1/*
2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
5 * Copyright 2012 Universiteit Leiden
6 * Copyright 2014 Ecole Normale Superieure
7 *
8 * Use of this software is governed by the MIT license
9 *
10 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
11 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
12 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
13 * B-3001 Leuven, Belgium
14 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
15 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
17 */
18
19#include <isl/val.h>
20#include <isl/space.h>
21#include <isl/set.h>
22#include <isl/map.h>
23#include <isl/union_set.h>
24#include <isl/union_map.h>
25#include <isl/flow.h>
26#include <isl/schedule_node.h>
27#include <isl_sort.h>
28#include <isl/stream.h>
29
30enum isl_restriction_type {
31 isl_restriction_type_empty,
32 isl_restriction_type_none,
33 isl_restriction_type_input,
34 isl_restriction_type_output
35};
36
37struct isl_restriction {
38 enum isl_restriction_type type;
39
40 isl_set *source;
41 isl_set *sink;
42};
43
44/* Create a restriction of the given type.
45 */
46static __isl_give isl_restriction *isl_restriction_alloc(
47 __isl_take isl_map *source_map, enum isl_restriction_type type)
48{
49 isl_ctx *ctx;
50 isl_restriction *restr;
51
52 if (!source_map)
53 return NULL;
54
55 ctx = isl_map_get_ctx(map: source_map);
56 restr = isl_calloc_type(ctx, struct isl_restriction);
57 if (!restr)
58 goto error;
59
60 restr->type = type;
61
62 isl_map_free(map: source_map);
63 return restr;
64error:
65 isl_map_free(map: source_map);
66 return NULL;
67}
68
69/* Create a restriction that doesn't restrict anything.
70 */
71__isl_give isl_restriction *isl_restriction_none(__isl_take isl_map *source_map)
72{
73 return isl_restriction_alloc(source_map, type: isl_restriction_type_none);
74}
75
76/* Create a restriction that removes everything.
77 */
78__isl_give isl_restriction *isl_restriction_empty(
79 __isl_take isl_map *source_map)
80{
81 return isl_restriction_alloc(source_map, type: isl_restriction_type_empty);
82}
83
84/* Create a restriction on the input of the maximization problem
85 * based on the given source and sink restrictions.
86 */
87__isl_give isl_restriction *isl_restriction_input(
88 __isl_take isl_set *source_restr, __isl_take isl_set *sink_restr)
89{
90 isl_ctx *ctx;
91 isl_restriction *restr;
92
93 if (!source_restr || !sink_restr)
94 goto error;
95
96 ctx = isl_set_get_ctx(set: source_restr);
97 restr = isl_calloc_type(ctx, struct isl_restriction);
98 if (!restr)
99 goto error;
100
101 restr->type = isl_restriction_type_input;
102 restr->source = source_restr;
103 restr->sink = sink_restr;
104
105 return restr;
106error:
107 isl_set_free(set: source_restr);
108 isl_set_free(set: sink_restr);
109 return NULL;
110}
111
112/* Create a restriction on the output of the maximization problem
113 * based on the given source restriction.
114 */
115__isl_give isl_restriction *isl_restriction_output(
116 __isl_take isl_set *source_restr)
117{
118 isl_ctx *ctx;
119 isl_restriction *restr;
120
121 if (!source_restr)
122 return NULL;
123
124 ctx = isl_set_get_ctx(set: source_restr);
125 restr = isl_calloc_type(ctx, struct isl_restriction);
126 if (!restr)
127 goto error;
128
129 restr->type = isl_restriction_type_output;
130 restr->source = source_restr;
131
132 return restr;
133error:
134 isl_set_free(set: source_restr);
135 return NULL;
136}
137
138__isl_null isl_restriction *isl_restriction_free(
139 __isl_take isl_restriction *restr)
140{
141 if (!restr)
142 return NULL;
143
144 isl_set_free(set: restr->source);
145 isl_set_free(set: restr->sink);
146 free(ptr: restr);
147 return NULL;
148}
149
150isl_ctx *isl_restriction_get_ctx(__isl_keep isl_restriction *restr)
151{
152 return restr ? isl_set_get_ctx(set: restr->source) : NULL;
153}
154
155/* A private structure to keep track of a mapping together with
156 * a user-specified identifier and a boolean indicating whether
157 * the map represents a must or may access/dependence.
158 */
159struct isl_labeled_map {
160 struct isl_map *map;
161 void *data;
162 int must;
163};
164
165typedef isl_bool (*isl_access_coscheduled)(void *first, void *second);
166
167/* A structure containing the input for dependence analysis:
168 * - a sink
169 * - n_must + n_may (<= max_source) sources
170 * - a function for determining the relative order of sources and sink
171 * - an optional function "coscheduled" for determining whether sources
172 * may be coscheduled. If "coscheduled" is NULL, then the sources
173 * are assumed not to be coscheduled.
174 * The must sources are placed before the may sources.
175 *
176 * domain_map is an auxiliary map that maps the sink access relation
177 * to the domain of this access relation.
178 * This field is only needed when restrict_fn is set and
179 * the field itself is set by isl_access_info_compute_flow.
180 *
181 * restrict_fn is a callback that (if not NULL) will be called
182 * right before any lexicographical maximization.
183 */
184struct isl_access_info {
185 isl_map *domain_map;
186 struct isl_labeled_map sink;
187 isl_access_level_before level_before;
188 isl_access_coscheduled coscheduled;
189
190 isl_access_restrict restrict_fn;
191 void *restrict_user;
192
193 int max_source;
194 int n_must;
195 int n_may;
196 struct isl_labeled_map source[1];
197};
198
199/* A structure containing the output of dependence analysis:
200 * - n_source dependences
201 * - a wrapped subset of the sink for which definitely no source could be found
202 * - a wrapped subset of the sink for which possibly no source could be found
203 */
204struct isl_flow {
205 isl_set *must_no_source;
206 isl_set *may_no_source;
207 int n_source;
208 struct isl_labeled_map *dep;
209};
210
211/* Construct an isl_access_info structure and fill it up with
212 * the given data. The number of sources is set to 0.
213 */
214__isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink,
215 void *sink_user, isl_access_level_before fn, int max_source)
216{
217 isl_ctx *ctx;
218 struct isl_access_info *acc;
219
220 if (!sink)
221 return NULL;
222
223 ctx = isl_map_get_ctx(map: sink);
224 isl_assert(ctx, max_source >= 0, goto error);
225
226 acc = isl_calloc(ctx, struct isl_access_info,
227 sizeof(struct isl_access_info) +
228 (max_source - 1) * sizeof(struct isl_labeled_map));
229 if (!acc)
230 goto error;
231
232 acc->sink.map = sink;
233 acc->sink.data = sink_user;
234 acc->level_before = fn;
235 acc->max_source = max_source;
236 acc->n_must = 0;
237 acc->n_may = 0;
238
239 return acc;
240error:
241 isl_map_free(map: sink);
242 return NULL;
243}
244
245/* Free the given isl_access_info structure.
246 */
247__isl_null isl_access_info *isl_access_info_free(
248 __isl_take isl_access_info *acc)
249{
250 int i;
251
252 if (!acc)
253 return NULL;
254 isl_map_free(map: acc->domain_map);
255 isl_map_free(map: acc->sink.map);
256 for (i = 0; i < acc->n_must + acc->n_may; ++i)
257 isl_map_free(map: acc->source[i].map);
258 free(ptr: acc);
259 return NULL;
260}
261
262isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc)
263{
264 return acc ? isl_map_get_ctx(map: acc->sink.map) : NULL;
265}
266
267__isl_give isl_access_info *isl_access_info_set_restrict(
268 __isl_take isl_access_info *acc, isl_access_restrict fn, void *user)
269{
270 if (!acc)
271 return NULL;
272 acc->restrict_fn = fn;
273 acc->restrict_user = user;
274 return acc;
275}
276
277/* Add another source to an isl_access_info structure, making
278 * sure the "must" sources are placed before the "may" sources.
279 * This function may be called at most max_source times on a
280 * given isl_access_info structure, with max_source as specified
281 * in the call to isl_access_info_alloc that constructed the structure.
282 */
283__isl_give isl_access_info *isl_access_info_add_source(
284 __isl_take isl_access_info *acc, __isl_take isl_map *source,
285 int must, void *source_user)
286{
287 isl_ctx *ctx;
288
289 if (!acc)
290 goto error;
291 ctx = isl_map_get_ctx(map: acc->sink.map);
292 isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error);
293
294 if (must) {
295 if (acc->n_may)
296 acc->source[acc->n_must + acc->n_may] =
297 acc->source[acc->n_must];
298 acc->source[acc->n_must].map = source;
299 acc->source[acc->n_must].data = source_user;
300 acc->source[acc->n_must].must = 1;
301 acc->n_must++;
302 } else {
303 acc->source[acc->n_must + acc->n_may].map = source;
304 acc->source[acc->n_must + acc->n_may].data = source_user;
305 acc->source[acc->n_must + acc->n_may].must = 0;
306 acc->n_may++;
307 }
308
309 return acc;
310error:
311 isl_map_free(map: source);
312 isl_access_info_free(acc);
313 return NULL;
314}
315
316/* A helper struct carrying the isl_access_info and an error condition.
317 */
318struct access_sort_info {
319 isl_access_info *access_info;
320 int error;
321};
322
323/* Return -n, 0 or n (with n a positive value), depending on whether
324 * the source access identified by p1 should be sorted before, together
325 * or after that identified by p2.
326 *
327 * If p1 appears before p2, then it should be sorted first.
328 * For more generic initial schedules, it is possible that neither
329 * p1 nor p2 appears before the other, or at least not in any obvious way.
330 * We therefore also check if p2 appears before p1, in which case p2
331 * should be sorted first.
332 * If not, we try to order the two statements based on the description
333 * of the iteration domains. This results in an arbitrary, but fairly
334 * stable ordering.
335 *
336 * In case of an error, sort_info.error is set to true and all elements are
337 * reported to be equal.
338 */
339static int access_sort_cmp(const void *p1, const void *p2, void *user)
340{
341 struct access_sort_info *sort_info = user;
342 isl_access_info *acc = sort_info->access_info;
343
344 if (sort_info->error)
345 return 0;
346
347 const struct isl_labeled_map *i1, *i2;
348 int level1, level2;
349 uint32_t h1, h2;
350 i1 = (const struct isl_labeled_map *) p1;
351 i2 = (const struct isl_labeled_map *) p2;
352
353 level1 = acc->level_before(i1->data, i2->data);
354 if (level1 < 0)
355 goto error;
356 if (level1 % 2)
357 return -1;
358
359 level2 = acc->level_before(i2->data, i1->data);
360 if (level2 < 0)
361 goto error;
362 if (level2 % 2)
363 return 1;
364
365 h1 = isl_map_get_hash(map: i1->map);
366 h2 = isl_map_get_hash(map: i2->map);
367 return h1 > h2 ? 1 : h1 < h2 ? -1 : 0;
368error:
369 sort_info->error = 1;
370 return 0;
371}
372
373/* Sort the must source accesses in their textual order.
374 */
375static __isl_give isl_access_info *isl_access_info_sort_sources(
376 __isl_take isl_access_info *acc)
377{
378 struct access_sort_info sort_info;
379
380 sort_info.access_info = acc;
381 sort_info.error = 0;
382
383 if (!acc)
384 return NULL;
385 if (acc->n_must <= 1)
386 return acc;
387
388 if (isl_sort(pbase: acc->source, total_elems: acc->n_must, size: sizeof(struct isl_labeled_map),
389 cmp: access_sort_cmp, arg: &sort_info) < 0)
390 return isl_access_info_free(acc);
391 if (sort_info.error)
392 return isl_access_info_free(acc);
393
394 return acc;
395}
396
397/* Align the parameters of the two spaces if needed and then call
398 * isl_space_join.
399 */
400static __isl_give isl_space *space_align_and_join(__isl_take isl_space *left,
401 __isl_take isl_space *right)
402{
403 isl_bool equal_params;
404
405 equal_params = isl_space_has_equal_params(space1: left, space2: right);
406 if (equal_params < 0)
407 goto error;
408 if (equal_params)
409 return isl_space_join(left, right);
410
411 left = isl_space_align_params(space1: left, space2: isl_space_copy(space: right));
412 right = isl_space_align_params(space1: right, space2: isl_space_copy(space: left));
413 return isl_space_join(left, right);
414error:
415 isl_space_free(space: left);
416 isl_space_free(space: right);
417 return NULL;
418}
419
420/* Initialize an empty isl_flow structure corresponding to a given
421 * isl_access_info structure.
422 * For each must access, two dependences are created (initialized
423 * to the empty relation), one for the resulting must dependences
424 * and one for the resulting may dependences. May accesses can
425 * only lead to may dependences, so only one dependence is created
426 * for each of them.
427 * This function is private as isl_flow structures are only supposed
428 * to be created by isl_access_info_compute_flow.
429 */
430static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc)
431{
432 int i, n;
433 struct isl_ctx *ctx;
434 struct isl_flow *dep;
435
436 if (!acc)
437 return NULL;
438
439 ctx = isl_map_get_ctx(map: acc->sink.map);
440 dep = isl_calloc_type(ctx, struct isl_flow);
441 if (!dep)
442 return NULL;
443
444 n = 2 * acc->n_must + acc->n_may;
445 dep->dep = isl_calloc_array(ctx, struct isl_labeled_map, n);
446 if (n && !dep->dep)
447 goto error;
448
449 dep->n_source = n;
450 for (i = 0; i < acc->n_must; ++i) {
451 isl_space *space;
452 space = space_align_and_join(
453 left: isl_map_get_space(map: acc->source[i].map),
454 right: isl_space_reverse(space: isl_map_get_space(map: acc->sink.map)));
455 dep->dep[2 * i].map = isl_map_empty(space);
456 dep->dep[2 * i + 1].map = isl_map_copy(map: dep->dep[2 * i].map);
457 dep->dep[2 * i].data = acc->source[i].data;
458 dep->dep[2 * i + 1].data = acc->source[i].data;
459 dep->dep[2 * i].must = 1;
460 dep->dep[2 * i + 1].must = 0;
461 if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map)
462 goto error;
463 }
464 for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) {
465 isl_space *space;
466 space = space_align_and_join(
467 left: isl_map_get_space(map: acc->source[i].map),
468 right: isl_space_reverse(space: isl_map_get_space(map: acc->sink.map)));
469 dep->dep[acc->n_must + i].map = isl_map_empty(space);
470 dep->dep[acc->n_must + i].data = acc->source[i].data;
471 dep->dep[acc->n_must + i].must = 0;
472 if (!dep->dep[acc->n_must + i].map)
473 goto error;
474 }
475
476 return dep;
477error:
478 isl_flow_free(deps: dep);
479 return NULL;
480}
481
482/* Iterate over all sources and for each resulting flow dependence
483 * that is not empty, call the user specfied function.
484 * The second argument in this function call identifies the source,
485 * while the third argument correspond to the final argument of
486 * the isl_flow_foreach call.
487 */
488isl_stat isl_flow_foreach(__isl_keep isl_flow *deps,
489 isl_stat (*fn)(__isl_take isl_map *dep, int must, void *dep_user,
490 void *user),
491 void *user)
492{
493 int i;
494
495 if (!deps)
496 return isl_stat_error;
497
498 for (i = 0; i < deps->n_source; ++i) {
499 if (isl_map_plain_is_empty(map: deps->dep[i].map))
500 continue;
501 if (fn(isl_map_copy(map: deps->dep[i].map), deps->dep[i].must,
502 deps->dep[i].data, user) < 0)
503 return isl_stat_error;
504 }
505
506 return isl_stat_ok;
507}
508
509/* Return a copy of the subset of the sink for which no source could be found.
