | * |
8 | * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science, |
9 | * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands |
10 | * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A, |
11 | * B-3001 Leuven, Belgium |
12 | * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, |
13 | * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France |
14 | */ |
15 | |
16 | #include <isl_ctx_private.h> |
17 | #include <isl_map_private.h> |
18 | #include <isl/set.h> |
19 | #include <isl_seq.h> |
20 | #include <isl_morph.h> |
21 | #include <isl_factorization.h> |
22 | #include <isl_vertices_private.h> |
23 | #include <isl_polynomial_private.h> |
24 | #include <isl_options_private.h> |
25 | #include <isl_vec_private.h> |
26 | #include <isl_bernstein.h> |
27 | |
28 | struct bernstein_data { |
29 | enum isl_fold type; |
30 | isl_qpolynomial *poly; |
31 | int check_tight; |
32 | |
33 | isl_cell *cell; |
34 | |
35 | isl_qpolynomial_fold *fold; |
36 | isl_qpolynomial_fold *fold_tight; |
37 | isl_pw_qpolynomial_fold *pwf; |
38 | isl_pw_qpolynomial_fold *pwf_tight; |
39 | }; |
40 | |
41 | static isl_bool vertex_is_integral(__isl_keep isl_basic_set *vertex) |
42 | { |
43 | isl_size nvar; |
44 | isl_size nparam; |
45 | int i; |
46 | |
47 | nvar = isl_basic_set_dim(bset: vertex, type: isl_dim_set); |
48 | nparam = isl_basic_set_dim(bset: vertex, type: isl_dim_param); |
49 | if (nvar < 0 || nparam < 0) |
50 | return isl_bool_error; |
51 | for (i = 0; i < nvar; ++i) { |
52 | int r = nvar - 1 - i; |
53 | if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) && |
54 | !isl_int_is_negone(vertex->eq[r][1 + nparam + i])) |
55 | return isl_bool_false; |
56 | } |
57 | |
58 | return isl_bool_true; |
59 | } |
60 | |
61 | static __isl_give isl_qpolynomial *vertex_coordinate( |
62 | __isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *space) |
63 | { |
64 | isl_size nvar; |
65 | isl_size nparam; |
66 | isl_size total; |
67 | int r; |
68 | isl_int denom; |
69 | isl_qpolynomial *v; |
70 | |
71 | isl_int_init(denom); |
72 | |
73 | nvar = isl_basic_set_dim(bset: vertex, type: isl_dim_set); |
74 | nparam = isl_basic_set_dim(bset: vertex, type: isl_dim_param); |
75 | total = isl_basic_set_dim(bset: vertex, type: isl_dim_all); |
76 | if (nvar < 0 || nparam < 0 || total < 0) |
77 | goto error; |
78 | r = nvar - 1 - i; |
79 | |
80 | isl_int_set(denom, vertex->eq[r][1 + nparam + i]); |
81 | isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error); |
82 | |
83 | if (isl_int_is_pos(denom)) |
84 | isl_seq_neg(dst: vertex->eq[r], src: vertex->eq[r], len: 1 + total); |
85 | else |
86 | isl_int_neg(denom, denom); |
87 | |
88 | v = isl_qpolynomial_from_affine(space, f: vertex->eq[r], denom); |
89 | isl_int_clear(denom); |
90 | |
91 | return v; |
92 | error: |
93 | isl_space_free(space); |
94 | isl_int_clear(denom); |
95 | return NULL; |
96 | } |
97 | |
98 | /* Check whether the bound associated to the selection "k" is tight, |
99 | * which is the case if we select exactly one vertex (i.e., one of the |
100 | * exponents in "k" is exactly "d") and if that vertex |
101 | * is integral for all values of the parameters. |
102 | * |
103 | * If the degree "d" is zero, then there are no exponents. |
104 | * Since the polynomial is a constant expression in this case, |
105 | * the bound is necessarily tight. |
106 | */ |
107 | static isl_bool is_tight(int *k, int n, int d, isl_cell *cell) |
108 | { |
109 | int i; |
