| 1 | /* |
| 2 | * Copyright 2010 INRIA Saclay |
| 3 | * |
| 4 | * Use of this software is governed by the MIT license |
| 5 | * |
| 6 | * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, |
| 7 | * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, |
| 8 | * 91893 Orsay, France |
| 9 | */ |
| 10 | |
| 11 | #include <isl_map_private.h> |
| 12 | #include <isl/set.h> |
| 13 | #include <isl_space_private.h> |
| 14 | #include <isl_seq.h> |
| 15 | #include <isl_aff_private.h> |
| 16 | #include <isl_mat_private.h> |
| 17 | #include <isl_factorization.h> |
| 18 | |
| 19 | /* |
| 20 | * Let C be a cone and define |
| 21 | * |
| 22 | * C' := { y | forall x in C : y x >= 0 } |
| 23 | * |
| 24 | * C' contains the coefficients of all linear constraints |
| 25 | * that are valid for C. |
| 26 | * Furthermore, C'' = C. |
| 27 | * |
| 28 | * If C is defined as { x | A x >= 0 } |
| 29 | * then any element in C' must be a non-negative combination |
| 30 | * of the rows of A, i.e., y = t A with t >= 0. That is, |
| 31 | * |
| 32 | * C' = { y | exists t >= 0 : y = t A } |
| 33 | * |
| 34 | * If any of the rows in A actually represents an equality, then |
| 35 | * also negative combinations of this row are allowed and so the |
| 36 | * non-negativity constraint on the corresponding element of t |
| 37 | * can be dropped. |
| 38 | * |
| 39 | * A polyhedron P = { x | b + A x >= 0 } can be represented |
| 40 | * in homogeneous coordinates by the cone |
| 41 | * C = { [z,x] | b z + A x >= and z >= 0 } |
| 42 | * The valid linear constraints on C correspond to the valid affine |
| 43 | * constraints on P. |
| 44 | * This is essentially Farkas' lemma. |
| 45 | * |
| 46 | * Since |
| 47 | * [ 1 0 ] |
| 48 | * [ w y ] = [t_0 t] [ b A ] |
| 49 | * |
| 50 | * we have |
| 51 | * |
| 52 | * C' = { w, y | exists t_0, t >= 0 : y = t A and w = t_0 + t b } |
| 53 | * or |
| 54 | * |
| 55 | * C' = { w, y | exists t >= 0 : y = t A and w - t b >= 0 } |
| 56 | * |
| 57 | * In practice, we introduce an extra variable (w), shifting all |
| 58 | * other variables to the right, and an extra inequality |
| 59 | * (w - t b >= 0) corresponding to the positivity constraint on |
| 60 | * the homogeneous coordinate. |
| 61 | * |
| 62 | * When going back from coefficients to solutions, we immediately |
| 63 | * plug in 1 for z, which corresponds to shifting all variables |
| 64 | * to the left, with the leftmost ending up in the constant position. |
| 65 | */ |
| 66 | |
| 67 | /* Add the given prefix to all named isl_dim_set dimensions in "space". |
| 68 | */ |
| 69 | static __isl_give isl_space *isl_space_prefix(__isl_take isl_space *space, |
| 70 | const char *prefix) |
| 71 | { |
| 72 | int i; |
| 73 | isl_ctx *ctx; |
| 74 | isl_size nvar; |
| 75 | size_t prefix_len = strlen(s: prefix); |
| 76 | |
| 77 | if (!space) |
| 78 | return NULL; |
| 79 | |
| 80 | ctx = isl_space_get_ctx(space); |
| 81 | nvar = isl_space_dim(space, type: isl_dim_set); |
| 82 | if (nvar < 0) |
| 83 | return isl_space_free(space); |
| 84 | |
| 85 | for (i = 0; i < nvar; ++i) { |
| 86 | const char *name; |
| 87 | char *prefix_name; |
| 88 | |
| 89 | name = isl_space_get_dim_name(space, type: isl_dim_set, pos: i); |
| 90 | if (!name) |
| 91 | continue; |
| 92 | |
| 93 | prefix_name = isl_alloc_array(ctx, char, |
| 94 | prefix_len + strlen(name) + 1); |
| 95 | if (!prefix_name) |
| 96 | goto error; |
| 97 | memcpy(dest: prefix_name, src: prefix, n: prefix_len); |
| 98 | strcpy(dest: prefix_name + prefix_len, src: name); |
| 99 | |
| 100 | space = isl_space_set_dim_name(space, |
| 101 | type: isl_dim_set, pos: i, name: prefix_name); |
| 102 | free(ptr: prefix_name); |
| 103 | } |
| 104 | |
| 105 | return space; |
| 106 | error: |
| 107 | isl_space_free(space); |
| 108 | return NULL; |
| 109 | } |
| 110 | |
| 111 | /* Given a dimension specification of the solutions space, construct |
| 112 | * a dimension specification for the space of coefficients. |
| 113 | * |
| 114 | * In particular transform |
| 115 | * |
| 116 | * [params] -> { S } |
| 117 | * |
| 118 | * to |
| 119 | * |
| 120 | * { coefficients[[cst, params] -> S] } |
| 121 | * |
| 122 | * and prefix each dimension name with "c_". |
| 123 | */ |
| 124 | static __isl_give isl_space *isl_space_coefficients(__isl_take isl_space *space) |
| 125 | { |
| 126 | isl_space *space_param; |
| 127 | isl_size nvar; |
| 128 | isl_size nparam; |
| 129 | |
| 130 | nvar = isl_space_dim(space, type: isl_dim_set); |
| 131 | nparam = isl_space_dim(space, type: isl_dim_param); |
| 132 | if (nvar < 0 || nparam < 0) |
| 133 | return isl_space_free(space); |
| 134 | space_param = isl_space_copy(space); |