510 */
511__isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must)
512{
513 if (!deps)
514 return NULL;
515
516 if (must)
517 return isl_set_unwrap(set: isl_set_copy(set: deps->must_no_source));
518 else
519 return isl_set_unwrap(set: isl_set_copy(set: deps->may_no_source));
520}
521
522__isl_null isl_flow *isl_flow_free(__isl_take isl_flow *deps)
523{
524 int i;
525
526 if (!deps)
527 return NULL;
528 isl_set_free(set: deps->must_no_source);
529 isl_set_free(set: deps->may_no_source);
530 if (deps->dep) {
531 for (i = 0; i < deps->n_source; ++i)
532 isl_map_free(map: deps->dep[i].map);
533 free(ptr: deps->dep);
534 }
535 free(ptr: deps);
536
537 return NULL;
538}
539
540isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps)
541{
542 return deps ? isl_set_get_ctx(set: deps->must_no_source) : NULL;
543}
544
545/* Return a map that enforces that the domain iteration occurs after
546 * the range iteration at the given level.
547 * If level is odd, then the domain iteration should occur after
548 * the target iteration in their shared level/2 outermost loops.
549 * In this case we simply need to enforce that these outermost
550 * loop iterations are the same.
551 * If level is even, then the loop iterator of the domain should
552 * be greater than the loop iterator of the range at the last
553 * of the level/2 shared loops, i.e., loop level/2 - 1.
554 */
555static __isl_give isl_map *after_at_level(__isl_take isl_space *space,
556 int level)
557{
558 struct isl_basic_map *bmap;
559
560 if (level % 2)
561 bmap = isl_basic_map_equal(space, n_equal: level/2);
562 else
563 bmap = isl_basic_map_more_at(space, pos: level/2 - 1);
564
565 return isl_map_from_basic_map(bmap);
566}
567
568/* Compute the partial lexicographic maximum of "dep" on domain "sink",
569 * but first check if the user has set acc->restrict_fn and if so
570 * update either the input or the output of the maximization problem
571 * with respect to the resulting restriction.
572 *
573 * Since the user expects a mapping from sink iterations to source iterations,
574 * whereas the domain of "dep" is a wrapped map, mapping sink iterations
575 * to accessed array elements, we first need to project out the accessed
576 * sink array elements by applying acc->domain_map.
577 * Similarly, the sink restriction specified by the user needs to be
578 * converted back to the wrapped map.
579 */
580static __isl_give isl_map *restricted_partial_lexmax(
581 __isl_keep isl_access_info *acc, __isl_take isl_map *dep,
582 int source, __isl_take isl_set *sink, __isl_give isl_set **empty)
583{
584 isl_map *source_map;
585 isl_restriction *restr;
586 isl_set *sink_domain;
587 isl_set *sink_restr;
588 isl_map *res;
589
590 if (!acc->restrict_fn)
591 return isl_map_partial_lexmax(map: dep, dom: sink, empty);
592
593 source_map = isl_map_copy(map: dep);
594 source_map = isl_map_apply_domain(map1: source_map,
595 map2: isl_map_copy(map: acc->domain_map));
596 sink_domain = isl_set_copy(set: sink);
597 sink_domain = isl_set_apply(set: sink_domain, map: isl_map_copy(map: acc->domain_map));
598 restr = acc->restrict_fn(source_map, sink_domain,
599 acc->source[source].data, acc->restrict_user);
600 isl_set_free(set: sink_domain);
601 isl_map_free(map: source_map);
602
603 if (!restr)
604 goto error;
605 if (restr->type == isl_restriction_type_input) {
606 dep = isl_map_intersect_range(map: dep, set: isl_set_copy(set: restr->source));
607 sink_restr = isl_set_copy(set: restr->sink);
608 sink_restr = isl_set_apply(set: sink_restr,
609 map: isl_map_reverse(map: isl_map_copy(map: acc->domain_map)));
610 sink = isl_set_intersect(set1: sink, set2: sink_restr);
611 } else if (restr->type == isl_restriction_type_empty) {
612 isl_space *space = isl_map_get_space(map: dep);
613 isl_map_free(map: dep);
614 dep = isl_map_empty(space);
615 }
616
617 res = isl_map_partial_lexmax(map: dep, dom: sink, empty);
618
619 if (restr->type == isl_restriction_type_output)
620 res = isl_map_intersect_range(map: res, set: isl_set_copy(set: restr->source));
621
622 isl_restriction_free(restr);
623 return res;
624error:
625 isl_map_free(map: dep);
626 isl_set_free(set: sink);
627 *empty = NULL;
628 return NULL;
629}
630
631/* Compute the last iteration of must source j that precedes the sink
632 * at the given level for sink iterations in set_C.
633 * The subset of set_C for which no such iteration can be found is returned
634 * in *empty.
635 */
636static struct isl_map *last_source(struct isl_access_info *acc,
637 struct isl_set *set_C,
638 int j, int level, struct isl_set **empty)
639{
640 struct isl_map *read_map;
641 struct isl_map *write_map;
642 struct isl_map *dep_map;
643 struct isl_map *after;
644 struct isl_map *result;
645
646 read_map = isl_map_copy(map: acc->sink.map);
647 write_map = isl_map_copy(map: acc->source[j].map);
648 write_map = isl_map_reverse(map: write_map);
649 dep_map = isl_map_apply_range(map1: read_map, map2: write_map);
650 after = after_at_level(space: isl_map_get_space(map: dep_map), level);
651 dep_map = isl_map_intersect(map1: dep_map, map2: after);
652 result = restricted_partial_lexmax(acc, dep: dep_map, source: j, sink: set_C, empty);
653 result = isl_map_reverse(map: result);
654
655 return result;
656}
657
658/* For a given mapping between iterations of must source j and iterations
659 * of the sink, compute the last iteration of must source k preceding
660 * the sink at level before_level for any of the sink iterations,
661 * but following the corresponding iteration of must source j at level
662 * after_level.
663 */
664static struct isl_map *last_later_source(struct isl_access_info *acc,
665 struct isl_map *old_map,
666 int j, int before_level,
667 int k, int after_level,
668 struct isl_set **empty)
669{
670 isl_space *space;
671 struct isl_set *set_C;
672 struct isl_map *read_map;
673 struct isl_map *write_map;
674 struct isl_map *dep_map;
675 struct isl_map *after_write;
676 struct isl_map *before_read;
677 struct isl_map *result;
678
679 set_C = isl_map_range(map: isl_map_copy(map: old_map));
680 read_map = isl_map_copy(map: acc->sink.map);
681 write_map = isl_map_copy(map: acc->source[k].map);
682
683 write_map = isl_map_reverse(map: write_map);
684 dep_map = isl_map_apply_range(map1: read_map, map2: write_map);
685 space = space_align_and_join(left: isl_map_get_space(map: acc->source[k].map),
686 right: isl_space_reverse(space: isl_map_get_space(map: acc->source[j].map)));
687 after_write = after_at_level(space, level: after_level);
688 after_write = isl_map_apply_range(map1: after_write, map2: old_map);
689 after_write = isl_map_reverse(map: after_write);
690 dep_map = isl_map_intersect(map1: dep_map, map2: after_write);
691 before_read = after_at_level(space: isl_map_get_space(map: dep_map), level: before_level);
692 dep_map = isl_map_intersect(map1: dep_map, map2: before_read);
693 result = restricted_partial_lexmax(acc, dep: dep_map, source: k, sink: set_C, empty);
694 result = isl_map_reverse(map: result);
695
696 return result;
697}
698
699/* Given a shared_level between two accesses, return 1 if the
700 * the first can precede the second at the requested target_level.
701 * If the target level is odd, i.e., refers to a statement level
702 * dimension, then first needs to precede second at the requested
703 * level, i.e., shared_level must be equal to target_level.
704 * If the target level is odd, then the two loops should share
705 * at least the requested number of outer loops.
706 */
707static int can_precede_at_level(int shared_level, int target_level)
708{
709 if (shared_level < target_level)
710 return 0;
711 if ((target_level % 2) && shared_level > target_level)
712 return 0;
713 return 1;
714}
715
716/* Given a possible flow dependence temp_rel[j] between source j and the sink
717 * at level sink_level, remove those elements for which
718 * there is an iteration of another source k < j that is closer to the sink.
719 * The flow dependences temp_rel[k] are updated with the improved sources.
720 * Any improved source needs to precede the sink at the same level
721 * and needs to follow source j at the same or a deeper level.
722 * The lower this level, the later the execution date of source k.
723 * We therefore consider lower levels first.
724 *
725 * If temp_rel[j] is empty, then there can be no improvement and
726 * we return immediately.
727 *
728 * This function returns isl_stat_ok in case it was executed successfully and
729 * isl_stat_error in case of errors during the execution of this function.
730 */
731static isl_stat intermediate_sources(__isl_keep isl_access_info *acc,
732 struct isl_map **temp_rel, int j, int sink_level)
733{
734 int k, level;
735 isl_size n_in = isl_map_dim(map: acc->source[j].map, type: isl_dim_in);
736 int depth = 2 * n_in + 1;
737
738 if (n_in < 0)
739 return isl_stat_error;
740 if (isl_map_plain_is_empty(map: temp_rel[j]))
741 return isl_stat_ok;
742
743 for (k = j - 1; k >= 0; --k) {
744 int plevel, plevel2;
745 plevel = acc->level_before(acc->source[k].data, acc->sink.data);
746 if (plevel < 0)
747 return isl_stat_error;
748 if (!can_precede_at_level(shared_level: plevel, target_level: sink_level))
749 continue;
750
751 plevel2 = acc->level_before(acc->source[j].data,
752 acc->source[k].data);
753 if (plevel2 < 0)
754 return isl_stat_error;
755
756 for (level = sink_level; level <= depth; ++level) {
757 struct isl_map *T;
758 struct isl_set *trest;
759 struct isl_map *copy;
760
761 if (!can_precede_at_level(shared_level: plevel2, target_level: level))
762 continue;
763
764 copy = isl_map_copy(map: temp_rel[j]);
765 T = last_later_source(acc, old_map: copy, j, before_level: sink_level, k,
766 after_level: level, empty: &trest);
767 if (isl_map_plain_is_empty(map: T)) {
768 isl_set_free(set: trest);
769 isl_map_free(map: T);
770 continue;
771 }
772 temp_rel[j] = isl_map_intersect_range(map: temp_rel[j], set: trest);
773 temp_rel[k] = isl_map_union_disjoint(map1: temp_rel[k], map2: T);
774 }
775 }
776
777 return isl_stat_ok;
778}
779
780/* Compute all iterations of may source j that precedes the sink at the given
781 * level for sink iterations in set_C.
782 */
783static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc,
784 __isl_take isl_set *set_C, int j, int level)
785{
786 isl_map *read_map;
787 isl_map *write_map;
788 isl_map *dep_map;
789 isl_map *after;
790
791 read_map = isl_map_copy(map: acc->sink.map);
792 read_map = isl_map_intersect_domain(map: read_map, set: set_C);
793 write_map = isl_map_copy(map: acc->source[acc->n_must + j].map);
794 write_map = isl_map_reverse(map: write_map);
795 dep_map = isl_map_apply_range(map1: read_map, map2: write_map);
796 after = after_at_level(space: isl_map_get_space(map: dep_map), level);
797 dep_map = isl_map_intersect(map1: dep_map, map2: after);
798
799 return isl_map_reverse(map: dep_map);
800}
801
802/* For a given mapping between iterations of must source k and iterations
803 * of the sink, compute all iterations of may source j preceding
804 * the sink at level before_level for any of the sink iterations,
805 * but following the corresponding iteration of must source k at level
806 * after_level.
807 */
808static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc,
809 __isl_take isl_map *old_map,
810 int j, int before_level, int k, int after_level)
811{
812 isl_space *space;
813 isl_set *set_C;
814 isl_map *read_map;
815 isl_map *write_map;
816 isl_map *dep_map;
817 isl_map *after_write;
818 isl_map *before_read;
819
820 set_C = isl_map_range(map: isl_map_copy(map: old_map));
821 read_map = isl_map_copy(map: acc->sink.map);
822 read_map = isl_map_intersect_domain(map: read_map, set: set_C);
823 write_map = isl_map_copy(map: acc->source[acc->n_must + j].map);
824
825 write_map = isl_map_reverse(map: write_map);
826 dep_map = isl_map_apply_range(map1: read_map, map2: write_map);
827 space = isl_space_join(left: isl_map_get_space(
828 map: acc->source[acc->n_must + j].map),
829 right: isl_space_reverse(space: isl_map_get_space(map: acc->source[k].map)));
830 after_write = after_at_level(space, level: after_level);
831 after_write = isl_map_apply_range(map1: after_write, map2: old_map);
832 after_write = isl_map_reverse(map: after_write);
833 dep_map = isl_map_intersect(map1: dep_map, map2: after_write);
834 before_read = after_at_level(space: isl_map_get_space(map: dep_map), level: before_level);
835 dep_map = isl_map_intersect(map1: dep_map, map2: before_read);
836 return isl_map_reverse(map: dep_map);
837}
838
839/* Given the must and may dependence relations for the must accesses
840 * for level sink_level, check if there are any accesses of may access j
841 * that occur in between and return their union.
842 * If some of these accesses are intermediate with respect to
843 * (previously thought to be) must dependences, then these
844 * must dependences are turned into may dependences.
845 */
846static __isl_give isl_map *all_intermediate_sources(
847 __isl_keep isl_access_info *acc, __isl_take isl_map *map,
848 struct isl_map **must_rel, struct isl_map **may_rel,
849 int j, int sink_level)
850{
851 int k, level;
852 isl_size n_in = isl_map_dim(map: acc->source[acc->n_must + j].map,
853 type: isl_dim_in);
854 int depth = 2 * n_in + 1;
855
856 if (n_in < 0)
857 return isl_map_free(map);
858 for (k = 0; k < acc->n_must; ++k) {
859 int plevel;
860
861 if (isl_map_plain_is_empty(map: may_rel[k]) &&
862 isl_map_plain_is_empty(map: must_rel[k]))
863 continue;
864
865 plevel = acc->level_before(acc->source[k].data,
866 acc->source[acc->n_must + j].data);
867 if (plevel < 0)
868 return isl_map_free(map);
869
870 for (level = sink_level; level <= depth; ++level) {
871 isl_map *T;
872 isl_map *copy;
873 isl_set *ran;
874
875 if (!can_precede_at_level(shared_level: plevel, target_level: level))
876 continue;
877
878 copy = isl_map_copy(map: may_rel[k]);
879 T = all_later_sources(acc, old_map: copy, j, before_level: sink_level, k, after_level: level);
880 map = isl_map_union(map1: map, map2: T);
881
882 copy = isl_map_copy(map: must_rel[k]);
883 T = all_later_sources(acc, old_map: copy, j, before_level: sink_level, k, after_level: level);
884 ran = isl_map_range(map: isl_map_copy(map: T));
885 map = isl_map_union(map1: map, map2: T);
886 may_rel[k] = isl_map_union_disjoint(map1: may_rel[k],
887 map2: isl_map_intersect_range(map: isl_map_copy(map: must_rel[k]),
888 set: isl_set_copy(set: ran)));
889 T = isl_map_from_domain_and_range(
890 domain: isl_set_universe(
891 space: isl_space_domain(space: isl_map_get_space(map: must_rel[k]))),
892 range: ran);
893 must_rel[k] = isl_map_subtract(map1: must_rel[k], map2: T);
894 }
895 }
896
897 return map;
898}
899
900/* Given a dependence relation "old_map" between a must-source and the sink,
901 * return a subset of the dependences, augmented with instances
902 * of the source at position "pos" in "acc" that are coscheduled
903 * with the must-source and that access the same element.