110 | |
111 | if (d == 0) |
112 | return isl_bool_true; |
113 | |
114 | for (i = 0; i < n; ++i) { |
115 | int v; |
116 | if (!k[i]) |
117 | continue; |
118 | if (k[i] != d) |
119 | return isl_bool_false; |
120 | v = cell->ids[n - 1 - i]; |
121 | return vertex_is_integral(vertex: cell->vertices->v[v].vertex); |
122 | } |
123 | |
124 | return isl_bool_false; |
125 | } |
126 | |
127 | static isl_stat add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom, |
128 | int *k, int n, int d, struct bernstein_data *data) |
129 | { |
130 | isl_qpolynomial_fold *fold; |
131 | isl_bool tight; |
132 | |
133 | fold = isl_qpolynomial_fold_alloc(type: data->type, qp: b); |
134 | |
135 | tight = isl_bool_false; |
136 | if (data->check_tight) |
137 | tight = is_tight(k, n, d, cell: data->cell); |
138 | if (tight < 0) |
139 | return isl_stat_error; |
140 | if (tight) |
141 | data->fold_tight = isl_qpolynomial_fold_fold_on_domain(set: dom, |
142 | fold1: data->fold_tight, fold2: fold); |
143 | else |
144 | data->fold = isl_qpolynomial_fold_fold_on_domain(set: dom, |
145 | fold1: data->fold, fold2: fold); |
146 | return isl_stat_ok; |
147 | } |
148 | |
149 | /* Extract the coefficients of the Bernstein base polynomials and store |
150 | * them in data->fold and data->fold_tight. |
151 | * |
152 | * In particular, the coefficient of each monomial |
153 | * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding |
154 | * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]! |
155 | * |
156 | * c[i] contains the coefficient of the selected powers of the first i+1 vars. |
157 | * multinom[i] contains the partial multinomial coefficient. |
158 | */ |
159 | static isl_stat (isl_qpolynomial *poly, |
160 | __isl_keep isl_set *dom, struct bernstein_data *data) |
161 | { |
162 | int i; |
163 | int d; |
164 | isl_size n; |
165 | isl_ctx *ctx; |
166 | isl_qpolynomial **c = NULL; |
167 | int *k = NULL; |
168 | int *left = NULL; |
169 | isl_vec *multinom = NULL; |
170 | |
171 | n = isl_qpolynomial_dim(qp: poly, type: isl_dim_in); |
172 | if (n < 0) |
173 | return isl_stat_error; |
174 | |
175 | ctx = isl_qpolynomial_get_ctx(qp: poly); |
176 | d = isl_qpolynomial_degree(poly); |
177 | isl_assert(ctx, n >= 2, return isl_stat_error); |
178 | |
179 | c = isl_calloc_array(ctx, isl_qpolynomial *, n); |
180 | k = isl_alloc_array(ctx, int, n); |
181 | left = isl_alloc_array(ctx, int, n); |
182 | multinom = isl_vec_alloc(ctx, size: n); |
183 | if (!c || !k || !left || !multinom) |
184 | goto error; |
185 | |
186 | isl_int_set_si(multinom->el[0], 1); |
187 | for (k[0] = d; k[0] >= 0; --k[0]) { |
188 | int i = 1; |
189 | isl_qpolynomial_free(qp: c[0]); |
190 | c[0] = isl_qpolynomial_coeff(poly, type: isl_dim_in, pos: n - 1, deg: k[0]); |
191 | left[0] = d - k[0]; |
192 | k[1] = -1; |
193 | isl_int_set(multinom->el[1], multinom->el[0]); |
194 | while (i > 0) { |
195 | if (i == n - 1) { |
196 | int j; |
197 | isl_space *space; |
198 | isl_qpolynomial *b; |
199 | isl_qpolynomial *f; |
200 | for (j = 2; j <= left[i - 1]; ++j) |
201 | isl_int_divexact_ui(multinom->el[i], |
202 | multinom->el[i], j); |
203 | b = isl_qpolynomial_coeff(poly: c[i - 1], type: isl_dim_in, |
204 | pos: n - 1 - i, deg: left[i - 1]); |
205 | b = isl_qpolynomial_project_domain_on_params(qp: b); |
206 | space = isl_qpolynomial_get_domain_space(qp: b); |
207 | f = isl_qpolynomial_rat_cst_on_domain(domain: space, |
208 | n: ctx->one, d: multinom->el[i]); |
