| 1 | /* |
| 2 | * Copyright 2005-2007 Universiteit Leiden |
| 3 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
| 4 | * Copyright 2010 INRIA Saclay |
| 5 | * Copyright 2012 Universiteit Leiden |
| 6 | * Copyright 2014 Ecole Normale Superieure |
| 7 | * |
| 8 | * Use of this software is governed by the MIT license |
| 9 | * |
| 10 | * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science, |
| 11 | * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands |
| 12 | * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A, |
| 13 | * B-3001 Leuven, Belgium |
| 14 | * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, |
| 15 | * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France |
| 16 | * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France |
| 17 | */ |
| 18 | |
| 19 | #include <isl/val.h> |
| 20 | #include <isl/space.h> |
| 21 | #include <isl/set.h> |
| 22 | #include <isl/map.h> |
| 23 | #include <isl/union_set.h> |
| 24 | #include <isl/union_map.h> |
| 25 | #include <isl/flow.h> |
| 26 | #include <isl/schedule_node.h> |
| 27 | #include <isl_sort.h> |
| 28 | #include <isl/stream.h> |
| 29 | |
| 30 | enum isl_restriction_type { |
| 31 | isl_restriction_type_empty, |
| 32 | isl_restriction_type_none, |
| 33 | isl_restriction_type_input, |
| 34 | isl_restriction_type_output |
| 35 | }; |
| 36 | |
| 37 | struct isl_restriction { |
| 38 | enum isl_restriction_type type; |
| 39 | |
| 40 | isl_set *source; |
| 41 | isl_set *sink; |
| 42 | }; |
| 43 | |
| 44 | /* Create a restriction of the given type. |
| 45 | */ |
| 46 | static __isl_give isl_restriction *isl_restriction_alloc( |
| 47 | __isl_take isl_map *source_map, enum isl_restriction_type type) |
| 48 | { |
| 49 | isl_ctx *ctx; |
| 50 | isl_restriction *restr; |
| 51 | |
| 52 | if (!source_map) |
| 53 | return NULL; |
| 54 | |
| 55 | ctx = isl_map_get_ctx(map: source_map); |
| 56 | restr = isl_calloc_type(ctx, struct isl_restriction); |
| 57 | if (!restr) |
| 58 | goto error; |
| 59 | |
| 60 | restr->type = type; |
| 61 | |
| 62 | isl_map_free(map: source_map); |
| 63 | return restr; |
| 64 | error: |
| 65 | isl_map_free(map: source_map); |
| 66 | return NULL; |
| 67 | } |
| 68 | |
| 69 | /* Create a restriction that doesn't restrict anything. |
| 70 | */ |
| 71 | __isl_give isl_restriction *isl_restriction_none(__isl_take isl_map *source_map) |
| 72 | { |
| 73 | return isl_restriction_alloc(source_map, type: isl_restriction_type_none); |
| 74 | } |
| 75 | |
| 76 | /* Create a restriction that removes everything. |
| 77 | */ |
| 78 | __isl_give isl_restriction *isl_restriction_empty( |
| 79 | __isl_take isl_map *source_map) |
| 80 | { |
| 81 | return isl_restriction_alloc(source_map, type: isl_restriction_type_empty); |
| 82 | } |
| 83 | |
| 84 | /* Create a restriction on the input of the maximization problem |
| 85 | * based on the given source and sink restrictions. |
| 86 | */ |
| 87 | __isl_give isl_restriction *isl_restriction_input( |
| 88 | __isl_take isl_set *source_restr, __isl_take isl_set *sink_restr) |
| 89 | { |
| 90 | isl_ctx *ctx; |
| 91 | isl_restriction *restr; |
| 92 | |
| 93 | if (!source_restr || !sink_restr) |
| 94 | goto error; |
| 95 | |
| 96 | ctx = isl_set_get_ctx(set: source_restr); |
| 97 | restr = isl_calloc_type(ctx, struct isl_restriction); |
| 98 | if (!restr) |
| 99 | goto error; |
| 100 | |
| 101 | restr->type = isl_restriction_type_input; |
| 102 | restr->source = source_restr; |
| 103 | restr->sink = sink_restr; |
| 104 | |
| 105 | return restr; |
| 106 | error: |
| 107 | isl_set_free(set: source_restr); |
| 108 | isl_set_free(set: sink_restr); |
| 109 | return NULL; |
| 110 | } |
| 111 | |
| 112 | /* Create a restriction on the output of the maximization problem |
| 113 | * based on the given source restriction. |
| 114 | */ |
| 115 | __isl_give isl_restriction *isl_restriction_output( |
| 116 | __isl_take isl_set *source_restr) |
| 117 | { |
| 118 | isl_ctx *ctx; |
| 119 | isl_restriction *restr; |
| 120 | |
| 121 | if (!source_restr) |
| 122 | return NULL; |
| 123 | |
| 124 | ctx = isl_set_get_ctx(set: source_restr); |
| 125 | restr = isl_calloc_type(ctx, struct isl_restriction); |
| 126 | if (!restr) |
| 127 | goto error; |
| 128 | |
| 129 | restr->type = isl_restriction_type_output; |
| 130 | restr->source = source_restr; |
| 131 | |
| 132 | return restr; |
| 133 | error: |
| 134 | isl_set_free(set: source_restr); |
| 135 | return NULL; |
| 136 | } |
| 137 | |
| 138 | __isl_null isl_restriction *isl_restriction_free( |
| 139 | __isl_take isl_restriction *restr) |
| 140 | { |
| 141 | if (!restr) |
| 142 | return NULL; |
| 143 | |
| 144 | isl_set_free(set: restr->source); |
| 145 | isl_set_free(set: restr->sink); |
| 146 | free(ptr: restr); |
| 147 | return NULL; |
| 148 | } |
| 149 | |
| 150 | isl_ctx *isl_restriction_get_ctx(__isl_keep isl_restriction *restr) |
| 151 | { |
| 152 | return restr ? isl_set_get_ctx(set: restr->source) : NULL; |
| 153 | } |
| 154 | |
| 155 | /* A private structure to keep track of a mapping together with |
| 156 | * a user-specified identifier and a boolean indicating whether |
| 157 | * the map represents a must or may access/dependence. |
| 158 | */ |
| 159 | struct isl_labeled_map { |
| 160 | struct isl_map *map; |
| 161 | void *data; |
| 162 | int must; |
| 163 | }; |
| 164 | |
| 165 | typedef isl_bool (*isl_access_coscheduled)(void *first, void *second); |
| 166 | |
| 167 | /* A structure containing the input for dependence analysis: |
| 168 | * - a sink |
| 169 | * - n_must + n_may (<= max_source) sources |
| 170 | * - a function for determining the relative order of sources and sink |
| 171 | * - an optional function "coscheduled" for determining whether sources |
| 172 | * may be coscheduled. If "coscheduled" is NULL, then the sources |
| 173 | * are assumed not to be coscheduled. |
| 174 | * The must sources are placed before the may sources. |
| 175 | * |
| 176 | * domain_map is an auxiliary map that maps the sink access relation |
| 177 | * to the domain of this access relation. |
| 178 | * This field is only needed when restrict_fn is set and |
| 179 | * the field itself is set by isl_access_info_compute_flow. |
| 180 | * |
| 181 | * restrict_fn is a callback that (if not NULL) will be called |
| 182 | * right before any lexicographical maximization. |
| 183 | */ |
| 184 | struct isl_access_info { |
| 185 | isl_map *domain_map; |
| 186 | struct isl_labeled_map sink; |
| 187 | isl_access_level_before level_before; |
| 188 | isl_access_coscheduled coscheduled; |
| 189 | |
| 190 | isl_access_restrict restrict_fn; |
| 191 | void *restrict_user; |
| 192 | |
| 193 | int max_source; |
| 194 | int n_must; |
| 195 | int n_may; |
| 196 | struct isl_labeled_map source[1]; |
| 197 | }; |
| 198 | |
| 199 | /* A structure containing the output of dependence analysis: |
| 200 | * - n_source dependences |
| 201 | * - a wrapped subset of the sink for which definitely no source could be found |
| 202 | * - a wrapped subset of the sink for which possibly no source could be found |
| 203 | */ |
| 204 | struct isl_flow { |
| 205 | isl_set *must_no_source; |
| 206 | isl_set *may_no_source; |
| 207 | int n_source; |
| 208 | struct isl_labeled_map *dep; |
| 209 | }; |
| 210 | |
| 211 | /* Construct an isl_access_info structure and fill it up with |
| 212 | * the given data. The number of sources is set to 0. |
| 213 | */ |
| 214 | __isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink, |
| 215 | void *sink_user, isl_access_level_before fn, int max_source) |
| 216 | { |
| 217 | isl_ctx *ctx; |
| 218 | struct isl_access_info *acc; |
| 219 | |
| 220 | if (!sink) |
| 221 | return NULL; |
| 222 | |
| 223 | ctx = isl_map_get_ctx(map: sink); |
| 224 | isl_assert(ctx, max_source >= 0, goto error); |
| 225 | |
| 226 | acc = isl_calloc(ctx, struct isl_access_info, |
| 227 | sizeof(struct isl_access_info) + |
| 228 | (max_source - 1) * sizeof(struct isl_labeled_map)); |
| 229 | if (!acc) |
| 230 | goto error; |
| 231 | |
| 232 | acc->sink.map = sink; |
| 233 | acc->sink.data = sink_user; |
| 234 | acc->level_before = fn; |
| 235 | acc->max_source = max_source; |
| 236 | acc->n_must = 0; |
| 237 | acc->n_may = 0; |
| 238 | |
| 239 | return acc; |
| 240 | error: |
| 241 | isl_map_free(map: sink); |
| 242 | return NULL; |
| 243 | } |
| 244 | |
| 245 | /* Free the given isl_access_info structure. |
| 246 | */ |
| 247 | __isl_null isl_access_info *isl_access_info_free( |
| 248 | __isl_take isl_access_info *acc) |
| 249 | { |
| 250 | int i; |
| 251 | |
| 252 | if (!acc) |
| 253 | return NULL; |
| 254 | isl_map_free(map: acc->domain_map); |
| 255 | isl_map_free(map: acc->sink.map); |
| 256 | for (i = 0; i < acc->n_must + acc->n_may; ++i) |
| 257 | isl_map_free(map: acc->source[i].map); |
| 258 | free(ptr: acc); |
| 259 | return NULL; |
| 260 | } |
| 261 | |
| 262 | isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc) |
| 263 | { |
| 264 | return acc ? isl_map_get_ctx(map: acc->sink.map) : NULL; |
| 265 | } |
| 266 | |
| 267 | __isl_give isl_access_info *isl_access_info_set_restrict( |
| 268 | __isl_take isl_access_info *acc, isl_access_restrict fn, void *user) |
| 269 | { |
| 270 | if (!acc) |
| 271 | return NULL; |
| 272 | acc->restrict_fn = fn; |
| 273 | acc->restrict_user = user; |
| 274 | return acc; |
| 275 | } |
| 276 | |
| 277 | /* Add another source to an isl_access_info structure, making |
| 278 | * sure the "must" sources are placed before the "may" sources. |
| 279 | * This function may be called at most max_source times on a |
| 280 | * given isl_access_info structure, with max_source as specified |
| 281 | * in the call to isl_access_info_alloc that constructed the structure. |
| 282 | */ |
| 283 | __isl_give isl_access_info *isl_access_info_add_source( |
| 284 | __isl_take isl_access_info *acc, __isl_take isl_map *source, |
| 285 | int must, void *source_user) |
| 286 | { |
| 287 | isl_ctx *ctx; |
| 288 | |
| 289 | if (!acc) |
| 290 | goto error; |
| 291 | ctx = isl_map_get_ctx(map: acc->sink.map); |
| 292 | isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error); |
| 293 | |
| 294 | if (must) { |
| 295 | if (acc->n_may) |
| 296 | acc->source[acc->n_must + acc->n_may] = |
| 297 | acc->source[acc->n_must]; |
| 298 | acc->source[acc->n_must].map = source; |
| 299 | acc->source[acc->n_must].data = source_user; |
| 300 | acc->source[acc->n_must].must = 1; |
| 301 | acc->n_must++; |
| 302 | } else { |
| 303 | acc->source[acc->n_must + acc->n_may].map = source; |
| 304 | acc->source[acc->n_must + acc->n_may].data = source_user; |
| 305 | acc->source[acc->n_must + acc->n_may].must = 0; |
| 306 | acc->n_may++; |
| 307 | } |
| 308 | |
| 309 | return acc; |
| 310 | error: |
| 311 | isl_map_free(map: source); |
| 312 | isl_access_info_free(acc); |
| 313 | return NULL; |
| 314 | } |
| 315 | |
| 316 | /* A helper struct carrying the isl_access_info and an error condition. |
| 317 | */ |
| 318 | struct access_sort_info { |
| 319 | isl_access_info *access_info; |
| 320 | int error; |
| 321 | }; |
| 322 | |
| 323 | /* Return -n, 0 or n (with n a positive value), depending on whether |
| 324 | * the source access identified by p1 should be sorted before, together |
| 325 | * or after that identified by p2. |
| 326 | * |
| 327 | * If p1 appears before p2, then it should be sorted first. |
| 328 | * For more generic initial schedules, it is possible that neither |
| 329 | * p1 nor p2 appears before the other, or at least not in any obvious way. |
| 330 | * We therefore also check if p2 appears before p1, in which case p2 |
| 331 | * should be sorted first. |
| 332 | * If not, we try to order the two statements based on the description |
| 333 | * of the iteration domains. This results in an arbitrary, but fairly |
| 334 | * stable ordering. |
| 335 | * |
| 336 | * In case of an error, sort_info.error is set to true and all elements are |
| 337 | * reported to be equal. |
| 338 | */ |
| 339 | static int access_sort_cmp(const void *p1, const void *p2, void *user) |
| 340 | { |
| 341 | struct access_sort_info *sort_info = user; |
| 342 | isl_access_info *acc = sort_info->access_info; |
| 343 | |
| 344 | if (sort_info->error) |
| 345 | return 0; |
| 346 | |
| 347 | const struct isl_labeled_map *i1, *i2; |
| 348 | int level1, level2; |
| 349 | uint32_t h1, h2; |
| 350 | i1 = (const struct isl_labeled_map *) p1; |
| 351 | i2 = (const struct isl_labeled_map *) p2; |
| 352 | |
| 353 | level1 = acc->level_before(i1->data, i2->data); |
| 354 | if (level1 < 0) |
| 355 | goto error; |
| 356 | if (level1 % 2) |
| 357 | return -1; |
| 358 | |
| 359 | level2 = acc->level_before(i2->data, i1->data); |
| 360 | if (level2 < 0) |
| 361 | goto error; |
| 362 | if (level2 % 2) |
| 363 | return 1; |
| 364 | |
| 365 | h1 = isl_map_get_hash(map: i1->map); |
| 366 | h2 = isl_map_get_hash(map: i2->map); |
| 367 | return h1 > h2 ? 1 : h1 < h2 ? -1 : 0; |
| 368 | error: |
| 369 | sort_info->error = 1; |
| 370 | return 0; |
| 371 | } |
| 372 | |
| 373 | /* Sort the must source accesses in their textual order. |
| 374 | */ |
| 375 | static __isl_give isl_access_info *isl_access_info_sort_sources( |
| 376 | __isl_take isl_access_info *acc) |
| 377 | { |
| 378 | struct access_sort_info sort_info; |
| 379 | |
| 380 | sort_info.access_info = acc; |
| 381 | sort_info.error = 0; |
| 382 | |
| 383 | if (!acc) |
| 384 | return NULL; |
| 385 | if (acc->n_must <= 1) |
| 386 | return acc; |
| 387 | |
| 388 | if (isl_sort(pbase: acc->source, total_elems: acc->n_must, size: sizeof(struct isl_labeled_map), |
| 389 | cmp: access_sort_cmp, arg: &sort_info) < 0) |
| 390 | return isl_access_info_free(acc); |
| 391 | if (sort_info.error) |
| 392 | return isl_access_info_free(acc); |
| 393 | |
| 394 | return acc; |
| 395 | } |
| 396 | |
| 397 | /* Align the parameters of the two spaces if needed and then call |
| 398 | * isl_space_join. |
| 399 | */ |
| 400 | static __isl_give isl_space *space_align_and_join(__isl_take isl_space *left, |
| 401 | __isl_take isl_space *right) |
| 402 | { |
| 403 | isl_bool equal_params; |
| 404 | |
| 405 | equal_params = isl_space_has_equal_params(space1: left, space2: right); |
| 406 | if (equal_params < 0) |
| 407 | goto error; |
| 408 | if (equal_params) |
| 409 | return isl_space_join(left, right); |
| 410 | |
| 411 | left = isl_space_align_params(space1: left, space2: isl_space_copy(space: right)); |
| 412 | right = isl_space_align_params(space1: right, space2: isl_space_copy(space: left)); |
| 413 | return isl_space_join(left, right); |
| 414 | error: |
| 415 | isl_space_free(space: left); |
| 416 | isl_space_free(space: right); |
| 417 | return NULL; |
| 418 | } |
| 419 | |
| 420 | /* Initialize an empty isl_flow structure corresponding to a given |
| 421 | * isl_access_info structure. |
| 422 | * For each must access, two dependences are created (initialized |
| 423 | * to the empty relation), one for the resulting must dependences |
| 424 | * and one for the resulting may dependences. May accesses can |
| 425 | * only lead to may dependences, so only one dependence is created |
| 426 | * for each of them. |
| 427 | * This function is private as isl_flow structures are only supposed |
| 428 | * to be created by isl_access_info_compute_flow. |
| 429 | */ |
| 430 | static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc) |
| 431 | { |
| 432 | int i, n; |
| 433 | struct isl_ctx *ctx; |
| 434 | struct isl_flow *dep; |
| 435 | |
| 436 | if (!acc) |
| 437 | return NULL; |
| 438 | |
| 439 | ctx = isl_map_get_ctx(map: acc->sink.map); |
| 440 | dep = isl_calloc_type(ctx, struct isl_flow); |
| 441 | if (!dep) |
| 442 | return NULL; |
| 443 | |
| 444 | n = 2 * acc->n_must + acc->n_may; |
| 445 | dep->dep = isl_calloc_array(ctx, struct isl_labeled_map, n); |
| 446 | if (n && !dep->dep) |
| 447 | goto error; |
| 448 | |
| 449 | dep->n_source = n; |
| 450 | for (i = 0; i < acc->n_must; ++i) { |
| 451 | isl_space *space; |
| 452 | space = space_align_and_join( |
| 453 | left: isl_map_get_space(map: acc->source[i].map), |
| 454 | right: isl_space_reverse(space: isl_map_get_space(map: acc->sink.map))); |
| 455 | dep->dep[2 * i].map = isl_map_empty(space); |
| 456 | dep->dep[2 * i + 1].map = isl_map_copy(map: dep->dep[2 * i].map); |
| 457 | dep->dep[2 * i].data = acc->source[i].data; |
| 458 | dep->dep[2 * i + 1].data = acc->source[i].data; |
| 459 | dep->dep[2 * i].must = 1; |
| 460 | dep->dep[2 * i + 1].must = 0; |
| 461 | if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map) |
| 462 | goto error; |
| 463 | } |
| 464 | for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) { |
| 465 | isl_space *space; |
| 466 | space = space_align_and_join( |
| 467 | left: isl_map_get_space(map: acc->source[i].map), |