904 * That is, if the input lives in a space T -> K, then the output
905 * lives in the space [T -> S] -> K, with S the space of source "pos", and
906 * the domain factor of the domain product is a subset of the input.
907 * The sources are considered to be coscheduled if they have the same values
908 * for the initial "depth" coordinates.
909 *
910 * First construct a dependence relation S -> K and a mapping
911 * between coscheduled sources T -> S.
912 * The second is combined with the original dependence relation T -> K
913 * to form a relation in T -> [S -> K], which is subsequently
914 * uncurried to [T -> S] -> K.
915 * This result is then intersected with the dependence relation S -> K
916 * to form the output.
917 *
918 * In case a negative depth is given, NULL is returned to indicate an error.
919 */
920static __isl_give isl_map *coscheduled_source(__isl_keep isl_access_info *acc,
921 __isl_keep isl_map *old_map, int pos, int depth)
922{
923 isl_space *space;
924 isl_set *set_C;
925 isl_map *read_map;
926 isl_map *write_map;
927 isl_map *dep_map;
928 isl_map *equal;
929 isl_map *map;
930
931 if (depth < 0)
932 return NULL;
933
934 set_C = isl_map_range(map: isl_map_copy(map: old_map));
935 read_map = isl_map_copy(map: acc->sink.map);
936 read_map = isl_map_intersect_domain(map: read_map, set: set_C);
937 write_map = isl_map_copy(map: acc->source[pos].map);
938 dep_map = isl_map_domain_product(map1: write_map, map2: read_map);
939 dep_map = isl_set_unwrap(set: isl_map_domain(bmap: dep_map));
940 space = isl_space_join(left: isl_map_get_space(map: old_map),
941 right: isl_space_reverse(space: isl_map_get_space(map: dep_map)));
942 equal = isl_map_from_basic_map(bmap: isl_basic_map_equal(space, n_equal: depth));
943 map = isl_map_range_product(map1: equal, map2: isl_map_copy(map: old_map));
944 map = isl_map_uncurry(map);
945 map = isl_map_intersect_domain_factor_range(map, factor: dep_map);
946
947 return map;
948}
949
950/* After the dependences derived from a must-source have been computed
951 * at a certain level, check if any of the sources of the must-dependences
952 * may be coscheduled with other sources.
953 * If they are any such sources, then there is no way of determining
954 * which of the sources actually comes last and the must-dependences
955 * need to be turned into may-dependences, while dependences from
956 * the other sources need to be added to the may-dependences as well.
957 * "acc" describes the sources and a callback for checking whether
958 * two sources may be coscheduled. If acc->coscheduled is NULL then
959 * the sources are assumed not to be coscheduled.
960 * "must_rel" and "may_rel" describe the must and may-dependence relations
961 * computed at the current level for the must-sources. Some of the dependences
962 * may be moved from "must_rel" to "may_rel".
963 * "flow" contains all dependences computed so far (apart from those
964 * in "must_rel" and "may_rel") and may be updated with additional
965 * dependences derived from may-sources.
966 *
967 * In particular, consider all the must-sources with a non-empty
968 * dependence relation in "must_rel". They are considered in reverse
969 * order because that is the order in which they are considered in the caller.
970 * If any of the must-sources are coscheduled, then the last one
971 * is the one that will have a corresponding dependence relation.
972 * For each must-source i, consider both all the previous must-sources
973 * and all the may-sources. If any of those may be coscheduled with
974 * must-source i, then compute the coscheduled instances that access
975 * the same memory elements. The result is a relation [T -> S] -> K.
976 * The projection onto T -> K is a subset of the must-dependence relation
977 * that needs to be turned into may-dependences.
978 * The projection onto S -> K needs to be added to the may-dependences
979 * of source S.
980 * Since a given must-source instance may be coscheduled with several
981 * other source instances, the dependences that need to be turned
982 * into may-dependences are first collected and only actually removed
983 * from the must-dependences after all other sources have been considered.
984 */
985static __isl_give isl_flow *handle_coscheduled(__isl_keep isl_access_info *acc,
986 __isl_keep isl_map **must_rel, __isl_keep isl_map **may_rel,
987 __isl_take isl_flow *flow)
988{
989 int i, j;
990
991 if (!acc->coscheduled)
992 return flow;
993 for (i = acc->n_must - 1; i >= 0; --i) {
994 isl_map *move;
995
996 if (isl_map_plain_is_empty(map: must_rel[i]))
997 continue;
998 move = isl_map_empty(space: isl_map_get_space(map: must_rel[i]));
999 for (j = i - 1; j >= 0; --j) {
1000 int depth;
1001 isl_bool coscheduled;
1002 isl_map *map, *factor;
1003
1004 coscheduled = acc->coscheduled(acc->source[i].data,
1005 acc->source[j].data);
1006 if (coscheduled < 0) {
1007 isl_map_free(map: move);
1008 return isl_flow_free(deps: flow);
1009 }
1010 if (!coscheduled)
1011 continue;
1012 depth = acc->level_before(acc->source[i].data,
1013 acc->source[j].data) / 2;
1014 map = coscheduled_source(acc, old_map: must_rel[i], pos: j, depth);
1015 factor = isl_map_domain_factor_range(map: isl_map_copy(map));
1016 may_rel[j] = isl_map_union(map1: may_rel[j], map2: factor);
1017 map = isl_map_domain_factor_domain(map);
1018 move = isl_map_union(map1: move, map2: map);
1019 }
1020 for (j = 0; j < acc->n_may; ++j) {
1021 int depth, pos;
1022 isl_bool coscheduled;
1023 isl_map *map, *factor;
1024
1025 pos = acc->n_must + j;
1026 coscheduled = acc->coscheduled(acc->source[i].data,
1027 acc->source[pos].data);
1028 if (coscheduled < 0) {
1029 isl_map_free(map: move);
1030 return isl_flow_free(deps: flow);
1031 }
1032 if (!coscheduled)
1033 continue;
1034 depth = acc->level_before(acc->source[i].data,
1035 acc->source[pos].data) / 2;
1036 map = coscheduled_source(acc, old_map: must_rel[i], pos, depth);
1037 factor = isl_map_domain_factor_range(map: isl_map_copy(map));
1038 pos = 2 * acc->n_must + j;
1039 flow->dep[pos].map = isl_map_union(map1: flow->dep[pos].map,
1040 map2: factor);
1041 map = isl_map_domain_factor_domain(map);
1042 move = isl_map_union(map1: move, map2: map);
1043 }
1044 must_rel[i] = isl_map_subtract(map1: must_rel[i], map2: isl_map_copy(map: move));
1045 may_rel[i] = isl_map_union(map1: may_rel[i], map2: move);
1046 }
1047
1048 return flow;
1049}
1050
1051/* Compute dependences for the case where all accesses are "may"
1052 * accesses, which boils down to computing memory based dependences.
1053 * The generic algorithm would also work in this case, but it would
1054 * be overkill to use it.
1055 */
1056static __isl_give isl_flow *compute_mem_based_dependences(
1057 __isl_keep isl_access_info *acc)
1058{
1059 int i;
1060 isl_set *mustdo;
1061 isl_set *maydo;
1062 isl_flow *res;
1063
1064 res = isl_flow_alloc(acc);
1065 if (!res)
1066 return NULL;
1067
1068 mustdo = isl_map_domain(bmap: isl_map_copy(map: acc->sink.map));
1069 maydo = isl_set_copy(set: mustdo);
1070
1071 for (i = 0; i < acc->n_may; ++i) {
1072 int plevel;
1073 int is_before;
1074 isl_space *space;
1075 isl_map *before;
1076 isl_map *dep;
1077
1078 plevel = acc->level_before(acc->source[i].data, acc->sink.data);
1079 if (plevel < 0)
1080 goto error;
1081
1082 is_before = plevel & 1;
1083 plevel >>= 1;
1084
1085 space = isl_map_get_space(map: res->dep[i].map);
1086 if (is_before)
1087 before = isl_map_lex_le_first(space, n: plevel);
1088 else
1089 before = isl_map_lex_lt_first(space, n: plevel);
1090 dep = isl_map_apply_range(map1: isl_map_copy(map: acc->source[i].map),
1091 map2: isl_map_reverse(map: isl_map_copy(map: acc->sink.map)));
1092 dep = isl_map_intersect(map1: dep, map2: before);
1093 mustdo = isl_set_subtract(set1: mustdo,
1094 set2: isl_map_range(map: isl_map_copy(map: dep)));
1095 res->dep[i].map = isl_map_union(map1: res->dep[i].map, map2: dep);
1096 }
1097
1098 res->may_no_source = isl_set_subtract(set1: maydo, set2: isl_set_copy(set: mustdo));
1099 res->must_no_source = mustdo;
1100
1101 return res;
1102error:
1103 isl_set_free(set: mustdo);
1104 isl_set_free(set: maydo);
1105 isl_flow_free(deps: res);
1106 return NULL;
1107}
1108
1109/* Compute dependences for the case where there is at least one
1110 * "must" access.
1111 *
1112 * The core algorithm considers all levels in which a source may precede
1113 * the sink, where a level may either be a statement level or a loop level.
1114 * The outermost statement level is 1, the first loop level is 2, etc...
1115 * The algorithm basically does the following:
1116 * for all levels l of the read access from innermost to outermost
1117 * for all sources w that may precede the sink access at that level
1118 * compute the last iteration of the source that precedes the sink access
1119 * at that level
1120 * add result to possible last accesses at level l of source w
1121 * for all sources w2 that we haven't considered yet at this level that may
1122 * also precede the sink access
1123 * for all levels l2 of w from l to innermost
1124 * for all possible last accesses dep of w at l
1125 * compute last iteration of w2 between the source and sink
1126 * of dep
1127 * add result to possible last accesses at level l of write w2
1128 * and replace possible last accesses dep by the remainder
1129 *
1130 *
1131 * The above algorithm is applied to the must access. During the course
1132 * of the algorithm, we keep track of sink iterations that still
1133 * need to be considered. These iterations are split into those that
1134 * haven't been matched to any source access (mustdo) and those that have only
1135 * been matched to may accesses (maydo).
1136 * At the end of each level, must-sources and may-sources that are coscheduled
1137 * with the sources of the must-dependences at that level are considered.
1138 * If any coscheduled instances are found, then corresponding may-dependences
1139 * are added and the original must-dependences are turned into may-dependences.
1140 * Afterwards, the may accesses that occur after must-dependence sources
1141 * are considered.
1142 * In particular, we consider may accesses that precede the remaining
1143 * sink iterations, moving elements from mustdo to maydo when appropriate,
1144 * and may accesses that occur between a must source and a sink of any
1145 * dependences found at the current level, turning must dependences into
1146 * may dependences when appropriate.
1147 *
1148 */
1149static __isl_give isl_flow *compute_val_based_dependences(
1150 __isl_keep isl_access_info *acc)
1151{
1152 isl_ctx *ctx;
1153 isl_flow *res;
1154 isl_set *mustdo = NULL;
1155 isl_set *maydo = NULL;
1156 int level, j;
1157 isl_size n_in;
1158 int depth;
1159 isl_map **must_rel = NULL;
1160 isl_map **may_rel = NULL;
1161
1162 if (!acc)
1163 return NULL;
1164
1165 res = isl_flow_alloc(acc);
1166 if (!res)
1167 goto error;
1168 ctx = isl_map_get_ctx(map: acc->sink.map);
1169
1170 n_in = isl_map_dim(map: acc->sink.map, type: isl_dim_in);
1171 if (n_in < 0)
1172 goto error;
1173 depth = 2 * n_in + 1;
1174 mustdo = isl_map_domain(bmap: isl_map_copy(map: acc->sink.map));
1175 maydo = isl_set_empty(space: isl_set_get_space(set: mustdo));
1176 if (!mustdo || !maydo)
1177 goto error;
1178 if (isl_set_plain_is_empty(set: mustdo))
1179 goto done;
1180
1181 must_rel = isl_calloc_array(ctx, struct isl_map *, acc->n_must);
1182 may_rel = isl_calloc_array(ctx, struct isl_map *, acc->n_must);
1183 if (!must_rel || !may_rel)
1184 goto error;
1185
1186 for (level = depth; level >= 1; --level) {
1187 for (j = acc->n_must-1; j >=0; --j) {
1188 isl_space *space;
1189 space = isl_map_get_space(map: res->dep[2 * j].map);
1190 must_rel[j] = isl_map_empty(space);
1191 may_rel[j] = isl_map_copy(map: must_rel[j]);
1192 }
1193
1194 for (j = acc->n_must - 1; j >= 0; --j) {
1195 struct isl_map *T;
1196 struct isl_set *rest;
1197 int plevel;
1198
1199 plevel = acc->level_before(acc->source[j].data,
1200 acc->sink.data);
1201 if (plevel < 0)
1202 goto error;
1203 if (!can_precede_at_level(shared_level: plevel, target_level: level))
1204 continue;
1205
1206 T = last_source(acc, set_C: mustdo, j, level, empty: &rest);
1207 must_rel[j] = isl_map_union_disjoint(map1: must_rel[j], map2: T);
1208 mustdo = rest;
1209
1210 if (intermediate_sources(acc, temp_rel: must_rel, j, sink_level: level) < 0)
1211 goto error;
1212
1213 T = last_source(acc, set_C: maydo, j, level, empty: &rest);
1214 may_rel[j] = isl_map_union_disjoint(map1: may_rel[j], map2: T);
1215 maydo = rest;
1216
1217 if (intermediate_sources(acc, temp_rel: may_rel, j, sink_level: level) < 0)
1218 goto error;
1219
1220 if (isl_set_plain_is_empty(set: mustdo) &&
1221 isl_set_plain_is_empty(set: maydo))
1222 break;
1223 }
1224 for (j = j - 1; j >= 0; --j) {
1225 int plevel;
1226
1227 plevel = acc->level_before(acc->source[j].data,
1228 acc->sink.data);
1229 if (plevel < 0)
1230 goto error;
1231 if (!can_precede_at_level(shared_level: plevel, target_level: level))
1232 continue;
1233
1234 if (intermediate_sources(acc, temp_rel: must_rel, j, sink_level: level) < 0)
1235 goto error;
1236 if (intermediate_sources(acc, temp_rel: may_rel, j, sink_level: level) < 0)
1237 goto error;
1238 }
1239
1240 res = handle_coscheduled(acc, must_rel, may_rel, flow: res);
1241 if (!res)
1242 goto error;
1243
1244 for (j = 0; j < acc->n_may; ++j) {
1245 int plevel;
1246 isl_map *T;
1247 isl_set *ran;
1248
1249 plevel = acc->level_before(acc->source[acc->n_must + j].data,
1250 acc->sink.data);
1251 if (plevel < 0)
1252 goto error;
1253 if (!can_precede_at_level(shared_level: plevel, target_level: level))
1254 continue;
1255
1256 T = all_sources(acc, set_C: isl_set_copy(set: maydo), j, level);
1257 res->dep[2 * acc->n_must + j].map =
1258 isl_map_union(map1: res->dep[2 * acc->n_must + j].map, map2: T);
1259 T = all_sources(acc, set_C: isl_set_copy(set: mustdo), j, level);
1260 ran = isl_map_range(map: isl_map_copy(map: T));
1261 res->dep[2 * acc->n_must + j].map =
1262 isl_map_union(map1: res->dep[2 * acc->n_must + j].map, map2: T);
1263 mustdo = isl_set_subtract(set1: mustdo, set2: isl_set_copy(set: ran));
1264 maydo = isl_set_union_disjoint(set1: maydo, set2: ran);
1265
1266 T = res->dep[2 * acc->n_must + j].map;
1267 T = all_intermediate_sources(acc, map: T, must_rel, may_rel,
1268 j, sink_level: level);
1269 res->dep[2 * acc->n_must + j].map = T;
1270 }
1271
1272 for (j = acc->n_must - 1; j >= 0; --j) {
1273 res->dep[2 * j].map =
1274 isl_map_union_disjoint(map1: res->dep[2 * j].map,
1275 map2: must_rel[j]);
1276 res->dep[2 * j + 1].map =
1277 isl_map_union_disjoint(map1: res->dep[2 * j + 1].map,
1278 map2: may_rel[j]);
1279 }
1280
1281 if (isl_set_plain_is_empty(set: mustdo) &&
1282 isl_set_plain_is_empty(set: maydo))
1283 break;
1284 }
1285
1286 free(ptr: must_rel);
1287 free(ptr: may_rel);
1288done:
1289 res->must_no_source = mustdo;
1290 res->may_no_source = maydo;
1291 return res;
1292error:
1293 if (must_rel)
1294 for (j = 0; j < acc->n_must; ++j)
1295 isl_map_free(map: must_rel[j]);
1296 if (may_rel)
1297 for (j = 0; j < acc->n_must; ++j)
1298 isl_map_free(map: may_rel[j]);
1299 isl_flow_free(deps: res);
1300 isl_set_free(set: mustdo);
1301 isl_set_free(set: maydo);
1302 free(ptr: must_rel);
1303 free(ptr: may_rel);
1304 return NULL;
1305}
1306
1307/* Given a "sink" access, a list of n "source" accesses,
1308 * compute for each iteration of the sink access
1309 * and for each element accessed by that iteration,
1310 * the source access in the list that last accessed the
1311 * element accessed by the sink access before this sink access.