209 | b = isl_qpolynomial_mul(qp1: b, qp2: f); |
210 | k[n - 1] = left[n - 2]; |
211 | if (add_fold(b, dom, k, n, d, data) < 0) |
212 | goto error; |
213 | --i; |
214 | continue; |
215 | } |
216 | if (k[i] >= left[i - 1]) { |
217 | --i; |
218 | continue; |
219 | } |
220 | ++k[i]; |
221 | if (k[i]) |
222 | isl_int_divexact_ui(multinom->el[i], |
223 | multinom->el[i], k[i]); |
224 | isl_qpolynomial_free(qp: c[i]); |
225 | c[i] = isl_qpolynomial_coeff(poly: c[i - 1], type: isl_dim_in, |
226 | pos: n - 1 - i, deg: k[i]); |
227 | left[i] = left[i - 1] - k[i]; |
228 | k[i + 1] = -1; |
229 | isl_int_set(multinom->el[i + 1], multinom->el[i]); |
230 | ++i; |
231 | } |
232 | isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]); |
233 | } |
234 | |
235 | for (i = 0; i < n; ++i) |
236 | isl_qpolynomial_free(qp: c[i]); |
237 | |
238 | isl_vec_free(vec: multinom); |
239 | free(ptr: left); |
240 | free(ptr: k); |
241 | free(ptr: c); |
242 | return isl_stat_ok; |
243 | error: |
244 | isl_vec_free(vec: multinom); |
245 | free(ptr: left); |
246 | free(ptr: k); |
247 | if (c) |
248 | for (i = 0; i < n; ++i) |
249 | isl_qpolynomial_free(qp: c[i]); |
250 | free(ptr: c); |
251 | return isl_stat_error; |
252 | } |
253 | |
254 | /* Perform bernstein expansion on the parametric vertices that are active |
255 | * on "cell". |
256 | * |
257 | * data->poly has been homogenized in the calling function. |
258 | * |
259 | * We plug in the barycentric coordinates for the set variables |
260 | * |
261 | * \vec x = \sum_i \alpha_i v_i(\vec p) |
262 | * |
263 | * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension. |
264 | * Next, we extract the coefficients of the Bernstein base polynomials. |
265 | */ |
266 | static isl_stat bernstein_coefficients_cell(__isl_take isl_cell *cell, |
267 | void *user) |
268 | { |
269 | int i, j; |
270 | struct bernstein_data *data = (struct bernstein_data *)user; |
271 | isl_space *space_param; |
272 | isl_space *space_dst; |
273 | isl_qpolynomial *poly = data->poly; |
274 | isl_size n_in; |
275 | unsigned nvar; |
276 | int n_vertices; |
277 | isl_qpolynomial **subs; |
278 | isl_pw_qpolynomial_fold *pwf; |
279 | isl_set *dom; |
280 | isl_ctx *ctx; |
281 | |
282 | n_in = isl_qpolynomial_dim(qp: poly, type: isl_dim_in); |
283 | if (n_in < 0) |
284 | goto error; |
285 | |
286 | nvar = n_in - 1; |
287 | n_vertices = cell->n_vertices; |
288 | |
289 | ctx = isl_qpolynomial_get_ctx(qp: poly); |
290 | if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate) |
291 | return isl_cell_foreach_simplex(cell, |
292 | fn: &bernstein_coefficients_cell, user); |
293 | |
294 | subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar); |
295 | if (!subs) |
296 | goto error; |
297 | |
298 | space_param = isl_basic_set_get_space(bset: cell->dom); |
299 | space_dst = isl_qpolynomial_get_domain_space(qp: poly); |
300 | space_dst = isl_space_add_dims(space: space_dst, type: isl_dim_set, n: n_vertices); |
301 | |
302 | for (i = 0; i < 1 + nvar; ++i) |
303 | subs[i] = |
304 | isl_qpolynomial_zero_on_domain(domain: isl_space_copy(space: space_dst)); |
305 | |
306 | for (i = 0; i < n_vertices; ++i) { |
307 | isl_qpolynomial *c; |
308 | c = isl_qpolynomial_var_on_domain(domain: isl_space_copy(space: space_dst), |
309 | type: isl_dim_set, pos: 1 + nvar + i); |
310 | for (j = 0; j < nvar; ++j) { |
311 | int k = cell->ids[i]; |
312 | isl_qpolynomial *v; |
313 | v = vertex_coordinate(vertex: cell->vertices->v[k].vertex, i: j, |