| 468 | right: isl_space_reverse(space: isl_map_get_space(map: acc->sink.map))); |
| 469 | dep->dep[acc->n_must + i].map = isl_map_empty(space); |
| 470 | dep->dep[acc->n_must + i].data = acc->source[i].data; |
| 471 | dep->dep[acc->n_must + i].must = 0; |
| 472 | if (!dep->dep[acc->n_must + i].map) |
| 473 | goto error; |
| 474 | } |
| 475 | |
| 476 | return dep; |
| 477 | error: |
| 478 | isl_flow_free(deps: dep); |
| 479 | return NULL; |
| 480 | } |
| 481 | |
| 482 | /* Iterate over all sources and for each resulting flow dependence |
| 483 | * that is not empty, call the user specfied function. |
| 484 | * The second argument in this function call identifies the source, |
| 485 | * while the third argument correspond to the final argument of |
| 486 | * the isl_flow_foreach call. |
| 487 | */ |
| 488 | isl_stat isl_flow_foreach(__isl_keep isl_flow *deps, |
| 489 | isl_stat (*fn)(__isl_take isl_map *dep, int must, void *dep_user, |
| 490 | void *user), |
| 491 | void *user) |
| 492 | { |
| 493 | int i; |
| 494 | |
| 495 | if (!deps) |
| 496 | return isl_stat_error; |
| 497 | |
| 498 | for (i = 0; i < deps->n_source; ++i) { |
| 499 | if (isl_map_plain_is_empty(map: deps->dep[i].map)) |
| 500 | continue; |
| 501 | if (fn(isl_map_copy(map: deps->dep[i].map), deps->dep[i].must, |
| 502 | deps->dep[i].data, user) < 0) |
| 503 | return isl_stat_error; |
| 504 | } |
| 505 | |
| 506 | return isl_stat_ok; |
| 507 | } |
| 508 | |
| 509 | /* Return a copy of the subset of the sink for which no source could be found. |
| 510 | */ |
| 511 | __isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must) |
| 512 | { |
| 513 | if (!deps) |
| 514 | return NULL; |
| 515 | |
| 516 | if (must) |
| 517 | return isl_set_unwrap(set: isl_set_copy(set: deps->must_no_source)); |
| 518 | else |
| 519 | return isl_set_unwrap(set: isl_set_copy(set: deps->may_no_source)); |
| 520 | } |
| 521 | |
| 522 | __isl_null isl_flow *isl_flow_free(__isl_take isl_flow *deps) |
| 523 | { |
| 524 | int i; |
| 525 | |
| 526 | if (!deps) |
| 527 | return NULL; |
| 528 | isl_set_free(set: deps->must_no_source); |
| 529 | isl_set_free(set: deps->may_no_source); |
| 530 | if (deps->dep) { |
| 531 | for (i = 0; i < deps->n_source; ++i) |
| 532 | isl_map_free(map: deps->dep[i].map); |
| 533 | free(ptr: deps->dep); |
| 534 | } |
| 535 | free(ptr: deps); |
| 536 | |
| 537 | return NULL; |
| 538 | } |
| 539 | |
| 540 | isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps) |
| 541 | { |
| 542 | return deps ? isl_set_get_ctx(set: deps->must_no_source) : NULL; |
| 543 | } |
| 544 | |
| 545 | /* Return a map that enforces that the domain iteration occurs after |
| 546 | * the range iteration at the given level. |
| 547 | * If level is odd, then the domain iteration should occur after |
| 548 | * the target iteration in their shared level/2 outermost loops. |
| 549 | * In this case we simply need to enforce that these outermost |
| 550 | * loop iterations are the same. |
| 551 | * If level is even, then the loop iterator of the domain should |
| 552 | * be greater than the loop iterator of the range at the last |
| 553 | * of the level/2 shared loops, i.e., loop level/2 - 1. |
| 554 | */ |
| 555 | static __isl_give isl_map *after_at_level(__isl_take isl_space *space, |
| 556 | int level) |
| 557 | { |
| 558 | struct isl_basic_map *bmap; |
| 559 | |
| 560 | if (level % 2) |
| 561 | bmap = isl_basic_map_equal(space, n_equal: level/2); |
| 562 | else |
| 563 | bmap = isl_basic_map_more_at(space, pos: level/2 - 1); |
| 564 | |
| 565 | return isl_map_from_basic_map(bmap); |
| 566 | } |
| 567 | |
| 568 | /* Compute the partial lexicographic maximum of "dep" on domain "sink", |
| 569 | * but first check if the user has set acc->restrict_fn and if so |
| 570 | * update either the input or the output of the maximization problem |
| 571 | * with respect to the resulting restriction. |
| 572 | * |
| 573 | * Since the user expects a mapping from sink iterations to source iterations, |
| 574 | * whereas the domain of "dep" is a wrapped map, mapping sink iterations |
| 575 | * to accessed array elements, we first need to project out the accessed |
| 576 | * sink array elements by applying acc->domain_map. |
| 577 | * Similarly, the sink restriction specified by the user needs to be |
| 578 | * converted back to the wrapped map. |
| 579 | */ |
| 580 | static __isl_give isl_map *restricted_partial_lexmax( |
| 581 | __isl_keep isl_access_info *acc, __isl_take isl_map *dep, |
| 582 | int source, __isl_take isl_set *sink, __isl_give isl_set **empty) |
| 583 | { |
| 584 | isl_map *source_map; |
| 585 | isl_restriction *restr; |
| 586 | isl_set *sink_domain; |
| 587 | isl_set *sink_restr; |
| 588 | isl_map *res; |
| 589 | |
| 590 | if (!acc->restrict_fn) |
| 591 | return isl_map_partial_lexmax(map: dep, dom: sink, empty); |
| 592 | |
| 593 | source_map = isl_map_copy(map: dep); |
| 594 | source_map = isl_map_apply_domain(map1: source_map, |
| 595 | map2: isl_map_copy(map: acc->domain_map)); |
| 596 | sink_domain = isl_set_copy(set: sink); |
| 597 | sink_domain = isl_set_apply(set: sink_domain, map: isl_map_copy(map: acc->domain_map)); |
| 598 | restr = acc->restrict_fn(source_map, sink_domain, |
| 599 | acc->source[source].data, acc->restrict_user); |
| 600 | isl_set_free(set: sink_domain); |
| 601 | isl_map_free(map: source_map); |
| 602 | |
| 603 | if (!restr) |
| 604 | goto error; |
| 605 | if (restr->type == isl_restriction_type_input) { |
| 606 | dep = isl_map_intersect_range(map: dep, set: isl_set_copy(set: restr->source)); |
| 607 | sink_restr = isl_set_copy(set: restr->sink); |
| 608 | sink_restr = isl_set_apply(set: sink_restr, |
| 609 | map: isl_map_reverse(map: isl_map_copy(map: acc->domain_map))); |
| 610 | sink = isl_set_intersect(set1: sink, set2: sink_restr); |
| 611 | } else if (restr->type == isl_restriction_type_empty) { |
| 612 | isl_space *space = isl_map_get_space(map: dep); |
| 613 | isl_map_free(map: dep); |
| 614 | dep = isl_map_empty(space); |
| 615 | } |
| 616 | |
| 617 | res = isl_map_partial_lexmax(map: dep, dom: sink, empty); |
| 618 | |
| 619 | if (restr->type == isl_restriction_type_output) |
| 620 | res = isl_map_intersect_range(map: res, set: isl_set_copy(set: restr->source)); |
| 621 | |
| 622 | isl_restriction_free(restr); |
| 623 | return res; |
| 624 | error: |
| 625 | isl_map_free(map: dep); |
| 626 | isl_set_free(set: sink); |
| 627 | *empty = NULL; |
| 628 | return NULL; |
| 629 | } |
| 630 | |
| 631 | /* Compute the last iteration of must source j that precedes the sink |
| 632 | * at the given level for sink iterations in set_C. |
| 633 | * The subset of set_C for which no such iteration can be found is returned |
| 634 | * in *empty. |
| 635 | */ |
| 636 | static struct isl_map *last_source(struct isl_access_info *acc, |
| 637 | struct isl_set *set_C, |
| 638 | int j, int level, struct isl_set **empty) |
| 639 | { |
| 640 | struct isl_map *read_map; |
| 641 | struct isl_map *write_map; |
| 642 | struct isl_map *dep_map; |
| 643 | struct isl_map *after; |
| 644 | struct isl_map *result; |
| 645 | |
| 646 | read_map = isl_map_copy(map: acc->sink.map); |
| 647 | write_map = isl_map_copy(map: acc->source[j].map); |
| 648 | write_map = isl_map_reverse(map: write_map); |
| 649 | dep_map = isl_map_apply_range(map1: read_map, map2: write_map); |
| 650 | after = after_at_level(space: isl_map_get_space(map: dep_map), level); |
| 651 | dep_map = isl_map_intersect(map1: dep_map, map2: after); |
| 652 | result = restricted_partial_lexmax(acc, dep: dep_map, source: j, sink: set_C, empty); |
| 653 | result = isl_map_reverse(map: result); |
| 654 | |
| 655 | return result; |
| 656 | } |
| 657 | |
| 658 | /* For a given mapping between iterations of must source j and iterations |
| 659 | * of the sink, compute the last iteration of must source k preceding |
| 660 | * the sink at level before_level for any of the sink iterations, |
| 661 | * but following the corresponding iteration of must source j at level |
| 662 | * after_level. |
| 663 | */ |
| 664 | static struct isl_map *last_later_source(struct isl_access_info *acc, |
| 665 | struct isl_map *old_map, |
| 666 | int j, int before_level, |
| 667 | int k, int after_level, |
| 668 | struct isl_set **empty) |
| 669 | { |
| 670 | isl_space *space; |
| 671 | struct isl_set *set_C; |
| 672 | struct isl_map *read_map; |
| 673 | struct isl_map *write_map; |
| 674 | struct isl_map *dep_map; |
| 675 | struct isl_map *after_write; |
| 676 | struct isl_map *before_read; |
| 677 | struct isl_map *result; |
| 678 | |
| 679 | set_C = isl_map_range(map: isl_map_copy(map: old_map)); |
| 680 | read_map = isl_map_copy(map: acc->sink.map); |
| 681 | write_map = isl_map_copy(map: acc->source[k].map); |
| 682 | |
| 683 | write_map = isl_map_reverse(map: write_map); |
| 684 | dep_map = isl_map_apply_range(map1: read_map, map2: write_map); |
| 685 | space = space_align_and_join(left: isl_map_get_space(map: acc->source[k].map), |
| 686 | right: isl_space_reverse(space: isl_map_get_space(map: acc->source[j].map))); |
| 687 | after_write = after_at_level(space, level: after_level); |
| 688 | after_write = isl_map_apply_range(map1: after_write, map2: old_map); |
| 689 | after_write = isl_map_reverse(map: after_write); |
| 690 | dep_map = isl_map_intersect(map1: dep_map, map2: after_write); |
| 691 | before_read = after_at_level(space: isl_map_get_space(map: dep_map), level: before_level); |
| 692 | dep_map = isl_map_intersect(map1: dep_map, map2: before_read); |
| 693 | result = restricted_partial_lexmax(acc, dep: dep_map, source: k, sink: set_C, empty); |
| 694 | result = isl_map_reverse(map: result); |
| 695 | |
| 696 | return result; |
| 697 | } |
| 698 | |
| 699 | /* Given a shared_level between two accesses, return 1 if the |
| 700 | * the first can precede the second at the requested target_level. |
| 701 | * If the target level is odd, i.e., refers to a statement level |
| 702 | * dimension, then first needs to precede second at the requested |
| 703 | * level, i.e., shared_level must be equal to target_level. |
| 704 | * If the target level is odd, then the two loops should share |
| 705 | * at least the requested number of outer loops. |
| 706 | */ |
| 707 | static int can_precede_at_level(int shared_level, int target_level) |
| 708 | { |
| 709 | if (shared_level < target_level) |
| 710 | return 0; |
| 711 | if ((target_level % 2) && shared_level > target_level) |
| 712 | return 0; |
| 713 | return 1; |
| 714 | } |
| 715 | |
| 716 | /* Given a possible flow dependence temp_rel[j] between source j and the sink |
| 717 | * at level sink_level, remove those elements for which |
| 718 | * there is an iteration of another source k < j that is closer to the sink. |
| 719 | * The flow dependences temp_rel[k] are updated with the improved sources. |
| 720 | * Any improved source needs to precede the sink at the same level |
| 721 | * and needs to follow source j at the same or a deeper level. |
| 722 | * The lower this level, the later the execution date of source k. |
| 723 | * We therefore consider lower levels first. |
| 724 | * |
| 725 | * If temp_rel[j] is empty, then there can be no improvement and |
| 726 | * we return immediately. |
| 727 | * |
| 728 | * This function returns isl_stat_ok in case it was executed successfully and |
| 729 | * isl_stat_error in case of errors during the execution of this function. |
| 730 | */ |
| 731 | static isl_stat intermediate_sources(__isl_keep isl_access_info *acc, |
| 732 | struct isl_map **temp_rel, int j, int sink_level) |
| 733 | { |
| 734 | int k, level; |
| 735 | isl_size n_in = isl_map_dim(map: acc->source[j].map, type: isl_dim_in); |
| 736 | int depth = 2 * n_in + 1; |
| 737 | |
| 738 | if (n_in < 0) |
| 739 | return isl_stat_error; |
| 740 | if (isl_map_plain_is_empty(map: temp_rel[j])) |
| 741 | return isl_stat_ok; |
| 742 | |
| 743 | for (k = j - 1; k >= 0; --k) { |
| 744 | int plevel, plevel2; |
| 745 | plevel = acc->level_before(acc->source[k].data, acc->sink.data); |
| 746 | if (plevel < 0) |
| 747 | return isl_stat_error; |
| 748 | if (!can_precede_at_level(shared_level: plevel, target_level: sink_level)) |
| 749 | continue; |
| 750 | |
| 751 | plevel2 = acc->level_before(acc->source[j].data, |
| 752 | acc->source[k].data); |
| 753 | if (plevel2 < 0) |
| 754 | return isl_stat_error; |
| 755 | |
| 756 | for (level = sink_level; level <= depth; ++level) { |
| 757 | struct isl_map *T; |
| 758 | struct isl_set *trest; |
| 759 | struct isl_map *copy; |
| 760 | |
| 761 | if (!can_precede_at_level(shared_level: plevel2, target_level: level)) |
| 762 | continue; |
| 763 | |
| 764 | copy = isl_map_copy(map: temp_rel[j]); |
| 765 | T = last_later_source(acc, old_map: copy, j, before_level: sink_level, k, |
| 766 | after_level: level, empty: &trest); |
| 767 | if (isl_map_plain_is_empty(map: T)) { |
| 768 | isl_set_free(set: trest); |
| 769 | isl_map_free(map: T); |
| 770 | continue; |
| 771 | } |
| 772 | temp_rel[j] = isl_map_intersect_range(map: temp_rel[j], set: trest); |
| 773 | temp_rel[k] = isl_map_union_disjoint(map1: temp_rel[k], map2: T); |
| 774 | } |
| 775 | } |
| 776 | |
| 777 | return isl_stat_ok; |
| 778 | } |
| 779 | |
| 780 | /* Compute all iterations of may source j that precedes the sink at the given |
| 781 | * level for sink iterations in set_C. |
| 782 | */ |
| 783 | static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc, |
| 784 | __isl_take isl_set *set_C, int j, int level) |
| 785 | { |
| 786 | isl_map *read_map; |
| 787 | isl_map *write_map; |
| 788 | isl_map *dep_map; |
| 789 | isl_map *after; |
| 790 | |
| 791 | read_map = isl_map_copy(map: acc->sink.map); |
| 792 | read_map = isl_map_intersect_domain(map: read_map, set: set_C); |
| 793 | write_map = isl_map_copy(map: acc->source[acc->n_must + j].map); |
| 794 | write_map = isl_map_reverse(map: write_map); |
| 795 | dep_map = isl_map_apply_range(map1: read_map, map2: write_map); |
| 796 | after = after_at_level(space: isl_map_get_space(map: dep_map), level); |
| 797 | dep_map = isl_map_intersect(map1: dep_map, map2: after); |
| 798 | |
| 799 | return isl_map_reverse(map: dep_map); |
| 800 | } |
| 801 | |
| 802 | /* For a given mapping between iterations of must source k and iterations |
| 803 | * of the sink, compute all iterations of may source j preceding |
| 804 | * the sink at level before_level for any of the sink iterations, |
| 805 | * but following the corresponding iteration of must source k at level |
| 806 | * after_level. |
| 807 | */ |
| 808 | static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc, |
| 809 | __isl_take isl_map *old_map, |
| 810 | int j, int before_level, int k, int after_level) |
| 811 | { |
| 812 | isl_space *space; |
| 813 | isl_set *set_C; |
| 814 | isl_map *read_map; |
| 815 | isl_map *write_map; |
| 816 | isl_map *dep_map; |
| 817 | isl_map *after_write; |
| 818 | isl_map *before_read; |
| 819 | |
| 820 | set_C = isl_map_range(map: isl_map_copy(map: old_map)); |
| 821 | read_map = isl_map_copy(map: acc->sink.map); |
| 822 | read_map = isl_map_intersect_domain(map: read_map, set: set_C); |
| 823 | write_map = isl_map_copy(map: acc->source[acc->n_must + j].map); |
| 824 | |
| 825 | write_map = isl_map_reverse(map: write_map); |
| 826 | dep_map = isl_map_apply_range(map1: read_map, map2: write_map); |
| 827 | space = isl_space_join(left: isl_map_get_space( |
| 828 | map: acc->source[acc->n_must + j].map), |
| 829 | right: isl_space_reverse(space: isl_map_get_space(map: acc->source[k].map))); |
| 830 | after_write = after_at_level(space, level: after_level); |
| 831 | after_write = isl_map_apply_range(map1: after_write, map2: old_map); |
| 832 | after_write = isl_map_reverse(map: after_write); |
| 833 | dep_map = isl_map_intersect(map1: dep_map, map2: after_write); |
| 834 | before_read = after_at_level(space: isl_map_get_space(map: dep_map), level: before_level); |
| 835 | dep_map = isl_map_intersect(map1: dep_map, map2: before_read); |
| 836 | return isl_map_reverse(map: dep_map); |
| 837 | } |
| 838 | |
| 839 | /* Given the must and may dependence relations for the must accesses |
| 840 | * for level sink_level, check if there are any accesses of may access j |
| 841 | * that occur in between and return their union. |
| 842 | * If some of these accesses are intermediate with respect to |
| 843 | * (previously thought to be) must dependences, then these |
| 844 | * must dependences are turned into may dependences. |
| 845 | */ |
| 846 | static __isl_give isl_map *all_intermediate_sources( |
| 847 | __isl_keep isl_access_info *acc, __isl_take isl_map *map, |
| 848 | struct isl_map **must_rel, struct isl_map **may_rel, |
| 849 | int j, int sink_level) |
| 850 | { |