1312 * Each access is given as a map from the loop iterators
1313 * to the array indices.
1314 * The result is a list of n relations between source and sink
1315 * iterations and a subset of the domain of the sink access,
1316 * corresponding to those iterations that access an element
1317 * not previously accessed.
1318 *
1319 * To deal with multi-valued sink access relations, the sink iteration
1320 * domain is first extended with dimensions that correspond to the data
1321 * space. However, these extra dimensions are not projected out again.
1322 * It is up to the caller to decide whether these dimensions should be kept.
1323 */
1324static __isl_give isl_flow *access_info_compute_flow_core(
1325 __isl_take isl_access_info *acc)
1326{
1327 struct isl_flow *res = NULL;
1328
1329 if (!acc)
1330 return NULL;
1331
1332 acc->sink.map = isl_map_range_map(map: acc->sink.map);
1333 if (!acc->sink.map)
1334 goto error;
1335
1336 if (acc->n_must == 0)
1337 res = compute_mem_based_dependences(acc);
1338 else {
1339 acc = isl_access_info_sort_sources(acc);
1340 res = compute_val_based_dependences(acc);
1341 }
1342 acc = isl_access_info_free(acc);
1343 if (!res)
1344 return NULL;
1345 if (!res->must_no_source || !res->may_no_source)
1346 goto error;
1347 return res;
1348error:
1349 isl_access_info_free(acc);
1350 isl_flow_free(deps: res);
1351 return NULL;
1352}
1353
1354/* Given a "sink" access, a list of n "source" accesses,
1355 * compute for each iteration of the sink access
1356 * and for each element accessed by that iteration,
1357 * the source access in the list that last accessed the
1358 * element accessed by the sink access before this sink access.
1359 * Each access is given as a map from the loop iterators
1360 * to the array indices.
1361 * The result is a list of n relations between source and sink
1362 * iterations and a subset of the domain of the sink access,
1363 * corresponding to those iterations that access an element
1364 * not previously accessed.
1365 *
1366 * To deal with multi-valued sink access relations,
1367 * access_info_compute_flow_core extends the sink iteration domain
1368 * with dimensions that correspond to the data space. These extra dimensions
1369 * are projected out from the result of access_info_compute_flow_core.
1370 */
1371__isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc)
1372{
1373 int j;
1374 struct isl_flow *res;
1375
1376 if (!acc)
1377 return NULL;
1378
1379 acc->domain_map = isl_map_domain_map(map: isl_map_copy(map: acc->sink.map));
1380 res = access_info_compute_flow_core(acc);
1381 if (!res)
1382 return NULL;
1383
1384 for (j = 0; j < res->n_source; ++j) {
1385 res->dep[j].map = isl_map_range_factor_domain(map: res->dep[j].map);
1386 if (!res->dep[j].map)
1387 goto error;
1388 }
1389
1390 return res;
1391error:
1392 isl_flow_free(deps: res);
1393 return NULL;
1394}
1395
1396
1397/* Keep track of some information about a schedule for a given
1398 * access. In particular, keep track of which dimensions
1399 * have a constant value and of the actual constant values.
1400 */
1401struct isl_sched_info {
1402 int *is_cst;
1403 isl_vec *cst;
1404};
1405
1406static void sched_info_free(__isl_take struct isl_sched_info *info)
1407{
1408 if (!info)
1409 return;
1410 isl_vec_free(vec: info->cst);
1411 free(ptr: info->is_cst);
1412 free(ptr: info);
1413}
1414
1415/* Extract information on the constant dimensions of the schedule
1416 * for a given access. The "map" is of the form
1417 *
1418 * [S -> D] -> A
1419 *
1420 * with S the schedule domain, D the iteration domain and A the data domain.
1421 */
1422static __isl_give struct isl_sched_info *sched_info_alloc(
1423 __isl_keep isl_map *map)
1424{
1425 isl_ctx *ctx;
1426 isl_space *space;
1427 struct isl_sched_info *info;
1428 int i;
1429 isl_size n;
1430
1431 if (!map)
1432 return NULL;
1433
1434 space = isl_space_unwrap(space: isl_space_domain(space: isl_map_get_space(map)));
1435 if (!space)
1436 return NULL;
1437 n = isl_space_dim(space, type: isl_dim_in);
1438 isl_space_free(space);
1439 if (n < 0)
1440 return NULL;
1441
1442 ctx = isl_map_get_ctx(map);
1443 info = isl_alloc_type(ctx, struct isl_sched_info);
1444 if (!info)
1445 return NULL;
1446 info->is_cst = isl_alloc_array(ctx, int, n);
1447 info->cst = isl_vec_alloc(ctx, size: n);
1448 if (n && (!info->is_cst || !info->cst))
1449 goto error;
1450
1451 for (i = 0; i < n; ++i) {
1452 isl_val *v;
1453
1454 v = isl_map_plain_get_val_if_fixed(map, type: isl_dim_in, pos: i);
1455 if (!v)
1456 goto error;
1457 info->is_cst[i] = !isl_val_is_nan(v);
1458 if (info->is_cst[i])
1459 info->cst = isl_vec_set_element_val(vec: info->cst, pos: i, v);
1460 else
1461 isl_val_free(v);
1462 }
1463
1464 return info;
1465error:
1466 sched_info_free(info);
1467 return NULL;
1468}
1469
1470/* The different types of access relations that isl_union_access_info
1471 * keeps track of.
1472
1473 * "isl_access_sink" represents the sink accesses.
1474 * "isl_access_must_source" represents the definite source accesses.
1475 * "isl_access_may_source" represents the possible source accesses.
1476 * "isl_access_kill" represents the kills.
1477 *
1478 * isl_access_sink is sometimes treated differently and
1479 * should therefore appear first.
1480 */
1481enum isl_access_type {
1482 isl_access_sink,
1483 isl_access_must_source,
1484 isl_access_may_source,
1485 isl_access_kill,
1486 isl_access_end
1487};
1488
1489/* This structure represents the input for a dependence analysis computation.
1490 *
1491 * "access" contains the access relations.
1492 *
1493 * "schedule" or "schedule_map" represents the execution order.
1494 * Exactly one of these fields should be NULL. The other field
1495 * determines the execution order.
1496 *
1497 * The domains of these four maps refer to the same iteration spaces(s).
1498 * The ranges of the first three maps also refer to the same data space(s).
1499 *
1500 * After a call to isl_union_access_info_introduce_schedule,
1501 * the "schedule_map" field no longer contains useful information.
1502 */
1503struct isl_union_access_info {
1504 isl_union_map *access[isl_access_end];
1505
1506 isl_schedule *schedule;
1507 isl_union_map *schedule_map;
1508};
1509
1510/* Free "access" and return NULL.
1511 */
1512__isl_null isl_union_access_info *isl_union_access_info_free(
1513 __isl_take isl_union_access_info *access)
1514{
1515 enum isl_access_type i;
1516
1517 if (!access)
1518 return NULL;
1519
1520 for (i = isl_access_sink; i < isl_access_end; ++i)
1521 isl_union_map_free(umap: access->access[i]);
1522 isl_schedule_free(sched: access->schedule);
1523 isl_union_map_free(umap: access->schedule_map);
1524 free(ptr: access);
1525
1526 return NULL;
1527}
1528
1529/* Return the isl_ctx to which "access" belongs.
1530 */
1531isl_ctx *isl_union_access_info_get_ctx(__isl_keep isl_union_access_info *access)
1532{
1533 if (!access)
1534 return NULL;
1535 return isl_union_map_get_ctx(umap: access->access[isl_access_sink]);
1536}
1537
1538/* Construct an empty (invalid) isl_union_access_info object.
1539 * The caller is responsible for setting the sink access relation and
1540 * initializing all the other fields, e.g., by calling
1541 * isl_union_access_info_init.
1542 */
1543static __isl_give isl_union_access_info *isl_union_access_info_alloc(
1544 isl_ctx *ctx)
1545{
1546 return isl_calloc_type(ctx, isl_union_access_info);
1547}
1548
1549/* Initialize all the fields of "info", except the sink access relation,
1550 * which is assumed to have been set by the caller.
1551 *
1552 * By default, we use the schedule field of the isl_union_access_info,
1553 * but this may be overridden by a call
1554 * to isl_union_access_info_set_schedule_map.
1555 */
1556static __isl_give isl_union_access_info *isl_union_access_info_init(
1557 __isl_take isl_union_access_info *info)
1558{
1559 isl_space *space;
1560 isl_union_map *empty;
1561 enum isl_access_type i;
1562
1563 if (!info)
1564 return NULL;
1565 if (!info->access[isl_access_sink])
1566 return isl_union_access_info_free(access: info);
1567
1568 space = isl_union_map_get_space(umap: info->access[isl_access_sink]);
1569 empty = isl_union_map_empty(space: isl_space_copy(space));
1570 for (i = isl_access_sink + 1; i < isl_access_end; ++i)
1571 if (!info->access[i])
1572 info->access[i] = isl_union_map_copy(umap: empty);
1573 isl_union_map_free(umap: empty);
1574 if (!info->schedule && !info->schedule_map)
1575 info->schedule = isl_schedule_empty(space: isl_space_copy(space));
1576 isl_space_free(space);
1577
1578 for (i = isl_access_sink + 1; i < isl_access_end; ++i)
1579 if (!info->access[i])
1580 return isl_union_access_info_free(access: info);
1581 if (!info->schedule && !info->schedule_map)
1582 return isl_union_access_info_free(access: info);
1583
1584 return info;
1585}
1586
1587/* Create a new isl_union_access_info with the given sink accesses and
1588 * and no other accesses or schedule information.
1589 */
1590__isl_give isl_union_access_info *isl_union_access_info_from_sink(
1591 __isl_take isl_union_map *sink)
1592{
1593 isl_ctx *ctx;
1594 isl_union_access_info *access;
1595
1596 if (!sink)
1597 return NULL;
1598 ctx = isl_union_map_get_ctx(umap: sink);
1599 access = isl_union_access_info_alloc(ctx);
1600 if (!access)
1601 goto error;
1602 access->access[isl_access_sink] = sink;
1603 return isl_union_access_info_init(info: access);
1604error:
1605 isl_union_map_free(umap: sink);
1606 return NULL;
1607}
1608
1609/* Replace the access relation of type "type" of "info" by "access".
1610 */
1611static __isl_give isl_union_access_info *isl_union_access_info_set(
1612 __isl_take isl_union_access_info *info,
1613 enum isl_access_type type, __isl_take isl_union_map *access)
1614{
1615 if (!info || !access)
1616 goto error;
1617
1618 isl_union_map_free(umap: info->access[type]);
1619 info->access[type] = access;
1620
1621 return info;
1622error:
1623 isl_union_access_info_free(access: info);
1624 isl_union_map_free(umap: access);
1625 return NULL;
1626}
1627
1628/* Replace the definite source accesses of "access" by "must_source".
1629 */
1630__isl_give isl_union_access_info *isl_union_access_info_set_must_source(
1631 __isl_take isl_union_access_info *access,
1632 __isl_take isl_union_map *must_source)
1633{
1634 return isl_union_access_info_set(info: access, type: isl_access_must_source,
1635 access: must_source);
1636}
1637
1638/* Replace the possible source accesses of "access" by "may_source".
1639 */
1640__isl_give isl_union_access_info *isl_union_access_info_set_may_source(
1641 __isl_take isl_union_access_info *access,
1642 __isl_take isl_union_map *may_source)
1643{
1644 return isl_union_access_info_set(info: access, type: isl_access_may_source,
1645 access: may_source);
1646}
1647
1648/* Replace the kills of "info" by "kill".
1649 */
1650__isl_give isl_union_access_info *isl_union_access_info_set_kill(
1651 __isl_take isl_union_access_info *info, __isl_take isl_union_map *kill)
1652{
1653 return isl_union_access_info_set(info, type: isl_access_kill, access: kill);
1654}
1655
1656/* Return the access relation of type "type" of "info".
1657 */
1658static __isl_give isl_union_map *isl_union_access_info_get(
1659 __isl_keep isl_union_access_info *info, enum isl_access_type type)
1660{
1661 if (!info)
1662 return NULL;
1663 return isl_union_map_copy(umap: info->access[type]);
1664}
1665
1666/* Return the definite source accesses of "info".
1667 */
1668__isl_give isl_union_map *isl_union_access_info_get_must_source(
1669 __isl_keep isl_union_access_info *info)
1670{
1671 return isl_union_access_info_get(info, type: isl_access_must_source);
1672}
1673
1674/* Return the possible source accesses of "info".
1675 */
1676__isl_give isl_union_map *isl_union_access_info_get_may_source(
1677 __isl_keep isl_union_access_info *info)
1678{
1679 return isl_union_access_info_get(info, type: isl_access_may_source);
1680}
1681
1682/* Return the kills of "info".