| 135 | space_param = isl_space_drop_dims(space: space_param, type: isl_dim_set, first: 0, num: nvar); |
| 136 | space_param = isl_space_move_dims(space: space_param, dst_type: isl_dim_set, dst_pos: 0, |
| 137 | src_type: isl_dim_param, src_pos: 0, n: nparam); |
| 138 | space_param = isl_space_prefix(space: space_param, prefix: "c_" ); |
| 139 | space_param = isl_space_insert_dims(space: space_param, type: isl_dim_set, pos: 0, n: 1); |
| 140 | space_param = isl_space_set_dim_name(space: space_param, |
| 141 | type: isl_dim_set, pos: 0, name: "c_cst" ); |
| 142 | space = isl_space_drop_dims(space, type: isl_dim_param, first: 0, num: nparam); |
| 143 | space = isl_space_prefix(space, prefix: "c_" ); |
| 144 | space = isl_space_join(left: isl_space_from_domain(space: space_param), |
| 145 | right: isl_space_from_range(space)); |
| 146 | space = isl_space_wrap(space); |
| 147 | space = isl_space_set_tuple_name(space, type: isl_dim_set, s: "coefficients" ); |
| 148 | |
| 149 | return space; |
| 150 | } |
| 151 | |
| 152 | /* Drop the given prefix from all named dimensions of type "type" in "space". |
| 153 | */ |
| 154 | static __isl_give isl_space *isl_space_unprefix(__isl_take isl_space *space, |
| 155 | enum isl_dim_type type, const char *prefix) |
| 156 | { |
| 157 | int i; |
| 158 | isl_size n; |
| 159 | size_t prefix_len = strlen(s: prefix); |
| 160 | |
| 161 | n = isl_space_dim(space, type); |
| 162 | if (n < 0) |
| 163 | return isl_space_free(space); |
| 164 | |
| 165 | for (i = 0; i < n; ++i) { |
| 166 | const char *name; |
| 167 | |
| 168 | name = isl_space_get_dim_name(space, type, pos: i); |
| 169 | if (!name) |
| 170 | continue; |
| 171 | if (strncmp(s1: name, s2: prefix, n: prefix_len)) |
| 172 | continue; |
| 173 | |
| 174 | space = isl_space_set_dim_name(space, |
| 175 | type, pos: i, name: name + prefix_len); |
| 176 | } |
| 177 | |
| 178 | return space; |
| 179 | } |
| 180 | |
| 181 | /* Given a dimension specification of the space of coefficients, construct |
| 182 | * a dimension specification for the space of solutions. |
| 183 | * |
| 184 | * In particular transform |
| 185 | * |
| 186 | * { coefficients[[cst, params] -> S] } |
| 187 | * |
| 188 | * to |
| 189 | * |
| 190 | * [params] -> { S } |
| 191 | * |
| 192 | * and drop the "c_" prefix from the dimension names. |
| 193 | */ |
| 194 | static __isl_give isl_space *isl_space_solutions(__isl_take isl_space *space) |
| 195 | { |
| 196 | isl_size nparam; |
| 197 | |
| 198 | space = isl_space_unwrap(space); |
| 199 | space = isl_space_drop_dims(space, type: isl_dim_in, first: 0, num: 1); |
| 200 | space = isl_space_unprefix(space, type: isl_dim_in, prefix: "c_" ); |
| 201 | space = isl_space_unprefix(space, type: isl_dim_out, prefix: "c_" ); |
| 202 | nparam = isl_space_dim(space, type: isl_dim_in); |
| 203 | if (nparam < 0) |
| 204 | return isl_space_free(space); |
| 205 | space = isl_space_move_dims(space, |
| 206 | dst_type: isl_dim_param, dst_pos: 0, src_type: isl_dim_in, src_pos: 0, n: nparam); |
| 207 | space = isl_space_range(space); |
| 208 | |
| 209 | return space; |
| 210 | } |
| 211 | |
| 212 | /* Return the rational universe basic set in the given space. |
| 213 | */ |
| 214 | static __isl_give isl_basic_set *rational_universe(__isl_take isl_space *space) |
| 215 | { |
| 216 | isl_basic_set *bset; |
| 217 | |
| 218 | bset = isl_basic_set_universe(space); |
| 219 | bset = isl_basic_set_set_rational(bset); |
| 220 | |
| 221 | return bset; |
| 222 | } |
| 223 | |
| 224 | /* Compute the dual of "bset" by applying Farkas' lemma. |
| 225 | * As explained above, we add an extra dimension to represent |
| 226 | * the coefficient of the constant term when going from solutions |
| 227 | * to coefficients (shift == 1) and we drop the extra dimension when going |
| 228 | * in the opposite direction (shift == -1). |
| 229 | * The dual can be created in an arbitrary space. |
| 230 | * The caller is responsible for putting the result in the appropriate space. |
| 231 | * |
| 232 | * If "bset" is (obviously) empty, then the way this emptiness |
| 233 | * is represented by the constraints does not allow for the application |
| 234 | * of the standard farkas algorithm. We therefore handle this case |
| 235 | * specifically and return the universe basic set. |
| 236 | */ |
| 237 | static __isl_give isl_basic_set *farkas(__isl_take isl_basic_set *bset, |
| 238 | int shift) |
| 239 | { |
| 240 | int i, j, k; |
| 241 | isl_ctx *ctx; |
| 242 | isl_space *space; |
| 243 | isl_basic_set *dual = NULL; |
| 244 | isl_size total; |
| 245 | |
| 246 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
