1 | /* |
2 | * Copyright 2010 INRIA Saclay |
3 | * |
4 | * Use of this software is governed by the MIT license |
5 | * |
6 | * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, |
7 | * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, |
8 | * 91893 Orsay, France |
9 | */ |
10 | |
11 | #include <stdlib.h> |
12 | #include <isl_ctx_private.h> |
13 | #include <isl_map_private.h> |
14 | #include <isl_factorization.h> |
15 | #include <isl_lp_private.h> |
16 | #include <isl_seq.h> |
17 | #include <isl_union_map_private.h> |
18 | #include <isl_constraint_private.h> |
19 | #include <isl_polynomial_private.h> |
20 | #include <isl_point_private.h> |
21 | #include <isl_space_private.h> |
22 | #include <isl_mat_private.h> |
23 | #include <isl_vec_private.h> |
24 | #include <isl_range.h> |
25 | #include <isl_local.h> |
26 | #include <isl_local_space_private.h> |
27 | #include <isl_aff_private.h> |
28 | #include <isl_val_private.h> |
29 | #include <isl_config.h> |
30 | |
31 | #undef EL_BASE |
32 | #define EL_BASE qpolynomial |
33 | |
34 | #include <isl_list_templ.c> |
35 | |
36 | #undef EL_BASE |
37 | #define EL_BASE pw_qpolynomial |
38 | |
39 | #include <isl_list_templ.c> |
40 | |
41 | static unsigned pos(__isl_keep isl_space *space, enum isl_dim_type type) |
42 | { |
43 | switch (type) { |
44 | case isl_dim_param: return 0; |
45 | case isl_dim_in: return space->nparam; |
46 | case isl_dim_out: return space->nparam + space->n_in; |
47 | default: return 0; |
48 | } |
49 | } |
50 | |
51 | isl_bool isl_poly_is_cst(__isl_keep isl_poly *poly) |
52 | { |
53 | if (!poly) |
54 | return isl_bool_error; |
55 | |
56 | return isl_bool_ok(b: poly->var < 0); |
57 | } |
58 | |
59 | __isl_keep isl_poly_cst *isl_poly_as_cst(__isl_keep isl_poly *poly) |
60 | { |
61 | if (!poly) |
62 | return NULL; |
63 | |
64 | isl_assert(poly->ctx, poly->var < 0, return NULL); |
65 | |
66 | return (isl_poly_cst *) poly; |
67 | } |
68 | |
69 | __isl_keep isl_poly_rec *isl_poly_as_rec(__isl_keep isl_poly *poly) |
70 | { |
71 | if (!poly) |
72 | return NULL; |
73 | |
74 | isl_assert(poly->ctx, poly->var >= 0, return NULL); |
75 | |
76 | return (isl_poly_rec *) poly; |
77 | } |
78 | |
79 | /* Compare two polynomials. |
80 | * |
81 | * Return -1 if "poly1" is "smaller" than "poly2", 1 if "poly1" is "greater" |
82 | * than "poly2" and 0 if they are equal. |
83 | */ |
84 | static int isl_poly_plain_cmp(__isl_keep isl_poly *poly1, |
85 | __isl_keep isl_poly *poly2) |
86 | { |
87 | int i; |
88 | isl_bool is_cst1; |
89 | isl_poly_rec *rec1, *rec2; |
90 | |
91 | if (poly1 == poly2) |
92 | return 0; |
93 | is_cst1 = isl_poly_is_cst(poly: poly1); |
94 | if (is_cst1 < 0) |
95 | return -1; |
96 | if (!poly2) |
97 | return 1; |
98 | if (poly1->var != poly2->var) |
99 | return poly1->var - poly2->var; |
100 | |
101 | if (is_cst1) { |
102 | isl_poly_cst *cst1, *cst2; |
103 | int cmp; |
104 | |
105 | cst1 = isl_poly_as_cst(poly: poly1); |
106 | cst2 = isl_poly_as_cst(poly: poly2); |
107 | if (!cst1 || !cst2) |
108 | return 0; |
109 | cmp = isl_int_cmp(cst1->n, cst2->n); |
110 | if (cmp != 0) |
111 | return cmp; |
112 | return isl_int_cmp(cst1->d, cst2->d); |
113 | } |
114 | |
115 | rec1 = isl_poly_as_rec(poly: poly1); |
116 | rec2 = isl_poly_as_rec(poly: poly2); |
117 | if (!rec1 || !rec2) |
118 | return 0; |
119 | |
120 | if (rec1->n != rec2->n) |
121 | return rec1->n - rec2->n; |
122 | |
123 | for (i = 0; i < rec1->n; ++i) { |
124 | int cmp = isl_poly_plain_cmp(poly1: rec1->p[i], poly2: rec2->p[i]); |
125 | if (cmp != 0) |
126 | return cmp; |
127 | } |
128 | |
129 | return 0; |
130 | } |
131 | |
132 | isl_bool isl_poly_is_equal(__isl_keep isl_poly *poly1, |
133 | __isl_keep isl_poly *poly2) |
134 | { |
135 | int i; |
136 | isl_bool is_cst1; |
137 | isl_poly_rec *rec1, *rec2; |
138 | |
139 | is_cst1 = isl_poly_is_cst(poly: poly1); |
140 | if (is_cst1 < 0 || !poly2) |
141 | return isl_bool_error; |
142 | if (poly1 == poly2) |
143 | return isl_bool_true; |
144 | if (poly1->var != poly2->var) |
145 | return isl_bool_false; |
146 | if (is_cst1) { |
147 | isl_poly_cst *cst1, *cst2; |
148 | int r; |
149 | cst1 = isl_poly_as_cst(poly: poly1); |
150 | cst2 = isl_poly_as_cst(poly: poly2); |
151 | if (!cst1 || !cst2) |
152 | return isl_bool_error; |
153 | r = isl_int_eq(cst1->n, cst2->n) && |
154 | isl_int_eq(cst1->d, cst2->d); |
155 | return isl_bool_ok(b: r); |
156 | } |
157 | |
158 | rec1 = isl_poly_as_rec(poly: poly1); |
159 | rec2 = isl_poly_as_rec(poly: poly2); |
160 | if (!rec1 || !rec2) |
161 | return isl_bool_error; |
162 | |
163 | if (rec1->n != rec2->n) |
164 | return isl_bool_false; |
165 | |
166 | for (i = 0; i < rec1->n; ++i) { |
167 | isl_bool eq = isl_poly_is_equal(poly1: rec1->p[i], poly2: rec2->p[i]); |
168 | if (eq < 0 || !eq) |
169 | return eq; |
170 | } |
171 | |
172 | return isl_bool_true; |
173 | } |
174 | |
175 | isl_bool isl_poly_is_zero(__isl_keep isl_poly *poly) |
176 | { |
177 | isl_bool is_cst; |
178 | isl_poly_cst *cst; |
179 | |