314 | space: isl_space_copy(space: space_param)); |
315 | v = isl_qpolynomial_add_dims(qp: v, type: isl_dim_in, |
316 | n: 1 + nvar + n_vertices); |
317 | v = isl_qpolynomial_mul(qp1: v, qp2: isl_qpolynomial_copy(qp: c)); |
318 | subs[1 + j] = isl_qpolynomial_add(qp1: subs[1 + j], qp2: v); |
319 | } |
320 | subs[0] = isl_qpolynomial_add(qp1: subs[0], qp2: c); |
321 | } |
322 | isl_space_free(space: space_dst); |
323 | |
324 | poly = isl_qpolynomial_copy(qp: poly); |
325 | |
326 | poly = isl_qpolynomial_add_dims(qp: poly, type: isl_dim_in, n: n_vertices); |
327 | poly = isl_qpolynomial_substitute(qp: poly, type: isl_dim_in, first: 0, n: 1 + nvar, subs); |
328 | poly = isl_qpolynomial_drop_dims(qp: poly, type: isl_dim_in, first: 0, n: 1 + nvar); |
329 | |
330 | data->cell = cell; |
331 | dom = isl_set_from_basic_set(bset: isl_basic_set_copy(bset: cell->dom)); |
332 | data->fold = isl_qpolynomial_fold_empty(type: data->type, |
333 | space: isl_space_copy(space: space_param)); |
334 | data->fold_tight = isl_qpolynomial_fold_empty(type: data->type, space: space_param); |
335 | if (extract_coefficients(poly, dom, data) < 0) { |
336 | data->fold = isl_qpolynomial_fold_free(fold: data->fold); |
337 | data->fold_tight = isl_qpolynomial_fold_free(fold: data->fold_tight); |
338 | } |
339 | |
340 | pwf = isl_pw_qpolynomial_fold_alloc(type: data->type, set: isl_set_copy(set: dom), |
341 | fold: data->fold); |
342 | data->pwf = isl_pw_qpolynomial_fold_fold(pwf1: data->pwf, pwf2: pwf); |
343 | pwf = isl_pw_qpolynomial_fold_alloc(type: data->type, set: dom, fold: data->fold_tight); |
344 | data->pwf_tight = isl_pw_qpolynomial_fold_fold(pwf1: data->pwf_tight, pwf2: pwf); |
345 | |
346 | isl_qpolynomial_free(qp: poly); |
347 | isl_cell_free(cell); |
348 | for (i = 0; i < 1 + nvar; ++i) |
349 | isl_qpolynomial_free(qp: subs[i]); |
350 | free(ptr: subs); |
351 | return isl_stat_ok; |
352 | error: |
353 | isl_cell_free(cell); |
354 | return isl_stat_error; |
355 | } |
356 | |
357 | /* Base case of applying bernstein expansion. |
358 | * |
359 | * We compute the chamber decomposition of the parametric polytope "bset" |
360 | * and then perform bernstein expansion on the parametric vertices |
361 | * that are active on each chamber. |
362 | * |
363 | * If the polynomial does not depend on the set variables |
364 | * (and in particular if the number of set variables is zero) |
365 | * then the bound is equal to the polynomial and |
366 | * no actual bernstein expansion needs to be performed. |
367 | */ |
368 | static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base( |
369 | __isl_take isl_basic_set *bset, |
370 | __isl_take isl_qpolynomial *poly, struct bernstein_data *data, |
371 | isl_bool *tight) |
372 | { |
373 | int degree; |
374 | isl_size nvar; |
375 | isl_space *space; |
376 | isl_vertices *vertices; |
377 | isl_bool covers; |
378 | |
379 | nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
380 | if (nvar < 0) |
381 | bset = isl_basic_set_free(bset); |
382 | if (nvar == 0) |
383 | return isl_qpolynomial_cst_bound(bset, poly, type: data->type, tight); |
384 | |
385 | degree = isl_qpolynomial_degree(poly); |
386 | if (degree < -1) |
387 | bset = isl_basic_set_free(bset); |
388 | if (degree <= 0) |
389 | return isl_qpolynomial_cst_bound(bset, poly, type: data->type, tight); |
390 | |
391 | space = isl_basic_set_get_space(bset); |
392 | space = isl_space_params(space); |