| 247 | if (total < 0) |
| 248 | return isl_basic_set_free(bset); |
| 249 | |
| 250 | ctx = isl_basic_set_get_ctx(bset); |
| 251 | space = isl_space_set_alloc(ctx, nparam: 0, dim: total + shift); |
| 252 | if (isl_basic_set_plain_is_empty(bset)) { |
| 253 | isl_basic_set_free(bset); |
| 254 | return rational_universe(space); |
| 255 | } |
| 256 | |
| 257 | dual = isl_basic_set_alloc_space(space, extra: bset->n_eq + bset->n_ineq, |
| 258 | n_eq: total, n_ineq: bset->n_ineq + (shift > 0)); |
| 259 | dual = isl_basic_set_set_rational(bset: dual); |
| 260 | |
| 261 | for (i = 0; i < bset->n_eq + bset->n_ineq; ++i) { |
| 262 | k = isl_basic_set_alloc_div(bset: dual); |
| 263 | if (k < 0) |
| 264 | goto error; |
| 265 | isl_int_set_si(dual->div[k][0], 0); |
| 266 | } |
| 267 | |
| 268 | for (i = 0; i < total; ++i) { |
| 269 | k = isl_basic_set_alloc_equality(bset: dual); |
| 270 | if (k < 0) |
| 271 | goto error; |
| 272 | isl_seq_clr(p: dual->eq[k], len: 1 + shift + total); |
| 273 | isl_int_set_si(dual->eq[k][1 + shift + i], -1); |
| 274 | for (j = 0; j < bset->n_eq; ++j) |
| 275 | isl_int_set(dual->eq[k][1 + shift + total + j], |
| 276 | bset->eq[j][1 + i]); |
| 277 | for (j = 0; j < bset->n_ineq; ++j) |
| 278 | isl_int_set(dual->eq[k][1 + shift + total + bset->n_eq + j], |
| 279 | bset->ineq[j][1 + i]); |
| 280 | } |
| 281 | |
| 282 | for (i = 0; i < bset->n_ineq; ++i) { |
| 283 | k = isl_basic_set_alloc_inequality(bset: dual); |
| 284 | if (k < 0) |
| 285 | goto error; |
| 286 | isl_seq_clr(p: dual->ineq[k], |
| 287 | len: 1 + shift + total + bset->n_eq + bset->n_ineq); |
| 288 | isl_int_set_si(dual->ineq[k][1 + shift + total + bset->n_eq + i], 1); |
| 289 | } |
| 290 | |
| 291 | if (shift > 0) { |
| 292 | k = isl_basic_set_alloc_inequality(bset: dual); |
| 293 | if (k < 0) |
| 294 | goto error; |
| 295 | isl_seq_clr(p: dual->ineq[k], len: 2 + total); |
| 296 | isl_int_set_si(dual->ineq[k][1], 1); |
| 297 | for (j = 0; j < bset->n_eq; ++j) |
| 298 | isl_int_neg(dual->ineq[k][2 + total + j], |
| 299 | bset->eq[j][0]); |
| 300 | for (j = 0; j < bset->n_ineq; ++j) |
| 301 | isl_int_neg(dual->ineq[k][2 + total + bset->n_eq + j], |
| 302 | bset->ineq[j][0]); |
| 303 | } |
| 304 | |
| 305 | dual = isl_basic_set_remove_divs(bset: dual); |
| 306 | dual = isl_basic_set_simplify(bset: dual); |
| 307 | dual = isl_basic_set_finalize(bset: dual); |
| 308 | |
| 309 | isl_basic_set_free(bset); |
| 310 | return dual; |
| 311 | error: |
| 312 | isl_basic_set_free(bset); |
| 313 | isl_basic_set_free(bset: dual); |
| 314 | return NULL; |
| 315 | } |
| 316 | |
| 317 | /* Construct a basic set containing the tuples of coefficients of all |
| 318 | * valid affine constraints on the given basic set, ignoring |
| 319 | * the space of input and output and without any further decomposition. |
| 320 | */ |
| 321 | static __isl_give isl_basic_set *isl_basic_set_coefficients_base( |
| 322 | __isl_take isl_basic_set *bset) |
| 323 | { |
| 324 | return farkas(bset, shift: 1); |
| 325 | } |
| 326 | |
| 327 | /* Return the inverse mapping of "morph". |
| 328 | */ |
| 329 | static __isl_give isl_mat *peek_inv(__isl_keep isl_morph *morph) |
| 330 | { |
| 331 | return morph ? morph->inv : NULL; |
| 332 | } |
| 333 | |
| 334 | /* Return a copy of the inverse mapping of "morph". |
| 335 | */ |
| 336 | static __isl_give isl_mat *get_inv(__isl_keep isl_morph *morph) |
| 337 | { |
| 338 | return isl_mat_copy(mat: peek_inv(morph)); |
| 339 | } |
| 340 | |
| 341 | /* Information about a single factor within isl_basic_set_coefficients_product. |
| 342 | * |
| 343 | * "start" is the position of the first coefficient (beyond |
| 344 | * the one corresponding to the constant term) in this factor. |
| 345 | * "dim" is the number of coefficients (other than |
| 346 | * the one corresponding to the constant term) in this factor. |
| 347 | * "n_line" is the number of lines in "coeff". |
| 348 | * "n_ray" is the number of rays (other than lines) in "coeff". |
| 349 | * "n_vertex" is the number of vertices in "coeff". |
| 350 | * |
| 351 | * While iterating over the vertices, |
| 352 | * "pos" represents the inequality constraint corresponding |
| 353 | * to the current vertex. |
| 354 | */ |
| 355 | struct isl_coefficients_factor_data { |
| 356 | isl_basic_set *coeff; |
| 357 | int start; |
| 358 | int dim; |
| 359 | int n_line; |
| 360 | int n_ray; |
| 361 | int n_vertex; |
| 362 | int pos; |
| 363 | }; |
| 364 | |
| 365 | /* Internal data structure for isl_basic_set_coefficients_product. |
| 366 | * "n" is the number of factors in the factorization. |
| 367 | * "pos" is the next factor that will be considered. |