| 851 | int k, level; |
| 852 | isl_size n_in = isl_map_dim(map: acc->source[acc->n_must + j].map, |
| 853 | type: isl_dim_in); |
| 854 | int depth = 2 * n_in + 1; |
| 855 | |
| 856 | if (n_in < 0) |
| 857 | return isl_map_free(map); |
| 858 | for (k = 0; k < acc->n_must; ++k) { |
| 859 | int plevel; |
| 860 | |
| 861 | if (isl_map_plain_is_empty(map: may_rel[k]) && |
| 862 | isl_map_plain_is_empty(map: must_rel[k])) |
| 863 | continue; |
| 864 | |
| 865 | plevel = acc->level_before(acc->source[k].data, |
| 866 | acc->source[acc->n_must + j].data); |
| 867 | if (plevel < 0) |
| 868 | return isl_map_free(map); |
| 869 | |
| 870 | for (level = sink_level; level <= depth; ++level) { |
| 871 | isl_map *T; |
| 872 | isl_map *copy; |
| 873 | isl_set *ran; |
| 874 | |
| 875 | if (!can_precede_at_level(shared_level: plevel, target_level: level)) |
| 876 | continue; |
| 877 | |
| 878 | copy = isl_map_copy(map: may_rel[k]); |
| 879 | T = all_later_sources(acc, old_map: copy, j, before_level: sink_level, k, after_level: level); |
| 880 | map = isl_map_union(map1: map, map2: T); |
| 881 | |
| 882 | copy = isl_map_copy(map: must_rel[k]); |
| 883 | T = all_later_sources(acc, old_map: copy, j, before_level: sink_level, k, after_level: level); |
| 884 | ran = isl_map_range(map: isl_map_copy(map: T)); |
| 885 | map = isl_map_union(map1: map, map2: T); |
| 886 | may_rel[k] = isl_map_union_disjoint(map1: may_rel[k], |
| 887 | map2: isl_map_intersect_range(map: isl_map_copy(map: must_rel[k]), |
| 888 | set: isl_set_copy(set: ran))); |
| 889 | T = isl_map_from_domain_and_range( |
| 890 | domain: isl_set_universe( |
| 891 | space: isl_space_domain(space: isl_map_get_space(map: must_rel[k]))), |
| 892 | range: ran); |
| 893 | must_rel[k] = isl_map_subtract(map1: must_rel[k], map2: T); |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | return map; |
| 898 | } |
| 899 | |
| 900 | /* Given a dependence relation "old_map" between a must-source and the sink, |
| 901 | * return a subset of the dependences, augmented with instances |
| 902 | * of the source at position "pos" in "acc" that are coscheduled |
| 903 | * with the must-source and that access the same element. |
| 904 | * That is, if the input lives in a space T -> K, then the output |
| 905 | * lives in the space [T -> S] -> K, with S the space of source "pos", and |
| 906 | * the domain factor of the domain product is a subset of the input. |
| 907 | * The sources are considered to be coscheduled if they have the same values |
| 908 | * for the initial "depth" coordinates. |
| 909 | * |
| 910 | * First construct a dependence relation S -> K and a mapping |
| 911 | * between coscheduled sources T -> S. |
| 912 | * The second is combined with the original dependence relation T -> K |
| 913 | * to form a relation in T -> [S -> K], which is subsequently |
| 914 | * uncurried to [T -> S] -> K. |
| 915 | * This result is then intersected with the dependence relation S -> K |
| 916 | * to form the output. |
| 917 | * |
| 918 | * In case a negative depth is given, NULL is returned to indicate an error. |
| 919 | */ |
| 920 | static __isl_give isl_map *coscheduled_source(__isl_keep isl_access_info *acc, |
| 921 | __isl_keep isl_map *old_map, int pos, int depth) |
| 922 | { |
| 923 | isl_space *space; |
| 924 | isl_set *set_C; |
| 925 | isl_map *read_map; |
| 926 | isl_map *write_map; |
| 927 | isl_map *dep_map; |
| 928 | isl_map *equal; |
| 929 | isl_map *map; |
| 930 | |
| 931 | if (depth < 0) |
| 932 | return NULL; |
| 933 | |
| 934 | set_C = isl_map_range(map: isl_map_copy(map: old_map)); |
| 935 | read_map = isl_map_copy(map: acc->sink.map); |
| 936 | read_map = isl_map_intersect_domain(map: read_map, set: set_C); |
| 937 | write_map = isl_map_copy(map: acc->source[pos].map); |
| 938 | dep_map = isl_map_domain_product(map1: write_map, map2: read_map); |
| 939 | dep_map = isl_set_unwrap(set: isl_map_domain(bmap: dep_map)); |
| 940 | space = isl_space_join(left: isl_map_get_space(map: old_map), |
| 941 | right: isl_space_reverse(space: isl_map_get_space(map: dep_map))); |
| 942 | equal = isl_map_from_basic_map(bmap: isl_basic_map_equal(space, n_equal: depth)); |
| 943 | map = isl_map_range_product(map1: equal, map2: isl_map_copy(map: old_map)); |
| 944 | map = isl_map_uncurry(map); |
| 945 | map = isl_map_intersect_domain_factor_range(map, factor: dep_map); |
| 946 | |
| 947 | return map; |
| 948 | } |
| 949 | |
| 950 | /* After the dependences derived from a must-source have been computed |
| 951 | * at a certain level, check if any of the sources of the must-dependences |
| 952 | * may be coscheduled with other sources. |
| 953 | * If they are any such sources, then there is no way of determining |
| 954 | * which of the sources actually comes last and the must-dependences |
| 955 | * need to be turned into may-dependences, while dependences from |
| 956 | * the other sources need to be added to the may-dependences as well. |
| 957 | * "acc" describes the sources and a callback for checking whether |
| 958 | * two sources may be coscheduled. If acc->coscheduled is NULL then |
| 959 | * the sources are assumed not to be coscheduled. |
| 960 | * "must_rel" and "may_rel" describe the must and may-dependence relations |
| 961 | * computed at the current level for the must-sources. Some of the dependences |
| 962 | * may be moved from "must_rel" to "may_rel". |
| 963 | * "flow" contains all dependences computed so far (apart from those |
| 964 | * in "must_rel" and "may_rel") and may be updated with additional |
| 965 | * dependences derived from may-sources. |
| 966 | * |
| 967 | * In particular, consider all the must-sources with a non-empty |
| 968 | * dependence relation in "must_rel". They are considered in reverse |
| 969 | * order because that is the order in which they are considered in the caller. |
| 970 | * If any of the must-sources are coscheduled, then the last one |
| 971 | * is the one that will have a corresponding dependence relation. |
| 972 | * For each must-source i, consider both all the previous must-sources |
| 973 | * and all the may-sources. If any of those may be coscheduled with |
| 974 | * must-source i, then compute the coscheduled instances that access |
| 975 | * the same memory elements. The result is a relation [T -> S] -> K. |
| 976 | * The projection onto T -> K is a subset of the must-dependence relation |
| 977 | * that needs to be turned into may-dependences. |
| 978 | * The projection onto S -> K needs to be added to the may-dependences |
| 979 | * of source S. |
| 980 | * Since a given must-source instance may be coscheduled with several |
| 981 | * other source instances, the dependences that need to be turned |
| 982 | * into may-dependences are first collected and only actually removed |
| 983 | * from the must-dependences after all other sources have been considered. |
| 984 | */ |
| 985 | static __isl_give isl_flow *handle_coscheduled(__isl_keep isl_access_info *acc, |
| 986 | __isl_keep isl_map **must_rel, __isl_keep isl_map **may_rel, |
| 987 | __isl_take isl_flow *flow) |
| 988 | { |
| 989 | int i, j; |
| 990 | |
| 991 | if (!acc->coscheduled) |
| 992 | return flow; |
| 993 | for (i = acc->n_must - 1; i >= 0; --i) { |
| 994 | isl_map *move; |
| 995 | |
| 996 | if (isl_map_plain_is_empty(map: must_rel[i])) |
| 997 | continue; |
| 998 | move = isl_map_empty(space: isl_map_get_space(map: must_rel[i])); |
| 999 | for (j = i - 1; j >= 0; --j) { |
| 1000 | int depth; |
| 1001 | isl_bool coscheduled; |
| 1002 | isl_map *map, *factor; |
| 1003 | |
| 1004 | coscheduled = acc->coscheduled(acc->source[i].data, |
| 1005 | acc->source[j].data); |
| 1006 | if (coscheduled < 0) { |
| 1007 | isl_map_free(map: move); |
| 1008 | return isl_flow_free(deps: flow); |
| 1009 | } |
| 1010 | if (!coscheduled) |
| 1011 | continue; |
| 1012 | depth = acc->level_before(acc->source[i].data, |
| 1013 | acc->source[j].data) / 2; |
| 1014 | map = coscheduled_source(acc, old_map: must_rel[i], pos: j, depth); |
| 1015 | factor = isl_map_domain_factor_range(map: isl_map_copy(map)); |
| 1016 | may_rel[j] = isl_map_union(map1: may_rel[j], map2: factor); |
| 1017 | map = isl_map_domain_factor_domain(map); |
| 1018 | move = isl_map_union(map1: move, map2: map); |
| 1019 | } |
| 1020 | for (j = 0; j < acc->n_may; ++j) { |
| 1021 | int depth, pos; |
| 1022 | isl_bool coscheduled; |
| 1023 | isl_map *map, *factor; |
| 1024 | |
| 1025 | pos = acc->n_must + j; |
| 1026 | coscheduled = acc->coscheduled(acc->source[i].data, |
| 1027 | acc->source[pos].data); |
| 1028 | if (coscheduled < 0) { |
| 1029 | isl_map_free(map: move); |
| 1030 | return isl_flow_free(deps: flow); |
| 1031 | } |
| 1032 | if (!coscheduled) |
| 1033 | continue; |
| 1034 | depth = acc->level_before(acc->source[i].data, |
| 1035 | acc->source[pos].data) / 2; |
| 1036 | map = coscheduled_source(acc, old_map: must_rel[i], pos, depth); |
| 1037 | factor = isl_map_domain_factor_range(map: isl_map_copy(map)); |
| 1038 | pos = 2 * acc->n_must + j; |
| 1039 | flow->dep[pos].map = isl_map_union(map1: flow->dep[pos].map, |
| 1040 | map2: factor); |
| 1041 | map = isl_map_domain_factor_domain(map); |
| 1042 | move = isl_map_union(map1: move, map2: map); |
| 1043 | } |
| 1044 | must_rel[i] = isl_map_subtract(map1: must_rel[i], map2: isl_map_copy(map: move)); |
| 1045 | may_rel[i] = isl_map_union(map1: may_rel[i], map2: move); |
| 1046 | } |
| 1047 | |
| 1048 | return flow; |
| 1049 | } |
| 1050 | |
| 1051 | /* Compute dependences for the case where all accesses are "may" |
| 1052 | * accesses, which boils down to computing memory based dependences. |
| 1053 | * The generic algorithm would also work in this case, but it would |
| 1054 | * be overkill to use it. |
| 1055 | */ |
| 1056 | static __isl_give isl_flow *compute_mem_based_dependences( |
| 1057 | __isl_keep isl_access_info *acc) |
| 1058 | { |
| 1059 | int i; |
| 1060 | isl_set *mustdo; |
| 1061 | isl_set *maydo; |
| 1062 | isl_flow *res; |
| 1063 | |
| 1064 | res = isl_flow_alloc(acc); |
| 1065 | if (!res) |
| 1066 | return NULL; |
| 1067 | |
| 1068 | mustdo = isl_map_domain(bmap: isl_map_copy(map: acc->sink.map)); |
| 1069 | maydo = isl_set_copy(set: mustdo); |
| 1070 | |
| 1071 | for (i = 0; i < acc->n_may; ++i) { |
| 1072 | int plevel; |
| 1073 | int is_before; |
| 1074 | isl_space *space; |
| 1075 | isl_map *before; |
| 1076 | isl_map *dep; |
| 1077 | |
| 1078 | plevel = acc->level_before(acc->source[i].data, acc->sink.data); |
| 1079 | if (plevel < 0) |
| 1080 | goto error; |
| 1081 | |
| 1082 | is_before = plevel & 1; |
| 1083 | plevel >>= 1; |
| 1084 | |
| 1085 | space = isl_map_get_space(map: res->dep[i].map); |
| 1086 | if (is_before) |
| 1087 | before = isl_map_lex_le_first(space, n: plevel); |
| 1088 | else |
| 1089 | before = isl_map_lex_lt_first(space, n: plevel); |
| 1090 | dep = isl_map_apply_range(map1: isl_map_copy(map: acc->source[i].map), |
| 1091 | map2: isl_map_reverse(map: isl_map_copy(map: acc->sink.map))); |
| 1092 | dep = isl_map_intersect(map1: dep, map2: before); |
| 1093 | mustdo = isl_set_subtract(set1: mustdo, |
| 1094 | set2: isl_map_range(map: isl_map_copy(map: dep))); |
| 1095 | res->dep[i].map = isl_map_union(map1: res->dep[i].map, map2: dep); |
| 1096 | } |
| 1097 | |
| 1098 | res->may_no_source = isl_set_subtract(set1: maydo, set2: isl_set_copy(set: mustdo)); |
| 1099 | res->must_no_source = mustdo; |
| 1100 | |
| 1101 | return res; |
| 1102 | error: |
| 1103 | isl_set_free(set: mustdo); |
| 1104 | isl_set_free(set: maydo); |
| 1105 | isl_flow_free(deps: res); |
| 1106 | return NULL; |
| 1107 | } |
| 1108 | |
| 1109 | /* Compute dependences for the case where there is at least one |
| 1110 | * "must" access. |
| 1111 | * |
| 1112 | * The core algorithm considers all levels in which a source may precede |
| 1113 | * the sink, where a level may either be a statement level or a loop level. |
| 1114 | * The outermost statement level is 1, the first loop level is 2, etc... |
| 1115 | * The algorithm basically does the following: |
| 1116 | * for all levels l of the read access from innermost to outermost |
| 1117 | * for all sources w that may precede the sink access at that level |
| 1118 | * compute the last iteration of the source that precedes the sink access |
| 1119 | * at that level |
| 1120 | * add result to possible last accesses at level l of source w |
| 1121 | * for all sources w2 that we haven't considered yet at this level that may |
| 1122 | * also precede the sink access |
| 1123 | * for all levels l2 of w from l to innermost |
| 1124 | * for all possible last accesses dep of w at l |
| 1125 | * compute last iteration of w2 between the source and sink |
| 1126 | * of dep |
| 1127 | * add result to possible last accesses at level l of write w2 |
| 1128 | * and replace possible last accesses dep by the remainder |
| 1129 | * |
| 1130 | * |
| 1131 | * The above algorithm is applied to the must access. During the course |
| 1132 | * of the algorithm, we keep track of sink iterations that still |
| 1133 | * need to be considered. These iterations are split into those that |
| 1134 | * haven't been matched to any source access (mustdo) and those that have only |
| 1135 | * been matched to may accesses (maydo). |
| 1136 | * At the end of each level, must-sources and may-sources that are coscheduled |
| 1137 | * with the sources of the must-dependences at that level are considered. |
| 1138 | * If any coscheduled instances are found, then corresponding may-dependences |
| 1139 | * are added and the original must-dependences are turned into may-dependences. |
| 1140 | * Afterwards, the may accesses that occur after must-dependence sources |
| 1141 | * are considered. |
| 1142 | * In particular, we consider may accesses that precede the remaining |
| 1143 | * sink iterations, moving elements from mustdo to maydo when appropriate, |
| 1144 | * and may accesses that occur between a must source and a sink of any |
| 1145 | * dependences found at the current level, turning must dependences into |
| 1146 | * may dependences when appropriate. |
| 1147 | * |
| 1148 | */ |
| 1149 | static __isl_give isl_flow *compute_val_based_dependences( |
| 1150 | __isl_keep isl_access_info *acc) |
| 1151 | { |
| 1152 | isl_ctx *ctx; |
| 1153 | isl_flow *res; |
| 1154 | isl_set *mustdo = NULL; |
| 1155 | isl_set *maydo = NULL; |
| 1156 | int level, j; |
| 1157 | isl_size n_in; |
| 1158 | int depth; |
| 1159 | isl_map **must_rel = NULL; |
| 1160 | isl_map **may_rel = NULL; |
| 1161 | |
| 1162 | if (!acc) |
| 1163 | return NULL; |
| 1164 | |
| 1165 | res = isl_flow_alloc(acc); |
| 1166 | if (!res) |
| 1167 | goto error; |
| 1168 | ctx = isl_map_get_ctx(map: acc->sink.map); |
| 1169 | |
| 1170 | n_in = isl_map_dim(map: acc->sink.map, type: isl_dim_in); |
| 1171 | if (n_in < 0) |
| 1172 | goto error; |
| 1173 | depth = 2 * n_in + 1; |
| 1174 | mustdo = isl_map_domain(bmap: isl_map_copy(map: acc->sink.map)); |
| 1175 | maydo = isl_set_empty(space: isl_set_get_space(set: mustdo)); |
| 1176 | if (!mustdo || !maydo) |
| 1177 | goto error; |
| 1178 | if (isl_set_plain_is_empty(set: mustdo)) |
| 1179 | goto done; |
| 1180 | |
| 1181 | must_rel = isl_calloc_array(ctx, struct isl_map *, acc->n_must); |
| 1182 | may_rel = isl_calloc_array(ctx, struct isl_map *, acc->n_must); |
| 1183 | if (!must_rel || !may_rel) |
| 1184 | goto error; |
| 1185 | |
| 1186 | for (level = depth; level >= 1; --level) { |
| 1187 | for (j = acc->n_must-1; j >=0; --j) { |
| 1188 | isl_space *space; |
| 1189 | space = isl_map_get_space(map: res->dep[2 * j].map); |
| 1190 | must_rel[j] = isl_map_empty(space); |
| 1191 | may_rel[j] = isl_map_copy(map: must_rel[j]); |
| 1192 | } |
| 1193 | |
| 1194 | for (j = acc->n_must - 1; j >= 0; --j) { |
| 1195 | struct isl_map *T; |
| 1196 | struct isl_set *rest; |
| 1197 | int plevel; |
| 1198 | |
| 1199 | plevel = acc->level_before(acc->source[j].data, |
| 1200 | acc->sink.data); |
| 1201 | if (plevel < 0) |
| 1202 | goto error; |
| 1203 | if (!can_precede_at_level(shared_level: plevel, target_level: level)) |
| 1204 | continue; |
| 1205 | |
| 1206 | T = last_source(acc, set_C: mustdo, j, level, empty: &rest); |
| 1207 | must_rel[j] = isl_map_union_disjoint(map1: must_rel[j], map2: T); |
| 1208 | mustdo = rest; |
| 1209 | |
| 1210 | if (intermediate_sources(acc, temp_rel: must_rel, j, sink_level: level) < 0) |
| 1211 | goto error; |
| 1212 | |
| 1213 | T = last_source(acc, set_C: maydo, j, level, empty: &rest); |
| 1214 | may_rel[j] = isl_map_union_disjoint(map1: may_rel[j], map2: T); |
| 1215 | maydo = rest; |
| 1216 | |
| 1217 | if (intermediate_sources(acc, temp_rel: may_rel, j, sink_level: level) < 0) |
| 1218 | goto error; |
| 1219 | |