180 | is_cst = isl_poly_is_cst(poly); |
181 | if (is_cst < 0 || !is_cst) |
182 | return is_cst; |
183 | |
184 | cst = isl_poly_as_cst(poly); |
185 | if (!cst) |
186 | return isl_bool_error; |
187 | |
188 | return isl_bool_ok(isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d)); |
189 | } |
190 | |
191 | int isl_poly_sgn(__isl_keep isl_poly *poly) |
192 | { |
193 | isl_bool is_cst; |
194 | isl_poly_cst *cst; |
195 | |
196 | is_cst = isl_poly_is_cst(poly); |
197 | if (is_cst < 0 || !is_cst) |
198 | return 0; |
199 | |
200 | cst = isl_poly_as_cst(poly); |
201 | if (!cst) |
202 | return 0; |
203 | |
204 | return isl_int_sgn(cst->n); |
205 | } |
206 | |
207 | isl_bool isl_poly_is_nan(__isl_keep isl_poly *poly) |
208 | { |
209 | isl_bool is_cst; |
210 | isl_poly_cst *cst; |
211 | |
212 | is_cst = isl_poly_is_cst(poly); |
213 | if (is_cst < 0 || !is_cst) |
214 | return is_cst; |
215 | |
216 | cst = isl_poly_as_cst(poly); |
217 | if (!cst) |
218 | return isl_bool_error; |
219 | |
220 | return isl_bool_ok(isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d)); |
221 | } |
222 | |
223 | isl_bool isl_poly_is_infty(__isl_keep isl_poly *poly) |
224 | { |
225 | isl_bool is_cst; |
226 | isl_poly_cst *cst; |
227 | |
228 | is_cst = isl_poly_is_cst(poly); |
229 | if (is_cst < 0 || !is_cst) |
230 | return is_cst; |
231 | |
232 | cst = isl_poly_as_cst(poly); |
233 | if (!cst) |
234 | return isl_bool_error; |
235 | |
236 | return isl_bool_ok(isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d)); |
237 | } |
238 | |
239 | isl_bool isl_poly_is_neginfty(__isl_keep isl_poly *poly) |
240 | { |
241 | isl_bool is_cst; |
242 | isl_poly_cst *cst; |
243 | |
244 | is_cst = isl_poly_is_cst(poly); |
245 | if (is_cst < 0 || !is_cst) |
246 | return is_cst; |
247 | |
248 | cst = isl_poly_as_cst(poly); |
249 | if (!cst) |
250 | return isl_bool_error; |
251 | |
252 | return isl_bool_ok(isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d)); |
253 | } |
254 | |
255 | isl_bool isl_poly_is_one(__isl_keep isl_poly *poly) |
256 | { |
257 | isl_bool is_cst; |
258 | isl_poly_cst *cst; |
259 | int r; |
260 | |
261 | is_cst = isl_poly_is_cst(poly); |
262 | if (is_cst < 0 || !is_cst) |
263 | return is_cst; |
264 | |
265 | cst = isl_poly_as_cst(poly); |
266 | if (!cst) |
267 | return isl_bool_error; |
268 | |
269 | r = isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d); |
270 | return isl_bool_ok(b: r); |
271 | } |
272 | |
273 | isl_bool isl_poly_is_negone(__isl_keep isl_poly *poly) |
274 | { |
275 | isl_bool is_cst; |
276 | isl_poly_cst *cst; |
277 | |
278 | is_cst = isl_poly_is_cst(poly); |
279 | if (is_cst < 0 || !is_cst) |
280 | return is_cst; |
281 | |
282 | cst = isl_poly_as_cst(poly); |
283 | if (!cst) |
284 | return isl_bool_error; |
285 | |
286 | return isl_bool_ok(isl_int_is_negone(cst->n) && isl_int_is_one(cst->d)); |
287 | } |
288 | |
289 | __isl_give isl_poly_cst *isl_poly_cst_alloc(isl_ctx *ctx) |
290 | { |
291 | isl_poly_cst *cst; |
292 | |
293 | cst = isl_alloc_type(ctx, struct isl_poly_cst); |
294 | if (!cst) |
295 | return NULL; |
296 | |
297 | cst->poly.ref = 1; |
298 | cst->poly.ctx = ctx; |
299 | isl_ctx_ref(ctx); |
300 | cst->poly.var = -1; |
301 | |
302 | isl_int_init(cst->n); |
303 | isl_int_init(cst->d); |
304 | |
305 | return cst; |
306 | } |
307 | |
308 | __isl_give isl_poly *isl_poly_zero(isl_ctx *ctx) |
309 | { |
310 | isl_poly_cst *cst; |
311 | |
312 | cst = isl_poly_cst_alloc(ctx); |
313 | if (!cst) |
314 | return NULL; |
315 | |
316 | isl_int_set_si(cst->n, 0); |
317 | isl_int_set_si(cst->d, 1); |
318 | |
319 | return &cst->poly; |
320 | } |
321 | |
322 | __isl_give isl_poly *isl_poly_one(isl_ctx *ctx) |
323 | { |
324 | isl_poly_cst *cst; |
325 | |
326 | cst = isl_poly_cst_alloc(ctx); |
327 | if (!cst) |
328 | return NULL; |
329 | |
330 | isl_int_set_si(cst->n, 1); |
331 | isl_int_set_si(cst->d, 1); |
332 | |
333 | return &cst->poly; |
334 | } |
335 | |
336 | __isl_give isl_poly *isl_poly_infty(isl_ctx *ctx) |
337 | { |
338 | isl_poly_cst *cst; |
339 | |
340 | cst = isl_poly_cst_alloc(ctx); |
341 | if (!cst) |
342 | return NULL; |
343 | |
344 | isl_int_set_si(cst->n, 1); |
345 | isl_int_set_si(cst->d, 0); |
346 | |
347 | return &cst->poly; |
348 | } |
349 | |
350 | __isl_give isl_poly *isl_poly_neginfty(isl_ctx *ctx) |
351 | { |
352 | isl_poly_cst *cst; |
353 | |
354 | cst = isl_poly_cst_alloc(ctx); |
355 | if (!cst) |
356 | return NULL; |
357 | |
358 | isl_int_set_si(cst->n, -1); |
359 | isl_int_set_si(cst->d, 0); |
360 | |
361 | return &cst->poly; |
362 | } |
363 | |
364 | __isl_give isl_poly *isl_poly_nan(isl_ctx *ctx) |
365 | { |
366 | isl_poly_cst *cst; |
367 | |
368 | cst = isl_poly_cst_alloc(ctx); |
369 | if (!cst) |
370 | return NULL; |
371 | |
372 | isl_int_set_si(cst->n, 0); |
373 | isl_int_set_si(cst->d, 0); |
374 | |
375 | return &cst->poly; |
376 | } |
377 | |
378 | __isl_give isl_poly *isl_poly_rat_cst(isl_ctx *ctx, isl_int n, isl_int d) |
379 | { |
380 | isl_poly_cst *cst; |
381 | |