| 368 | * "start_next" is the position of the first coefficient (beyond |
| 369 | * the one corresponding to the constant term) in the next factor. |
| 370 | * "factors" contains information about the individual "n" factors. |
| 371 | */ |
| 372 | struct isl_coefficients_product_data { |
| 373 | int n; |
| 374 | int pos; |
| 375 | int start_next; |
| 376 | struct isl_coefficients_factor_data *factors; |
| 377 | }; |
| 378 | |
| 379 | /* Initialize the internal data structure for |
| 380 | * isl_basic_set_coefficients_product. |
| 381 | */ |
| 382 | static isl_stat isl_coefficients_product_data_init(isl_ctx *ctx, |
| 383 | struct isl_coefficients_product_data *data, int n) |
| 384 | { |
| 385 | data->n = n; |
| 386 | data->pos = 0; |
| 387 | data->start_next = 0; |
| 388 | data->factors = isl_calloc_array(ctx, |
| 389 | struct isl_coefficients_factor_data, n); |
| 390 | if (!data->factors) |
| 391 | return isl_stat_error; |
| 392 | return isl_stat_ok; |
| 393 | } |
| 394 | |
| 395 | /* Free all memory allocated in "data". |
| 396 | */ |
| 397 | static void isl_coefficients_product_data_clear( |
| 398 | struct isl_coefficients_product_data *data) |
| 399 | { |
| 400 | int i; |
| 401 | |
| 402 | if (data->factors) { |
| 403 | for (i = 0; i < data->n; ++i) { |
| 404 | isl_basic_set_free(bset: data->factors[i].coeff); |
| 405 | } |
| 406 | } |
| 407 | free(ptr: data->factors); |
| 408 | } |
| 409 | |
| 410 | /* Does inequality "ineq" in the (dual) basic set "bset" represent a ray? |
| 411 | * In particular, does it have a zero denominator |
| 412 | * (i.e., a zero coefficient for the constant term)? |
| 413 | */ |
| 414 | static int is_ray(__isl_keep isl_basic_set *bset, int ineq) |
| 415 | { |
| 416 | return isl_int_is_zero(bset->ineq[ineq][1]); |
| 417 | } |
| 418 | |
| 419 | /* isl_factorizer_every_factor_basic_set callback that |
| 420 | * constructs a basic set containing the tuples of coefficients of all |
| 421 | * valid affine constraints on the factor "bset" and |
| 422 | * extracts further information that will be used |
| 423 | * when combining the results over the different factors. |
| 424 | */ |
| 425 | static isl_bool isl_basic_set_coefficients_factor( |
| 426 | __isl_keep isl_basic_set *bset, void *user) |
| 427 | { |
| 428 | struct isl_coefficients_product_data *data = user; |
| 429 | isl_basic_set *coeff; |
| 430 | isl_size n_eq, n_ineq, dim; |
| 431 | int i, n_ray, n_vertex; |
| 432 | |
| 433 | coeff = isl_basic_set_coefficients_base(bset: isl_basic_set_copy(bset)); |
| 434 | data->factors[data->pos].coeff = coeff; |
| 435 | if (!coeff) |
| 436 | return isl_bool_error; |
| 437 | |
| 438 | dim = isl_basic_set_dim(bset, type: isl_dim_set); |
| 439 | n_eq = isl_basic_set_n_equality(bset: coeff); |
| 440 | n_ineq = isl_basic_set_n_inequality(bset: coeff); |
| 441 | if (dim < 0 || n_eq < 0 || n_ineq < 0) |
| 442 | return isl_bool_error; |
| 443 | n_ray = n_vertex = 0; |
| 444 | for (i = 0; i < n_ineq; ++i) { |
| 445 | if (is_ray(bset: coeff, ineq: i)) |
| 446 | n_ray++; |
| 447 | else |
| 448 | n_vertex++; |
| 449 | } |
| 450 | data->factors[data->pos].start = data->start_next; |
| 451 | data->factors[data->pos].dim = dim; |
| 452 | data->factors[data->pos].n_line = n_eq; |
| 453 | data->factors[data->pos].n_ray = n_ray; |
| 454 | data->factors[data->pos].n_vertex = n_vertex; |
| 455 | data->pos++; |
| 456 | data->start_next += dim; |
| 457 | |
| 458 | return isl_bool_true; |
| 459 | } |
| 460 | |
| 461 | /* Clear an entry in the product, given that there is a "total" number |
| 462 | * of coefficients (other than that of the constant term). |
| 463 | */ |
| 464 | static void clear_entry(isl_int *entry, int total) |
| 465 | { |
| 466 | isl_seq_clr(p: entry, len: 1 + 1 + total); |
| 467 | } |
| 468 | |
| 469 | /* Set the part of the entry corresponding to factor "data", |
| 470 | * from the factor coefficients in "src". |
| 471 | */ |
| 472 | static void set_factor(isl_int *entry, isl_int *src, |
| 473 | struct isl_coefficients_factor_data *data) |
| 474 | { |
| 475 | isl_seq_cpy(dst: entry + 1 + 1 + data->start, src: src + 1 + 1, len: data->dim); |
| 476 | } |
| 477 | |
| 478 | /* Set the part of the entry corresponding to factor "data", |
| 479 | * from the factor coefficients in "src" multiplied by "f". |
| 480 | */ |
| 481 | static void scale_factor(isl_int *entry, isl_int *src, isl_int f, |
| 482 | struct isl_coefficients_factor_data *data) |
| 483 | { |
| 484 | isl_seq_scale(dst: entry + 1 + 1 + data->start, src: src + 1 + 1, f, len: data->dim); |
| 485 | } |
| 486 | |
| 487 | /* Add all lines from the given factor to "bset", |