| 1220 | if (isl_set_plain_is_empty(set: mustdo) && |
| 1221 | isl_set_plain_is_empty(set: maydo)) |
| 1222 | break; |
| 1223 | } |
| 1224 | for (j = j - 1; j >= 0; --j) { |
| 1225 | int plevel; |
| 1226 | |
| 1227 | plevel = acc->level_before(acc->source[j].data, |
| 1228 | acc->sink.data); |
| 1229 | if (plevel < 0) |
| 1230 | goto error; |
| 1231 | if (!can_precede_at_level(shared_level: plevel, target_level: level)) |
| 1232 | continue; |
| 1233 | |
| 1234 | if (intermediate_sources(acc, temp_rel: must_rel, j, sink_level: level) < 0) |
| 1235 | goto error; |
| 1236 | if (intermediate_sources(acc, temp_rel: may_rel, j, sink_level: level) < 0) |
| 1237 | goto error; |
| 1238 | } |
| 1239 | |
| 1240 | res = handle_coscheduled(acc, must_rel, may_rel, flow: res); |
| 1241 | if (!res) |
| 1242 | goto error; |
| 1243 | |
| 1244 | for (j = 0; j < acc->n_may; ++j) { |
| 1245 | int plevel; |
| 1246 | isl_map *T; |
| 1247 | isl_set *ran; |
| 1248 | |
| 1249 | plevel = acc->level_before(acc->source[acc->n_must + j].data, |
| 1250 | acc->sink.data); |
| 1251 | if (plevel < 0) |
| 1252 | goto error; |
| 1253 | if (!can_precede_at_level(shared_level: plevel, target_level: level)) |
| 1254 | continue; |
| 1255 | |
| 1256 | T = all_sources(acc, set_C: isl_set_copy(set: maydo), j, level); |
| 1257 | res->dep[2 * acc->n_must + j].map = |
| 1258 | isl_map_union(map1: res->dep[2 * acc->n_must + j].map, map2: T); |
| 1259 | T = all_sources(acc, set_C: isl_set_copy(set: mustdo), j, level); |
| 1260 | ran = isl_map_range(map: isl_map_copy(map: T)); |
| 1261 | res->dep[2 * acc->n_must + j].map = |
| 1262 | isl_map_union(map1: res->dep[2 * acc->n_must + j].map, map2: T); |
| 1263 | mustdo = isl_set_subtract(set1: mustdo, set2: isl_set_copy(set: ran)); |
| 1264 | maydo = isl_set_union_disjoint(set1: maydo, set2: ran); |
| 1265 | |
| 1266 | T = res->dep[2 * acc->n_must + j].map; |
| 1267 | T = all_intermediate_sources(acc, map: T, must_rel, may_rel, |
| 1268 | j, sink_level: level); |
| 1269 | res->dep[2 * acc->n_must + j].map = T; |
| 1270 | } |
| 1271 | |
| 1272 | for (j = acc->n_must - 1; j >= 0; --j) { |
| 1273 | res->dep[2 * j].map = |
| 1274 | isl_map_union_disjoint(map1: res->dep[2 * j].map, |
| 1275 | map2: must_rel[j]); |
| 1276 | res->dep[2 * j + 1].map = |
| 1277 | isl_map_union_disjoint(map1: res->dep[2 * j + 1].map, |
| 1278 | map2: may_rel[j]); |
| 1279 | } |
| 1280 | |
| 1281 | if (isl_set_plain_is_empty(set: mustdo) && |
| 1282 | isl_set_plain_is_empty(set: maydo)) |
| 1283 | break; |
| 1284 | } |
| 1285 | |
| 1286 | free(ptr: must_rel); |
| 1287 | free(ptr: may_rel); |
| 1288 | done: |
| 1289 | res->must_no_source = mustdo; |
| 1290 | res->may_no_source = maydo; |
| 1291 | return res; |
| 1292 | error: |
| 1293 | if (must_rel) |
| 1294 | for (j = 0; j < acc->n_must; ++j) |
| 1295 | isl_map_free(map: must_rel[j]); |
| 1296 | if (may_rel) |
| 1297 | for (j = 0; j < acc->n_must; ++j) |
| 1298 | isl_map_free(map: may_rel[j]); |
| 1299 | isl_flow_free(deps: res); |
| 1300 | isl_set_free(set: mustdo); |
| 1301 | isl_set_free(set: maydo); |
| 1302 | free(ptr: must_rel); |
| 1303 | free(ptr: may_rel); |
| 1304 | return NULL; |
| 1305 | } |
| 1306 | |
| 1307 | /* Given a "sink" access, a list of n "source" accesses, |
| 1308 | * compute for each iteration of the sink access |
| 1309 | * and for each element accessed by that iteration, |
| 1310 | * the source access in the list that last accessed the |
| 1311 | * element accessed by the sink access before this sink access. |
| 1312 | * Each access is given as a map from the loop iterators |
| 1313 | * to the array indices. |
| 1314 | * The result is a list of n relations between source and sink |
| 1315 | * iterations and a subset of the domain of the sink access, |
| 1316 | * corresponding to those iterations that access an element |
| 1317 | * not previously accessed. |
| 1318 | * |
| 1319 | * To deal with multi-valued sink access relations, the sink iteration |
| 1320 | * domain is first extended with dimensions that correspond to the data |
| 1321 | * space. However, these extra dimensions are not projected out again. |
| 1322 | * It is up to the caller to decide whether these dimensions should be kept. |
| 1323 | */ |
| 1324 | static __isl_give isl_flow *access_info_compute_flow_core( |
| 1325 | __isl_take isl_access_info *acc) |
| 1326 | { |
| 1327 | struct isl_flow *res = NULL; |
| 1328 | |
| 1329 | if (!acc) |
| 1330 | return NULL; |
| 1331 | |
| 1332 | acc->sink.map = isl_map_range_map(map: acc->sink.map); |
| 1333 | if (!acc->sink.map) |
| 1334 | goto error; |
| 1335 | |
| 1336 | if (acc->n_must == 0) |
| 1337 | res = compute_mem_based_dependences(acc); |
| 1338 | else { |
| 1339 | acc = isl_access_info_sort_sources(acc); |
| 1340 | res = compute_val_based_dependences(acc); |
| 1341 | } |
| 1342 | acc = isl_access_info_free(acc); |
| 1343 | if (!res) |
| 1344 | return NULL; |
| 1345 | if (!res->must_no_source || !res->may_no_source) |
| 1346 | goto error; |
| 1347 | return res; |
| 1348 | error: |
| 1349 | isl_access_info_free(acc); |
| 1350 | isl_flow_free(deps: res); |
| 1351 | return NULL; |
| 1352 | } |
| 1353 | |
| 1354 | /* Given a "sink" access, a list of n "source" accesses, |
| 1355 | * compute for each iteration of the sink access |
| 1356 | * and for each element accessed by that iteration, |
| 1357 | * the source access in the list that last accessed the |
| 1358 | * element accessed by the sink access before this sink access. |
| 1359 | * Each access is given as a map from the loop iterators |
| 1360 | * to the array indices. |
| 1361 | * The result is a list of n relations between source and sink |
| 1362 | * iterations and a subset of the domain of the sink access, |
| 1363 | * corresponding to those iterations that access an element |
| 1364 | * not previously accessed. |
| 1365 | * |
| 1366 | * To deal with multi-valued sink access relations, |
| 1367 | * access_info_compute_flow_core extends the sink iteration domain |
| 1368 | * with dimensions that correspond to the data space. These extra dimensions |
| 1369 | * are projected out from the result of access_info_compute_flow_core. |
| 1370 | */ |
| 1371 | __isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc) |
| 1372 | { |
| 1373 | int j; |
| 1374 | struct isl_flow *res; |
| 1375 | |
| 1376 | if (!acc) |
| 1377 | return NULL; |
| 1378 | |
| 1379 | acc->domain_map = isl_map_domain_map(map: isl_map_copy(map: acc->sink.map)); |
| 1380 | res = access_info_compute_flow_core(acc); |
| 1381 | if (!res) |
| 1382 | return NULL; |
| 1383 | |
| 1384 | for (j = 0; j < res->n_source; ++j) { |
| 1385 | res->dep[j].map = isl_map_range_factor_domain(map: res->dep[j].map); |
| 1386 | if (!res->dep[j].map) |
| 1387 | goto error; |
| 1388 | } |
| 1389 | |
| 1390 | return res; |
| 1391 | error: |
| 1392 | isl_flow_free(deps: res); |
| 1393 | return NULL; |
| 1394 | } |
| 1395 | |
| 1396 | |
| 1397 | /* Keep track of some information about a schedule for a given |
| 1398 | * access. In particular, keep track of which dimensions |
| 1399 | * have a constant value and of the actual constant values. |
| 1400 | */ |
| 1401 | struct isl_sched_info { |
| 1402 | int *is_cst; |
| 1403 | isl_vec *cst; |
| 1404 | }; |
| 1405 | |
| 1406 | static void sched_info_free(__isl_take struct isl_sched_info *info) |
| 1407 | { |
| 1408 | if (!info) |
| 1409 | return; |
| 1410 | isl_vec_free(vec: info->cst); |
| 1411 | free(ptr: info->is_cst); |
| 1412 | free(ptr: info); |
| 1413 | } |
| 1414 | |
| 1415 | /* Extract information on the constant dimensions of the schedule |
| 1416 | * for a given access. The "map" is of the form |
| 1417 | * |
| 1418 | * [S -> D] -> A |
| 1419 | * |
| 1420 | * with S the schedule domain, D the iteration domain and A the data domain. |
| 1421 | */ |
| 1422 | static __isl_give struct isl_sched_info *sched_info_alloc( |
| 1423 | __isl_keep isl_map *map) |
| 1424 | { |
| 1425 | isl_ctx *ctx; |
| 1426 | isl_space *space; |
| 1427 | struct isl_sched_info *info; |
| 1428 | int i; |
| 1429 | isl_size n; |
| 1430 | |
| 1431 | if (!map) |
| 1432 | return NULL; |
| 1433 | |
| 1434 | space = isl_space_unwrap(space: isl_space_domain(space: isl_map_get_space(map))); |
| 1435 | if (!space) |
| 1436 | return NULL; |
| 1437 | n = isl_space_dim(space, type: isl_dim_in); |
| 1438 | isl_space_free(space); |
| 1439 | if (n < 0) |
| 1440 | return NULL; |
| 1441 | |
| 1442 | ctx = isl_map_get_ctx(map); |
| 1443 | info = isl_alloc_type(ctx, struct isl_sched_info); |
| 1444 | if (!info) |
| 1445 | return NULL; |
| 1446 | info->is_cst = isl_alloc_array(ctx, int, n); |
| 1447 | info->cst = isl_vec_alloc(ctx, size: n); |
| 1448 | if (n && (!info->is_cst || !info->cst)) |
| 1449 | goto error; |
| 1450 | |
| 1451 | for (i = 0; i < n; ++i) { |
| 1452 | isl_val *v; |
| 1453 | |
| 1454 | v = isl_map_plain_get_val_if_fixed(map, type: isl_dim_in, pos: i); |
| 1455 | if (!v) |
| 1456 | goto error; |
| 1457 | info->is_cst[i] = !isl_val_is_nan(v); |
| 1458 | if (info->is_cst[i]) |
| 1459 | info->cst = isl_vec_set_element_val(vec: info->cst, pos: i, v); |
| 1460 | else |
| 1461 | isl_val_free(v); |
| 1462 | } |
| 1463 | |
| 1464 | return info; |
| 1465 | error: |
| 1466 | sched_info_free(info); |
| 1467 | return NULL; |
| 1468 | } |
| 1469 | |
| 1470 | /* The different types of access relations that isl_union_access_info |
| 1471 | * keeps track of. |
| 1472 | |
| 1473 | * "isl_access_sink" represents the sink accesses. |
| 1474 | * "isl_access_must_source" represents the definite source accesses. |
| 1475 | * "isl_access_may_source" represents the possible source accesses. |
| 1476 | * "isl_access_kill" represents the kills. |
| 1477 | * |
| 1478 | * isl_access_sink is sometimes treated differently and |
| 1479 | * should therefore appear first. |
| 1480 | */ |
| 1481 | enum isl_access_type { |
| 1482 | isl_access_sink, |
| 1483 | isl_access_must_source, |
| 1484 | isl_access_may_source, |
| 1485 | isl_access_kill, |
| 1486 | isl_access_end |
| 1487 | }; |
| 1488 | |
| 1489 | /* This structure represents the input for a dependence analysis computation. |
| 1490 | * |
| 1491 | * "access" contains the access relations. |
| 1492 | * |
| 1493 | * "schedule" or "schedule_map" represents the execution order. |
| 1494 | * Exactly one of these fields should be NULL. The other field |
| 1495 | * determines the execution order. |
| 1496 | * |
| 1497 | * The domains of these four maps refer to the same iteration spaces(s). |
| 1498 | * The ranges of the first three maps also refer to the same data space(s). |
| 1499 | * |
| 1500 | * After a call to isl_union_access_info_introduce_schedule, |
| 1501 | * the "schedule_map" field no longer contains useful information. |
| 1502 | */ |
| 1503 | struct isl_union_access_info { |
| 1504 | isl_union_map *access[isl_access_end]; |
| 1505 | |
| 1506 | isl_schedule *schedule; |
| 1507 | isl_union_map *schedule_map; |
| 1508 | }; |
| 1509 | |
| 1510 | /* Free "access" and return NULL. |
| 1511 | */ |
| 1512 | __isl_null isl_union_access_info *isl_union_access_info_free( |
| 1513 | __isl_take isl_union_access_info *access) |
| 1514 | { |
| 1515 | enum isl_access_type i; |
| 1516 | |
| 1517 | if (!access) |
| 1518 | return NULL; |
| 1519 | |
| 1520 | for (i = isl_access_sink; i < isl_access_end; ++i) |
| 1521 | isl_union_map_free(umap: access->access[i]); |
| 1522 | isl_schedule_free(sched: access->schedule); |
| 1523 | isl_union_map_free(umap: access->schedule_map); |
| 1524 | free(ptr: access); |
| 1525 | |
| 1526 | return NULL; |
| 1527 | } |
| 1528 | |
| 1529 | /* Return the isl_ctx to which "access" belongs. |
| 1530 | */ |
| 1531 | isl_ctx *isl_union_access_info_get_ctx(__isl_keep isl_union_access_info *access) |
| 1532 | { |
| 1533 | if (!access) |
| 1534 | return NULL; |
| 1535 | return isl_union_map_get_ctx(umap: access->access[isl_access_sink]); |
| 1536 | } |
| 1537 | |
| 1538 | /* Construct an empty (invalid) isl_union_access_info object. |
| 1539 | * The caller is responsible for setting the sink access relation and |
| 1540 | * initializing all the other fields, e.g., by calling |
| 1541 | * isl_union_access_info_init. |
| 1542 | */ |
| 1543 | static __isl_give isl_union_access_info *isl_union_access_info_alloc( |
| 1544 | isl_ctx *ctx) |
| 1545 | { |
| 1546 | return isl_calloc_type(ctx, isl_union_access_info); |
| 1547 | } |
| 1548 | |
| 1549 | /* Initialize all the fields of "info", except the sink access relation, |
| 1550 | * which is assumed to have been set by the caller. |
| 1551 | * |
| 1552 | * By default, we use the schedule field of the isl_union_access_info, |
| 1553 | * but this may be overridden by a call |
| 1554 | * to isl_union_access_info_set_schedule_map. |
| 1555 | */ |
| 1556 | static __isl_give isl_union_access_info *isl_union_access_info_init( |
| 1557 | __isl_take isl_union_access_info *info) |
| 1558 | { |
| 1559 | isl_space *space; |
| 1560 | isl_union_map *empty; |
| 1561 | enum isl_access_type i; |
| 1562 | |
| 1563 | if (!info) |
| 1564 | return NULL; |
| 1565 | if (!info->access[isl_access_sink]) |
| 1566 | return isl_union_access_info_free(access: info); |
| 1567 | |
| 1568 | space = isl_union_map_get_space(umap: info->access[isl_access_sink]); |
| 1569 | empty = isl_union_map_empty(space: isl_space_copy(space)); |
| 1570 | for (i = isl_access_sink + 1; i < isl_access_end; ++i) |
| 1571 | if (!info->access[i]) |
| 1572 | info->access[i] = isl_union_map_copy(umap: empty); |
| 1573 | isl_union_map_free(umap: empty); |
| 1574 | if (!info->schedule && !info->schedule_map) |
| 1575 | info->schedule = isl_schedule_empty(space: isl_space_copy(space)); |
| 1576 | isl_space_free(space); |
| 1577 | |
| 1578 | for (i = isl_access_sink + 1; i < isl_access_end; ++i) |
| 1579 | if (!info->access[i]) |
| 1580 | return isl_union_access_info_free(access: info); |
| 1581 | if (!info->schedule && !info->schedule_map) |
| 1582 | return isl_union_access_info_free(access: info); |
| 1583 | |
| 1584 | return info; |
| 1585 | } |
| 1586 | |
| 1587 | /* Create a new isl_union_access_info with the given sink accesses and |
| 1588 | * and no other accesses or schedule information. |
| 1589 | */ |
| 1590 | __isl_give isl_union_access_info *isl_union_access_info_from_sink( |
| 1591 | __isl_take isl_union_map *sink) |
| 1592 | { |
| 1593 | isl_ctx *ctx; |
| 1594 | isl_union_access_info *access; |
| 1595 | |
| 1596 | if (!sink) |
| 1597 | return NULL; |
| 1598 | ctx = isl_union_map_get_ctx(umap: sink); |
| 1599 | access = isl_union_access_info_alloc(ctx); |
| 1600 | if (!access) |
| 1601 | goto error; |
| 1602 | access->access[isl_access_sink] = sink; |
| 1603 | return isl_union_access_info_init(info: access); |
| 1604 | error: |
| 1605 | isl_union_map_free(umap: sink); |
| 1606 | return NULL; |
| 1607 | } |
| 1608 | |
| 1609 | /* Replace the access relation of type "type" of "info" by "access". |
| 1610 | */ |
| 1611 | static __isl_give isl_union_access_info *isl_union_access_info_set( |
| 1612 | __isl_take isl_union_access_info *info, |
| 1613 | enum isl_access_type type, __isl_take isl_union_map *access) |
| 1614 | { |
| 1615 | if (!info || !access) |
| 1616 | goto error; |
| 1617 | |
| 1618 | isl_union_map_free(umap: info->access[type]); |
| 1619 | info->access[type] = access; |
| 1620 | |
| 1621 | return info; |
| 1622 | error: |
| 1623 | isl_union_access_info_free(access: info); |
| 1624 | isl_union_map_free(umap: access); |
| 1625 | return NULL; |
| 1626 | } |
| 1627 | |
| 1628 | /* Replace the definite source accesses of "access" by "must_source". |
| 1629 | */ |
| 1630 | __isl_give isl_union_access_info *isl_union_access_info_set_must_source( |
| 1631 | __isl_take isl_union_access_info *access, |
| 1632 | __isl_take isl_union_map *must_source) |
| 1633 | { |
| 1634 | return isl_union_access_info_set(info: access, type: isl_access_must_source, |
| 1635 | access: must_source); |
| 1636 | } |
| 1637 | |
| 1638 | /* Replace the possible source accesses of "access" by "may_source". |
| 1639 | */ |
| 1640 | __isl_give isl_union_access_info *isl_union_access_info_set_may_source( |
| 1641 | __isl_take isl_union_access_info *access, |
| 1642 | __isl_take isl_union_map *may_source) |
| 1643 | { |
| 1644 | return isl_union_access_info_set(info: access, type: isl_access_may_source, |
| 1645 | access: may_source); |
| 1646 | } |
| 1647 | |
| 1648 | /* Replace the kills of "info" by "kill". |
| 1649 | */ |
| 1650 | __isl_give isl_union_access_info *isl_union_access_info_set_kill( |
| 1651 | __isl_take isl_union_access_info *info, __isl_take isl_union_map *kill) |
| 1652 | { |
| 1653 | return isl_union_access_info_set(info, type: isl_access_kill, access: kill); |
| 1654 | } |
| 1655 | |
| 1656 | /* Return the access relation of type "type" of "info". |