382 | cst = isl_poly_cst_alloc(ctx); |
383 | if (!cst) |
384 | return NULL; |
385 | |
386 | isl_int_set(cst->n, n); |
387 | isl_int_set(cst->d, d); |
388 | |
389 | return &cst->poly; |
390 | } |
391 | |
392 | __isl_give isl_poly_rec *isl_poly_alloc_rec(isl_ctx *ctx, int var, int size) |
393 | { |
394 | isl_poly_rec *rec; |
395 | |
396 | isl_assert(ctx, var >= 0, return NULL); |
397 | isl_assert(ctx, size >= 0, return NULL); |
398 | rec = isl_calloc(ctx, struct isl_poly_rec, |
399 | sizeof(struct isl_poly_rec) + |
400 | size * sizeof(struct isl_poly *)); |
401 | if (!rec) |
402 | return NULL; |
403 | |
404 | rec->poly.ref = 1; |
405 | rec->poly.ctx = ctx; |
406 | isl_ctx_ref(ctx); |
407 | rec->poly.var = var; |
408 | |
409 | rec->n = 0; |
410 | rec->size = size; |
411 | |
412 | return rec; |
413 | } |
414 | |
415 | __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space( |
416 | __isl_take isl_qpolynomial *qp, __isl_take isl_space *space) |
417 | { |
418 | qp = isl_qpolynomial_cow(qp); |
419 | if (!qp || !space) |
420 | goto error; |
421 | |
422 | isl_space_free(space: qp->dim); |
423 | qp->dim = space; |
424 | |
425 | return qp; |
426 | error: |
427 | isl_qpolynomial_free(qp); |
428 | isl_space_free(space); |
429 | return NULL; |
430 | } |
431 | |
432 | /* Reset the space of "qp". This function is called from isl_pw_templ.c |
433 | * and doesn't know if the space of an element object is represented |
434 | * directly or through its domain. It therefore passes along both. |
435 | */ |
436 | __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain( |
437 | __isl_take isl_qpolynomial *qp, __isl_take isl_space *space, |
438 | __isl_take isl_space *domain) |
439 | { |
440 | isl_space_free(space); |
441 | return isl_qpolynomial_reset_domain_space(qp, space: domain); |
442 | } |
443 | |
444 | isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp) |
445 | { |
446 | return qp ? qp->dim->ctx : NULL; |
447 | } |
448 | |
449 | /* Return the domain space of "qp". |
450 | */ |
451 | static __isl_keep isl_space *isl_qpolynomial_peek_domain_space( |
452 | __isl_keep isl_qpolynomial *qp) |
453 | { |
454 | return qp ? qp->dim : NULL; |
455 | } |
456 | |
457 | /* Return a copy of the domain space of "qp". |
458 | */ |
459 | __isl_give isl_space *isl_qpolynomial_get_domain_space( |
460 | __isl_keep isl_qpolynomial *qp) |
461 | { |
462 | return isl_space_copy(space: isl_qpolynomial_peek_domain_space(qp)); |
463 | } |
464 | |
465 | #undef TYPE |
466 | #define TYPE isl_qpolynomial |
467 | #undef PEEK_SPACE |
468 | #define PEEK_SPACE peek_domain_space |
469 | |
470 | static |
471 | #include "isl_type_has_equal_space_bin_templ.c" |
472 | static |
473 | #include "isl_type_check_equal_space_templ.c" |
474 | |
475 | #undef PEEK_SPACE |
476 | |
477 | /* Return a copy of the local space on which "qp" is defined. |
478 | */ |
479 | static __isl_give isl_local_space *isl_qpolynomial_get_domain_local_space( |
480 | __isl_keep isl_qpolynomial *qp) |
481 | { |
482 | isl_space *space; |
483 | |
484 | if (!qp) |
485 | return NULL; |
486 | |
487 | space = isl_qpolynomial_get_domain_space(qp); |
488 | return isl_local_space_alloc_div(space, div: isl_mat_copy(mat: qp->div)); |
489 | } |
490 | |
491 | __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp) |
492 | { |
493 | isl_space *space; |
494 | if (!qp) |
495 | return NULL; |
496 | space = isl_space_copy(space: qp->dim); |
497 | space = isl_space_from_domain(space); |
498 | space = isl_space_add_dims(space, type: isl_dim_out, n: 1); |
499 | return space; |
500 | } |
501 | |
502 | /* Return the number of variables of the given type in the domain of "qp". |
503 | */ |
504 | isl_size isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial *qp, |
505 | enum isl_dim_type type) |
506 | { |
507 | isl_space *space; |
508 | isl_size dim; |
509 | |
510 | space = isl_qpolynomial_peek_domain_space(qp); |
511 | |
512 | if (!space) |
513 | return isl_size_error; |
514 | if (type == isl_dim_div) |
515 | return qp->div->n_row; |
516 | dim = isl_space_dim(space, type); |
517 | if (dim < 0) |
518 | return isl_size_error; |
519 | if (type == isl_dim_all) { |
520 | isl_size n_div; |
521 | |
522 | n_div = isl_qpolynomial_domain_dim(qp, type: isl_dim_div); |
523 | if (n_div < 0) |
524 | return isl_size_error; |
525 | dim += n_div; |
526 | } |
527 | return dim; |
528 | } |
529 | |
530 | /* Given the type of a dimension of an isl_qpolynomial, |
531 | * return the type of the corresponding dimension in its domain. |
532 | * This function is only called for "type" equal to isl_dim_in or |
533 | * isl_dim_param. |
534 | */ |
535 | static enum isl_dim_type domain_type(enum isl_dim_type type) |
536 | { |
537 | return type == isl_dim_in ? isl_dim_set : type; |
538 | } |
539 | |
540 | /* Externally, an isl_qpolynomial has a map space, but internally, the |
541 | * ls field corresponds to the domain of that space. |
542 | */ |
543 | isl_size isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp, |