| 488 | * given that there is a "total" number of coefficients |
| 489 | * (other than that of the constant term). |
| 490 | */ |
| 491 | static __isl_give isl_basic_set *add_lines(__isl_take isl_basic_set *bset, |
| 492 | struct isl_coefficients_factor_data *factor, int total) |
| 493 | { |
| 494 | int i; |
| 495 | |
| 496 | for (i = 0; i < factor->n_line; ++i) { |
| 497 | int k; |
| 498 | |
| 499 | k = isl_basic_set_alloc_equality(bset); |
| 500 | if (k < 0) |
| 501 | return isl_basic_set_free(bset); |
| 502 | clear_entry(entry: bset->eq[k], total); |
| 503 | set_factor(entry: bset->eq[k], src: factor->coeff->eq[i], data: factor); |
| 504 | } |
| 505 | |
| 506 | return bset; |
| 507 | } |
| 508 | |
| 509 | /* Add all rays (other than lines) from the given factor to "bset", |
| 510 | * given that there is a "total" number of coefficients |
| 511 | * (other than that of the constant term). |
| 512 | */ |
| 513 | static __isl_give isl_basic_set *add_rays(__isl_take isl_basic_set *bset, |
| 514 | struct isl_coefficients_factor_data *data, int total) |
| 515 | { |
| 516 | int i; |
| 517 | int n_ineq = data->n_ray + data->n_vertex; |
| 518 | |
| 519 | for (i = 0; i < n_ineq; ++i) { |
| 520 | int k; |
| 521 | |
| 522 | if (!is_ray(bset: data->coeff, ineq: i)) |
| 523 | continue; |
| 524 | |
| 525 | k = isl_basic_set_alloc_inequality(bset); |
| 526 | if (k < 0) |
| 527 | return isl_basic_set_free(bset); |
| 528 | clear_entry(entry: bset->ineq[k], total); |
| 529 | set_factor(entry: bset->ineq[k], src: data->coeff->ineq[i], data); |
| 530 | } |
| 531 | |
| 532 | return bset; |
| 533 | } |
| 534 | |
| 535 | /* Move to the first vertex of the given factor starting |
| 536 | * at inequality constraint "start", setting factor->pos and |
| 537 | * returning 1 if a vertex is found. |
| 538 | */ |
| 539 | static int factor_first_vertex(struct isl_coefficients_factor_data *factor, |
| 540 | int start) |
| 541 | { |
| 542 | int j; |
| 543 | int n = factor->n_ray + factor->n_vertex; |
| 544 | |
| 545 | for (j = start; j < n; ++j) { |
| 546 | if (is_ray(bset: factor->coeff, ineq: j)) |
| 547 | continue; |
| 548 | factor->pos = j; |
| 549 | return 1; |
| 550 | } |
| 551 | |
| 552 | return 0; |
| 553 | } |
| 554 | |
| 555 | /* Move to the first constraint in each factor starting at "first" |
| 556 | * that represents a vertex. |
| 557 | * In particular, skip the initial constraints that correspond to rays. |
| 558 | */ |
| 559 | static void first_vertex(struct isl_coefficients_product_data *data, int first) |
| 560 | { |
| 561 | int i; |
| 562 | |
| 563 | for (i = first; i < data->n; ++i) |
| 564 | factor_first_vertex(factor: &data->factors[i], start: 0); |
| 565 | } |
| 566 | |
| 567 | /* Move to the next vertex in the product. |
| 568 | * In particular, move to the next vertex of the last factor. |
| 569 | * If all vertices of this last factor have already been considered, |
| 570 | * then move to the next vertex of the previous factor(s) |
| 571 | * until a factor is found that still has a next vertex. |
| 572 | * Once such a next vertex has been found, the subsequent |
| 573 | * factors are reset to the first vertex. |
| 574 | * Return 1 if any next vertex was found. |
| 575 | */ |
| 576 | static int next_vertex(struct isl_coefficients_product_data *data) |
| 577 | { |
| 578 | int i; |
| 579 | |
| 580 | for (i = data->n - 1; i >= 0; --i) { |
| 581 | struct isl_coefficients_factor_data *factor = &data->factors[i]; |
| 582 | |
| 583 | if (!factor_first_vertex(factor, start: factor->pos + 1)) |
| 584 | continue; |
| 585 | first_vertex(data, first: i + 1); |
| 586 | return 1; |
| 587 | } |
| 588 | |
| 589 | return 0; |
| 590 | } |
| 591 | |
| 592 | /* Add a vertex to the product "bset" combining the currently selected |
| 593 | * vertices of the factors. |
| 594 | * |
| 595 | * In the dual representation, the constant term is always zero. |
| 596 | * The vertex itself is the sum of the contributions of the factors |
| 597 | * with a shared denominator in position 1. |
| 598 | * |
| 599 | * First compute the shared denominator (lcm) and |
| 600 | * then scale the numerators to this shared denominator. |
| 601 | */ |
| 602 | static __isl_give isl_basic_set *add_vertex(__isl_take isl_basic_set *bset, |
| 603 | struct isl_coefficients_product_data *data) |
| 604 | { |
| 605 | int i; |
| 606 | int k; |
| 607 | isl_int lcm, f; |
| 608 | |
| 609 | k = isl_basic_set_alloc_inequality(bset); |
| 610 | if (k < 0) |
| 611 | return isl_basic_set_free(bset); |
| 612 | |
| 613 | isl_int_init(lcm); |
| 614 | isl_int_init(f); |
| 615 | isl_int_set_si(lcm, 1); |
| 616 | for (i = 0; i < data->n; ++i) { |