| 1657 | */ |
| 1658 | static __isl_give isl_union_map *isl_union_access_info_get( |
| 1659 | __isl_keep isl_union_access_info *info, enum isl_access_type type) |
| 1660 | { |
| 1661 | if (!info) |
| 1662 | return NULL; |
| 1663 | return isl_union_map_copy(umap: info->access[type]); |
| 1664 | } |
| 1665 | |
| 1666 | /* Return the definite source accesses of "info". |
| 1667 | */ |
| 1668 | __isl_give isl_union_map *isl_union_access_info_get_must_source( |
| 1669 | __isl_keep isl_union_access_info *info) |
| 1670 | { |
| 1671 | return isl_union_access_info_get(info, type: isl_access_must_source); |
| 1672 | } |
| 1673 | |
| 1674 | /* Return the possible source accesses of "info". |
| 1675 | */ |
| 1676 | __isl_give isl_union_map *isl_union_access_info_get_may_source( |
| 1677 | __isl_keep isl_union_access_info *info) |
| 1678 | { |
| 1679 | return isl_union_access_info_get(info, type: isl_access_may_source); |
| 1680 | } |
| 1681 | |
| 1682 | /* Return the kills of "info". |
| 1683 | */ |
| 1684 | __isl_give isl_union_map *isl_union_access_info_get_kill( |
| 1685 | __isl_keep isl_union_access_info *info) |
| 1686 | { |
| 1687 | return isl_union_access_info_get(info, type: isl_access_kill); |
| 1688 | } |
| 1689 | |
| 1690 | /* Does "info" specify any kills? |
| 1691 | */ |
| 1692 | static isl_bool isl_union_access_has_kill( |
| 1693 | __isl_keep isl_union_access_info *info) |
| 1694 | { |
| 1695 | isl_bool empty; |
| 1696 | |
| 1697 | if (!info) |
| 1698 | return isl_bool_error; |
| 1699 | empty = isl_union_map_is_empty(umap: info->access[isl_access_kill]); |
| 1700 | return isl_bool_not(b: empty); |
| 1701 | } |
| 1702 | |
| 1703 | /* Replace the schedule of "access" by "schedule". |
| 1704 | * Also free the schedule_map in case it was set last. |
| 1705 | */ |
| 1706 | __isl_give isl_union_access_info *isl_union_access_info_set_schedule( |
| 1707 | __isl_take isl_union_access_info *access, |
| 1708 | __isl_take isl_schedule *schedule) |
| 1709 | { |
| 1710 | if (!access || !schedule) |
| 1711 | goto error; |
| 1712 | |
| 1713 | access->schedule_map = isl_union_map_free(umap: access->schedule_map); |
| 1714 | isl_schedule_free(sched: access->schedule); |
| 1715 | access->schedule = schedule; |
| 1716 | |
| 1717 | return access; |
| 1718 | error: |
| 1719 | isl_union_access_info_free(access); |
| 1720 | isl_schedule_free(sched: schedule); |
| 1721 | return NULL; |
| 1722 | } |
| 1723 | |
| 1724 | /* Replace the schedule map of "access" by "schedule_map". |
| 1725 | * Also free the schedule in case it was set last. |
| 1726 | */ |
| 1727 | __isl_give isl_union_access_info *isl_union_access_info_set_schedule_map( |
| 1728 | __isl_take isl_union_access_info *access, |
| 1729 | __isl_take isl_union_map *schedule_map) |
| 1730 | { |
| 1731 | if (!access || !schedule_map) |
| 1732 | goto error; |
| 1733 | |
| 1734 | isl_union_map_free(umap: access->schedule_map); |
| 1735 | access->schedule = isl_schedule_free(sched: access->schedule); |
| 1736 | access->schedule_map = schedule_map; |
| 1737 | |
| 1738 | return access; |
| 1739 | error: |
| 1740 | isl_union_access_info_free(access); |
| 1741 | isl_union_map_free(umap: schedule_map); |
| 1742 | return NULL; |
| 1743 | } |
| 1744 | |
| 1745 | __isl_give isl_union_access_info *isl_union_access_info_copy( |
| 1746 | __isl_keep isl_union_access_info *access) |
| 1747 | { |
| 1748 | isl_union_access_info *copy; |
| 1749 | enum isl_access_type i; |
| 1750 | |
| 1751 | if (!access) |
| 1752 | return NULL; |
| 1753 | copy = isl_union_access_info_from_sink( |
| 1754 | sink: isl_union_map_copy(umap: access->access[isl_access_sink])); |
| 1755 | for (i = isl_access_sink + 1; i < isl_access_end; ++i) |
| 1756 | copy = isl_union_access_info_set(info: copy, type: i, |
| 1757 | access: isl_union_map_copy(umap: access->access[i])); |
| 1758 | if (access->schedule) |
| 1759 | copy = isl_union_access_info_set_schedule(access: copy, |
| 1760 | schedule: isl_schedule_copy(sched: access->schedule)); |
| 1761 | else |
| 1762 | copy = isl_union_access_info_set_schedule_map(access: copy, |
| 1763 | schedule_map: isl_union_map_copy(umap: access->schedule_map)); |
| 1764 | |
| 1765 | return copy; |
| 1766 | } |
| 1767 | |
| 1768 | #undef BASE |
| 1769 | #define BASE union_map |
| 1770 | #include "print_yaml_field_templ.c" |
| 1771 | |
| 1772 | /* An enumeration of the various keys that may appear in a YAML mapping |
| 1773 | * of an isl_union_access_info object. |
| 1774 | * The keys for the access relation types are assumed to have the same values |
| 1775 | * as the access relation types in isl_access_type. |
| 1776 | */ |
| 1777 | enum isl_ai_key { |
| 1778 | isl_ai_key_error = -1, |
| 1779 | isl_ai_key_sink = isl_access_sink, |
| 1780 | isl_ai_key_must_source = isl_access_must_source, |
| 1781 | isl_ai_key_may_source = isl_access_may_source, |
| 1782 | isl_ai_key_kill = isl_access_kill, |
| 1783 | isl_ai_key_schedule_map, |
| 1784 | isl_ai_key_schedule, |
| 1785 | isl_ai_key_end |
| 1786 | }; |
| 1787 | |
| 1788 | /* Textual representations of the YAML keys for an isl_union_access_info |
| 1789 | * object. |
| 1790 | */ |
| 1791 | static char *key_str[] = { |
| 1792 | [isl_ai_key_sink] = "sink" , |
| 1793 | [isl_ai_key_must_source] = "must_source" , |
| 1794 | [isl_ai_key_may_source] = "may_source" , |
| 1795 | [isl_ai_key_kill] = "kill" , |
| 1796 | [isl_ai_key_schedule_map] = "schedule_map" , |
| 1797 | [isl_ai_key_schedule] = "schedule" , |
| 1798 | }; |
| 1799 | |
| 1800 | /* Print a key-value pair corresponding to the access relation of type "type" |
| 1801 | * of a YAML mapping of "info" to "p". |
| 1802 | * |
| 1803 | * The sink access relation is always printed, but any other access relation |
| 1804 | * is only printed if it is non-empty. |
| 1805 | */ |
| 1806 | static __isl_give isl_printer *print_access_field(__isl_take isl_printer *p, |
| 1807 | __isl_keep isl_union_access_info *info, enum isl_access_type type) |
| 1808 | { |
| 1809 | if (type != isl_access_sink) { |
| 1810 | isl_bool empty; |
| 1811 | |
| 1812 | empty = isl_union_map_is_empty(umap: info->access[type]); |
| 1813 | if (empty < 0) |
| 1814 | return isl_printer_free(printer: p); |
| 1815 | if (empty) |
| 1816 | return p; |
| 1817 | } |
| 1818 | return print_yaml_field_union_map(p, name: key_str[type], val: info->access[type]); |
| 1819 | } |
| 1820 | |
| 1821 | /* Print the information contained in "access" to "p". |
| 1822 | * The information is printed as a YAML document. |
| 1823 | */ |
| 1824 | __isl_give isl_printer *isl_printer_print_union_access_info( |
| 1825 | __isl_take isl_printer *p, __isl_keep isl_union_access_info *access) |
| 1826 | { |
| 1827 | enum isl_access_type i; |
| 1828 | |
| 1829 | if (!access) |
| 1830 | return isl_printer_free(printer: p); |
| 1831 | |
| 1832 | p = isl_printer_yaml_start_mapping(p); |
| 1833 | for (i = isl_access_sink; i < isl_access_end; ++i) |
| 1834 | p = print_access_field(p, info: access, type: i); |
| 1835 | if (access->schedule) { |
| 1836 | p = isl_printer_print_str(p, s: key_str[isl_ai_key_schedule]); |
| 1837 | p = isl_printer_yaml_next(p); |
| 1838 | p = isl_printer_print_schedule(p, schedule: access->schedule); |
| 1839 | p = isl_printer_yaml_next(p); |
| 1840 | } else { |
| 1841 | p = print_yaml_field_union_map(p, |
| 1842 | name: key_str[isl_ai_key_schedule_map], val: access->schedule_map); |
| 1843 | } |
| 1844 | p = isl_printer_yaml_end_mapping(p); |
| 1845 | |
| 1846 | return p; |
| 1847 | } |
| 1848 | |
| 1849 | /* Return a string representation of the information in "access". |
| 1850 | * The information is printed in flow format. |
| 1851 | */ |
| 1852 | __isl_give char *isl_union_access_info_to_str( |
| 1853 | __isl_keep isl_union_access_info *access) |
| 1854 | { |
| 1855 | isl_printer *p; |
| 1856 | char *s; |
| 1857 | |
| 1858 | if (!access) |
| 1859 | return NULL; |
| 1860 | |
| 1861 | p = isl_printer_to_str(ctx: isl_union_access_info_get_ctx(access)); |
| 1862 | p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW); |
| 1863 | p = isl_printer_print_union_access_info(p, access); |
| 1864 | s = isl_printer_get_str(printer: p); |
| 1865 | isl_printer_free(printer: p); |
| 1866 | |
| 1867 | return s; |
| 1868 | } |
| 1869 | |
| 1870 | #undef KEY |
| 1871 | #define KEY enum isl_ai_key |
| 1872 | #undef KEY_ERROR |
| 1873 | #define KEY_ERROR isl_ai_key_error |
| 1874 | #undef KEY_END |
| 1875 | #define KEY_END isl_ai_key_end |
| 1876 | #undef KEY_STR |
| 1877 | #define KEY_STR key_str |
| 1878 | #undef KEY_EXTRACT |
| 1879 | #define extract_key |
| 1880 | #undef KEY_GET |
| 1881 | #define KEY_GET get_key |
| 1882 | #include "extract_key.c" |
| 1883 | |
| 1884 | #undef BASE |
| 1885 | #define BASE union_map |
| 1886 | #include "read_in_string_templ.c" |
| 1887 | |
| 1888 | /* Read an isl_union_access_info object from "s". |
| 1889 | * |
| 1890 | * Start off with an empty (invalid) isl_union_access_info object and |
| 1891 | * then fill up the fields based on the input. |
| 1892 | * The input needs to contain at least a description of the sink |
| 1893 | * access relation as well as some form of schedule. |
| 1894 | * The other access relations are set to empty relations |
| 1895 | * by isl_union_access_info_init if they are not specified in the input. |
| 1896 | */ |
| 1897 | __isl_give isl_union_access_info *isl_stream_read_union_access_info( |
| 1898 | isl_stream *s) |
| 1899 | { |
| 1900 | isl_ctx *ctx; |
| 1901 | isl_union_access_info *info; |
| 1902 | isl_bool more; |
| 1903 | int sink_set = 0; |
| 1904 | int schedule_set = 0; |
| 1905 | |
| 1906 | if (isl_stream_yaml_read_start_mapping(s) < 0) |
| 1907 | return NULL; |
| 1908 | |
| 1909 | ctx = isl_stream_get_ctx(s); |
| 1910 | info = isl_union_access_info_alloc(ctx); |
| 1911 | while ((more = isl_stream_yaml_next(s)) == isl_bool_true) { |
| 1912 | enum isl_ai_key key; |
| 1913 | enum isl_access_type type; |
| 1914 | isl_union_map *access, *schedule_map; |
| 1915 | isl_schedule *schedule; |
| 1916 | |
| 1917 | key = get_key(s); |
| 1918 | if (isl_stream_yaml_next(s) < 0) |
| 1919 | return isl_union_access_info_free(access: info); |
| 1920 | switch (key) { |
| 1921 | case isl_ai_key_end: |
| 1922 | case isl_ai_key_error: |
| 1923 | return isl_union_access_info_free(access: info); |
| 1924 | case isl_ai_key_sink: |
| 1925 | sink_set = 1; |
| 1926 | case isl_ai_key_must_source: |
| 1927 | case isl_ai_key_may_source: |
| 1928 | case isl_ai_key_kill: |
| 1929 | type = (enum isl_access_type) key; |
| 1930 | access = read_union_map(s); |
| 1931 | info = isl_union_access_info_set(info, type, access); |
| 1932 | if (!info) |
| 1933 | return NULL; |
| 1934 | break; |
| 1935 | case isl_ai_key_schedule_map: |
| 1936 | schedule_set = 1; |
| 1937 | schedule_map = read_union_map(s); |
| 1938 | info = isl_union_access_info_set_schedule_map(access: info, |
| 1939 | schedule_map); |
| 1940 | if (!info) |
| 1941 | return NULL; |
| 1942 | break; |
| 1943 | case isl_ai_key_schedule: |
| 1944 | schedule_set = 1; |
| 1945 | schedule = isl_stream_read_schedule(s); |
| 1946 | info = isl_union_access_info_set_schedule(access: info, |
| 1947 | schedule); |
| 1948 | if (!info) |
| 1949 | return NULL; |
| 1950 | break; |
| 1951 | } |
| 1952 | } |
| 1953 | if (more < 0) |
| 1954 | return isl_union_access_info_free(access: info); |
| 1955 | |
| 1956 | if (isl_stream_yaml_read_end_mapping(s) < 0) |
| 1957 | return isl_union_access_info_free(access: info); |
| 1958 | |
| 1959 | if (!sink_set) { |
| 1960 | isl_stream_error(s, NULL, msg: "no sink specified" ); |
| 1961 | return isl_union_access_info_free(access: info); |
| 1962 | } |
| 1963 | |
| 1964 | if (!schedule_set) { |
| 1965 | isl_stream_error(s, NULL, msg: "no schedule specified" ); |
| 1966 | return isl_union_access_info_free(access: info); |
| 1967 | } |
| 1968 | |
| 1969 | return isl_union_access_info_init(info); |
| 1970 | } |
| 1971 | |
| 1972 | /* Read an isl_union_access_info object from the file "input". |
| 1973 | */ |
| 1974 | __isl_give isl_union_access_info *isl_union_access_info_read_from_file( |
| 1975 | isl_ctx *ctx, FILE *input) |
| 1976 | { |
| 1977 | isl_stream *s; |
| 1978 | isl_union_access_info *access; |
| 1979 | |
| 1980 | s = isl_stream_new_file(ctx, file: input); |
| 1981 | if (!s) |
| 1982 | return NULL; |
| 1983 | access = isl_stream_read_union_access_info(s); |
| 1984 | isl_stream_free(s); |
| 1985 | |
| 1986 | return access; |
| 1987 | } |
| 1988 | |
| 1989 | /* Update the fields of "access" such that they all have the same parameters, |
| 1990 | * keeping in mind that the schedule_map field may be NULL and ignoring |
| 1991 | * the schedule field. |
| 1992 | */ |
| 1993 | static __isl_give isl_union_access_info *isl_union_access_info_align_params( |
| 1994 | __isl_take isl_union_access_info *access) |
| 1995 | { |
| 1996 | isl_space *space; |
| 1997 | enum isl_access_type i; |
| 1998 | |
| 1999 | if (!access) |
| 2000 | return NULL; |
| 2001 | |
| 2002 | space = isl_union_map_get_space(umap: access->access[isl_access_sink]); |
| 2003 | for (i = isl_access_sink + 1; i < isl_access_end; ++i) |
| 2004 | space = isl_space_align_params(space1: space, |
| 2005 | space2: isl_union_map_get_space(umap: access->access[i])); |
| 2006 | if (access->schedule_map) |
| 2007 | space = isl_space_align_params(space1: space, |
| 2008 | space2: isl_union_map_get_space(umap: access->schedule_map)); |
| 2009 | for (i = isl_access_sink; i < isl_access_end; ++i) |
| 2010 | access->access[i] = |
| 2011 | isl_union_map_align_params(umap: access->access[i], |
| 2012 | model: isl_space_copy(space)); |
| 2013 | if (!access->schedule_map) { |
| 2014 | isl_space_free(space); |
| 2015 | } else { |
| 2016 | access->schedule_map = |
| 2017 | isl_union_map_align_params(umap: access->schedule_map, model: space); |
| 2018 | if (!access->schedule_map) |
| 2019 | return isl_union_access_info_free(access); |
| 2020 | } |
| 2021 | |
| 2022 | for (i = isl_access_sink; i < isl_access_end; ++i) |
| 2023 | if (!access->access[i]) |
| 2024 | return isl_union_access_info_free(access); |
| 2025 | |
| 2026 | return access; |
| 2027 | } |
| 2028 | |
| 2029 | /* Prepend the schedule dimensions to the iteration domains. |
| 2030 | * |
| 2031 | * That is, if the schedule is of the form |
| 2032 | * |
| 2033 | * D -> S |
| 2034 | * |
| 2035 | * while the access relations are of the form |
| 2036 | * |
| 2037 | * D -> A |
| 2038 | * |
| 2039 | * then the updated access relations are of the form |
| 2040 | * |
| 2041 | * [S -> D] -> A |
| 2042 | * |
| 2043 | * The schedule map is also replaced by the map |
| 2044 | * |
| 2045 | * [S -> D] -> D |
| 2046 | * |
| 2047 | * that is used during the internal computation. |
| 2048 | * Neither the original schedule map nor this updated schedule map |
| 2049 | * are used after the call to this function. |
| 2050 | */ |
| 2051 | static __isl_give isl_union_access_info * |
| 2052 | isl_union_access_info_introduce_schedule( |
| 2053 | __isl_take isl_union_access_info *access) |
| 2054 | { |
| 2055 | isl_union_map *sm; |
| 2056 | enum isl_access_type i; |
| 2057 | |
| 2058 | if (!access) |
| 2059 | return NULL; |
| 2060 | |
| 2061 | sm = isl_union_map_reverse(umap: access->schedule_map); |
| 2062 | sm = isl_union_map_range_map(umap: sm); |
| 2063 | for (i = isl_access_sink; i < isl_access_end; ++i) |
| 2064 | access->access[i] = |
| 2065 | isl_union_map_apply_range(umap1: isl_union_map_copy(umap: sm), |
| 2066 | umap2: access->access[i]); |
| 2067 | access->schedule_map = sm; |
| 2068 | |
| 2069 | for (i = isl_access_sink; i < isl_access_end; ++i) |
| 2070 | if (!access->access[i]) |
| 2071 | return isl_union_access_info_free(access); |
| 2072 | if (!access->schedule_map) |
| 2073 | return isl_union_access_info_free(access); |
| 2074 | |
| 2075 | return access; |
| 2076 | } |
| 2077 | |
| 2078 | /* This structure represents the result of a dependence analysis computation. |
| 2079 | * |
| 2080 | * "must_dep" represents the full definite dependences |
| 2081 | * "may_dep" represents the full non-definite dependences. |
| 2082 | * Both are of the form |
| 2083 | * |
| 2084 | * [Source] -> [[Sink -> Data]] |
| 2085 | * |
| 2086 | * (after the schedule dimensions have been projected out). |
| 2087 | * "must_no_source" represents the subset of the sink accesses for which |
| 2088 | * definitely no source was found. |
| 2089 | * "may_no_source" represents the subset of the sink accesses for which |
| 2090 | * possibly, but not definitely, no source was found. |
| 2091 | */ |
| 2092 | struct isl_union_flow { |
| 2093 | isl_union_map *must_dep; |
| 2094 | isl_union_map *may_dep; |
| 2095 | isl_union_map *must_no_source; |
| 2096 | isl_union_map *may_no_source; |