544 | enum isl_dim_type type) |
545 | { |
546 | if (!qp) |
547 | return isl_size_error; |
548 | if (type == isl_dim_out) |
549 | return 1; |
550 | type = domain_type(type); |
551 | return isl_qpolynomial_domain_dim(qp, type); |
552 | } |
553 | |
554 | /* Return the offset of the first variable of type "type" within |
555 | * the variables of the domain of "qp". |
556 | */ |
557 | static isl_size isl_qpolynomial_domain_var_offset( |
558 | __isl_keep isl_qpolynomial *qp, enum isl_dim_type type) |
559 | { |
560 | isl_space *space; |
561 | |
562 | space = isl_qpolynomial_peek_domain_space(qp); |
563 | if (!space) |
564 | return isl_size_error; |
565 | |
566 | switch (type) { |
567 | case isl_dim_param: |
568 | case isl_dim_set: return isl_space_offset(space, type); |
569 | case isl_dim_div: return isl_space_dim(space, type: isl_dim_all); |
570 | case isl_dim_cst: |
571 | default: |
572 | isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, |
573 | "invalid dimension type" , return isl_size_error); |
574 | } |
575 | } |
576 | |
577 | /* Return the offset of the first coefficient of type "type" in |
578 | * the domain of "qp". |
579 | */ |
580 | unsigned isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial *qp, |
581 | enum isl_dim_type type) |
582 | { |
583 | switch (type) { |
584 | case isl_dim_cst: |
585 | return 0; |
586 | case isl_dim_param: |
587 | case isl_dim_set: |
588 | case isl_dim_div: |
589 | return 1 + isl_qpolynomial_domain_var_offset(qp, type); |
590 | default: |
591 | return 0; |
592 | } |
593 | } |
594 | |
595 | isl_bool isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp) |
596 | { |
597 | return qp ? isl_poly_is_zero(poly: qp->poly) : isl_bool_error; |
598 | } |
599 | |
600 | isl_bool isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp) |
601 | { |
602 | return qp ? isl_poly_is_one(poly: qp->poly) : isl_bool_error; |
603 | } |
604 | |
605 | isl_bool isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp) |
606 | { |
607 | return qp ? isl_poly_is_nan(poly: qp->poly) : isl_bool_error; |
608 | } |
609 | |
610 | isl_bool isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp) |
611 | { |
612 | return qp ? isl_poly_is_infty(poly: qp->poly) : isl_bool_error; |
613 | } |
614 | |
615 | isl_bool isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp) |
616 | { |
617 | return qp ? isl_poly_is_neginfty(poly: qp->poly) : isl_bool_error; |
618 | } |
619 | |
620 | int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp) |
621 | { |
622 | return qp ? isl_poly_sgn(poly: qp->poly) : 0; |
623 | } |
624 | |
625 | static void poly_free_cst(__isl_take isl_poly_cst *cst) |
626 | { |
627 | isl_int_clear(cst->n); |
628 | isl_int_clear(cst->d); |
629 | } |
630 | |
631 | static void poly_free_rec(__isl_take isl_poly_rec *rec) |
632 | { |
633 | int i; |
634 | |
635 | for (i = 0; i < rec->n; ++i) |
636 | isl_poly_free(poly: rec->p[i]); |
637 | } |
638 | |
639 | __isl_give isl_poly *isl_poly_copy(__isl_keep isl_poly *poly) |
640 | { |
641 | if (!poly) |
642 | return NULL; |
643 | |
644 | poly->ref++; |
645 | return poly; |
646 | } |
647 | |
648 | __isl_give isl_poly *isl_poly_dup_cst(__isl_keep isl_poly *poly) |
649 | { |
650 | isl_poly_cst *cst; |
651 | isl_poly_cst *dup; |
652 | |
653 | cst = isl_poly_as_cst(poly); |
654 | if (!cst) |
655 | return NULL; |
656 | |
657 | dup = isl_poly_as_cst(poly: isl_poly_zero(ctx: poly->ctx)); |
658 | if (!dup) |
659 | return NULL; |
660 | isl_int_set(dup->n, cst->n); |
661 | isl_int_set(dup->d, cst->d); |
662 | |
663 | return &dup->poly; |
664 | } |
665 | |
666 | __isl_give isl_poly *isl_poly_dup_rec(__isl_keep isl_poly *poly) |
667 | { |
668 | int i; |
669 | isl_poly_rec *rec; |
670 | isl_poly_rec *dup; |
671 | |
672 | rec = isl_poly_as_rec(poly); |
673 | if (!rec) |
674 | return NULL; |
675 | |
676 | dup = isl_poly_alloc_rec(ctx: poly->ctx, var: poly->var, size: rec->n); |
677 | if (!dup) |
678 | return NULL; |
679 | |
680 | for (i = 0; i < rec->n; ++i) { |
681 | dup->p[i] = isl_poly_copy(poly: rec->p[i]); |
682 | if (!dup->p[i]) |
683 | goto error; |
684 | dup->n++; |
685 | } |
686 | |
687 | return &dup->poly; |
688 | error: |
689 | isl_poly_free(poly: &dup->poly); |
690 | return NULL; |
691 | } |
692 | |
693 | __isl_give isl_poly *isl_poly_dup(__isl_keep isl_poly *poly) |
694 | { |
695 | isl_bool is_cst; |
696 | |
697 | is_cst = isl_poly_is_cst(poly); |
698 | if (is_cst < 0) |
699 | return NULL; |
700 | if (is_cst) |
701 | return isl_poly_dup_cst(poly); |
702 | else |
703 | return isl_poly_dup_rec(poly); |
704 | } |
705 | |
706 | __isl_give isl_poly *isl_poly_cow(__isl_take isl_poly *poly) |
707 | { |
708 | if (!poly) |
709 | return NULL; |
710 | |
711 | if (poly->ref == 1) |
712 | return poly; |
713 | poly->ref--; |
714 | return isl_poly_dup(poly); |
715 | } |
716 | |
717 | __isl_null isl_poly *isl_poly_free(__isl_take isl_poly *poly) |
718 | { |
719 | if (!poly) |
720 | return NULL; |
721 | |
722 | if (--poly->ref > 0) |
723 | return NULL; |