| 617 | struct isl_coefficients_factor_data *factor = &data->factors[i]; |
| 618 | isl_basic_set *coeff = factor->coeff; |
| 619 | int pos = factor->pos; |
| 620 | isl_int_lcm(lcm, lcm, coeff->ineq[pos][1]); |
| 621 | } |
| 622 | isl_int_set_si(bset->ineq[k][0], 0); |
| 623 | isl_int_set(bset->ineq[k][1], lcm); |
| 624 | |
| 625 | for (i = 0; i < data->n; ++i) { |
| 626 | struct isl_coefficients_factor_data *factor = &data->factors[i]; |
| 627 | isl_basic_set *coeff = factor->coeff; |
| 628 | int pos = factor->pos; |
| 629 | isl_int_divexact(f, lcm, coeff->ineq[pos][1]); |
| 630 | scale_factor(entry: bset->ineq[k], src: coeff->ineq[pos], f, data: factor); |
| 631 | } |
| 632 | |
| 633 | isl_int_clear(f); |
| 634 | isl_int_clear(lcm); |
| 635 | |
| 636 | return bset; |
| 637 | } |
| 638 | |
| 639 | /* Combine the duals of the factors in the factorization of a basic set |
| 640 | * to form the dual of the entire basic set. |
| 641 | * The dual share the coefficient of the constant term. |
| 642 | * All other coefficients are specific to a factor. |
| 643 | * Any constraint not involving the coefficient of the constant term |
| 644 | * can therefor simply be copied into the appropriate position. |
| 645 | * This includes all equality constraints since the coefficient |
| 646 | * of the constant term can always be increased and therefore |
| 647 | * never appears in an equality constraint. |
| 648 | * The inequality constraints involving the coefficient of |
| 649 | * the constant term need to be combined across factors. |
| 650 | * In particular, if this coefficient needs to be greater than or equal |
| 651 | * to some linear combination of the other coefficients in each factor, |
| 652 | * then it needs to be greater than or equal to the sum of |
| 653 | * these linear combinations across the factors. |
| 654 | * |
| 655 | * Alternatively, the constraints of the dual can be seen |
| 656 | * as the vertices, rays and lines of the original basic set. |
| 657 | * Clearly, rays and lines can simply be copied, |
| 658 | * while vertices needs to be combined across factors. |
| 659 | * This means that the number of rays and lines in the product |
| 660 | * is equal to the sum of the numbers in the factors, |
| 661 | * while the number of vertices is the product |
| 662 | * of the number of vertices in the factors. Note that each |
| 663 | * factor has at least one vertex. |
| 664 | * The only exception is when the factor is the dual of an obviously empty set, |
| 665 | * in which case a universe dual is created. |
| 666 | * In this case, return a universe dual for the product as well. |
| 667 | * |
| 668 | * While constructing the vertices, look for the first combination |
| 669 | * of inequality constraints that represent a vertex, |
| 670 | * construct the corresponding vertex and then move on |
| 671 | * to the next combination of inequality constraints until |
| 672 | * all combinations have been considered. |
| 673 | */ |
| 674 | static __isl_give isl_basic_set *construct_product(isl_ctx *ctx, |
| 675 | struct isl_coefficients_product_data *data) |
| 676 | { |
| 677 | int i; |
| 678 | int n_line, n_ray, n_vertex; |
| 679 | int total; |
| 680 | isl_space *space; |
| 681 | isl_basic_set *product; |
| 682 | |
| 683 | if (!data->factors) |
| 684 | return NULL; |
| 685 | |
| 686 | total = data->start_next; |
| 687 | |
| 688 | n_line = 0; |
| 689 | n_ray = 0; |
| 690 | n_vertex = 1; |
| 691 | for (i = 0; i < data->n; ++i) { |
| 692 | n_line += data->factors[i].n_line; |
| 693 | n_ray += data->factors[i].n_ray; |
| 694 | n_vertex *= data->factors[i].n_vertex; |
| 695 | } |
| 696 | |
| 697 | space = isl_space_set_alloc(ctx, nparam: 0, dim: 1 + total); |
| 698 | if (n_vertex == 0) |
| 699 | return rational_universe(space); |
| 700 | product = isl_basic_set_alloc_space(space, extra: 0, n_eq: n_line, n_ineq: n_ray + n_vertex); |
| 701 | product = isl_basic_set_set_rational(bset: product); |
| 702 | |
| 703 | for (i = 0; i < data->n; ++i) |
| 704 | product = add_lines(bset: product, factor: &data->factors[i], total); |
| 705 | for (i = 0; i < data->n; ++i) |
| 706 | product = add_rays(bset: product, data: &data->factors[i], total); |
| 707 | |
| 708 | first_vertex(data, first: 0); |
| 709 | do { |
| 710 | product = add_vertex(bset: product, data); |
| 711 | } while (next_vertex(data)); |
| 712 | |
| 713 | return product; |
| 714 | } |
| 715 | |
| 716 | /* Given a factorization "f" of a basic set, |
| 717 | * construct a basic set containing the tuples of coefficients of all |
| 718 | * valid affine constraints on the product of the factors, ignoring |
| 719 | * the space of input and output. |