| 2097 | }; |
| 2098 | |
| 2099 | /* Return the isl_ctx to which "flow" belongs. |
| 2100 | */ |
| 2101 | isl_ctx *isl_union_flow_get_ctx(__isl_keep isl_union_flow *flow) |
| 2102 | { |
| 2103 | return flow ? isl_union_map_get_ctx(umap: flow->must_dep) : NULL; |
| 2104 | } |
| 2105 | |
| 2106 | /* Free "flow" and return NULL. |
| 2107 | */ |
| 2108 | __isl_null isl_union_flow *isl_union_flow_free(__isl_take isl_union_flow *flow) |
| 2109 | { |
| 2110 | if (!flow) |
| 2111 | return NULL; |
| 2112 | isl_union_map_free(umap: flow->must_dep); |
| 2113 | isl_union_map_free(umap: flow->may_dep); |
| 2114 | isl_union_map_free(umap: flow->must_no_source); |
| 2115 | isl_union_map_free(umap: flow->may_no_source); |
| 2116 | free(ptr: flow); |
| 2117 | return NULL; |
| 2118 | } |
| 2119 | |
| 2120 | void isl_union_flow_dump(__isl_keep isl_union_flow *flow) |
| 2121 | { |
| 2122 | if (!flow) |
| 2123 | return; |
| 2124 | |
| 2125 | fprintf(stderr, format: "must dependences: " ); |
| 2126 | isl_union_map_dump(umap: flow->must_dep); |
| 2127 | fprintf(stderr, format: "may dependences: " ); |
| 2128 | isl_union_map_dump(umap: flow->may_dep); |
| 2129 | fprintf(stderr, format: "must no source: " ); |
| 2130 | isl_union_map_dump(umap: flow->must_no_source); |
| 2131 | fprintf(stderr, format: "may no source: " ); |
| 2132 | isl_union_map_dump(umap: flow->may_no_source); |
| 2133 | } |
| 2134 | |
| 2135 | /* Return the full definite dependences in "flow", with accessed elements. |
| 2136 | */ |
| 2137 | __isl_give isl_union_map *isl_union_flow_get_full_must_dependence( |
| 2138 | __isl_keep isl_union_flow *flow) |
| 2139 | { |
| 2140 | if (!flow) |
| 2141 | return NULL; |
| 2142 | return isl_union_map_copy(umap: flow->must_dep); |
| 2143 | } |
| 2144 | |
| 2145 | /* Return the full possible dependences in "flow", including the definite |
| 2146 | * dependences, with accessed elements. |
| 2147 | */ |
| 2148 | __isl_give isl_union_map *isl_union_flow_get_full_may_dependence( |
| 2149 | __isl_keep isl_union_flow *flow) |
| 2150 | { |
| 2151 | if (!flow) |
| 2152 | return NULL; |
| 2153 | return isl_union_map_union(umap1: isl_union_map_copy(umap: flow->must_dep), |
| 2154 | umap2: isl_union_map_copy(umap: flow->may_dep)); |
| 2155 | } |
| 2156 | |
| 2157 | /* Return the definite dependences in "flow", without the accessed elements. |
| 2158 | */ |
| 2159 | __isl_give isl_union_map *isl_union_flow_get_must_dependence( |
| 2160 | __isl_keep isl_union_flow *flow) |
| 2161 | { |
| 2162 | isl_union_map *dep; |
| 2163 | |
| 2164 | if (!flow) |
| 2165 | return NULL; |
| 2166 | dep = isl_union_map_copy(umap: flow->must_dep); |
| 2167 | return isl_union_map_range_factor_domain(umap: dep); |
| 2168 | } |
| 2169 | |
| 2170 | /* Return the possible dependences in "flow", including the definite |
| 2171 | * dependences, without the accessed elements. |
| 2172 | */ |
| 2173 | __isl_give isl_union_map *isl_union_flow_get_may_dependence( |
| 2174 | __isl_keep isl_union_flow *flow) |
| 2175 | { |
| 2176 | isl_union_map *dep; |
| 2177 | |
| 2178 | if (!flow) |
| 2179 | return NULL; |
| 2180 | dep = isl_union_map_union(umap1: isl_union_map_copy(umap: flow->must_dep), |
| 2181 | umap2: isl_union_map_copy(umap: flow->may_dep)); |
| 2182 | return isl_union_map_range_factor_domain(umap: dep); |
| 2183 | } |
| 2184 | |
| 2185 | /* Return the non-definite dependences in "flow". |
| 2186 | */ |
| 2187 | static __isl_give isl_union_map *isl_union_flow_get_non_must_dependence( |
| 2188 | __isl_keep isl_union_flow *flow) |
| 2189 | { |
| 2190 | if (!flow) |
| 2191 | return NULL; |
| 2192 | return isl_union_map_copy(umap: flow->may_dep); |
| 2193 | } |
| 2194 | |
| 2195 | /* Return the subset of the sink accesses for which definitely |
| 2196 | * no source was found. |
| 2197 | */ |
| 2198 | __isl_give isl_union_map *isl_union_flow_get_must_no_source( |
| 2199 | __isl_keep isl_union_flow *flow) |
| 2200 | { |
| 2201 | if (!flow) |
| 2202 | return NULL; |
| 2203 | return isl_union_map_copy(umap: flow->must_no_source); |
| 2204 | } |
| 2205 | |
| 2206 | /* Return the subset of the sink accesses for which possibly |
| 2207 | * no source was found, including those for which definitely |
| 2208 | * no source was found. |
| 2209 | */ |
| 2210 | __isl_give isl_union_map *isl_union_flow_get_may_no_source( |
| 2211 | __isl_keep isl_union_flow *flow) |
| 2212 | { |
| 2213 | if (!flow) |
| 2214 | return NULL; |
| 2215 | return isl_union_map_union(umap1: isl_union_map_copy(umap: flow->must_no_source), |
| 2216 | umap2: isl_union_map_copy(umap: flow->may_no_source)); |
| 2217 | } |
| 2218 | |
| 2219 | /* Return the subset of the sink accesses for which possibly, but not |
| 2220 | * definitely, no source was found. |
| 2221 | */ |
| 2222 | static __isl_give isl_union_map *isl_union_flow_get_non_must_no_source( |
| 2223 | __isl_keep isl_union_flow *flow) |
| 2224 | { |
| 2225 | if (!flow) |
| 2226 | return NULL; |
| 2227 | return isl_union_map_copy(umap: flow->may_no_source); |
| 2228 | } |
| 2229 | |
| 2230 | /* Create a new isl_union_flow object, initialized with empty |
| 2231 | * dependence relations and sink subsets. |
| 2232 | */ |
| 2233 | static __isl_give isl_union_flow *isl_union_flow_alloc( |
| 2234 | __isl_take isl_space *space) |
| 2235 | { |
| 2236 | isl_ctx *ctx; |
| 2237 | isl_union_map *empty; |
| 2238 | isl_union_flow *flow; |
| 2239 | |
| 2240 | if (!space) |
| 2241 | return NULL; |
| 2242 | ctx = isl_space_get_ctx(space); |
| 2243 | flow = isl_alloc_type(ctx, isl_union_flow); |
| 2244 | if (!flow) |
| 2245 | goto error; |
| 2246 | |
| 2247 | empty = isl_union_map_empty(space); |
| 2248 | flow->must_dep = isl_union_map_copy(umap: empty); |
| 2249 | flow->may_dep = isl_union_map_copy(umap: empty); |
| 2250 | flow->must_no_source = isl_union_map_copy(umap: empty); |
| 2251 | flow->may_no_source = empty; |
| 2252 | |
| 2253 | if (!flow->must_dep || !flow->may_dep || |
| 2254 | !flow->must_no_source || !flow->may_no_source) |
| 2255 | return isl_union_flow_free(flow); |
| 2256 | |
| 2257 | return flow; |
| 2258 | error: |
| 2259 | isl_space_free(space); |
| 2260 | return NULL; |
| 2261 | } |
| 2262 | |
| 2263 | /* Copy this isl_union_flow object. |
| 2264 | */ |
| 2265 | __isl_give isl_union_flow *isl_union_flow_copy(__isl_keep isl_union_flow *flow) |
| 2266 | { |
| 2267 | isl_union_flow *copy; |
| 2268 | |
| 2269 | if (!flow) |
| 2270 | return NULL; |
| 2271 | |
| 2272 | copy = isl_union_flow_alloc(space: isl_union_map_get_space(umap: flow->must_dep)); |
| 2273 | |
| 2274 | if (!copy) |
| 2275 | return NULL; |
| 2276 | |
| 2277 | copy->must_dep = isl_union_map_union(umap1: copy->must_dep, |
| 2278 | umap2: isl_union_map_copy(umap: flow->must_dep)); |
| 2279 | copy->may_dep = isl_union_map_union(umap1: copy->may_dep, |
| 2280 | umap2: isl_union_map_copy(umap: flow->may_dep)); |
| 2281 | copy->must_no_source = isl_union_map_union(umap1: copy->must_no_source, |
| 2282 | umap2: isl_union_map_copy(umap: flow->must_no_source)); |
| 2283 | copy->may_no_source = isl_union_map_union(umap1: copy->may_no_source, |
| 2284 | umap2: isl_union_map_copy(umap: flow->may_no_source)); |
| 2285 | |
| 2286 | if (!copy->must_dep || !copy->may_dep || |
| 2287 | !copy->must_no_source || !copy->may_no_source) |
| 2288 | return isl_union_flow_free(flow: copy); |
| 2289 | |
| 2290 | return copy; |
| 2291 | } |
| 2292 | |
| 2293 | /* Drop the schedule dimensions from the iteration domains in "flow". |
| 2294 | * In particular, the schedule dimensions have been prepended |
| 2295 | * to the iteration domains prior to the dependence analysis by |
| 2296 | * replacing the iteration domain D, by the wrapped map [S -> D]. |
| 2297 | * Replace these wrapped maps by the original D. |
| 2298 | * |
| 2299 | * In particular, the dependences computed by access_info_compute_flow_core |
| 2300 | * are of the form |
| 2301 | * |
| 2302 | * [S -> D] -> [[S' -> D'] -> A] |
| 2303 | * |
| 2304 | * The schedule dimensions are projected out by first currying the range, |
| 2305 | * resulting in |
| 2306 | * |
| 2307 | * [S -> D] -> [S' -> [D' -> A]] |
| 2308 | * |
| 2309 | * and then computing the factor range |
| 2310 | * |
| 2311 | * D -> [D' -> A] |
| 2312 | */ |
| 2313 | static __isl_give isl_union_flow *isl_union_flow_drop_schedule( |
| 2314 | __isl_take isl_union_flow *flow) |
| 2315 | { |
| 2316 | if (!flow) |
| 2317 | return NULL; |
| 2318 | |
| 2319 | flow->must_dep = isl_union_map_range_curry(umap: flow->must_dep); |
| 2320 | flow->must_dep = isl_union_map_factor_range(umap: flow->must_dep); |
| 2321 | flow->may_dep = isl_union_map_range_curry(umap: flow->may_dep); |
| 2322 | flow->may_dep = isl_union_map_factor_range(umap: flow->may_dep); |
| 2323 | flow->must_no_source = |
| 2324 | isl_union_map_domain_factor_range(umap: flow->must_no_source); |
| 2325 | flow->may_no_source = |
| 2326 | isl_union_map_domain_factor_range(umap: flow->may_no_source); |
| 2327 | |
| 2328 | if (!flow->must_dep || !flow->may_dep || |
| 2329 | !flow->must_no_source || !flow->may_no_source) |
| 2330 | return isl_union_flow_free(flow); |
| 2331 | |
| 2332 | return flow; |
| 2333 | } |
| 2334 | |
| 2335 | struct isl_compute_flow_data { |
| 2336 | isl_union_map *must_source; |
| 2337 | isl_union_map *may_source; |
| 2338 | isl_union_flow *flow; |
| 2339 | |
| 2340 | int count; |
| 2341 | int must; |
| 2342 | isl_space *dim; |
| 2343 | struct isl_sched_info *sink_info; |
| 2344 | struct isl_sched_info **source_info; |
| 2345 | isl_access_info *accesses; |
| 2346 | }; |
| 2347 | |
| 2348 | static isl_stat count_matching_array(__isl_take isl_map *map, void *user) |
| 2349 | { |
| 2350 | int eq; |
| 2351 | isl_space *space; |
| 2352 | struct isl_compute_flow_data *data; |
| 2353 | |
| 2354 | data = (struct isl_compute_flow_data *)user; |
| 2355 | |
| 2356 | space = isl_space_range(space: isl_map_get_space(map)); |
| 2357 | |
| 2358 | eq = isl_space_is_equal(space1: space, space2: data->dim); |
| 2359 | |
| 2360 | isl_space_free(space); |
| 2361 | isl_map_free(map); |
| 2362 | |
| 2363 | if (eq < 0) |
| 2364 | return isl_stat_error; |
| 2365 | if (eq) |
| 2366 | data->count++; |
| 2367 | |
| 2368 | return isl_stat_ok; |
| 2369 | } |
| 2370 | |
| 2371 | static isl_stat collect_matching_array(__isl_take isl_map *map, void *user) |
| 2372 | { |
| 2373 | int eq; |
| 2374 | isl_space *space; |
| 2375 | struct isl_sched_info *info; |
| 2376 | struct isl_compute_flow_data *data; |
| 2377 | |
| 2378 | data = (struct isl_compute_flow_data *)user; |
| 2379 | |
| 2380 | space = isl_space_range(space: isl_map_get_space(map)); |
| 2381 | |
| 2382 | eq = isl_space_is_equal(space1: space, space2: data->dim); |
| 2383 | |
| 2384 | isl_space_free(space); |
| 2385 | |
| 2386 | if (eq < 0) |
| 2387 | goto error; |
| 2388 | if (!eq) { |
| 2389 | isl_map_free(map); |
| 2390 | return isl_stat_ok; |
| 2391 | } |
| 2392 | |
| 2393 | info = sched_info_alloc(map); |
| 2394 | data->source_info[data->count] = info; |
| 2395 | |
| 2396 | data->accesses = isl_access_info_add_source(acc: data->accesses, |
| 2397 | source: map, must: data->must, source_user: info); |
| 2398 | |
| 2399 | data->count++; |
| 2400 | |
| 2401 | return isl_stat_ok; |
| 2402 | error: |
| 2403 | isl_map_free(map); |
| 2404 | return isl_stat_error; |
| 2405 | } |
| 2406 | |
| 2407 | /* Determine the shared nesting level and the "textual order" of |
| 2408 | * the given accesses. |
| 2409 | * |
| 2410 | * We first determine the minimal schedule dimension for both accesses. |
| 2411 | * |
| 2412 | * If among those dimensions, we can find one where both have a fixed |
| 2413 | * value and if moreover those values are different, then the previous |
| 2414 | * dimension is the last shared nesting level and the textual order |
| 2415 | * is determined based on the order of the fixed values. |
| 2416 | * If no such fixed values can be found, then we set the shared |
| 2417 | * nesting level to the minimal schedule dimension, with no textual ordering. |
| 2418 | */ |
| 2419 | static int before(void *first, void *second) |
| 2420 | { |
| 2421 | struct isl_sched_info *info1 = first; |
| 2422 | struct isl_sched_info *info2 = second; |
| 2423 | isl_size n1, n2; |
| 2424 | int i; |
| 2425 | |
| 2426 | n1 = isl_vec_size(vec: info1->cst); |
| 2427 | n2 = isl_vec_size(vec: info2->cst); |
| 2428 | if (n1 < 0 || n2 < 0) |
| 2429 | return -1; |
| 2430 | |
| 2431 | if (n2 < n1) |
| 2432 | n1 = n2; |
| 2433 | |
| 2434 | for (i = 0; i < n1; ++i) { |
| 2435 | int r; |
| 2436 | int cmp; |
| 2437 | |
| 2438 | if (!info1->is_cst[i]) |
| 2439 | continue; |
| 2440 | if (!info2->is_cst[i]) |
| 2441 | continue; |
| 2442 | cmp = isl_vec_cmp_element(vec1: info1->cst, vec2: info2->cst, pos: i); |
| 2443 | if (cmp == 0) |
| 2444 | continue; |
| 2445 | |
| 2446 | r = 2 * i + (cmp < 0); |
| 2447 | |
| 2448 | return r; |
| 2449 | } |
| 2450 | |
| 2451 | return 2 * n1; |
| 2452 | } |
| 2453 | |
| 2454 | /* Check if the given two accesses may be coscheduled. |
| 2455 | * If so, return isl_bool_true. Otherwise return isl_bool_false. |
| 2456 | * |
| 2457 | * Two accesses may only be coscheduled if the fixed schedule |
| 2458 | * coordinates have the same values. |
| 2459 | */ |
| 2460 | static isl_bool coscheduled(void *first, void *second) |
| 2461 | { |
| 2462 | struct isl_sched_info *info1 = first; |
| 2463 | struct isl_sched_info *info2 = second; |
| 2464 | isl_size n1, n2; |
| 2465 | int i; |
| 2466 | |
| 2467 | n1 = isl_vec_size(vec: info1->cst); |
| 2468 | n2 = isl_vec_size(vec: info2->cst); |
| 2469 | if (n1 < 0 || n2 < 0) |
| 2470 | return isl_bool_error; |
| 2471 | |
| 2472 | if (n2 < n1) |
| 2473 | n1 = n2; |
| 2474 | |
| 2475 | for (i = 0; i < n1; ++i) { |
| 2476 | int cmp; |
| 2477 | |
| 2478 | if (!info1->is_cst[i]) |
| 2479 | continue; |
| 2480 | if (!info2->is_cst[i]) |
| 2481 | continue; |
| 2482 | cmp = isl_vec_cmp_element(vec1: info1->cst, vec2: info2->cst, pos: i); |
| 2483 | if (cmp != 0) |
| 2484 | return isl_bool_false; |
| 2485 | } |
| 2486 | |
| 2487 | return isl_bool_true; |
| 2488 | } |
| 2489 | |
| 2490 | /* Given a sink access, look for all the source accesses that access |
| 2491 | * the same array and perform dataflow analysis on them using |
| 2492 | * isl_access_info_compute_flow_core. |
| 2493 | */ |
| 2494 | static isl_stat compute_flow(__isl_take isl_map *map, void *user) |
| 2495 | { |
| 2496 | int i; |
| 2497 | isl_ctx *ctx; |
| 2498 | struct isl_compute_flow_data *data; |
| 2499 | isl_flow *flow; |
| 2500 | isl_union_flow *df; |
| 2501 | |
| 2502 | data = (struct isl_compute_flow_data *)user; |
| 2503 | df = data->flow; |
| 2504 | |
| 2505 | ctx = isl_map_get_ctx(map); |
| 2506 | |
| 2507 | data->accesses = NULL; |
| 2508 | data->sink_info = NULL; |
| 2509 | data->source_info = NULL; |
| 2510 | data->count = 0; |
| 2511 | data->dim = isl_space_range(space: isl_map_get_space(map)); |
| 2512 | |
| 2513 | if (isl_union_map_foreach_map(umap: data->must_source, |
| 2514 | fn: &count_matching_array, user: data) < 0) |
| 2515 | goto error; |
| 2516 | if (isl_union_map_foreach_map(umap: data->may_source, |
| 2517 | fn: &count_matching_array, user: data) < 0) |
| 2518 | goto error; |
| 2519 | |
| 2520 | data->sink_info = sched_info_alloc(map); |
| 2521 | data->source_info = isl_calloc_array(ctx, struct isl_sched_info *, |
| 2522 | data->count); |
| 2523 | |
| 2524 | data->accesses = isl_access_info_alloc(sink: isl_map_copy(map), |
| 2525 | sink_user: data->sink_info, fn: &before, max_source: data->count); |
| 2526 | if (!data->sink_info || (data->count && !data->source_info) || |
| 2527 | !data->accesses) |
| 2528 | goto error; |
| 2529 | data->accesses->coscheduled = &coscheduled; |
| 2530 | data->count = 0; |
| 2531 | data->must = 1; |
| 2532 | if (isl_union_map_foreach_map(umap: data->must_source, |
| 2533 | fn: &collect_matching_array, user: data) < 0) |
| 2534 | goto error; |
| 2535 | data->must = 0; |
| 2536 | if (isl_union_map_foreach_map(umap: data->may_source, |
| 2537 | fn: &collect_matching_array, user: data) < 0) |
| 2538 | goto error; |
| 2539 | |
| 2540 | flow = access_info_compute_flow_core(acc: data->accesses); |
| 2541 | data->accesses = NULL; |
| 2542 | |
| 2543 | if (!flow) |
| 2544 | goto error; |
| 2545 | |
| 2546 | df->must_no_source = isl_union_map_union(umap1: df->must_no_source, |
| 2547 | umap2: isl_union_map_from_map(map: isl_flow_get_no_source(deps: flow, must: 1))); |
| 2548 | df->may_no_source = isl_union_map_union(umap1: df->may_no_source, |
| 2549 | umap2: isl_union_map_from_map(map: isl_flow_get_no_source(deps: flow, must: 0))); |
| 2550 | |
| 2551 | for (i = 0; i < flow->n_source; ++i) { |
| 2552 | isl_union_map *dep; |