1683 */
1684__isl_give isl_union_map *isl_union_access_info_get_kill(
1685 __isl_keep isl_union_access_info *info)
1686{
1687 return isl_union_access_info_get(info, type: isl_access_kill);
1688}
1689
1690/* Does "info" specify any kills?
1691 */
1692static isl_bool isl_union_access_has_kill(
1693 __isl_keep isl_union_access_info *info)
1694{
1695 isl_bool empty;
1696
1697 if (!info)
1698 return isl_bool_error;
1699 empty = isl_union_map_is_empty(umap: info->access[isl_access_kill]);
1700 return isl_bool_not(b: empty);
1701}
1702
1703/* Replace the schedule of "access" by "schedule".
1704 * Also free the schedule_map in case it was set last.
1705 */
1706__isl_give isl_union_access_info *isl_union_access_info_set_schedule(
1707 __isl_take isl_union_access_info *access,
1708 __isl_take isl_schedule *schedule)
1709{
1710 if (!access || !schedule)
1711 goto error;
1712
1713 access->schedule_map = isl_union_map_free(umap: access->schedule_map);
1714 isl_schedule_free(sched: access->schedule);
1715 access->schedule = schedule;
1716
1717 return access;
1718error:
1719 isl_union_access_info_free(access);
1720 isl_schedule_free(sched: schedule);
1721 return NULL;
1722}
1723
1724/* Replace the schedule map of "access" by "schedule_map".
1725 * Also free the schedule in case it was set last.
1726 */
1727__isl_give isl_union_access_info *isl_union_access_info_set_schedule_map(
1728 __isl_take isl_union_access_info *access,
1729 __isl_take isl_union_map *schedule_map)
1730{
1731 if (!access || !schedule_map)
1732 goto error;
1733
1734 isl_union_map_free(umap: access->schedule_map);
1735 access->schedule = isl_schedule_free(sched: access->schedule);
1736 access->schedule_map = schedule_map;
1737
1738 return access;
1739error:
1740 isl_union_access_info_free(access);
1741 isl_union_map_free(umap: schedule_map);
1742 return NULL;
1743}
1744
1745__isl_give isl_union_access_info *isl_union_access_info_copy(
1746 __isl_keep isl_union_access_info *access)
1747{
1748 isl_union_access_info *copy;
1749 enum isl_access_type i;
1750
1751 if (!access)
1752 return NULL;
1753 copy = isl_union_access_info_from_sink(
1754 sink: isl_union_map_copy(umap: access->access[isl_access_sink]));
1755 for (i = isl_access_sink + 1; i < isl_access_end; ++i)
1756 copy = isl_union_access_info_set(info: copy, type: i,
1757 access: isl_union_map_copy(umap: access->access[i]));
1758 if (access->schedule)
1759 copy = isl_union_access_info_set_schedule(access: copy,
1760 schedule: isl_schedule_copy(sched: access->schedule));
1761 else
1762 copy = isl_union_access_info_set_schedule_map(access: copy,
1763 schedule_map: isl_union_map_copy(umap: access->schedule_map));
1764
1765 return copy;
1766}
1767
1768#undef BASE
1769#define BASE union_map
1770#include "print_yaml_field_templ.c"
1771
1772/* An enumeration of the various keys that may appear in a YAML mapping
1773 * of an isl_union_access_info object.
1774 * The keys for the access relation types are assumed to have the same values
1775 * as the access relation types in isl_access_type.
1776 */
1777enum isl_ai_key {
1778 isl_ai_key_error = -1,
1779 isl_ai_key_sink = isl_access_sink,
1780 isl_ai_key_must_source = isl_access_must_source,
1781 isl_ai_key_may_source = isl_access_may_source,
1782 isl_ai_key_kill = isl_access_kill,
1783 isl_ai_key_schedule_map,
1784 isl_ai_key_schedule,
1785 isl_ai_key_end
1786};
1787
1788/* Textual representations of the YAML keys for an isl_union_access_info
1789 * object.
1790 */
1791static char *key_str[] = {
1792 [isl_ai_key_sink] = "sink",
1793 [isl_ai_key_must_source] = "must_source",
1794 [isl_ai_key_may_source] = "may_source",
1795 [isl_ai_key_kill] = "kill",
1796 [isl_ai_key_schedule_map] = "schedule_map",
1797 [isl_ai_key_schedule] = "schedule",
1798};
1799
1800/* Print a key-value pair corresponding to the access relation of type "type"
1801 * of a YAML mapping of "info" to "p".
1802 *
1803 * The sink access relation is always printed, but any other access relation
1804 * is only printed if it is non-empty.
1805 */
1806static __isl_give isl_printer *print_access_field(__isl_take isl_printer *p,
1807 __isl_keep isl_union_access_info *info, enum isl_access_type type)
1808{
1809 if (type != isl_access_sink) {
1810 isl_bool empty;
1811
1812 empty = isl_union_map_is_empty(umap: info->access[type]);
1813 if (empty < 0)
1814 return isl_printer_free(printer: p);
1815 if (empty)
1816 return p;
1817 }
1818 return print_yaml_field_union_map(p, name: key_str[type], val: info->access[type]);
1819}
1820
1821/* Print the information contained in "access" to "p".
1822 * The information is printed as a YAML document.
1823 */
1824__isl_give isl_printer *isl_printer_print_union_access_info(
1825 __isl_take isl_printer *p, __isl_keep isl_union_access_info *access)
1826{
1827 enum isl_access_type i;
1828
1829 if (!access)
1830 return isl_printer_free(printer: p);
1831
1832 p = isl_printer_yaml_start_mapping(p);
1833 for (i = isl_access_sink; i < isl_access_end; ++i)
1834 p = print_access_field(p, info: access, type: i);
1835 if (access->schedule) {
1836 p = isl_printer_print_str(p, s: key_str[isl_ai_key_schedule]);
1837 p = isl_printer_yaml_next(p);
1838 p = isl_printer_print_schedule(p, schedule: access->schedule);
1839 p = isl_printer_yaml_next(p);
1840 } else {
1841 p = print_yaml_field_union_map(p,
1842 name: key_str[isl_ai_key_schedule_map], val: access->schedule_map);
1843 }
1844 p = isl_printer_yaml_end_mapping(p);
1845
1846 return p;
1847}
1848
1849/* Return a string representation of the information in "access".
1850 * The information is printed in flow format.
1851 */
1852__isl_give char *isl_union_access_info_to_str(
1853 __isl_keep isl_union_access_info *access)
1854{
1855 isl_printer *p;
1856 char *s;
1857
1858 if (!access)
1859 return NULL;
1860
1861 p = isl_printer_to_str(ctx: isl_union_access_info_get_ctx(access));
1862 p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW);
1863 p = isl_printer_print_union_access_info(p, access);
1864 s = isl_printer_get_str(printer: p);
1865 isl_printer_free(printer: p);
1866
1867 return s;
1868}
1869
1870#undef KEY
1871#define KEY enum isl_ai_key
1872#undef KEY_ERROR
1873#define KEY_ERROR isl_ai_key_error
1874#undef KEY_END
1875#define KEY_END isl_ai_key_end
1876#undef KEY_STR
1877#define KEY_STR key_str
1878#undef KEY_EXTRACT
1879#define KEY_EXTRACT extract_key
1880#undef KEY_GET
1881#define KEY_GET get_key
1882#include "extract_key.c"
1883
1884#undef BASE
1885#define BASE union_map
1886#include "read_in_string_templ.c"
1887
1888/* Read an isl_union_access_info object from "s".
1889 *
1890 * Start off with an empty (invalid) isl_union_access_info object and
1891 * then fill up the fields based on the input.
1892 * The input needs to contain at least a description of the sink
1893 * access relation as well as some form of schedule.
1894 * The other access relations are set to empty relations
1895 * by isl_union_access_info_init if they are not specified in the input.
1896 */
1897__isl_give isl_union_access_info *isl_stream_read_union_access_info(
1898 isl_stream *s)
1899{
1900 isl_ctx *ctx;
1901 isl_union_access_info *info;
1902 isl_bool more;
1903 int sink_set = 0;
1904 int schedule_set = 0;
1905
1906 if (isl_stream_yaml_read_start_mapping(s) < 0)
1907 return NULL;
1908
1909 ctx = isl_stream_get_ctx(s);
1910 info = isl_union_access_info_alloc(ctx);
1911 while ((more = isl_stream_yaml_next(s)) == isl_bool_true) {
1912 enum isl_ai_key key;
1913 enum isl_access_type type;
1914 isl_union_map *access, *schedule_map;
1915 isl_schedule *schedule;
1916
1917 key = get_key(s);
1918 if (isl_stream_yaml_next(s) < 0)
1919 return isl_union_access_info_free(access: info);
1920 switch (key) {
1921 case isl_ai_key_end:
1922 case isl_ai_key_error:
1923 return isl_union_access_info_free(access: info);
1924 case isl_ai_key_sink:
1925 sink_set = 1;
1926 case isl_ai_key_must_source:
1927 case isl_ai_key_may_source:
1928 case isl_ai_key_kill:
1929 type = (enum isl_access_type) key;
1930 access = read_union_map(s);
1931 info = isl_union_access_info_set(info, type, access);
1932 if (!info)
1933 return NULL;
1934 break;
1935 case isl_ai_key_schedule_map:
1936 schedule_set = 1;
1937 schedule_map = read_union_map(s);
1938 info = isl_union_access_info_set_schedule_map(access: info,
1939 schedule_map);
1940 if (!info)
1941 return NULL;
1942 break;
1943 case isl_ai_key_schedule:
1944 schedule_set = 1;
1945 schedule = isl_stream_read_schedule(s);
1946 info = isl_union_access_info_set_schedule(access: info,
1947 schedule);
1948 if (!info)
1949 return NULL;
1950 break;
1951 }
1952 }
1953 if (more < 0)
1954 return isl_union_access_info_free(access: info);
1955
1956 if (isl_stream_yaml_read_end_mapping(s) < 0)
1957 return isl_union_access_info_free(access: info);
1958
1959 if (!sink_set) {
1960 isl_stream_error(s, NULL, msg: "no sink specified");
1961 return isl_union_access_info_free(access: info);
1962 }
1963
1964 if (!schedule_set) {
1965 isl_stream_error(s, NULL, msg: "no schedule specified");
1966 return isl_union_access_info_free(access: info);
1967 }
1968
1969 return isl_union_access_info_init(info);
1970}
1971
1972/* Read an isl_union_access_info object from the file "input".
1973 */
1974__isl_give isl_union_access_info *isl_union_access_info_read_from_file(
1975 isl_ctx *ctx, FILE *input)
1976{
1977 isl_stream *s;
1978 isl_union_access_info *access;
1979
1980 s = isl_stream_new_file(ctx, file: input);
1981 if (!s)
1982 return NULL;
1983 access = isl_stream_read_union_access_info(s);
1984 isl_stream_free(s);
1985
1986 return access;
1987}
1988
1989/* Update the fields of "access" such that they all have the same parameters,
1990 * keeping in mind that the schedule_map field may be NULL and ignoring
1991 * the schedule field.
1992 */
1993static __isl_give isl_union_access_info *isl_union_access_info_align_params(
1994 __isl_take isl_union_access_info *access)
1995{
1996 isl_space *space;
1997 enum isl_access_type i;
1998
1999 if (!access)
2000 return NULL;
2001
2002 space = isl_union_map_get_space(umap: access->access[isl_access_sink]);
2003 for (i = isl_access_sink + 1; i < isl_access_end; ++i)
2004 space = isl_space_align_params(space1: space,
2005 space2: isl_union_map_get_space(umap: access->access[i]));
2006 if (access->schedule_map)
2007 space = isl_space_align_params(space1: space,
2008 space2: isl_union_map_get_space(umap: access->schedule_map));
2009 for (i = isl_access_sink; i < isl_access_end; ++i)
2010 access->access[i] =
2011 isl_union_map_align_params(umap: access->access[i],
2012 model: isl_space_copy(space));
2013 if (!access->schedule_map) {
2014 isl_space_free(space);
2015 } else {
2016 access->schedule_map =
2017 isl_union_map_align_params(umap: access->schedule_map, model: space);
2018 if (!access->schedule_map)
2019 return isl_union_access_info_free(access);
2020 }
2021
2022 for (i = isl_access_sink; i < isl_access_end; ++i)
2023 if (!access->access[i])
2024 return isl_union_access_info_free(access);
2025
2026 return access;
2027}
2028
2029/* Prepend the schedule dimensions to the iteration domains.
2030 *
2031 * That is, if the schedule is of the form
2032 *
2033 * D -> S
2034 *
2035 * while the access relations are of the form
2036 *
2037 * D -> A
2038 *
2039 * then the updated access relations are of the form
2040 *
2041 * [S -> D] -> A
2042 *
2043 * The schedule map is also replaced by the map
2044 *
2045 * [S -> D] -> D
2046 *
2047 * that is used during the internal computation.
2048 * Neither the original schedule map nor this updated schedule map
2049 * are used after the call to this function.
2050 */
2051static __isl_give isl_union_access_info *
2052isl_union_access_info_introduce_schedule(
2053 __isl_take isl_union_access_info *access)
2054{
2055 isl_union_map *sm;
2056 enum isl_access_type i;
2057
2058 if (!access)
2059 return NULL;
2060
2061 sm = isl_union_map_reverse(umap: access->schedule_map);
2062 sm = isl_union_map_range_map(umap: sm);
2063 for (i = isl_access_sink; i < isl_access_end; ++i)
2064 access->access[i] =
2065 isl_union_map_apply_range(umap1: isl_union_map_copy(umap: sm),
2066 umap2: access->access[i]);
2067 access->schedule_map = sm;
2068
2069 for (i = isl_access_sink; i < isl_access_end; ++i)
2070 if (!access->access[i])
2071 return isl_union_access_info_free(access);
2072 if (!access->schedule_map)
2073 return isl_union_access_info_free(access);
2074
2075 return access;
2076}
2077
2078/* This structure represents the result of a dependence analysis computation.
2079 *
2080 * "must_dep" represents the full definite dependences
2081 * "may_dep" represents the full non-definite dependences.
2082 * Both are of the form
2083 *
2084 * [Source] -> [[Sink -> Data]]
2085 *
2086 * (after the schedule dimensions have been projected out).
2087 * "must_no_source" represents the subset of the sink accesses for which
2088 * definitely no source was found.
2089 * "may_no_source" represents the subset of the sink accesses for which
2090 * possibly, but not definitely, no source was found.
2091 */
2092struct isl_union_flow {
2093 isl_union_map *must_dep;
2094 isl_union_map *may_dep;
2095 isl_union_map *must_no_source;
2096 isl_union_map *may_no_source;
2097};
2098
2099/* Return the isl_ctx to which "flow" belongs.
2100 */
2101isl_ctx *isl_union_flow_get_ctx(__isl_keep isl_union_flow *flow)
2102{
2103 return flow ? isl_union_map_get_ctx(umap: flow->must_dep) : NULL;
2104}
2105
2106/* Free "flow" and return NULL.