393 | space = isl_space_from_domain(space); |
394 | space = isl_space_add_dims(space, type: isl_dim_set, n: 1); |
395 | data->pwf = isl_pw_qpolynomial_fold_zero(space: isl_space_copy(space), |
396 | type: data->type); |
397 | data->pwf_tight = isl_pw_qpolynomial_fold_zero(space, type: data->type); |
398 | data->poly = isl_qpolynomial_homogenize(poly: isl_qpolynomial_copy(qp: poly)); |
399 | vertices = isl_basic_set_compute_vertices(bset); |
400 | if (isl_vertices_foreach_disjoint_cell(vertices, |
401 | fn: &bernstein_coefficients_cell, user: data) < 0) |
402 | data->pwf = isl_pw_qpolynomial_fold_free(pwf: data->pwf); |
403 | isl_vertices_free(vertices); |
404 | isl_qpolynomial_free(qp: data->poly); |
405 | |
406 | isl_basic_set_free(bset); |
407 | isl_qpolynomial_free(qp: poly); |
408 | |
409 | covers = isl_pw_qpolynomial_fold_covers(pwf1: data->pwf_tight, pwf2: data->pwf); |
410 | if (covers < 0) |
411 | goto error; |
412 | |
413 | if (tight) |
414 | *tight = covers; |
415 | |
416 | if (covers) { |
417 | isl_pw_qpolynomial_fold_free(pwf: data->pwf); |
418 | return data->pwf_tight; |
419 | } |
420 | |
421 | data->pwf = isl_pw_qpolynomial_fold_fold(pwf1: data->pwf, pwf2: data->pwf_tight); |
422 | |
423 | return data->pwf; |
424 | error: |
425 | isl_pw_qpolynomial_fold_free(pwf: data->pwf_tight); |
426 | isl_pw_qpolynomial_fold_free(pwf: data->pwf); |
427 | return NULL; |
428 | } |
429 | |
430 | /* Apply bernstein expansion recursively by working in on len[i] |
431 | * set variables at a time, with i ranging from n_group - 1 to 0. |
432 | */ |
433 | static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive( |
434 | __isl_take isl_pw_qpolynomial *pwqp, |
435 | int n_group, int *len, struct bernstein_data *data, isl_bool *tight) |
436 | { |
437 | int i; |
438 | isl_size nparam; |
439 | isl_size nvar; |
440 | isl_pw_qpolynomial_fold *pwf; |
441 | |
442 | nparam = isl_pw_qpolynomial_dim(pwqp, type: isl_dim_param); |
443 | nvar = isl_pw_qpolynomial_dim(pwqp, type: isl_dim_in); |
444 | if (nparam < 0 || nvar < 0) |
445 | goto error; |
446 | |
447 | pwqp = isl_pw_qpolynomial_move_dims(pwqp, dst_type: isl_dim_param, dst_pos: nparam, |
448 | src_type: isl_dim_in, src_pos: 0, n: nvar - len[n_group - 1]); |
449 | pwf = isl_pw_qpolynomial_bound(pwqp, type: data->type, tight); |
450 | |
451 | for (i = n_group - 2; i >= 0; --i) { |
452 | nparam = isl_pw_qpolynomial_fold_dim(pwf, type: isl_dim_param); |
453 | if (nparam < 0) |
454 | return isl_pw_qpolynomial_fold_free(pwf); |
455 | pwf = isl_pw_qpolynomial_fold_move_dims(pwf, dst_type: isl_dim_in, dst_pos: 0, |
456 | src_type: isl_dim_param, src_pos: nparam - len[i], n: len[i]); |
457 | if (tight && !*tight) |
458 | tight = NULL; |
459 | pwf = isl_pw_qpolynomial_fold_bound(pwf, tight); |
460 | } |
461 | |
462 | return pwf; |
463 | error: |
464 | isl_pw_qpolynomial_free(pwqp); |
465 | return NULL; |
466 | } |
467 | |
468 | static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors( |
469 | __isl_take isl_basic_set *bset, |
470 | __isl_take isl_qpolynomial *poly, struct bernstein_data *data, |
471 | isl_bool *tight) |
472 | { |
473 | isl_factorizer *f; |
474 | isl_set *set; |
475 | isl_pw_qpolynomial *pwqp; |
476 | isl_pw_qpolynomial_fold *pwf; |
477 | |
478 | f = isl_basic_set_factorizer(bset); |
479 | if (!f) |
480 | goto error; |
481 | if (f->n_group == 0) { |
482 | isl_factorizer_free(f); |
483 | return bernstein_coefficients_base(bset, poly, data, tight); |