| 720 | * Note that this product may not be equal to the original basic set, |
| 721 | * if a non-trivial transformation is involved. |
| 722 | * This is handled by the caller. |
| 723 | * |
| 724 | * Compute the tuples of coefficients for each factor separately and |
| 725 | * then combine the results. |
| 726 | */ |
| 727 | static __isl_give isl_basic_set *isl_basic_set_coefficients_product( |
| 728 | __isl_take isl_factorizer *f) |
| 729 | { |
| 730 | struct isl_coefficients_product_data data; |
| 731 | isl_ctx *ctx; |
| 732 | isl_basic_set *coeff; |
| 733 | isl_bool every; |
| 734 | |
| 735 | ctx = isl_factorizer_get_ctx(f); |
| 736 | if (isl_coefficients_product_data_init(ctx, data: &data, n: f->n_group) < 0) |
| 737 | f = isl_factorizer_free(f); |
| 738 | every = isl_factorizer_every_factor_basic_set(f, |
| 739 | test: &isl_basic_set_coefficients_factor, user: &data); |
| 740 | isl_factorizer_free(f); |
| 741 | if (every >= 0) |
| 742 | coeff = construct_product(ctx, data: &data); |
| 743 | else |
| 744 | coeff = NULL; |
| 745 | isl_coefficients_product_data_clear(data: &data); |
| 746 | |
| 747 | return coeff; |
| 748 | } |
| 749 | |
| 750 | /* Given a factorization "f" of a basic set, |
| 751 | * construct a basic set containing the tuples of coefficients of all |
| 752 | * valid affine constraints on the basic set, ignoring |
| 753 | * the space of input and output. |
| 754 | * |
| 755 | * The factorization may involve a linear transformation of the basic set. |
| 756 | * In particular, the transformed basic set is formulated |
| 757 | * in terms of x' = U x, i.e., x = V x', with V = U^{-1}. |
| 758 | * The dual is then computed in terms of y' with y'^t [z; x'] >= 0. |
| 759 | * Plugging in y' = [1 0; 0 V^t] y yields |
| 760 | * y^t [1 0; 0 V] [z; x'] >= 0, i.e., y^t [z; x] >= 0, which is |
| 761 | * the desired set of coefficients y. |
| 762 | * Note that this transformation to y' only needs to be applied |
| 763 | * if U is not the identity matrix. |
| 764 | */ |
| 765 | static __isl_give isl_basic_set *isl_basic_set_coefficients_morphed_product( |
| 766 | __isl_take isl_factorizer *f) |
| 767 | { |
| 768 | isl_bool is_identity; |
| 769 | isl_space *space; |
| 770 | isl_mat *inv; |
| 771 | isl_multi_aff *ma; |
| 772 | isl_basic_set *coeff; |
| 773 | |
| 774 | if (!f) |
| 775 | goto error; |
| 776 | is_identity = isl_mat_is_scaled_identity(mat: peek_inv(morph: f->morph)); |
| 777 | if (is_identity < 0) |
| 778 | goto error; |
| 779 | if (is_identity) |
| 780 | return isl_basic_set_coefficients_product(f); |
| 781 | |
| 782 | inv = get_inv(morph: f->morph); |
| 783 | inv = isl_mat_transpose(mat: inv); |
| 784 | inv = isl_mat_lin_to_aff(mat: inv); |
| 785 | |
| 786 | coeff = isl_basic_set_coefficients_product(f); |
| 787 | space = isl_space_map_from_set(space: isl_basic_set_get_space(bset: coeff)); |
| 788 | ma = isl_multi_aff_from_aff_mat(space, mat: inv); |
| 789 | coeff = isl_basic_set_preimage_multi_aff(bset: coeff, ma); |
| 790 | |
| 791 | return coeff; |
| 792 | error: |
| 793 | isl_factorizer_free(f); |
| 794 | return NULL; |
| 795 | } |
| 796 | |
| 797 | /* Construct a basic set containing the tuples of coefficients of all |
| 798 | * valid affine constraints on the given basic set, ignoring |
| 799 | * the space of input and output. |
| 800 | * |
| 801 | * The caller has already checked that "bset" does not involve |
| 802 | * any local variables. It may have parameters, though. |
| 803 | * Treat them as regular variables internally. |
| 804 | * This is especially important for the factorization, |
| 805 | * since the (original) parameters should be taken into account |
| 806 | * explicitly in this factorization. |
| 807 | * |
| 808 | * Check if the basic set can be factorized. |
| 809 | * If so, compute constraints on the coefficients of the factors |
| 810 | * separately and combine the results. |
| 811 | * Otherwise, compute the results for the input basic set as a whole. |
| 812 | */ |
| 813 | static __isl_give isl_basic_set *basic_set_coefficients( |
| 814 | __isl_take isl_basic_set *bset) |
| 815 | { |
| 816 | isl_factorizer *f; |
| 817 | isl_size nparam; |
| 818 | |
| 819 | nparam = isl_basic_set_dim(bset, type: isl_dim_param); |
| 820 | if (nparam < 0) |
| 821 | return isl_basic_set_free(bset); |
| 822 | bset = isl_basic_set_move_dims(bset, dst_type: isl_dim_set, dst_pos: 0, |
| 823 | src_type: isl_dim_param, src_pos: 0, n: nparam); |
| 824 | |
| 825 | f = isl_basic_set_factorizer(bset); |
| 826 | if (!f) |
| 827 | return isl_basic_set_free(bset); |
| 828 | if (f->n_group > 0) { |
| 829 | isl_basic_set_free(bset); |
| 830 | return isl_basic_set_coefficients_morphed_product(f); |