| 2553 | dep = isl_union_map_from_map(map: isl_map_copy(map: flow->dep[i].map)); |
| 2554 | if (flow->dep[i].must) |
| 2555 | df->must_dep = isl_union_map_union(umap1: df->must_dep, umap2: dep); |
| 2556 | else |
| 2557 | df->may_dep = isl_union_map_union(umap1: df->may_dep, umap2: dep); |
| 2558 | } |
| 2559 | |
| 2560 | isl_flow_free(deps: flow); |
| 2561 | |
| 2562 | sched_info_free(info: data->sink_info); |
| 2563 | if (data->source_info) { |
| 2564 | for (i = 0; i < data->count; ++i) |
| 2565 | sched_info_free(info: data->source_info[i]); |
| 2566 | free(ptr: data->source_info); |
| 2567 | } |
| 2568 | isl_space_free(space: data->dim); |
| 2569 | isl_map_free(map); |
| 2570 | |
| 2571 | return isl_stat_ok; |
| 2572 | error: |
| 2573 | isl_access_info_free(acc: data->accesses); |
| 2574 | sched_info_free(info: data->sink_info); |
| 2575 | if (data->source_info) { |
| 2576 | for (i = 0; i < data->count; ++i) |
| 2577 | sched_info_free(info: data->source_info[i]); |
| 2578 | free(ptr: data->source_info); |
| 2579 | } |
| 2580 | isl_space_free(space: data->dim); |
| 2581 | isl_map_free(map); |
| 2582 | |
| 2583 | return isl_stat_error; |
| 2584 | } |
| 2585 | |
| 2586 | /* Add the kills of "info" to the must-sources. |
| 2587 | */ |
| 2588 | static __isl_give isl_union_access_info * |
| 2589 | isl_union_access_info_add_kill_to_must_source( |
| 2590 | __isl_take isl_union_access_info *info) |
| 2591 | { |
| 2592 | isl_union_map *must, *kill; |
| 2593 | |
| 2594 | must = isl_union_access_info_get_must_source(info); |
| 2595 | kill = isl_union_access_info_get_kill(info); |
| 2596 | must = isl_union_map_union(umap1: must, umap2: kill); |
| 2597 | return isl_union_access_info_set_must_source(access: info, must_source: must); |
| 2598 | } |
| 2599 | |
| 2600 | /* Drop dependences from "flow" that purely originate from kills. |
| 2601 | * That is, only keep those dependences that originate from |
| 2602 | * the original must-sources "must" and/or the original may-sources "may". |
| 2603 | * In particular, "must" contains the must-sources from before |
| 2604 | * the kills were added and "may" contains the may-source from before |
| 2605 | * the kills were removed. |
| 2606 | * |
| 2607 | * The dependences are of the form |
| 2608 | * |
| 2609 | * Source -> [Sink -> Data] |
| 2610 | * |
| 2611 | * Only those dependences are kept where the Source -> Data part |
| 2612 | * is a subset of the original may-sources or must-sources. |
| 2613 | * Of those, only the must-dependences that intersect with the must-sources |
| 2614 | * remain must-dependences. |
| 2615 | * If there is some overlap between the may-sources and the must-sources, |
| 2616 | * then the may-dependences and must-dependences may also overlap. |
| 2617 | * This should be fine since the may-dependences are only kept |
| 2618 | * disjoint from the must-dependences for the isl_union_map_compute_flow |
| 2619 | * interface. This interface does not support kills, so it will |
| 2620 | * not end up calling this function. |
| 2621 | */ |
| 2622 | static __isl_give isl_union_flow *isl_union_flow_drop_kill_source( |
| 2623 | __isl_take isl_union_flow *flow, __isl_take isl_union_map *must, |
| 2624 | __isl_take isl_union_map *may) |
| 2625 | { |
| 2626 | isl_union_map *move; |
| 2627 | |
| 2628 | if (!flow) |
| 2629 | goto error; |
| 2630 | move = isl_union_map_copy(umap: flow->must_dep); |
| 2631 | move = isl_union_map_intersect_range_factor_range(umap: move, |
| 2632 | factor: isl_union_map_copy(umap: may)); |
| 2633 | may = isl_union_map_union(umap1: may, umap2: isl_union_map_copy(umap: must)); |
| 2634 | flow->may_dep = isl_union_map_intersect_range_factor_range( |
| 2635 | umap: flow->may_dep, factor: may); |
| 2636 | flow->must_dep = isl_union_map_intersect_range_factor_range( |
| 2637 | umap: flow->must_dep, factor: must); |
| 2638 | flow->may_dep = isl_union_map_union(umap1: flow->may_dep, umap2: move); |
| 2639 | if (!flow->must_dep || !flow->may_dep) |
| 2640 | return isl_union_flow_free(flow); |
| 2641 | |
| 2642 | return flow; |
| 2643 | error: |
| 2644 | isl_union_map_free(umap: must); |
| 2645 | isl_union_map_free(umap: may); |
| 2646 | return NULL; |
| 2647 | } |
| 2648 | |
| 2649 | /* Remove the must accesses from the may accesses. |
| 2650 | * |
| 2651 | * A must access always trumps a may access, so there is no need |
| 2652 | * for a must access to also be considered as a may access. Doing so |
| 2653 | * would only cost extra computations only to find out that |
| 2654 | * the duplicated may access does not make any difference. |
| 2655 | */ |
| 2656 | static __isl_give isl_union_access_info *isl_union_access_info_normalize( |
| 2657 | __isl_take isl_union_access_info *access) |
| 2658 | { |
| 2659 | if (!access) |
| 2660 | return NULL; |
| 2661 | access->access[isl_access_may_source] = |
| 2662 | isl_union_map_subtract(umap1: access->access[isl_access_may_source], |
| 2663 | umap2: isl_union_map_copy(umap: access->access[isl_access_must_source])); |
| 2664 | if (!access->access[isl_access_may_source]) |
| 2665 | return isl_union_access_info_free(access); |
| 2666 | |
| 2667 | return access; |
| 2668 | } |
| 2669 | |
| 2670 | /* Given a description of the "sink" accesses, the "source" accesses and |
| 2671 | * a schedule, compute for each instance of a sink access |
| 2672 | * and for each element accessed by that instance, |
| 2673 | * the possible or definite source accesses that last accessed the |
| 2674 | * element accessed by the sink access before this sink access |
| 2675 | * in the sense that there is no intermediate definite source access. |
| 2676 | * |
| 2677 | * The must_no_source and may_no_source elements of the result |
| 2678 | * are subsets of access->sink. The elements must_dep and may_dep |
| 2679 | * map domain elements of access->{may,must)_source to |
| 2680 | * domain elements of access->sink. |
| 2681 | * |
| 2682 | * This function is used when only the schedule map representation |
| 2683 | * is available. |
| 2684 | * |
| 2685 | * We first prepend the schedule dimensions to the domain |
| 2686 | * of the accesses so that we can easily compare their relative order. |
| 2687 | * Then we consider each sink access individually in compute_flow. |
| 2688 | */ |
| 2689 | static __isl_give isl_union_flow *compute_flow_union_map( |
| 2690 | __isl_take isl_union_access_info *access) |
| 2691 | { |
| 2692 | struct isl_compute_flow_data data; |
| 2693 | isl_union_map *sink; |
| 2694 | |
| 2695 | access = isl_union_access_info_align_params(access); |
| 2696 | access = isl_union_access_info_introduce_schedule(access); |
| 2697 | if (!access) |
| 2698 | return NULL; |
| 2699 | |
| 2700 | data.must_source = access->access[isl_access_must_source]; |
| 2701 | data.may_source = access->access[isl_access_may_source]; |
| 2702 | |
| 2703 | sink = access->access[isl_access_sink]; |
| 2704 | data.flow = isl_union_flow_alloc(space: isl_union_map_get_space(umap: sink)); |
| 2705 | |
| 2706 | if (isl_union_map_foreach_map(umap: sink, fn: &compute_flow, user: &data) < 0) |
| 2707 | goto error; |
| 2708 | |
| 2709 | data.flow = isl_union_flow_drop_schedule(flow: data.flow); |
| 2710 | |
| 2711 | isl_union_access_info_free(access); |
| 2712 | return data.flow; |
| 2713 | error: |
| 2714 | isl_union_access_info_free(access); |
| 2715 | isl_union_flow_free(flow: data.flow); |
| 2716 | return NULL; |
| 2717 | } |
| 2718 | |
| 2719 | /* A schedule access relation. |
| 2720 | * |
| 2721 | * The access relation "access" is of the form [S -> D] -> A, |
| 2722 | * where S corresponds to the prefix schedule at "node". |
| 2723 | * "must" is only relevant for source accesses and indicates |
| 2724 | * whether the access is a must source or a may source. |
| 2725 | */ |
| 2726 | struct isl_scheduled_access { |
| 2727 | isl_map *access; |
| 2728 | int must; |
| 2729 | isl_schedule_node *node; |
| 2730 | }; |
| 2731 | |
| 2732 | /* Data structure for keeping track of individual scheduled sink and source |
| 2733 | * accesses when computing dependence analysis based on a schedule tree. |
| 2734 | * |
| 2735 | * "n_sink" is the number of used entries in "sink" |
| 2736 | * "n_source" is the number of used entries in "source" |
| 2737 | * |
| 2738 | * "set_sink", "must" and "node" are only used inside collect_sink_source, |
| 2739 | * to keep track of the current node and |
| 2740 | * of what extract_sink_source needs to do. |
| 2741 | */ |
| 2742 | struct isl_compute_flow_schedule_data { |
| 2743 | isl_union_access_info *access; |
| 2744 | |
| 2745 | int n_sink; |
| 2746 | int n_source; |
| 2747 | |
| 2748 | struct isl_scheduled_access *sink; |
| 2749 | struct isl_scheduled_access *source; |
| 2750 | |
| 2751 | int set_sink; |
| 2752 | int must; |
| 2753 | isl_schedule_node *node; |
| 2754 | }; |
| 2755 | |
| 2756 | /* Align the parameters of all sinks with all sources. |
| 2757 | * |
| 2758 | * If there are no sinks or no sources, then no alignment is needed. |
| 2759 | */ |
| 2760 | static void isl_compute_flow_schedule_data_align_params( |
| 2761 | struct isl_compute_flow_schedule_data *data) |
| 2762 | { |
| 2763 | int i; |
| 2764 | isl_space *space; |
| 2765 | |
| 2766 | if (data->n_sink == 0 || data->n_source == 0) |
| 2767 | return; |
| 2768 | |
| 2769 | space = isl_map_get_space(map: data->sink[0].access); |
| 2770 | |
| 2771 | for (i = 1; i < data->n_sink; ++i) |
| 2772 | space = isl_space_align_params(space1: space, |
| 2773 | space2: isl_map_get_space(map: data->sink[i].access)); |
| 2774 | for (i = 0; i < data->n_source; ++i) |
| 2775 | space = isl_space_align_params(space1: space, |
| 2776 | space2: isl_map_get_space(map: data->source[i].access)); |
| 2777 | |
| 2778 | for (i = 0; i < data->n_sink; ++i) |
| 2779 | data->sink[i].access = |
| 2780 | isl_map_align_params(map: data->sink[i].access, |
| 2781 | model: isl_space_copy(space)); |
| 2782 | for (i = 0; i < data->n_source; ++i) |
| 2783 | data->source[i].access = |
| 2784 | isl_map_align_params(map: data->source[i].access, |
| 2785 | model: isl_space_copy(space)); |
| 2786 | |
| 2787 | isl_space_free(space); |
| 2788 | } |
| 2789 | |
| 2790 | /* Free all the memory referenced from "data". |
| 2791 | * Do not free "data" itself as it may be allocated on the stack. |
| 2792 | */ |
| 2793 | static void isl_compute_flow_schedule_data_clear( |
| 2794 | struct isl_compute_flow_schedule_data *data) |
| 2795 | { |
| 2796 | int i; |
| 2797 | |
| 2798 | if (!data->sink) |
| 2799 | return; |
| 2800 | |
| 2801 | for (i = 0; i < data->n_sink; ++i) { |
| 2802 | isl_map_free(map: data->sink[i].access); |
| 2803 | isl_schedule_node_free(node: data->sink[i].node); |
| 2804 | } |
| 2805 | |
| 2806 | for (i = 0; i < data->n_source; ++i) { |
| 2807 | isl_map_free(map: data->source[i].access); |
| 2808 | isl_schedule_node_free(node: data->source[i].node); |
| 2809 | } |
| 2810 | |
| 2811 | free(ptr: data->sink); |
| 2812 | } |
| 2813 | |
| 2814 | /* isl_schedule_foreach_schedule_node_top_down callback for counting |
| 2815 | * (an upper bound on) the number of sinks and sources. |
| 2816 | * |
| 2817 | * Sinks and sources are only extracted at leaves of the tree, |
| 2818 | * so we skip the node if it is not a leaf. |
| 2819 | * Otherwise we increment data->n_sink and data->n_source with |
| 2820 | * the number of spaces in the sink and source access domains |
| 2821 | * that reach this node. |
| 2822 | */ |
| 2823 | static isl_bool count_sink_source(__isl_keep isl_schedule_node *node, |
| 2824 | void *user) |
| 2825 | { |
| 2826 | struct isl_compute_flow_schedule_data *data = user; |
| 2827 | isl_union_set *domain; |
| 2828 | isl_union_map *umap; |
| 2829 | isl_bool r = isl_bool_false; |
| 2830 | isl_size n; |
| 2831 | |
| 2832 | if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf) |
| 2833 | return isl_bool_true; |
| 2834 | |
| 2835 | domain = isl_schedule_node_get_universe_domain(node); |
| 2836 | |
| 2837 | umap = isl_union_map_copy(umap: data->access->access[isl_access_sink]); |
| 2838 | umap = isl_union_map_intersect_domain(umap, uset: isl_union_set_copy(uset: domain)); |
| 2839 | data->n_sink += n = isl_union_map_n_map(umap); |
| 2840 | isl_union_map_free(umap); |
| 2841 | if (n < 0) |
| 2842 | r = isl_bool_error; |
| 2843 | |
| 2844 | umap = isl_union_map_copy(umap: data->access->access[isl_access_must_source]); |
| 2845 | umap = isl_union_map_intersect_domain(umap, uset: isl_union_set_copy(uset: domain)); |
| 2846 | data->n_source += n = isl_union_map_n_map(umap); |
| 2847 | isl_union_map_free(umap); |
| 2848 | if (n < 0) |
| 2849 | r = isl_bool_error; |
| 2850 | |
| 2851 | umap = isl_union_map_copy(umap: data->access->access[isl_access_may_source]); |
| 2852 | umap = isl_union_map_intersect_domain(umap, uset: isl_union_set_copy(uset: domain)); |
| 2853 | data->n_source += n = isl_union_map_n_map(umap); |
| 2854 | isl_union_map_free(umap); |
| 2855 | if (n < 0) |
| 2856 | r = isl_bool_error; |
| 2857 | |
| 2858 | isl_union_set_free(uset: domain); |
| 2859 | |
| 2860 | return r; |
| 2861 | } |
| 2862 | |
| 2863 | /* Add a single scheduled sink or source (depending on data->set_sink) |
| 2864 | * with scheduled access relation "map", must property data->must and |
| 2865 | * schedule node data->node to the list of sinks or sources. |
| 2866 | */ |
| 2867 | static isl_stat (__isl_take isl_map *map, void *user) |
| 2868 | { |
| 2869 | struct isl_compute_flow_schedule_data *data = user; |
| 2870 | struct isl_scheduled_access *access; |
| 2871 | |
| 2872 | if (data->set_sink) |
| 2873 | access = data->sink + data->n_sink++; |
| 2874 | else |
| 2875 | access = data->source + data->n_source++; |
| 2876 | |
| 2877 | access->access = map; |
| 2878 | access->must = data->must; |
| 2879 | access->node = isl_schedule_node_copy(node: data->node); |
| 2880 | |
| 2881 | return isl_stat_ok; |
| 2882 | } |
| 2883 | |
| 2884 | /* isl_schedule_foreach_schedule_node_top_down callback for collecting |
| 2885 | * individual scheduled source and sink accesses (taking into account |
| 2886 | * the domain of the schedule). |
| 2887 | * |
| 2888 | * We only collect accesses at the leaves of the schedule tree. |
| 2889 | * We prepend the schedule dimensions at the leaf to the iteration |
| 2890 | * domains of the source and sink accesses and then extract |
| 2891 | * the individual accesses (per space). |
| 2892 | * |
| 2893 | * In particular, if the prefix schedule at the node is of the form |
| 2894 | * |
| 2895 | * D -> S |
| 2896 | * |
| 2897 | * while the access relations are of the form |
| 2898 | * |
| 2899 | * D -> A |
| 2900 | * |
| 2901 | * then the updated access relations are of the form |
| 2902 | * |
| 2903 | * [S -> D] -> A |
| 2904 | * |
| 2905 | * Note that S consists of a single space such that introducing S |
| 2906 | * in the access relations does not increase the number of spaces. |
| 2907 | */ |
| 2908 | static isl_bool collect_sink_source(__isl_keep isl_schedule_node *node, |
| 2909 | void *user) |
| 2910 | { |
| 2911 | struct isl_compute_flow_schedule_data *data = user; |
| 2912 | isl_union_map *prefix; |
| 2913 | isl_union_map *umap; |
| 2914 | isl_bool r = isl_bool_false; |
| 2915 | |
| 2916 | if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf) |
| 2917 | return isl_bool_true; |
| 2918 | |
| 2919 | data->node = node; |
| 2920 | |
| 2921 | prefix = isl_schedule_node_get_prefix_schedule_relation(node); |
| 2922 | prefix = isl_union_map_reverse(umap: prefix); |
| 2923 | prefix = isl_union_map_range_map(umap: prefix); |
| 2924 | |
| 2925 | data->set_sink = 1; |
| 2926 | umap = isl_union_map_copy(umap: data->access->access[isl_access_sink]); |
| 2927 | umap = isl_union_map_apply_range(umap1: isl_union_map_copy(umap: prefix), umap2: umap); |
| 2928 | if (isl_union_map_foreach_map(umap, fn: &extract_sink_source, user: data) < 0) |
| 2929 | r = isl_bool_error; |
| 2930 | isl_union_map_free(umap); |
| 2931 | |
| 2932 | data->set_sink = 0; |
| 2933 | data->must = 1; |
| 2934 | umap = isl_union_map_copy(umap: data->access->access[isl_access_must_source]); |
| 2935 | umap = isl_union_map_apply_range(umap1: isl_union_map_copy(umap: prefix), umap2: umap); |
| 2936 | if (isl_union_map_foreach_map(umap, fn: &extract_sink_source, user: data) < 0) |
| 2937 | r = isl_bool_error; |
| 2938 | isl_union_map_free(umap); |
| 2939 | |
| 2940 | data->set_sink = 0; |
| 2941 | data->must = 0; |
| 2942 | umap = isl_union_map_copy(umap: data->access->access[isl_access_may_source]); |
| 2943 | umap = isl_union_map_apply_range(umap1: isl_union_map_copy(umap: prefix), umap2: umap); |
| 2944 | if (isl_union_map_foreach_map(umap, fn: &extract_sink_source, user: data) < 0) |
| 2945 | r = isl_bool_error; |
| 2946 | isl_union_map_free(umap); |
| 2947 | |