724 | |
725 | if (poly->var < 0) |
726 | poly_free_cst(cst: (isl_poly_cst *) poly); |
727 | else |
728 | poly_free_rec(rec: (isl_poly_rec *) poly); |
729 | |
730 | isl_ctx_deref(ctx: poly->ctx); |
731 | free(ptr: poly); |
732 | return NULL; |
733 | } |
734 | |
735 | static void isl_poly_cst_reduce(__isl_keep isl_poly_cst *cst) |
736 | { |
737 | isl_int gcd; |
738 | |
739 | isl_int_init(gcd); |
740 | isl_int_gcd(gcd, cst->n, cst->d); |
741 | if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) { |
742 | isl_int_divexact(cst->n, cst->n, gcd); |
743 | isl_int_divexact(cst->d, cst->d, gcd); |
744 | } |
745 | isl_int_clear(gcd); |
746 | } |
747 | |
748 | __isl_give isl_poly *isl_poly_sum_cst(__isl_take isl_poly *poly1, |
749 | __isl_take isl_poly *poly2) |
750 | { |
751 | isl_poly_cst *cst1; |
752 | isl_poly_cst *cst2; |
753 | |
754 | poly1 = isl_poly_cow(poly: poly1); |
755 | if (!poly1 || !poly2) |
756 | goto error; |
757 | |
758 | cst1 = isl_poly_as_cst(poly: poly1); |
759 | cst2 = isl_poly_as_cst(poly: poly2); |
760 | |
761 | if (isl_int_eq(cst1->d, cst2->d)) |
762 | isl_int_add(cst1->n, cst1->n, cst2->n); |
763 | else { |
764 | isl_int_mul(cst1->n, cst1->n, cst2->d); |
765 | isl_int_addmul(cst1->n, cst2->n, cst1->d); |
766 | isl_int_mul(cst1->d, cst1->d, cst2->d); |
767 | } |
768 | |
769 | isl_poly_cst_reduce(cst: cst1); |
770 | |
771 | isl_poly_free(poly: poly2); |
772 | return poly1; |
773 | error: |
774 | isl_poly_free(poly: poly1); |
775 | isl_poly_free(poly: poly2); |
776 | return NULL; |
777 | } |
778 | |
779 | static __isl_give isl_poly *replace_by_zero(__isl_take isl_poly *poly) |
780 | { |
781 | struct isl_ctx *ctx; |
782 | |
783 | if (!poly) |
784 | return NULL; |
785 | ctx = poly->ctx; |
786 | isl_poly_free(poly); |
787 | return isl_poly_zero(ctx); |
788 | } |
789 | |
790 | static __isl_give isl_poly *replace_by_constant_term(__isl_take isl_poly *poly) |
791 | { |
792 | isl_poly_rec *rec; |
793 | isl_poly *cst; |
794 | |
795 | if (!poly) |
796 | return NULL; |
797 | |
798 | rec = isl_poly_as_rec(poly); |
799 | if (!rec) |
800 | goto error; |
801 | cst = isl_poly_copy(poly: rec->p[0]); |
802 | isl_poly_free(poly); |
803 | return cst; |
804 | error: |
805 | isl_poly_free(poly); |
806 | return NULL; |
807 | } |
808 | |
809 | __isl_give isl_poly *isl_poly_sum(__isl_take isl_poly *poly1, |
810 | __isl_take isl_poly *poly2) |
811 | { |
812 | int i; |
813 | isl_bool is_zero, is_nan, is_cst; |
814 | isl_poly_rec *rec1, *rec2; |
815 | |
816 | if (!poly1 || !poly2) |
817 | goto error; |
818 | |
819 | is_nan = isl_poly_is_nan(poly: poly1); |
820 | if (is_nan < 0) |
821 | goto error; |
822 | if (is_nan) { |
823 | isl_poly_free(poly: poly2); |
824 | return poly1; |
825 | } |
826 | |
827 | is_nan = isl_poly_is_nan(poly: poly2); |
828 | if (is_nan < 0) |
829 | goto error; |
830 | if (is_nan) { |
831 | isl_poly_free(poly: poly1); |
832 | return poly2; |
833 | } |
834 | |
835 | is_zero = isl_poly_is_zero(poly: poly1); |
836 | if (is_zero < 0) |
837 | goto error; |
838 | if (is_zero) { |
839 | isl_poly_free(poly: poly1); |
840 | return poly2; |
841 | } |
842 | |
843 | is_zero = isl_poly_is_zero(poly: poly2); |
844 | if (is_zero < 0) |
845 | goto error; |
846 | if (is_zero) { |
847 | isl_poly_free(poly: poly2); |
848 | return poly1; |
849 | } |
850 | |
851 | if (poly1->var < poly2->var) |
852 | return isl_poly_sum(poly1: poly2, poly2: poly1); |
853 | |
854 | if (poly2->var < poly1->var) { |
855 | isl_poly_rec *rec; |
856 | isl_bool is_infty; |
857 | |
858 | is_infty = isl_poly_is_infty(poly: poly2); |
859 | if (is_infty >= 0 && !is_infty) |
860 | is_infty = isl_poly_is_neginfty(poly: poly2); |
861 | if (is_infty < 0) |
862 | goto error; |
863 | if (is_infty) { |
864 | isl_poly_free(poly: poly1); |
865 | return poly2; |
866 | } |
867 | poly1 = isl_poly_cow(poly: poly1); |
868 | rec = isl_poly_as_rec(poly: poly1); |
869 | if (!rec) |
870 | goto error; |
871 | rec->p[0] = isl_poly_sum(poly1: rec->p[0], poly2); |
872 | if (rec->n == 1) |
873 | poly1 = replace_by_constant_term(poly: poly1); |
874 | return poly1; |
875 | } |
876 | |
877 | is_cst = isl_poly_is_cst(poly: poly1); |
878 | if (is_cst < 0) |
879 | goto error; |
880 | if (is_cst) |
881 | return isl_poly_sum_cst(poly1, poly2); |
882 | |
883 | rec1 = isl_poly_as_rec(poly: poly1); |
884 | rec2 = isl_poly_as_rec(poly: poly2); |
885 | if (!rec1 || !rec2) |
886 | goto error; |
887 | |
888 | if (rec1->n < rec2->n) |
889 | return isl_poly_sum(poly1: poly2, poly2: poly1); |
890 | |
891 | poly1 = isl_poly_cow(poly: poly1); |
892 | rec1 = isl_poly_as_rec(poly: poly1); |
893 | if (!rec1) |
894 | goto error; |
895 | |
896 | for (i = rec2->n - 1; i >= 0; --i) { |
897 | isl_bool is_zero; |
898 | |
899 | rec1->p[i] = isl_poly_sum(poly1: rec1->p[i], |
900 | poly2: isl_poly_copy(poly: rec2->p[i])); |
901 | if (!rec1->p[i]) |
902 | goto error; |
903 | if (i != rec1->n - 1) |
904 | continue; |
905 | is_zero = isl_poly_is_zero(poly: rec1->p[i]); |
906 | if (is_zero < 0) |