484 | } |
485 | |
486 | set = isl_set_from_basic_set(bset); |
487 | pwqp = isl_pw_qpolynomial_alloc(set, qp: poly); |
488 | pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph: isl_morph_copy(morph: f->morph)); |
489 | |
490 | pwf = bernstein_coefficients_recursive(pwqp, n_group: f->n_group, len: f->len, data, |
491 | tight); |
492 | |
493 | isl_factorizer_free(f); |
494 | |
495 | return pwf; |
496 | error: |
497 | isl_basic_set_free(bset); |
498 | isl_qpolynomial_free(qp: poly); |
499 | return NULL; |
500 | } |
501 | |
502 | static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive( |
503 | __isl_take isl_basic_set *bset, |
504 | __isl_take isl_qpolynomial *poly, struct bernstein_data *data, |
505 | isl_bool *tight) |
506 | { |
507 | int i; |
508 | int *len; |
509 | isl_size nvar; |
510 | isl_pw_qpolynomial_fold *pwf; |
511 | isl_set *set; |
512 | isl_pw_qpolynomial *pwqp; |
513 | |
514 | nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
515 | if (nvar < 0 || !poly) |
516 | goto error; |
517 | |
518 | len = isl_alloc_array(bset->ctx, int, nvar); |
519 | if (nvar && !len) |
520 | goto error; |
521 | |
522 | for (i = 0; i < nvar; ++i) |
523 | len[i] = 1; |
524 | |
525 | set = isl_set_from_basic_set(bset); |
526 | pwqp = isl_pw_qpolynomial_alloc(set, qp: poly); |
527 | |
528 | pwf = bernstein_coefficients_recursive(pwqp, n_group: nvar, len, data, tight); |
529 | |
530 | free(ptr: len); |
531 | |
532 | return pwf; |
533 | error: |
534 | isl_basic_set_free(bset); |
535 | isl_qpolynomial_free(qp: poly); |
536 | return NULL; |
537 | } |
538 | |
539 | /* Compute a bound on the polynomial defined over the parametric polytope |
540 | * using bernstein expansion and store the result |
541 | * in bound->pwf and bound->pwf_tight. |
542 | * |
543 | * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if |
544 | * the polytope can be factorized and apply bernstein expansion recursively |
545 | * on the factors. |
546 | * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply |
547 | * bernstein expansion recursively on each dimension. |
548 | * Otherwise, we apply bernstein expansion on the entire polytope. |
549 | */ |
550 | isl_stat isl_qpolynomial_bound_on_domain_bernstein( |
551 | __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, |
552 | struct isl_bound *bound) |
553 | { |
554 | struct bernstein_data data; |
555 | isl_pw_qpolynomial_fold *pwf; |
556 | isl_size nvar; |
557 | isl_bool tight = isl_bool_false; |
558 | isl_bool *tp = bound->check_tight ? &tight : NULL; |
559 | |
560 | nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
561 | if (nvar < 0 || !poly) |
562 | goto error; |
563 | |
564 | data.type = bound->type; |
565 | data.check_tight = bound->check_tight; |
566 | |
567 | if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS) |
568 | pwf = bernstein_coefficients_factors(bset, poly, data: &data, tight: tp); |
569 | else if (nvar > 1 && |
570 | (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS)) |
571 | pwf = bernstein_coefficients_full_recursive(bset, poly, data: &data, tight: tp); |
572 | else |
573 | pwf = bernstein_coefficients_base(bset, poly, data: &data, tight: tp); |
574 | |
575 | if (tight) |
576 | return isl_bound_add_tight(bound, pwf); |
577 | else |
578 | return isl_bound_add(bound, pwf); |
579 | error: |
580 | isl_basic_set_free(bset); |
581 | isl_qpolynomial_free(qp: poly); |
582 | return isl_stat_error; |
583 | } |
584 | |