| 2948 | isl_union_map_free(umap: prefix); |
| 2949 | |
| 2950 | return r; |
| 2951 | } |
| 2952 | |
| 2953 | /* isl_access_info_compute_flow callback for determining whether |
| 2954 | * the shared nesting level and the ordering within that level |
| 2955 | * for two scheduled accesses for use in compute_single_flow. |
| 2956 | * |
| 2957 | * The tokens passed to this function refer to the leaves |
| 2958 | * in the schedule tree where the accesses take place. |
| 2959 | * |
| 2960 | * If n is the shared number of loops, then we need to return |
| 2961 | * "2 * n + 1" if "first" precedes "second" inside the innermost |
| 2962 | * shared loop and "2 * n" otherwise. |
| 2963 | * |
| 2964 | * The innermost shared ancestor may be the leaves themselves |
| 2965 | * if the accesses take place in the same leaf. Otherwise, |
| 2966 | * it is either a set node or a sequence node. Only in the case |
| 2967 | * of a sequence node do we consider one access to precede the other. |
| 2968 | */ |
| 2969 | static int before_node(void *first, void *second) |
| 2970 | { |
| 2971 | isl_schedule_node *node1 = first; |
| 2972 | isl_schedule_node *node2 = second; |
| 2973 | isl_schedule_node *shared; |
| 2974 | isl_size depth; |
| 2975 | int before = 0; |
| 2976 | |
| 2977 | shared = isl_schedule_node_get_shared_ancestor(node1, node2); |
| 2978 | depth = isl_schedule_node_get_schedule_depth(node: shared); |
| 2979 | if (depth < 0) { |
| 2980 | isl_schedule_node_free(node: shared); |
| 2981 | return -1; |
| 2982 | } |
| 2983 | |
| 2984 | if (isl_schedule_node_get_type(node: shared) == isl_schedule_node_sequence) { |
| 2985 | isl_size pos1, pos2; |
| 2986 | |
| 2987 | pos1 = isl_schedule_node_get_ancestor_child_position(node: node1, |
| 2988 | ancestor: shared); |
| 2989 | pos2 = isl_schedule_node_get_ancestor_child_position(node: node2, |
| 2990 | ancestor: shared); |
| 2991 | if (pos1 < 0 || pos2 < 0) { |
| 2992 | isl_schedule_node_free(node: shared); |
| 2993 | return -1; |
| 2994 | } |
| 2995 | before = pos1 < pos2; |
| 2996 | } |
| 2997 | |
| 2998 | isl_schedule_node_free(node: shared); |
| 2999 | |
| 3000 | return 2 * depth + before; |
| 3001 | } |
| 3002 | |
| 3003 | /* Check if the given two accesses may be coscheduled. |
| 3004 | * If so, return isl_bool_true. Otherwise return isl_bool_false. |
| 3005 | * |
| 3006 | * Two accesses may only be coscheduled if they appear in the same leaf. |
| 3007 | */ |
| 3008 | static isl_bool coscheduled_node(void *first, void *second) |
| 3009 | { |
| 3010 | isl_schedule_node *node1 = first; |
| 3011 | isl_schedule_node *node2 = second; |
| 3012 | |
| 3013 | return isl_bool_ok(b: node1 == node2); |
| 3014 | } |
| 3015 | |
| 3016 | /* Add the scheduled sources from "data" that access |
| 3017 | * the same data space as "sink" to "access". |
| 3018 | */ |
| 3019 | static __isl_give isl_access_info *add_matching_sources( |
| 3020 | __isl_take isl_access_info *access, struct isl_scheduled_access *sink, |
| 3021 | struct isl_compute_flow_schedule_data *data) |
| 3022 | { |
| 3023 | int i; |
| 3024 | isl_space *space; |
| 3025 | |
| 3026 | space = isl_space_range(space: isl_map_get_space(map: sink->access)); |
| 3027 | for (i = 0; i < data->n_source; ++i) { |
| 3028 | struct isl_scheduled_access *source; |
| 3029 | isl_space *source_space; |
| 3030 | int eq; |
| 3031 | |
| 3032 | source = &data->source[i]; |
| 3033 | source_space = isl_map_get_space(map: source->access); |
| 3034 | source_space = isl_space_range(space: source_space); |
| 3035 | eq = isl_space_is_equal(space1: space, space2: source_space); |
| 3036 | isl_space_free(space: source_space); |
| 3037 | |
| 3038 | if (!eq) |
| 3039 | continue; |
| 3040 | if (eq < 0) |
| 3041 | goto error; |
| 3042 | |
| 3043 | access = isl_access_info_add_source(acc: access, |
| 3044 | source: isl_map_copy(map: source->access), must: source->must, source_user: source->node); |
| 3045 | } |
| 3046 | |
| 3047 | isl_space_free(space); |
| 3048 | return access; |
| 3049 | error: |
| 3050 | isl_space_free(space); |
| 3051 | isl_access_info_free(acc: access); |
| 3052 | return NULL; |
| 3053 | } |
| 3054 | |
| 3055 | /* Given a scheduled sink access relation "sink", compute the corresponding |
| 3056 | * dependences on the sources in "data" and add the computed dependences |
| 3057 | * to "uf". |
| 3058 | * |
| 3059 | * The dependences computed by access_info_compute_flow_core are of the form |
| 3060 | * |
| 3061 | * [S -> I] -> [[S' -> I'] -> A] |
| 3062 | * |
| 3063 | * The schedule dimensions are projected out by first currying the range, |
| 3064 | * resulting in |
| 3065 | * |
| 3066 | * [S -> I] -> [S' -> [I' -> A]] |
| 3067 | * |
| 3068 | * and then computing the factor range |
| 3069 | * |
| 3070 | * I -> [I' -> A] |
| 3071 | */ |
| 3072 | static __isl_give isl_union_flow *compute_single_flow( |
| 3073 | __isl_take isl_union_flow *uf, struct isl_scheduled_access *sink, |
| 3074 | struct isl_compute_flow_schedule_data *data) |
| 3075 | { |
| 3076 | int i; |
| 3077 | isl_access_info *access; |
| 3078 | isl_flow *flow; |
| 3079 | isl_map *map; |
| 3080 | |
| 3081 | if (!uf) |
| 3082 | return NULL; |
| 3083 | |
| 3084 | access = isl_access_info_alloc(sink: isl_map_copy(map: sink->access), sink_user: sink->node, |
| 3085 | fn: &before_node, max_source: data->n_source); |
| 3086 | if (access) |
| 3087 | access->coscheduled = &coscheduled_node; |
| 3088 | access = add_matching_sources(access, sink, data); |
| 3089 | |
| 3090 | flow = access_info_compute_flow_core(acc: access); |
| 3091 | if (!flow) |
| 3092 | return isl_union_flow_free(flow: uf); |
| 3093 | |
| 3094 | map = isl_map_domain_factor_range(map: isl_flow_get_no_source(deps: flow, must: 1)); |
| 3095 | uf->must_no_source = isl_union_map_union(umap1: uf->must_no_source, |
| 3096 | umap2: isl_union_map_from_map(map)); |
| 3097 | map = isl_map_domain_factor_range(map: isl_flow_get_no_source(deps: flow, must: 0)); |
| 3098 | uf->may_no_source = isl_union_map_union(umap1: uf->may_no_source, |
| 3099 | umap2: isl_union_map_from_map(map)); |
| 3100 | |
| 3101 | for (i = 0; i < flow->n_source; ++i) { |
| 3102 | isl_union_map *dep; |
| 3103 | |
| 3104 | map = isl_map_range_curry(map: isl_map_copy(map: flow->dep[i].map)); |
| 3105 | map = isl_map_factor_range(map); |
| 3106 | dep = isl_union_map_from_map(map); |
| 3107 | if (flow->dep[i].must) |
| 3108 | uf->must_dep = isl_union_map_union(umap1: uf->must_dep, umap2: dep); |
| 3109 | else |
| 3110 | uf->may_dep = isl_union_map_union(umap1: uf->may_dep, umap2: dep); |
| 3111 | } |
| 3112 | |
| 3113 | isl_flow_free(deps: flow); |
| 3114 | |
| 3115 | return uf; |
| 3116 | } |
| 3117 | |
| 3118 | /* Given a description of the "sink" accesses, the "source" accesses and |
| 3119 | * a schedule, compute for each instance of a sink access |
| 3120 | * and for each element accessed by that instance, |
| 3121 | * the possible or definite source accesses that last accessed the |
| 3122 | * element accessed by the sink access before this sink access |
| 3123 | * in the sense that there is no intermediate definite source access. |
| 3124 | * Only consider dependences between statement instances that belong |
| 3125 | * to the domain of the schedule. |
| 3126 | * |
| 3127 | * The must_no_source and may_no_source elements of the result |
| 3128 | * are subsets of access->sink. The elements must_dep and may_dep |
| 3129 | * map domain elements of access->{may,must)_source to |
| 3130 | * domain elements of access->sink. |
| 3131 | * |
| 3132 | * This function is used when a schedule tree representation |
| 3133 | * is available. |
| 3134 | * |
| 3135 | * We extract the individual scheduled source and sink access relations |
| 3136 | * (taking into account the domain of the schedule) and |
| 3137 | * then compute dependences for each scheduled sink individually. |
| 3138 | */ |
| 3139 | static __isl_give isl_union_flow *compute_flow_schedule( |
| 3140 | __isl_take isl_union_access_info *access) |
| 3141 | { |
| 3142 | struct isl_compute_flow_schedule_data data = { access }; |
| 3143 | int i, n; |
| 3144 | isl_ctx *ctx; |
| 3145 | isl_space *space; |
| 3146 | isl_union_flow *flow; |
| 3147 | |
| 3148 | ctx = isl_union_access_info_get_ctx(access); |
| 3149 | |
| 3150 | data.n_sink = 0; |
| 3151 | data.n_source = 0; |
| 3152 | if (isl_schedule_foreach_schedule_node_top_down(sched: access->schedule, |
| 3153 | fn: &count_sink_source, user: &data) < 0) |
| 3154 | goto error; |
| 3155 | |
| 3156 | n = data.n_sink + data.n_source; |
| 3157 | data.sink = isl_calloc_array(ctx, struct isl_scheduled_access, n); |
| 3158 | if (n && !data.sink) |
| 3159 | goto error; |
| 3160 | data.source = data.sink + data.n_sink; |
| 3161 | |
| 3162 | data.n_sink = 0; |
| 3163 | data.n_source = 0; |
| 3164 | if (isl_schedule_foreach_schedule_node_top_down(sched: access->schedule, |
| 3165 | fn: &collect_sink_source, user: &data) < 0) |
| 3166 | goto error; |
| 3167 | |
| 3168 | space = isl_union_map_get_space(umap: access->access[isl_access_sink]); |
| 3169 | flow = isl_union_flow_alloc(space); |
| 3170 | |
| 3171 | isl_compute_flow_schedule_data_align_params(data: &data); |
| 3172 | |
| 3173 | for (i = 0; i < data.n_sink; ++i) |
| 3174 | flow = compute_single_flow(uf: flow, sink: &data.sink[i], data: &data); |
| 3175 | |
| 3176 | isl_compute_flow_schedule_data_clear(data: &data); |
| 3177 | |
| 3178 | isl_union_access_info_free(access); |
| 3179 | return flow; |
| 3180 | error: |
| 3181 | isl_union_access_info_free(access); |
| 3182 | isl_compute_flow_schedule_data_clear(data: &data); |
| 3183 | return NULL; |
| 3184 | } |
| 3185 | |
| 3186 | /* Given a description of the "sink" accesses, the "source" accesses and |
| 3187 | * a schedule, compute for each instance of a sink access |
| 3188 | * and for each element accessed by that instance, |
| 3189 | * the possible or definite source accesses that last accessed the |
| 3190 | * element accessed by the sink access before this sink access |
| 3191 | * in the sense that there is no intermediate definite source access. |
| 3192 | * |
| 3193 | * The must_no_source and may_no_source elements of the result |
| 3194 | * are subsets of access->sink. The elements must_dep and may_dep |
| 3195 | * map domain elements of access->{may,must)_source to |
| 3196 | * domain elements of access->sink. |
| 3197 | * |
| 3198 | * If any kills have been specified, then they are treated as |
| 3199 | * must-sources internally. Any dependence that purely derives |
| 3200 | * from an original kill is removed from the output. |
| 3201 | * |
| 3202 | * We check whether the schedule is available as a schedule tree |
| 3203 | * or a schedule map and call the corresponding function to perform |
| 3204 | * the analysis. |
| 3205 | */ |
| 3206 | __isl_give isl_union_flow *isl_union_access_info_compute_flow( |
| 3207 | __isl_take isl_union_access_info *access) |
| 3208 | { |
| 3209 | isl_bool has_kill; |
| 3210 | isl_union_map *must = NULL, *may = NULL; |
| 3211 | isl_union_flow *flow; |
| 3212 | |
| 3213 | has_kill = isl_union_access_has_kill(info: access); |
| 3214 | if (has_kill < 0) |
| 3215 | goto error; |
| 3216 | if (has_kill) { |
| 3217 | must = isl_union_access_info_get_must_source(info: access); |
| 3218 | may = isl_union_access_info_get_may_source(info: access); |
| 3219 | } |
| 3220 | access = isl_union_access_info_add_kill_to_must_source(info: access); |
| 3221 | access = isl_union_access_info_normalize(access); |
| 3222 | if (!access) |
| 3223 | goto error; |
| 3224 | if (access->schedule) |
| 3225 | flow = compute_flow_schedule(access); |
| 3226 | else |
| 3227 | flow = compute_flow_union_map(access); |
| 3228 | if (has_kill) |
| 3229 | flow = isl_union_flow_drop_kill_source(flow, must, may); |
| 3230 | return flow; |
| 3231 | error: |
| 3232 | isl_union_access_info_free(access); |
| 3233 | isl_union_map_free(umap: must); |
| 3234 | isl_union_map_free(umap: may); |
| 3235 | return NULL; |
| 3236 | } |
| 3237 | |
| 3238 | /* Print the information contained in "flow" to "p". |
| 3239 | * The information is printed as a YAML document. |
| 3240 | */ |
| 3241 | __isl_give isl_printer *isl_printer_print_union_flow( |
| 3242 | __isl_take isl_printer *p, __isl_keep isl_union_flow *flow) |
| 3243 | { |
| 3244 | isl_union_map *umap; |
| 3245 | |
| 3246 | if (!flow) |
| 3247 | return isl_printer_free(printer: p); |
| 3248 | |
| 3249 | p = isl_printer_yaml_start_mapping(p); |
| 3250 | umap = isl_union_flow_get_full_must_dependence(flow); |
| 3251 | p = print_yaml_field_union_map(p, name: "must_dependence" , val: umap); |
| 3252 | isl_union_map_free(umap); |
| 3253 | umap = isl_union_flow_get_full_may_dependence(flow); |
| 3254 | p = print_yaml_field_union_map(p, name: "may_dependence" , val: umap); |
| 3255 | isl_union_map_free(umap); |
| 3256 | p = print_yaml_field_union_map(p, name: "must_no_source" , |
| 3257 | val: flow->must_no_source); |
| 3258 | umap = isl_union_flow_get_may_no_source(flow); |
| 3259 | p = print_yaml_field_union_map(p, name: "may_no_source" , val: umap); |
| 3260 | isl_union_map_free(umap); |
| 3261 | p = isl_printer_yaml_end_mapping(p); |
| 3262 | |
| 3263 | return p; |
| 3264 | } |
| 3265 | |
| 3266 | /* Return a string representation of the information in "flow". |
| 3267 | * The information is printed in flow format. |
| 3268 | */ |
| 3269 | __isl_give char *isl_union_flow_to_str(__isl_keep isl_union_flow *flow) |
| 3270 | { |
| 3271 | isl_printer *p; |
| 3272 | char *s; |
| 3273 | |
| 3274 | if (!flow) |
| 3275 | return NULL; |
| 3276 | |
| 3277 | p = isl_printer_to_str(ctx: isl_union_flow_get_ctx(flow)); |
| 3278 | p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW); |
| 3279 | p = isl_printer_print_union_flow(p, flow); |
| 3280 | s = isl_printer_get_str(printer: p); |
| 3281 | isl_printer_free(printer: p); |
| 3282 | |
| 3283 | return s; |
| 3284 | } |
| 3285 | |
| 3286 | /* Given a collection of "sink" and "source" accesses, |
| 3287 | * compute for each iteration of a sink access |
| 3288 | * and for each element accessed by that iteration, |
| 3289 | * the source access in the list that last accessed the |
| 3290 | * element accessed by the sink access before this sink access. |
| 3291 | * Each access is given as a map from the loop iterators |
| 3292 | * to the array indices. |
| 3293 | * The result is a relations between source and sink |
| 3294 | * iterations and a subset of the domain of the sink accesses, |
| 3295 | * corresponding to those iterations that access an element |
| 3296 | * not previously accessed. |
| 3297 | * |
| 3298 | * We collect the inputs in an isl_union_access_info object, |
| 3299 | * call isl_union_access_info_compute_flow and extract |
| 3300 | * the outputs from the result. |
| 3301 | */ |
| 3302 | int isl_union_map_compute_flow(__isl_take isl_union_map *sink, |
| 3303 | __isl_take isl_union_map *must_source, |
| 3304 | __isl_take isl_union_map *may_source, |
| 3305 | __isl_take isl_union_map *schedule, |
| 3306 | __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep, |
| 3307 | __isl_give isl_union_map **must_no_source, |
| 3308 | __isl_give isl_union_map **may_no_source) |
| 3309 | { |
| 3310 | isl_union_access_info *access; |
| 3311 | isl_union_flow *flow; |
| 3312 | |
| 3313 | access = isl_union_access_info_from_sink(sink); |
| 3314 | access = isl_union_access_info_set_must_source(access, must_source); |
| 3315 | access = isl_union_access_info_set_may_source(access, may_source); |
| 3316 | access = isl_union_access_info_set_schedule_map(access, schedule_map: schedule); |
| 3317 | flow = isl_union_access_info_compute_flow(access); |
| 3318 | |
| 3319 | if (must_dep) |
| 3320 | *must_dep = isl_union_flow_get_must_dependence(flow); |
| 3321 | if (may_dep) |
| 3322 | *may_dep = isl_union_flow_get_non_must_dependence(flow); |
| 3323 | if (must_no_source) |
| 3324 | *must_no_source = isl_union_flow_get_must_no_source(flow); |
| 3325 | if (may_no_source) |
| 3326 | *may_no_source = isl_union_flow_get_non_must_no_source(flow); |
| 3327 | |
| 3328 | isl_union_flow_free(flow); |
| 3329 | |
| 3330 | if ((must_dep && !*must_dep) || (may_dep && !*may_dep) || |
| 3331 | (must_no_source && !*must_no_source) || |
| 3332 | (may_no_source && !*may_no_source)) |
| 3333 | goto error; |
| 3334 | |
| 3335 | return 0; |
| 3336 | error: |
| 3337 | if (must_dep) |
| 3338 | *must_dep = isl_union_map_free(umap: *must_dep); |
| 3339 | if (may_dep) |
| 3340 | *may_dep = isl_union_map_free(umap: *may_dep); |
| 3341 | if (must_no_source) |
| 3342 | *must_no_source = isl_union_map_free(umap: *must_no_source); |
| 3343 | if (may_no_source) |
| 3344 | *may_no_source = isl_union_map_free(umap: *may_no_source); |
| 3345 | return -1; |
| 3346 | } |
| 3347 | |