907 | goto error; |
908 | if (is_zero) { |
909 | isl_poly_free(poly: rec1->p[i]); |
910 | rec1->n--; |
911 | } |
912 | } |
913 | |
914 | if (rec1->n == 0) |
915 | poly1 = replace_by_zero(poly: poly1); |
916 | else if (rec1->n == 1) |
917 | poly1 = replace_by_constant_term(poly: poly1); |
918 | |
919 | isl_poly_free(poly: poly2); |
920 | |
921 | return poly1; |
922 | error: |
923 | isl_poly_free(poly: poly1); |
924 | isl_poly_free(poly: poly2); |
925 | return NULL; |
926 | } |
927 | |
928 | __isl_give isl_poly *isl_poly_cst_add_isl_int(__isl_take isl_poly *poly, |
929 | isl_int v) |
930 | { |
931 | isl_poly_cst *cst; |
932 | |
933 | poly = isl_poly_cow(poly); |
934 | if (!poly) |
935 | return NULL; |
936 | |
937 | cst = isl_poly_as_cst(poly); |
938 | |
939 | isl_int_addmul(cst->n, cst->d, v); |
940 | |
941 | return poly; |
942 | } |
943 | |
944 | __isl_give isl_poly *isl_poly_add_isl_int(__isl_take isl_poly *poly, isl_int v) |
945 | { |
946 | isl_bool is_cst; |
947 | isl_poly_rec *rec; |
948 | |
949 | is_cst = isl_poly_is_cst(poly); |
950 | if (is_cst < 0) |
951 | return isl_poly_free(poly); |
952 | if (is_cst) |
953 | return isl_poly_cst_add_isl_int(poly, v); |
954 | |
955 | poly = isl_poly_cow(poly); |
956 | rec = isl_poly_as_rec(poly); |
957 | if (!rec) |
958 | goto error; |
959 | |
960 | rec->p[0] = isl_poly_add_isl_int(poly: rec->p[0], v); |
961 | if (!rec->p[0]) |
962 | goto error; |
963 | |
964 | return poly; |
965 | error: |
966 | isl_poly_free(poly); |
967 | return NULL; |
968 | } |
969 | |
970 | __isl_give isl_poly *isl_poly_cst_mul_isl_int(__isl_take isl_poly *poly, |
971 | isl_int v) |
972 | { |
973 | isl_bool is_zero; |
974 | isl_poly_cst *cst; |
975 | |
976 | is_zero = isl_poly_is_zero(poly); |
977 | if (is_zero < 0) |
978 | return isl_poly_free(poly); |
979 | if (is_zero) |
980 | return poly; |
981 | |
982 | poly = isl_poly_cow(poly); |
983 | if (!poly) |
984 | return NULL; |
985 | |
986 | cst = isl_poly_as_cst(poly); |
987 | |
988 | isl_int_mul(cst->n, cst->n, v); |
989 | |
990 | return poly; |
991 | } |
992 | |
993 | __isl_give isl_poly *isl_poly_mul_isl_int(__isl_take isl_poly *poly, isl_int v) |
994 | { |
995 | int i; |
996 | isl_bool is_cst; |
997 | isl_poly_rec *rec; |
998 | |
999 | is_cst = isl_poly_is_cst(poly); |
1000 | if (is_cst < 0) |
1001 | return isl_poly_free(poly); |
1002 | if (is_cst) |
1003 | return isl_poly_cst_mul_isl_int(poly, v); |
1004 | |
1005 | poly = isl_poly_cow(poly); |
1006 | rec = isl_poly_as_rec(poly); |
1007 | if (!rec) |
1008 | goto error; |
1009 | |
1010 | for (i = 0; i < rec->n; ++i) { |
1011 | rec->p[i] = isl_poly_mul_isl_int(poly: rec->p[i], v); |
1012 | if (!rec->p[i]) |
1013 | goto error; |
1014 | } |
1015 | |
1016 | return poly; |
1017 | error: |
1018 | isl_poly_free(poly); |
1019 | return NULL; |
1020 | } |
1021 | |
1022 | /* Multiply the constant polynomial "poly" by "v". |
1023 | */ |
1024 | static __isl_give isl_poly *isl_poly_cst_scale_val(__isl_take isl_poly *poly, |
1025 | __isl_keep isl_val *v) |
1026 | { |
1027 | isl_bool is_zero; |
1028 | isl_poly_cst *cst; |
1029 | |
1030 | is_zero = isl_poly_is_zero(poly); |
1031 | if (is_zero < 0) |
1032 | return isl_poly_free(poly); |
1033 | if (is_zero) |
1034 | return poly; |
1035 | |
1036 | poly = isl_poly_cow(poly); |
1037 | if (!poly) |
1038 | return NULL; |
1039 | |
1040 | cst = isl_poly_as_cst(poly); |
1041 | |
1042 | isl_int_mul(cst->n, cst->n, v->n); |
1043 | isl_int_mul(cst->d, cst->d, v->d); |
1044 | isl_poly_cst_reduce(cst); |
1045 | |
1046 | return poly; |
1047 | } |
1048 | |
1049 | /* Multiply the polynomial "poly" by "v". |
1050 | */ |
1051 | static __isl_give isl_poly *isl_poly_scale_val(__isl_take isl_poly *poly, |
1052 | __isl_keep isl_val *v) |
1053 | { |
1054 | int i; |
1055 | isl_bool is_cst; |
1056 | isl_poly_rec *rec; |
1057 | |
1058 | is_cst = isl_poly_is_cst(poly); |
1059 | if (is_cst < 0) |
1060 | return isl_poly_free(poly); |
1061 | if (is_cst) |
1062 | return isl_poly_cst_scale_val(poly, v); |
1063 | |
1064 | poly = isl_poly_cow(poly); |
1065 | rec = isl_poly_as_rec(poly); |
1066 | if (!rec) |
1067 | goto error; |
1068 | |
1069 | for (i = 0; i < rec->n; ++i) { |
1070 | rec->p[i] = isl_poly_scale_val(poly: rec->p[i], v); |
1071 | if (!rec->p[i]) |
1072 | goto error; |
1073 | } |
1074 | |
1075 | return poly; |
1076 | error: |
1077 | isl_poly_free(poly); |
1078 | return NULL; |
1079 | } |
1080 | |
1081 | __isl_give isl_poly *isl_poly_mul_cst(__isl_take isl_poly *poly1, |
1082 | __isl_take isl_poly *poly2) |
1083 | { |
1084 | isl_poly_cst *cst1; |
1085 | isl_poly_cst *cst2; |
1086 | |
1087 | poly1 = isl_poly_cow(poly: poly1); |
1088 | if (!poly1 || !poly2) |
1089 | goto error; |
1090 | |
1091 | cst1 = isl_poly_as_cst(poly: poly1); |
1092 | cst2 = isl_poly_as_cst(poly: poly2); |
1093 | |
1094 | isl_int_mul(cst1->n, cst1->n, cst2->n); |
1095 | isl_int_mul(cst1->d, cst1->d, cst2->d); |
1096 | |
1097 | isl_poly_cst_reduce(cst: cst1); |
1098 | |
1099 | isl_poly_free(poly: poly2); |