2107 */
2108__isl_null isl_union_flow *isl_union_flow_free(__isl_take isl_union_flow *flow)
2109{
2110 if (!flow)
2111 return NULL;
2112 isl_union_map_free(umap: flow->must_dep);
2113 isl_union_map_free(umap: flow->may_dep);
2114 isl_union_map_free(umap: flow->must_no_source);
2115 isl_union_map_free(umap: flow->may_no_source);
2116 free(ptr: flow);
2117 return NULL;
2118}
2119
2120void isl_union_flow_dump(__isl_keep isl_union_flow *flow)
2121{
2122 if (!flow)
2123 return;
2124
2125 fprintf(stderr, format: "must dependences: ");
2126 isl_union_map_dump(umap: flow->must_dep);
2127 fprintf(stderr, format: "may dependences: ");
2128 isl_union_map_dump(umap: flow->may_dep);
2129 fprintf(stderr, format: "must no source: ");
2130 isl_union_map_dump(umap: flow->must_no_source);
2131 fprintf(stderr, format: "may no source: ");
2132 isl_union_map_dump(umap: flow->may_no_source);
2133}
2134
2135/* Return the full definite dependences in "flow", with accessed elements.
2136 */
2137__isl_give isl_union_map *isl_union_flow_get_full_must_dependence(
2138 __isl_keep isl_union_flow *flow)
2139{
2140 if (!flow)
2141 return NULL;
2142 return isl_union_map_copy(umap: flow->must_dep);
2143}
2144
2145/* Return the full possible dependences in "flow", including the definite
2146 * dependences, with accessed elements.
2147 */
2148__isl_give isl_union_map *isl_union_flow_get_full_may_dependence(
2149 __isl_keep isl_union_flow *flow)
2150{
2151 if (!flow)
2152 return NULL;
2153 return isl_union_map_union(umap1: isl_union_map_copy(umap: flow->must_dep),
2154 umap2: isl_union_map_copy(umap: flow->may_dep));
2155}
2156
2157/* Return the definite dependences in "flow", without the accessed elements.
2158 */
2159__isl_give isl_union_map *isl_union_flow_get_must_dependence(
2160 __isl_keep isl_union_flow *flow)
2161{
2162 isl_union_map *dep;
2163
2164 if (!flow)
2165 return NULL;
2166 dep = isl_union_map_copy(umap: flow->must_dep);
2167 return isl_union_map_range_factor_domain(umap: dep);
2168}
2169
2170/* Return the possible dependences in "flow", including the definite
2171 * dependences, without the accessed elements.
2172 */
2173__isl_give isl_union_map *isl_union_flow_get_may_dependence(
2174 __isl_keep isl_union_flow *flow)
2175{
2176 isl_union_map *dep;
2177
2178 if (!flow)
2179 return NULL;
2180 dep = isl_union_map_union(umap1: isl_union_map_copy(umap: flow->must_dep),
2181 umap2: isl_union_map_copy(umap: flow->may_dep));
2182 return isl_union_map_range_factor_domain(umap: dep);
2183}
2184
2185/* Return the non-definite dependences in "flow".
2186 */
2187static __isl_give isl_union_map *isl_union_flow_get_non_must_dependence(
2188 __isl_keep isl_union_flow *flow)
2189{
2190 if (!flow)
2191 return NULL;
2192 return isl_union_map_copy(umap: flow->may_dep);
2193}
2194
2195/* Return the subset of the sink accesses for which definitely
2196 * no source was found.
2197 */
2198__isl_give isl_union_map *isl_union_flow_get_must_no_source(
2199 __isl_keep isl_union_flow *flow)
2200{
2201 if (!flow)
2202 return NULL;
2203 return isl_union_map_copy(umap: flow->must_no_source);
2204}
2205
2206/* Return the subset of the sink accesses for which possibly
2207 * no source was found, including those for which definitely
2208 * no source was found.
2209 */
2210__isl_give isl_union_map *isl_union_flow_get_may_no_source(
2211 __isl_keep isl_union_flow *flow)
2212{
2213 if (!flow)
2214 return NULL;
2215 return isl_union_map_union(umap1: isl_union_map_copy(umap: flow->must_no_source),
2216 umap2: isl_union_map_copy(umap: flow->may_no_source));
2217}
2218
2219/* Return the subset of the sink accesses for which possibly, but not
2220 * definitely, no source was found.
2221 */
2222static __isl_give isl_union_map *isl_union_flow_get_non_must_no_source(
2223 __isl_keep isl_union_flow *flow)
2224{
2225 if (!flow)
2226 return NULL;
2227 return isl_union_map_copy(umap: flow->may_no_source);
2228}
2229
2230/* Create a new isl_union_flow object, initialized with empty
2231 * dependence relations and sink subsets.
2232 */
2233static __isl_give isl_union_flow *isl_union_flow_alloc(
2234 __isl_take isl_space *space)
2235{
2236 isl_ctx *ctx;
2237 isl_union_map *empty;
2238 isl_union_flow *flow;
2239
2240 if (!space)
2241 return NULL;
2242 ctx = isl_space_get_ctx(space);
2243 flow = isl_alloc_type(ctx, isl_union_flow);
2244 if (!flow)
2245 goto error;
2246
2247 empty = isl_union_map_empty(space);
2248 flow->must_dep = isl_union_map_copy(umap: empty);
2249 flow->may_dep = isl_union_map_copy(umap: empty);
2250 flow->must_no_source = isl_union_map_copy(umap: empty);
2251 flow->may_no_source = empty;
2252
2253 if (!flow->must_dep || !flow->may_dep ||
2254 !flow->must_no_source || !flow->may_no_source)
2255 return isl_union_flow_free(flow);
2256
2257 return flow;
2258error:
2259 isl_space_free(space);
2260 return NULL;
2261}
2262
2263/* Copy this isl_union_flow object.
2264 */
2265__isl_give isl_union_flow *isl_union_flow_copy(__isl_keep isl_union_flow *flow)
2266{
2267 isl_union_flow *copy;
2268
2269 if (!flow)
2270 return NULL;
2271
2272 copy = isl_union_flow_alloc(space: isl_union_map_get_space(umap: flow->must_dep));
2273
2274 if (!copy)
2275 return NULL;
2276
2277 copy->must_dep = isl_union_map_union(umap1: copy->must_dep,
2278 umap2: isl_union_map_copy(umap: flow->must_dep));
2279 copy->may_dep = isl_union_map_union(umap1: copy->may_dep,
2280 umap2: isl_union_map_copy(umap: flow->may_dep));
2281 copy->must_no_source = isl_union_map_union(umap1: copy->must_no_source,
2282 umap2: isl_union_map_copy(umap: flow->must_no_source));
2283 copy->may_no_source = isl_union_map_union(umap1: copy->may_no_source,
2284 umap2: isl_union_map_copy(umap: flow->may_no_source));
2285
2286 if (!copy->must_dep || !copy->may_dep ||
2287 !copy->must_no_source || !copy->may_no_source)
2288 return isl_union_flow_free(flow: copy);
2289
2290 return copy;
2291}
2292
2293/* Drop the schedule dimensions from the iteration domains in "flow".
2294 * In particular, the schedule dimensions have been prepended
2295 * to the iteration domains prior to the dependence analysis by
2296 * replacing the iteration domain D, by the wrapped map [S -> D].
2297 * Replace these wrapped maps by the original D.
2298 *
2299 * In particular, the dependences computed by access_info_compute_flow_core
2300 * are of the form
2301 *
2302 * [S -> D] -> [[S' -> D'] -> A]
2303 *
2304 * The schedule dimensions are projected out by first currying the range,
2305 * resulting in
2306 *
2307 * [S -> D] -> [S' -> [D' -> A]]
2308 *
2309 * and then computing the factor range
2310 *
2311 * D -> [D' -> A]
2312 */
2313static __isl_give isl_union_flow *isl_union_flow_drop_schedule(
2314 __isl_take isl_union_flow *flow)
2315{
2316 if (!flow)
2317 return NULL;
2318
2319 flow->must_dep = isl_union_map_range_curry(umap: flow->must_dep);
2320 flow->must_dep = isl_union_map_factor_range(umap: flow->must_dep);
2321 flow->may_dep = isl_union_map_range_curry(umap: flow->may_dep);
2322 flow->may_dep = isl_union_map_factor_range(umap: flow->may_dep);
2323 flow->must_no_source =
2324 isl_union_map_domain_factor_range(umap: flow->must_no_source);
2325 flow->may_no_source =
2326 isl_union_map_domain_factor_range(umap: flow->may_no_source);
2327
2328 if (!flow->must_dep || !flow->may_dep ||
2329 !flow->must_no_source || !flow->may_no_source)
2330 return isl_union_flow_free(flow);
2331
2332 return flow;
2333}
2334
2335struct isl_compute_flow_data {
2336 isl_union_map *must_source;
2337 isl_union_map *may_source;
2338 isl_union_flow *flow;
2339
2340 int count;
2341 int must;
2342 isl_space *dim;
2343 struct isl_sched_info *sink_info;
2344 struct isl_sched_info **source_info;
2345 isl_access_info *accesses;
2346};
2347
2348static isl_stat count_matching_array(__isl_take isl_map *map, void *user)
2349{
2350 int eq;
2351 isl_space *space;
2352 struct isl_compute_flow_data *data;
2353
2354 data = (struct isl_compute_flow_data *)user;
2355
2356 space = isl_space_range(space: isl_map_get_space(map));
2357
2358 eq = isl_space_is_equal(space1: space, space2: data->dim);
2359
2360 isl_space_free(space);
2361 isl_map_free(map);
2362
2363 if (eq < 0)
2364 return isl_stat_error;
2365 if (eq)
2366 data->count++;
2367
2368 return isl_stat_ok;
2369}
2370
2371static isl_stat collect_matching_array(__isl_take isl_map *map, void *user)
2372{
2373 int eq;
2374 isl_space *space;
2375 struct isl_sched_info *info;
2376 struct isl_compute_flow_data *data;
2377
2378 data = (struct isl_compute_flow_data *)user;
2379
2380 space = isl_space_range(space: isl_map_get_space(map));
2381
2382 eq = isl_space_is_equal(space1: space, space2: data->dim);
2383
2384 isl_space_free(space);
2385
2386 if (eq < 0)
2387 goto error;
2388 if (!eq) {
2389 isl_map_free(map);
2390 return isl_stat_ok;
2391 }
2392
2393 info = sched_info_alloc(map);
2394 data->source_info[data->count] = info;
2395
2396 data->accesses = isl_access_info_add_source(acc: data->accesses,
2397 source: map, must: data->must, source_user: info);
2398
2399 data->count++;
2400
2401 return isl_stat_ok;
2402error:
2403 isl_map_free(map);
2404 return isl_stat_error;
2405}
2406
2407/* Determine the shared nesting level and the "textual order" of
2408 * the given accesses.
2409 *
2410 * We first determine the minimal schedule dimension for both accesses.
2411 *
2412 * If among those dimensions, we can find one where both have a fixed
2413 * value and if moreover those values are different, then the previous
2414 * dimension is the last shared nesting level and the textual order
2415 * is determined based on the order of the fixed values.
2416 * If no such fixed values can be found, then we set the shared
2417 * nesting level to the minimal schedule dimension, with no textual ordering.
2418 */
2419static int before(void *first, void *second)
2420{
2421 struct isl_sched_info *info1 = first;
2422 struct isl_sched_info *info2 = second;
2423 isl_size n1, n2;
2424 int i;
2425
2426 n1 = isl_vec_size(vec: info1->cst);
2427 n2 = isl_vec_size(vec: info2->cst);
2428 if (n1 < 0 || n2 < 0)
2429 return -1;
2430
2431 if (n2 < n1)
2432 n1 = n2;
2433
2434 for (i = 0; i < n1; ++i) {
2435 int r;
2436 int cmp;
2437
2438 if (!info1->is_cst[i])
2439 continue;
2440 if (!info2->is_cst[i])
2441 continue;
2442 cmp = isl_vec_cmp_element(vec1: info1->cst, vec2: info2->cst, pos: i);
2443 if (cmp == 0)
2444 continue;
2445
2446 r = 2 * i + (cmp < 0);
2447
2448 return r;
2449 }
2450
2451 return 2 * n1;
2452}
2453
2454/* Check if the given two accesses may be coscheduled.
2455 * If so, return isl_bool_true. Otherwise return isl_bool_false.
2456 *
2457 * Two accesses may only be coscheduled if the fixed schedule
2458 * coordinates have the same values.
2459 */
2460static isl_bool coscheduled(void *first, void *second)
2461{
2462 struct isl_sched_info *info1 = first;
2463 struct isl_sched_info *info2 = second;
2464 isl_size n1, n2;
2465 int i;
2466
2467 n1 = isl_vec_size(vec: info1->cst);
2468 n2 = isl_vec_size(vec: info2->cst);
2469 if (n1 < 0 || n2 < 0)
2470 return isl_bool_error;
2471
2472 if (n2 < n1)
2473 n1 = n2;
2474
2475 for (i = 0; i < n1; ++i) {
2476 int cmp;
2477
2478 if (!info1->is_cst[i])
2479 continue;
2480 if (!info2->is_cst[i])
2481 continue;
2482 cmp = isl_vec_cmp_element(vec1: info1->cst, vec2: info2->cst, pos: i);
2483 if (cmp != 0)
2484 return isl_bool_false;
2485 }
2486
2487 return isl_bool_true;
2488}
2489
2490/* Given a sink access, look for all the source accesses that access
2491 * the same array and perform dataflow analysis on them using
2492 * isl_access_info_compute_flow_core.
2493 */
2494static isl_stat compute_flow(__isl_take isl_map *map, void *user)
2495{
2496 int i;
2497 isl_ctx *ctx;
2498 struct isl_compute_flow_data *data;
2499 isl_flow *flow;
2500 isl_union_flow *df;
2501
2502 data = (struct isl_compute_flow_data *)user;
2503 df = data->flow;
2504
2505 ctx = isl_map_get_ctx(map);
2506
2507 data->accesses = NULL;
2508 data->sink_info = NULL;
2509 data->source_info = NULL;
2510 data->count = 0;
2511 data->dim = isl_space_range(space: isl_map_get_space(map));
2512
2513 if (isl_union_map_foreach_map(umap: data->must_source,
2514 fn: &count_matching_array, user: data) < 0)
2515 goto error;
2516 if (isl_union_map_foreach_map(umap: data->may_source,
2517 fn: &count_matching_array, user: data) < 0)
2518 goto error;
2519
2520 data->sink_info = sched_info_alloc(map);
2521 data->source_info = isl_calloc_array(ctx, struct isl_sched_info *,
2522 data->count);
2523
2524 data->accesses = isl_access_info_alloc(sink: isl_map_copy(map),
2525 sink_user: data->sink_info, fn: &before, max_source: data->count);
2526 if (!data->sink_info || (data->count && !data->source_info) ||
2527 !data->accesses)
2528 goto error;
2529 data->accesses->coscheduled = &coscheduled;
2530 data->count = 0;
2531 data->must = 1;
2532 if (isl_union_map_foreach_map(umap: data->must_source,
2533 fn: &collect_matching_array, user: data) < 0)
2534 goto error;
2535 data->must = 0;
2536 if (isl_union_map_foreach_map(umap: data->may_source,
2537 fn: &collect_matching_array, user: data) < 0)
2538 goto error;
2539
2540 flow = access_info_compute_flow_core(acc: data->accesses);
2541 data->accesses = NULL;
2542
2543 if (!flow)
2544 goto error;
2545
2546 df->must_no_source = isl_union_map_union(umap1: df->must_no_source,
2547 umap2: isl_union_map_from_map(map: isl_flow_get_no_source(deps: flow, must: 1)));
2548 df->may_no_source = isl_union_map_union(umap1: df->may_no_source,
2549 umap2: isl_union_map_from_map(map: isl_flow_get_no_source(deps: flow, must: 0)));
2550
2551 for (i = 0; i < flow->n_source; ++i) {
2552 isl_union_map *dep;
2553 dep = isl_union_map_from_map(map: isl_map_copy(map: flow->dep[i].map));
2554 if (flow->dep[i].must)
2555 df->must_dep = isl_union_map_union(umap1: df->must_dep, umap2: dep);
2556 else
2557 df->may_dep = isl_union_map_union(umap1: df->may_dep, umap2: dep);
2558 }
2559
2560 isl_flow_free(deps: flow);
2561
2562 sched_info_free(info: data->sink_info);
2563 if (data->source_info) {
2564 for (i = 0; i < data->count; ++i)
2565 sched_info_free(info: data->source_info[i]);
2566 free(ptr: data->source_info);
2567 }
2568 isl_space_free(space: data->dim);
2569 isl_map_free(map);
2570
2571 return isl_stat_ok;
2572error:
2573 isl_access_info_free(acc: data->accesses);
2574 sched_info_free(info: data->sink_info);
2575 if (data->source_info) {
2576 for (i = 0; i < data->count; ++i)
2577 sched_info_free(info: data->source_info[i]);
2578 free(ptr: data->source_info);
2579 }
2580 isl_space_free(space: data->dim);
2581 isl_map_free(map);
2582
2583 return isl_stat_error;
2584}
2585
2586/* Add the kills of "info" to the must-sources.