| 831 | } |
| 832 | isl_factorizer_free(f); |
| 833 | return isl_basic_set_coefficients_base(bset); |
| 834 | } |
| 835 | |
| 836 | /* Construct a basic set containing the tuples of coefficients of all |
| 837 | * valid affine constraints on the given basic set. |
| 838 | */ |
| 839 | __isl_give isl_basic_set *isl_basic_set_coefficients( |
| 840 | __isl_take isl_basic_set *bset) |
| 841 | { |
| 842 | isl_space *space; |
| 843 | |
| 844 | if (!bset) |
| 845 | return NULL; |
| 846 | if (bset->n_div) |
| 847 | isl_die(bset->ctx, isl_error_invalid, |
| 848 | "input set not allowed to have local variables" , |
| 849 | goto error); |
| 850 | |
| 851 | space = isl_basic_set_get_space(bset); |
| 852 | space = isl_space_coefficients(space); |
| 853 | |
| 854 | bset = basic_set_coefficients(bset); |
| 855 | bset = isl_basic_set_reset_space(bset, space); |
| 856 | return bset; |
| 857 | error: |
| 858 | isl_basic_set_free(bset); |
| 859 | return NULL; |
| 860 | } |
| 861 | |
| 862 | /* Construct a basic set containing the elements that satisfy all |
| 863 | * affine constraints whose coefficient tuples are |
| 864 | * contained in the given basic set. |
| 865 | */ |
| 866 | __isl_give isl_basic_set *isl_basic_set_solutions( |
| 867 | __isl_take isl_basic_set *bset) |
| 868 | { |
| 869 | isl_space *space; |
| 870 | |
| 871 | if (!bset) |
| 872 | return NULL; |
| 873 | if (bset->n_div) |
| 874 | isl_die(bset->ctx, isl_error_invalid, |
| 875 | "input set not allowed to have local variables" , |
| 876 | goto error); |
| 877 | |
| 878 | space = isl_basic_set_get_space(bset); |
| 879 | space = isl_space_solutions(space); |
| 880 | |
| 881 | bset = farkas(bset, shift: -1); |
| 882 | bset = isl_basic_set_reset_space(bset, space); |
| 883 | return bset; |
| 884 | error: |
| 885 | isl_basic_set_free(bset); |
| 886 | return NULL; |
| 887 | } |
| 888 | |
| 889 | /* Construct a basic set containing the tuples of coefficients of all |
| 890 | * valid affine constraints on the given set. |
| 891 | */ |
| 892 | __isl_give isl_basic_set *isl_set_coefficients(__isl_take isl_set *set) |
| 893 | { |
| 894 | int i; |
| 895 | isl_basic_set *coeff; |
| 896 | |
| 897 | if (!set) |
| 898 | return NULL; |
| 899 | if (set->n == 0) { |
| 900 | isl_space *space = isl_set_get_space(set); |
| 901 | space = isl_space_coefficients(space); |
| 902 | isl_set_free(set); |
| 903 | return rational_universe(space); |
| 904 | } |
| 905 | |
| 906 | coeff = isl_basic_set_coefficients(bset: isl_basic_set_copy(bset: set->p[0])); |
| 907 | |
| 908 | for (i = 1; i < set->n; ++i) { |
| 909 | isl_basic_set *bset, *coeff_i; |
| 910 | bset = isl_basic_set_copy(bset: set->p[i]); |
| 911 | coeff_i = isl_basic_set_coefficients(bset); |
| 912 | coeff = isl_basic_set_intersect(bset1: coeff, bset2: coeff_i); |
| 913 | } |
| 914 | |
| 915 | isl_set_free(set); |
| 916 | return coeff; |
| 917 | } |
| 918 | |
| 919 | /* Wrapper around isl_basic_set_coefficients for use |
| 920 | * as a isl_basic_set_list_map callback. |
| 921 | */ |
| 922 | static __isl_give isl_basic_set *coefficients_wrap( |
| 923 | __isl_take isl_basic_set *bset, void *user) |
| 924 | { |
| 925 | return isl_basic_set_coefficients(bset); |
| 926 | } |
| 927 | |
| 928 | /* Replace the elements of "list" by the result of applying |
| 929 | * isl_basic_set_coefficients to them. |
| 930 | */ |
| 931 | __isl_give isl_basic_set_list *isl_basic_set_list_coefficients( |
| 932 | __isl_take isl_basic_set_list *list) |
| 933 | { |
| 934 | return isl_basic_set_list_map(list, fn: &coefficients_wrap, NULL); |
| 935 | } |
| 936 | |
| 937 | /* Construct a basic set containing the elements that satisfy all |
| 938 | * affine constraints whose coefficient tuples are |
| 939 | * contained in the given set. |
| 940 | */ |
| 941 | __isl_give isl_basic_set *isl_set_solutions(__isl_take isl_set *set) |
| 942 | { |
| 943 | int i; |
| 944 | isl_basic_set *sol; |
| 945 | |
| 946 | if (!set) |
| 947 | return NULL; |
| 948 | if (set->n == 0) { |
| 949 | isl_space *space = isl_set_get_space(set); |
| 950 | space = isl_space_solutions(space); |
| 951 | isl_set_free(set); |
| 952 | return rational_universe(space); |
| 953 | } |
| 954 | |
| 955 | sol = isl_basic_set_solutions(bset: isl_basic_set_copy(bset: set->p[0])); |
| 956 | |
| 957 | for (i = 1; i < set->n; ++i) { |
| 958 | isl_basic_set *bset, *sol_i; |
| 959 | bset = isl_basic_set_copy(bset: set->p[i]); |
| 960 | sol_i = isl_basic_set_solutions(bset); |
| 961 | sol = isl_basic_set_intersect(bset1: sol, bset2: sol_i); |
| 962 | } |
| 963 | |
| 964 | isl_set_free(set); |
| 965 | return sol; |
| 966 | } |
| 967 | |