1100 | return poly1; |
1101 | error: |
1102 | isl_poly_free(poly: poly1); |
1103 | isl_poly_free(poly: poly2); |
1104 | return NULL; |
1105 | } |
1106 | |
1107 | __isl_give isl_poly *isl_poly_mul_rec(__isl_take isl_poly *poly1, |
1108 | __isl_take isl_poly *poly2) |
1109 | { |
1110 | isl_poly_rec *rec1; |
1111 | isl_poly_rec *rec2; |
1112 | isl_poly_rec *res = NULL; |
1113 | int i, j; |
1114 | int size; |
1115 | |
1116 | rec1 = isl_poly_as_rec(poly: poly1); |
1117 | rec2 = isl_poly_as_rec(poly: poly2); |
1118 | if (!rec1 || !rec2) |
1119 | goto error; |
1120 | size = rec1->n + rec2->n - 1; |
1121 | res = isl_poly_alloc_rec(ctx: poly1->ctx, var: poly1->var, size); |
1122 | if (!res) |
1123 | goto error; |
1124 | |
1125 | for (i = 0; i < rec1->n; ++i) { |
1126 | res->p[i] = isl_poly_mul(poly1: isl_poly_copy(poly: rec2->p[0]), |
1127 | poly2: isl_poly_copy(poly: rec1->p[i])); |
1128 | if (!res->p[i]) |
1129 | goto error; |
1130 | res->n++; |
1131 | } |
1132 | for (; i < size; ++i) { |
1133 | res->p[i] = isl_poly_zero(ctx: poly1->ctx); |
1134 | if (!res->p[i]) |
1135 | goto error; |
1136 | res->n++; |
1137 | } |
1138 | for (i = 0; i < rec1->n; ++i) { |
1139 | for (j = 1; j < rec2->n; ++j) { |
1140 | isl_poly *poly; |
1141 | poly = isl_poly_mul(poly1: isl_poly_copy(poly: rec2->p[j]), |
1142 | poly2: isl_poly_copy(poly: rec1->p[i])); |
1143 | res->p[i + j] = isl_poly_sum(poly1: res->p[i + j], poly2: poly); |
1144 | if (!res->p[i + j]) |
1145 | goto error; |
1146 | } |
1147 | } |
1148 | |
1149 | isl_poly_free(poly: poly1); |
1150 | isl_poly_free(poly: poly2); |
1151 | |
1152 | return &res->poly; |
1153 | error: |
1154 | isl_poly_free(poly: poly1); |
1155 | isl_poly_free(poly: poly2); |
1156 | isl_poly_free(poly: &res->poly); |
1157 | return NULL; |
1158 | } |
1159 | |
1160 | __isl_give isl_poly *isl_poly_mul(__isl_take isl_poly *poly1, |
1161 | __isl_take isl_poly *poly2) |
1162 | { |
1163 | isl_bool is_zero, is_nan, is_one, is_cst; |
1164 | |
1165 | if (!poly1 || !poly2) |
1166 | goto error; |
1167 | |
1168 | is_nan = isl_poly_is_nan(poly: poly1); |
1169 | if (is_nan < 0) |
1170 | goto error; |
1171 | if (is_nan) { |
1172 | isl_poly_free(poly: poly2); |
1173 | return poly1; |
1174 | } |
1175 | |
1176 | is_nan = isl_poly_is_nan(poly: poly2); |
1177 | if (is_nan < 0) |
1178 | goto error; |
1179 | if (is_nan) { |
1180 | isl_poly_free(poly: poly1); |
1181 | return poly2; |
1182 | } |
1183 | |
1184 | is_zero = isl_poly_is_zero(poly: poly1); |
1185 | if (is_zero < 0) |
1186 | goto error; |
1187 | if (is_zero) { |
1188 | isl_poly_free(poly: poly2); |
1189 | return poly1; |
1190 | } |
1191 | |
1192 | is_zero = isl_poly_is_zero(poly: poly2); |
1193 | if (is_zero < 0) |
1194 | goto error; |
1195 | if (is_zero) { |
1196 | isl_poly_free(poly: poly1); |
1197 | return poly2; |
1198 | } |
1199 | |
1200 | is_one = isl_poly_is_one(poly: poly1); |
1201 | if (is_one < 0) |
1202 | goto error; |
1203 | if (is_one) { |
1204 | isl_poly_free(poly: poly1); |
1205 | return poly2; |
1206 | } |
1207 | |
1208 | is_one = isl_poly_is_one(poly: poly2); |
1209 | if (is_one < 0) |
1210 | goto error; |
1211 | if (is_one) { |
1212 | isl_poly_free(poly: poly2); |
1213 | return poly1; |
1214 | } |
1215 | |
1216 | if (poly1->var < poly2->var) |
1217 | return isl_poly_mul(poly1: poly2, poly2: poly1); |
1218 | |
1219 | if (poly2->var < poly1->var) { |
1220 | int i; |
1221 | isl_poly_rec *rec; |
1222 | isl_bool is_infty; |
1223 | |
1224 | is_infty = isl_poly_is_infty(poly: poly2); |
1225 | if (is_infty >= 0 && !is_infty) |
1226 | is_infty = isl_poly_is_neginfty(poly: poly2); |
1227 | if (is_infty < 0) |
1228 | goto error; |
1229 | if (is_infty) { |
1230 | isl_ctx *ctx = poly1->ctx; |
1231 | isl_poly_free(poly: poly1); |
1232 | isl_poly_free(poly: poly2); |
1233 | return isl_poly_nan(ctx); |
1234 | } |
1235 | poly1 = isl_poly_cow(poly: poly1); |
1236 | rec = isl_poly_as_rec(poly: poly1); |
1237 | if (!rec) |
1238 | goto error; |
1239 | |
1240 | for (i = 0; i < rec->n; ++i) { |
1241 | rec->p[i] = isl_poly_mul(poly1: rec->p[i], |
1242 | poly2: isl_poly_copy(poly: poly2)); |
1243 | if (!rec->p[i]) |
1244 | goto error; |
1245 | } |
1246 | isl_poly_free(poly: poly2); |
1247 | return poly1; |
1248 | } |
1249 | |
1250 | is_cst = isl_poly_is_cst(poly: poly1); |
1251 | if (is_cst < 0) |
1252 | goto error; |
1253 | if (is_cst) |
1254 | return isl_poly_mul_cst(poly1, poly2); |
1255 | |
1256 | return isl_poly_mul_rec(poly1, poly2); |
1257 | error: |
1258 | isl_poly_free(poly: poly1); |
1259 | isl_poly_free(poly: poly2); |
1260 | return NULL; |
1261 | } |
1262 | |
1263 | __isl_give isl_poly *isl_poly_pow(__isl_take isl_poly *poly, unsigned power) |
1264 | { |
1265 | isl_poly *res; |
1266 | |
1267 | if (!poly) |
1268 | return NULL; |
1269 | if (power == 1) |
1270 | return poly; |
1271 | |
1272 | if (power % 2) |
1273 | res = isl_poly_copy(poly); |
1274 | else |
1275 | res = isl_poly_one(ctx: poly->ctx); |
1276 | |
1277 | while (power >>= 1) { |