2587 */
2588static __isl_give isl_union_access_info *
2589isl_union_access_info_add_kill_to_must_source(
2590 __isl_take isl_union_access_info *info)
2591{
2592 isl_union_map *must, *kill;
2593
2594 must = isl_union_access_info_get_must_source(info);
2595 kill = isl_union_access_info_get_kill(info);
2596 must = isl_union_map_union(umap1: must, umap2: kill);
2597 return isl_union_access_info_set_must_source(access: info, must_source: must);
2598}
2599
2600/* Drop dependences from "flow" that purely originate from kills.
2601 * That is, only keep those dependences that originate from
2602 * the original must-sources "must" and/or the original may-sources "may".
2603 * In particular, "must" contains the must-sources from before
2604 * the kills were added and "may" contains the may-source from before
2605 * the kills were removed.
2606 *
2607 * The dependences are of the form
2608 *
2609 * Source -> [Sink -> Data]
2610 *
2611 * Only those dependences are kept where the Source -> Data part
2612 * is a subset of the original may-sources or must-sources.
2613 * Of those, only the must-dependences that intersect with the must-sources
2614 * remain must-dependences.
2615 * If there is some overlap between the may-sources and the must-sources,
2616 * then the may-dependences and must-dependences may also overlap.
2617 * This should be fine since the may-dependences are only kept
2618 * disjoint from the must-dependences for the isl_union_map_compute_flow
2619 * interface. This interface does not support kills, so it will
2620 * not end up calling this function.
2621 */
2622static __isl_give isl_union_flow *isl_union_flow_drop_kill_source(
2623 __isl_take isl_union_flow *flow, __isl_take isl_union_map *must,
2624 __isl_take isl_union_map *may)
2625{
2626 isl_union_map *move;
2627
2628 if (!flow)
2629 goto error;
2630 move = isl_union_map_copy(umap: flow->must_dep);
2631 move = isl_union_map_intersect_range_factor_range(umap: move,
2632 factor: isl_union_map_copy(umap: may));
2633 may = isl_union_map_union(umap1: may, umap2: isl_union_map_copy(umap: must));
2634 flow->may_dep = isl_union_map_intersect_range_factor_range(
2635 umap: flow->may_dep, factor: may);
2636 flow->must_dep = isl_union_map_intersect_range_factor_range(
2637 umap: flow->must_dep, factor: must);
2638 flow->may_dep = isl_union_map_union(umap1: flow->may_dep, umap2: move);
2639 if (!flow->must_dep || !flow->may_dep)
2640 return isl_union_flow_free(flow);
2641
2642 return flow;
2643error:
2644 isl_union_map_free(umap: must);
2645 isl_union_map_free(umap: may);
2646 return NULL;
2647}
2648
2649/* Remove the must accesses from the may accesses.
2650 *
2651 * A must access always trumps a may access, so there is no need
2652 * for a must access to also be considered as a may access. Doing so
2653 * would only cost extra computations only to find out that
2654 * the duplicated may access does not make any difference.
2655 */
2656static __isl_give isl_union_access_info *isl_union_access_info_normalize(
2657 __isl_take isl_union_access_info *access)
2658{
2659 if (!access)
2660 return NULL;
2661 access->access[isl_access_may_source] =
2662 isl_union_map_subtract(umap1: access->access[isl_access_may_source],
2663 umap2: isl_union_map_copy(umap: access->access[isl_access_must_source]));
2664 if (!access->access[isl_access_may_source])
2665 return isl_union_access_info_free(access);
2666
2667 return access;
2668}
2669
2670/* Given a description of the "sink" accesses, the "source" accesses and
2671 * a schedule, compute for each instance of a sink access
2672 * and for each element accessed by that instance,
2673 * the possible or definite source accesses that last accessed the
2674 * element accessed by the sink access before this sink access
2675 * in the sense that there is no intermediate definite source access.
2676 *
2677 * The must_no_source and may_no_source elements of the result
2678 * are subsets of access->sink. The elements must_dep and may_dep
2679 * map domain elements of access->{may,must)_source to
2680 * domain elements of access->sink.
2681 *
2682 * This function is used when only the schedule map representation
2683 * is available.
2684 *
2685 * We first prepend the schedule dimensions to the domain
2686 * of the accesses so that we can easily compare their relative order.
2687 * Then we consider each sink access individually in compute_flow.
2688 */
2689static __isl_give isl_union_flow *compute_flow_union_map(
2690 __isl_take isl_union_access_info *access)
2691{
2692 struct isl_compute_flow_data data;
2693 isl_union_map *sink;
2694
2695 access = isl_union_access_info_align_params(access);
2696 access = isl_union_access_info_introduce_schedule(access);
2697 if (!access)
2698 return NULL;
2699
2700 data.must_source = access->access[isl_access_must_source];
2701 data.may_source = access->access[isl_access_may_source];
2702
2703 sink = access->access[isl_access_sink];
2704 data.flow = isl_union_flow_alloc(space: isl_union_map_get_space(umap: sink));
2705
2706 if (isl_union_map_foreach_map(umap: sink, fn: &compute_flow, user: &data) < 0)
2707 goto error;
2708
2709 data.flow = isl_union_flow_drop_schedule(flow: data.flow);
2710
2711 isl_union_access_info_free(access);
2712 return data.flow;
2713error:
2714 isl_union_access_info_free(access);
2715 isl_union_flow_free(flow: data.flow);
2716 return NULL;
2717}
2718
2719/* A schedule access relation.
2720 *
2721 * The access relation "access" is of the form [S -> D] -> A,
2722 * where S corresponds to the prefix schedule at "node".
2723 * "must" is only relevant for source accesses and indicates
2724 * whether the access is a must source or a may source.
2725 */
2726struct isl_scheduled_access {
2727 isl_map *access;
2728 int must;
2729 isl_schedule_node *node;
2730};
2731
2732/* Data structure for keeping track of individual scheduled sink and source
2733 * accesses when computing dependence analysis based on a schedule tree.
2734 *
2735 * "n_sink" is the number of used entries in "sink"
2736 * "n_source" is the number of used entries in "source"
2737 *
2738 * "set_sink", "must" and "node" are only used inside collect_sink_source,
2739 * to keep track of the current node and
2740 * of what extract_sink_source needs to do.
2741 */
2742struct isl_compute_flow_schedule_data {
2743 isl_union_access_info *access;
2744
2745 int n_sink;
2746 int n_source;
2747
2748 struct isl_scheduled_access *sink;
2749 struct isl_scheduled_access *source;
2750
2751 int set_sink;
2752 int must;
2753 isl_schedule_node *node;
2754};
2755
2756/* Align the parameters of all sinks with all sources.
2757 *
2758 * If there are no sinks or no sources, then no alignment is needed.
2759 */
2760static void isl_compute_flow_schedule_data_align_params(
2761 struct isl_compute_flow_schedule_data *data)
2762{
2763 int i;
2764 isl_space *space;
2765
2766 if (data->n_sink == 0 || data->n_source == 0)
2767 return;
2768
2769 space = isl_map_get_space(map: data->sink[0].access);
2770
2771 for (i = 1; i < data->n_sink; ++i)
2772 space = isl_space_align_params(space1: space,
2773 space2: isl_map_get_space(map: data->sink[i].access));
2774 for (i = 0; i < data->n_source; ++i)
2775 space = isl_space_align_params(space1: space,
2776 space2: isl_map_get_space(map: data->source[i].access));
2777
2778 for (i = 0; i < data->n_sink; ++i)
2779 data->sink[i].access =
2780 isl_map_align_params(map: data->sink[i].access,
2781 model: isl_space_copy(space));
2782 for (i = 0; i < data->n_source; ++i)
2783 data->source[i].access =
2784 isl_map_align_params(map: data->source[i].access,
2785 model: isl_space_copy(space));
2786
2787 isl_space_free(space);
2788}
2789
2790/* Free all the memory referenced from "data".
2791 * Do not free "data" itself as it may be allocated on the stack.
2792 */
2793static void isl_compute_flow_schedule_data_clear(
2794 struct isl_compute_flow_schedule_data *data)
2795{
2796 int i;
2797
2798 if (!data->sink)
2799 return;
2800
2801 for (i = 0; i < data->n_sink; ++i) {
2802 isl_map_free(map: data->sink[i].access);
2803 isl_schedule_node_free(node: data->sink[i].node);
2804 }
2805
2806 for (i = 0; i < data->n_source; ++i) {
2807 isl_map_free(map: data->source[i].access);
2808 isl_schedule_node_free(node: data->source[i].node);
2809 }
2810
2811 free(ptr: data->sink);
2812}
2813
2814/* isl_schedule_foreach_schedule_node_top_down callback for counting
2815 * (an upper bound on) the number of sinks and sources.
2816 *
2817 * Sinks and sources are only extracted at leaves of the tree,
2818 * so we skip the node if it is not a leaf.
2819 * Otherwise we increment data->n_sink and data->n_source with
2820 * the number of spaces in the sink and source access domains
2821 * that reach this node.
2822 */
2823static isl_bool count_sink_source(__isl_keep isl_schedule_node *node,
2824 void *user)
2825{
2826 struct isl_compute_flow_schedule_data *data = user;
2827 isl_union_set *domain;
2828 isl_union_map *umap;
2829 isl_bool r = isl_bool_false;
2830 isl_size n;
2831
2832 if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
2833 return isl_bool_true;
2834
2835 domain = isl_schedule_node_get_universe_domain(node);
2836
2837 umap = isl_union_map_copy(umap: data->access->access[isl_access_sink]);
2838 umap = isl_union_map_intersect_domain(umap, uset: isl_union_set_copy(uset: domain));
2839 data->n_sink += n = isl_union_map_n_map(umap);
2840 isl_union_map_free(umap);
2841 if (n < 0)
2842 r = isl_bool_error;
2843
2844 umap = isl_union_map_copy(umap: data->access->access[isl_access_must_source]);
2845 umap = isl_union_map_intersect_domain(umap, uset: isl_union_set_copy(uset: domain));
2846 data->n_source += n = isl_union_map_n_map(umap);
2847 isl_union_map_free(umap);
2848 if (n < 0)
2849 r = isl_bool_error;
2850
2851 umap = isl_union_map_copy(umap: data->access->access[isl_access_may_source]);
2852 umap = isl_union_map_intersect_domain(umap, uset: isl_union_set_copy(uset: domain));
2853 data->n_source += n = isl_union_map_n_map(umap);
2854 isl_union_map_free(umap);
2855 if (n < 0)
2856 r = isl_bool_error;
2857
2858 isl_union_set_free(uset: domain);
2859
2860 return r;
2861}
2862
2863/* Add a single scheduled sink or source (depending on data->set_sink)
2864 * with scheduled access relation "map", must property data->must and
2865 * schedule node data->node to the list of sinks or sources.
2866 */
2867static isl_stat extract_sink_source(__isl_take isl_map *map, void *user)
2868{
2869 struct isl_compute_flow_schedule_data *data = user;
2870 struct isl_scheduled_access *access;
2871
2872 if (data->set_sink)
2873 access = data->sink + data->n_sink++;
2874 else
2875 access = data->source + data->n_source++;
2876
2877 access->access = map;
2878 access->must = data->must;
2879 access->node = isl_schedule_node_copy(node: data->node);
2880
2881 return isl_stat_ok;
2882}
2883
2884/* isl_schedule_foreach_schedule_node_top_down callback for collecting
2885 * individual scheduled source and sink accesses (taking into account
2886 * the domain of the schedule).
2887 *
2888 * We only collect accesses at the leaves of the schedule tree.
2889 * We prepend the schedule dimensions at the leaf to the iteration
2890 * domains of the source and sink accesses and then extract
2891 * the individual accesses (per space).
2892 *
2893 * In particular, if the prefix schedule at the node is of the form
2894 *
2895 * D -> S
2896 *
2897 * while the access relations are of the form
2898 *
2899 * D -> A
2900 *
2901 * then the updated access relations are of the form
2902 *
2903 * [S -> D] -> A
2904 *
2905 * Note that S consists of a single space such that introducing S
2906 * in the access relations does not increase the number of spaces.
2907 */
2908static isl_bool collect_sink_source(__isl_keep isl_schedule_node *node,
2909 void *user)
2910{
2911 struct isl_compute_flow_schedule_data *data = user;
2912 isl_union_map *prefix;
2913 isl_union_map *umap;
2914 isl_bool r = isl_bool_false;
2915
2916 if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
2917 return isl_bool_true;
2918
2919 data->node = node;
2920
2921 prefix = isl_schedule_node_get_prefix_schedule_relation(node);
2922 prefix = isl_union_map_reverse(umap: prefix);
2923 prefix = isl_union_map_range_map(umap: prefix);
2924
2925 data->set_sink = 1;
2926 umap = isl_union_map_copy(umap: data->access->access[isl_access_sink]);
2927 umap = isl_union_map_apply_range(umap1: isl_union_map_copy(umap: prefix), umap2: umap);
2928 if (isl_union_map_foreach_map(umap, fn: &extract_sink_source, user: data) < 0)
2929 r = isl_bool_error;
2930 isl_union_map_free(umap);
2931
2932 data->set_sink = 0;
2933 data->must = 1;
2934 umap = isl_union_map_copy(umap: data->access->access[isl_access_must_source]);
2935 umap = isl_union_map_apply_range(umap1: isl_union_map_copy(umap: prefix), umap2: umap);
2936 if (isl_union_map_foreach_map(umap, fn: &extract_sink_source, user: data) < 0)
2937 r = isl_bool_error;
2938 isl_union_map_free(umap);
2939
2940 data->set_sink = 0;
2941 data->must = 0;
2942 umap = isl_union_map_copy(umap: data->access->access[isl_access_may_source]);
2943 umap = isl_union_map_apply_range(umap1: isl_union_map_copy(umap: prefix), umap2: umap);
2944 if (isl_union_map_foreach_map(umap, fn: &extract_sink_source, user: data) < 0)
2945 r = isl_bool_error;
2946 isl_union_map_free(umap);
2947
2948 isl_union_map_free(umap: prefix);
2949
2950 return r;
2951}
2952
2953/* isl_access_info_compute_flow callback for determining whether
2954 * the shared nesting level and the ordering within that level
2955 * for two scheduled accesses for use in compute_single_flow.
2956 *
2957 * The tokens passed to this function refer to the leaves
2958 * in the schedule tree where the accesses take place.
2959 *
2960 * If n is the shared number of loops, then we need to return
2961 * "2 * n + 1" if "first" precedes "second" inside the innermost
2962 * shared loop and "2 * n" otherwise.
2963 *
2964 * The innermost shared ancestor may be the leaves themselves
2965 * if the accesses take place in the same leaf. Otherwise,
2966 * it is either a set node or a sequence node. Only in the case
2967 * of a sequence node do we consider one access to precede the other.
2968 */
2969static int before_node(void *first, void *second)
2970{
2971 isl_schedule_node *node1 = first;
2972 isl_schedule_node *node2 = second;
2973 isl_schedule_node *shared;
2974 isl_size depth;
2975 int before = 0;
2976
2977 shared = isl_schedule_node_get_shared_ancestor(node1, node2);
2978 depth = isl_schedule_node_get_schedule_depth(node: shared);
2979 if (depth < 0) {
2980 isl_schedule_node_free(node: shared);
2981 return -1;
2982 }
2983
2984 if (isl_schedule_node_get_type(node: shared) == isl_schedule_node_sequence) {
2985 isl_size pos1, pos2;
2986
2987 pos1 = isl_schedule_node_get_ancestor_child_position(node: node1,
2988 ancestor: shared);
2989 pos2 = isl_schedule_node_get_ancestor_child_position(node: node2,
2990 ancestor: shared);
2991 if (pos1 < 0 || pos2 < 0) {
2992 isl_schedule_node_free(node: shared);
2993 return -1;
2994 }
2995 before = pos1 < pos2;
2996 }
2997
2998 isl_schedule_node_free(node: shared);
2999
3000 return 2 * depth + before;
3001}
3002
3003/* Check if the given two accesses may be coscheduled.
3004 * If so, return isl_bool_true. Otherwise return isl_bool_false.
3005 *
3006 * Two accesses may only be coscheduled if they appear in the same leaf.
3007 */
3008static isl_bool coscheduled_node(void *first, void *second)
3009{
3010 isl_schedule_node *node1 = first;
3011 isl_schedule_node *node2 = second;
3012
3013 return isl_bool_ok(b: node1 == node2);
3014}
3015
3016/* Add the scheduled sources from "data" that access
3017 * the same data space as "sink" to "access".
3018 */
3019static __isl_give isl_access_info *add_matching_sources(
3020 __isl_take isl_access_info *access, struct isl_scheduled_access *sink,
3021 struct isl_compute_flow_schedule_data *data)
3022{
3023 int i;
3024 isl_space *space;
3025
3026 space = isl_space_range(space: isl_map_get_space(map: sink->access));
3027 for (i = 0; i < data->n_source; ++i) {
3028 struct isl_scheduled_access *source;
3029 isl_space *source_space;
3030 int eq;
3031
3032 source = &data->source[i];
3033 source_space = isl_map_get_space(map: source->access);
3034 source_space = isl_space_range(space: source_space);
3035 eq = isl_space_is_equal(space1: space, space2: source_space);
3036 isl_space_free(space: source_space);
3037
3038 if (!eq)
3039 continue;
3040 if (eq < 0)
3041 goto error;
3042
3043 access = isl_access_info_add_source(acc: access,
3044 source: isl_map_copy(map: source->access), must: source->must, source_user: source->node);
3045 }
3046
3047 isl_space_free(space);
3048 return access;
3049error:
3050 isl_space_free(space);
3051 isl_access_info_free(acc: access);
3052 return NULL;
3053}
3054
3055/* Given a scheduled sink access relation "sink", compute the corresponding
3056 * dependences on the sources in "data" and add the computed dependences
3057 * to "uf".
3058 *
3059 * The dependences computed by access_info_compute_flow_core are of the form
3060 *
3061 * [S -> I] -> [[S' -> I'] -> A]
3062 *
3063 * The schedule dimensions are projected out by first currying the range,
3064 * resulting in
3065 *
3066 * [S -> I] -> [S' -> [I' -> A]]
3067 *
3068 * and then computing the factor range
3069 *
3070 * I -> [I' -> A]
3071 */
3072static __isl_give isl_union_flow *compute_single_flow(
3073 __isl_take isl_union_flow *uf, struct isl_scheduled_access *sink,
3074 struct isl_compute_flow_schedule_data *data)
3075{
3076 int i;
3077 isl_access_info *access;
3078 isl_flow *flow;
3079 isl_map *map;
3080
3081 if (!uf)
3082 return NULL;
3083
3084 access = isl_access_info_alloc(sink: isl_map_copy(map: sink->access), sink_user: sink->node,
3085 fn: &before_node, max_source: data->n_source);
3086 if (access)
3087 access->coscheduled = &coscheduled_node;
3088 access = add_matching_sources(access, sink, data);
3089
3090 flow = access_info_compute_flow_core(acc: access);
3091 if (!flow)
3092 return isl_union_flow_free(flow: uf);
3093
3094 map = isl_map_domain_factor_range(map: isl_flow_get_no_source(deps: flow, must: 1));
3095 uf->must_no_source = isl_union_map_union(umap1: uf->must_no_source,
3096 umap2: isl_union_map_from_map(map));
3097 map = isl_map_domain_factor_range(map: isl_flow_get_no_source(deps: flow, must: 0));
3098 uf->may_no_source = isl_union_map_union(umap1: uf->may_no_source,
3099 umap2: isl_union_map_from_map(map));
3100
3101 for (i = 0; i < flow->n_source; ++i) {
3102 isl_union_map *dep;
3103
3104 map = isl_map_range_curry(map: isl_map_copy(map: flow->dep[i].map));
3105 map = isl_map_factor_range(map);
3106 dep = isl_union_map_from_map(map);
3107 if (flow->dep[i].must)
3108 uf->must_dep = isl_union_map_union(umap1: uf->must_dep, umap2: dep);
3109 else
3110 uf->may_dep = isl_union_map_union(umap1: uf->may_dep, umap2: dep);
3111 }
3112
3113 isl_flow_free(deps: flow);
3114
3115 return uf;
3116}
3117
3118/* Given a description of the "sink" accesses, the "source" accesses and
3119 * a schedule, compute for each instance of a sink access
3120 * and for each element accessed by that instance,
3121 * the possible or definite source accesses that last accessed the
3122 * element accessed by the sink access before this sink access
3123 * in the sense that there is no intermediate definite source access.
3124 * Only consider dependences between statement instances that belong
3125 * to the domain of the schedule.
3126 *
3127 * The must_no_source and may_no_source elements of the result
3128 * are subsets of access->sink. The elements must_dep and may_dep
3129 * map domain elements of access->{may,must)_source to
3130 * domain elements of access->sink.
3131 *
3132 * This function is used when a schedule tree representation
3133 * is available.
3134 *
3135 * We extract the individual scheduled source and sink access relations
3136 * (taking into account the domain of the schedule) and
3137 * then compute dependences for each scheduled sink individually.
3138 */
3139static __isl_give isl_union_flow *compute_flow_schedule(
3140 __isl_take isl_union_access_info *access)
3141{
3142 struct isl_compute_flow_schedule_data data = { access };
3143 int i, n;
3144 isl_ctx *ctx;
3145 isl_space *space;
3146 isl_union_flow *flow;
3147
3148 ctx = isl_union_access_info_get_ctx(access);
3149
3150 data.n_sink = 0;
3151 data.n_source = 0;
3152 if (isl_schedule_foreach_schedule_node_top_down(sched: access->schedule,
3153 fn: &count_sink_source, user: &data) < 0)
3154 goto error;
3155
3156 n = data.n_sink + data.n_source;
3157 data.sink = isl_calloc_array(ctx, struct isl_scheduled_access, n);
3158 if (n && !data.sink)
3159 goto error;
3160 data.source = data.sink + data.n_sink;
3161
3162 data.n_sink = 0;
3163 data.n_source = 0;
3164 if (isl_schedule_foreach_schedule_node_top_down(sched: access->schedule,
3165 fn: &collect_sink_source, user: &data) < 0)
3166 goto error;
3167
3168 space = isl_union_map_get_space(umap: access->access[isl_access_sink]);
3169 flow = isl_union_flow_alloc(space);
3170
3171 isl_compute_flow_schedule_data_align_params(data: &data);
3172
3173 for (i = 0; i < data.n_sink; ++i)
3174 flow = compute_single_flow(uf: flow, sink: &data.sink[i], data: &data);
3175
3176 isl_compute_flow_schedule_data_clear(data: &data);
3177
3178 isl_union_access_info_free(access);
3179 return flow;
3180error:
3181 isl_union_access_info_free(access);
3182 isl_compute_flow_schedule_data_clear(data: &data);
3183 return NULL;
3184}
3185
3186/* Given a description of the "sink" accesses, the "source" accesses and
3187 * a schedule, compute for each instance of a sink access
3188 * and for each element accessed by that instance,
3189 * the possible or definite source accesses that last accessed the
3190 * element accessed by the sink access before this sink access
3191 * in the sense that there is no intermediate definite source access.
3192 *
3193 * The must_no_source and may_no_source elements of the result
3194 * are subsets of access->sink. The elements must_dep and may_dep
3195 * map domain elements of access->{may,must)_source to
3196 * domain elements of access->sink.
3197 *
3198 * If any kills have been specified, then they are treated as
3199 * must-sources internally. Any dependence that purely derives
3200 * from an original kill is removed from the output.
3201 *
3202 * We check whether the schedule is available as a schedule tree
3203 * or a schedule map and call the corresponding function to perform
3204 * the analysis.
3205 */
3206__isl_give isl_union_flow *isl_union_access_info_compute_flow(
3207 __isl_take isl_union_access_info *access)
3208{
3209 isl_bool has_kill;
3210 isl_union_map *must = NULL, *may = NULL;
3211 isl_union_flow *flow;
3212
3213 has_kill = isl_union_access_has_kill(info: access);
3214 if (has_kill < 0)
3215 goto error;
3216 if (has_kill) {
3217 must = isl_union_access_info_get_must_source(info: access);
3218 may = isl_union_access_info_get_may_source(info: access);
3219 }
3220 access = isl_union_access_info_add_kill_to_must_source(info: access);
3221 access = isl_union_access_info_normalize(access);
3222 if (!access)
3223 goto error;
3224 if (access->schedule)
3225 flow = compute_flow_schedule(access);
3226 else
3227 flow = compute_flow_union_map(access);
3228 if (has_kill)
3229 flow = isl_union_flow_drop_kill_source(flow, must, may);
3230 return flow;
3231error:
3232 isl_union_access_info_free(access);
3233 isl_union_map_free(umap: must);
3234 isl_union_map_free(umap: may);
3235 return NULL;
3236}
3237
3238/* Print the information contained in "flow" to "p".
3239 * The information is printed as a YAML document.
3240 */
3241__isl_give isl_printer *isl_printer_print_union_flow(
3242 __isl_take isl_printer *p, __isl_keep isl_union_flow *flow)
3243{
3244 isl_union_map *umap;
3245
3246 if (!flow)
3247 return isl_printer_free(printer: p);
3248
3249 p = isl_printer_yaml_start_mapping(p);
3250 umap = isl_union_flow_get_full_must_dependence(flow);
3251 p = print_yaml_field_union_map(p, name: "must_dependence", val: umap);
3252 isl_union_map_free(umap);
3253 umap = isl_union_flow_get_full_may_dependence(flow);
3254 p = print_yaml_field_union_map(p, name: "may_dependence", val: umap);
3255 isl_union_map_free(umap);
3256 p = print_yaml_field_union_map(p, name: "must_no_source",
3257 val: flow->must_no_source);
3258 umap = isl_union_flow_get_may_no_source(flow);
3259 p = print_yaml_field_union_map(p, name: "may_no_source", val: umap);
3260 isl_union_map_free(umap);
3261 p = isl_printer_yaml_end_mapping(p);
3262
3263 return p;
3264}
3265
3266/* Return a string representation of the information in "flow".
3267 * The information is printed in flow format.
3268 */
3269__isl_give char *isl_union_flow_to_str(__isl_keep isl_union_flow *flow)
3270{
3271 isl_printer *p;
3272 char *s;
3273
3274 if (!flow)
3275 return NULL;
3276
3277 p = isl_printer_to_str(ctx: isl_union_flow_get_ctx(flow));
3278 p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW);
3279 p = isl_printer_print_union_flow(p, flow);
3280 s = isl_printer_get_str(printer: p);
3281 isl_printer_free(printer: p);
3282
3283 return s;
3284}
3285
3286/* Given a collection of "sink" and "source" accesses,
3287 * compute for each iteration of a sink access
3288 * and for each element accessed by that iteration,
3289 * the source access in the list that last accessed the
3290 * element accessed by the sink access before this sink access.
3291 * Each access is given as a map from the loop iterators
3292 * to the array indices.
3293 * The result is a relations between source and sink
3294 * iterations and a subset of the domain of the sink accesses,
3295 * corresponding to those iterations that access an element
3296 * not previously accessed.
3297 *
3298 * We collect the inputs in an isl_union_access_info object,
3299 * call isl_union_access_info_compute_flow and extract
3300 * the outputs from the result.
3301 */
3302int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
3303 __isl_take isl_union_map *must_source,
3304 __isl_take isl_union_map *may_source,
3305 __isl_take isl_union_map *schedule,
3306 __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep,
3307 __isl_give isl_union_map **must_no_source,
3308 __isl_give isl_union_map **may_no_source)
3309{
3310 isl_union_access_info *access;
3311 isl_union_flow *flow;
3312
3313 access = isl_union_access_info_from_sink(sink);
3314 access = isl_union_access_info_set_must_source(access, must_source);
3315 access = isl_union_access_info_set_may_source(access, may_source);
3316 access = isl_union_access_info_set_schedule_map(access, schedule_map: schedule);
3317 flow = isl_union_access_info_compute_flow(access);
3318
3319 if (must_dep)
3320 *must_dep = isl_union_flow_get_must_dependence(flow);
3321 if (may_dep)
3322 *may_dep = isl_union_flow_get_non_must_dependence(flow);
3323 if (must_no_source)
3324 *must_no_source = isl_union_flow_get_must_no_source(flow);
3325 if (may_no_source)
3326 *may_no_source = isl_union_flow_get_non_must_no_source(flow);
3327
3328 isl_union_flow_free(flow);
3329
3330 if ((must_dep && !*must_dep) || (may_dep && !*may_dep) ||
3331 (must_no_source && !*must_no_source) ||
3332 (may_no_source && !*may_no_source))
3333 goto error;
3334
3335 return 0;
3336error:
3337 if (must_dep)
3338 *must_dep = isl_union_map_free(umap: *must_dep);
3339 if (may_dep)
3340 *may_dep = isl_union_map_free(umap: *may_dep);
3341 if (must_no_source)
3342 *must_no_source = isl_union_map_free(umap: *must_no_source);
3343 if (may_no_source)
3344 *may_no_source = isl_union_map_free(umap: *may_no_source);
3345 return -1;
3346}
3347

source code of polly/lib/External/isl/isl_flow.c