1278 | poly = isl_poly_mul(poly1: poly, poly2: isl_poly_copy(poly)); |
1279 | if (power % 2) |
1280 | res = isl_poly_mul(poly1: res, poly2: isl_poly_copy(poly)); |
1281 | } |
1282 | |
1283 | isl_poly_free(poly); |
1284 | return res; |
1285 | } |
1286 | |
1287 | __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *space, |
1288 | unsigned n_div, __isl_take isl_poly *poly) |
1289 | { |
1290 | struct isl_qpolynomial *qp = NULL; |
1291 | isl_size total; |
1292 | |
1293 | total = isl_space_dim(space, type: isl_dim_all); |
1294 | if (total < 0 || !poly) |
1295 | goto error; |
1296 | |
1297 | if (!isl_space_is_set(space)) |
1298 | isl_die(isl_space_get_ctx(space), isl_error_invalid, |
1299 | "domain of polynomial should be a set" , goto error); |
1300 | |
1301 | qp = isl_calloc_type(space->ctx, struct isl_qpolynomial); |
1302 | if (!qp) |
1303 | goto error; |
1304 | |
1305 | qp->ref = 1; |
1306 | qp->div = isl_mat_alloc(ctx: space->ctx, n_row: n_div, n_col: 1 + 1 + total + n_div); |
1307 | if (!qp->div) |
1308 | goto error; |
1309 | |
1310 | qp->dim = space; |
1311 | qp->poly = poly; |
1312 | |
1313 | return qp; |
1314 | error: |
1315 | isl_space_free(space); |
1316 | isl_poly_free(poly); |
1317 | isl_qpolynomial_free(qp); |
1318 | return NULL; |
1319 | } |
1320 | |
1321 | __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp) |
1322 | { |
1323 | if (!qp) |
1324 | return NULL; |
1325 | |
1326 | qp->ref++; |
1327 | return qp; |
1328 | } |
1329 | |
1330 | __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp) |
1331 | { |
1332 | struct isl_qpolynomial *dup; |
1333 | |
1334 | if (!qp) |
1335 | return NULL; |
1336 | |
1337 | dup = isl_qpolynomial_alloc(space: isl_space_copy(space: qp->dim), n_div: qp->div->n_row, |
1338 | poly: isl_poly_copy(poly: qp->poly)); |
1339 | if (!dup) |
1340 | return NULL; |
1341 | isl_mat_free(mat: dup->div); |
1342 | dup->div = isl_mat_copy(mat: qp->div); |
1343 | if (!dup->div) |
1344 | goto error; |
1345 | |
1346 | return dup; |
1347 | error: |
1348 | isl_qpolynomial_free(qp: dup); |
1349 | return NULL; |
1350 | } |
1351 | |
1352 | __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp) |
1353 | { |
1354 | if (!qp) |
1355 | return NULL; |
1356 | |
1357 | if (qp->ref == 1) |
1358 | return qp; |
1359 | qp->ref--; |
1360 | return isl_qpolynomial_dup(qp); |
1361 | } |
1362 | |
1363 | __isl_null isl_qpolynomial *isl_qpolynomial_free( |
1364 | __isl_take isl_qpolynomial *qp) |
1365 | { |
1366 | if (!qp) |
1367 | return NULL; |
1368 | |
1369 | if (--qp->ref > 0) |
1370 | return NULL; |
1371 | |
1372 | isl_space_free(space: qp->dim); |
1373 | isl_mat_free(mat: qp->div); |
1374 | isl_poly_free(poly: qp->poly); |
1375 | |
1376 | free(ptr: qp); |
1377 | return NULL; |
1378 | } |
1379 | |
1380 | __isl_give isl_poly *isl_poly_var_pow(isl_ctx *ctx, int pos, int power) |
1381 | { |
1382 | int i; |
1383 | isl_poly_rec *rec; |
1384 | isl_poly_cst *cst; |
1385 | |
1386 | rec = isl_poly_alloc_rec(ctx, var: pos, size: 1 + power); |
1387 | if (!rec) |
1388 | return NULL; |
1389 | for (i = 0; i < 1 + power; ++i) { |
1390 | rec->p[i] = isl_poly_zero(ctx); |
1391 | if (!rec->p[i]) |
1392 | goto error; |
1393 | rec->n++; |
1394 | } |
1395 | cst = isl_poly_as_cst(poly: rec->p[power]); |
1396 | isl_int_set_si(cst->n, 1); |
1397 | |
1398 | return &rec->poly; |
1399 | error: |
1400 | isl_poly_free(poly: &rec->poly); |
1401 | return NULL; |
1402 | } |
1403 | |
1404 | /* r array maps original positions to new positions. |
1405 | */ |
1406 | static __isl_give isl_poly *reorder(__isl_take isl_poly *poly, int *r) |
1407 | { |
1408 | int i; |
1409 | isl_bool is_cst; |
1410 | isl_poly_rec *rec; |
1411 | isl_poly *base; |
1412 | isl_poly *res; |
1413 | |
1414 | is_cst = isl_poly_is_cst(poly); |
1415 | if (is_cst < 0) |
1416 | return isl_poly_free(poly); |
1417 | if (is_cst) |
1418 | return poly; |
1419 | |
1420 | rec = isl_poly_as_rec(poly); |
1421 | if (!rec) |
1422 | goto error; |
1423 | |
1424 | isl_assert(poly->ctx, rec->n >= 1, goto error); |
1425 | |
1426 | base = isl_poly_var_pow(ctx: poly->ctx, pos: r[poly->var], power: 1); |
1427 | res = reorder(poly: isl_poly_copy(poly: rec->p[rec->n - 1]), r); |
1428 | |
1429 | for (i = rec->n - 2; i >= 0; --i) { |
1430 | res = isl_poly_mul(poly1: res, poly2: isl_poly_copy(poly: base)); |
1431 | res = isl_poly_sum(poly1: res, poly2: reorder(poly: isl_poly_copy(poly: rec->p[i]), r)); |
1432 | } |
1433 | |
1434 | isl_poly_free(poly: base); |
1435 | isl_poly_free(poly); |
1436 | |
1437 | return res; |
1438 | error: |
1439 | isl_poly_free(poly); |
1440 | return NULL; |
1441 | } |
1442 | |
1443 | static isl_bool compatible_divs(__isl_keep isl_mat *div1, |
1444 | __isl_keep isl_mat *div2) |
1445 | { |
1446 | int n_row, n_col; |
1447 | isl_bool equal; |
1448 | |
1449 | isl_assert(div1->ctx, div1->n_row >= div2->n_row && |
1450 | div1->n_col >= div2->n_col, |
1451 | return isl_bool_error); |
1452 | |
1453 | if (div1->n_row == div2->n_row) |
1454 | return isl_mat_is_equal(mat1: div1, mat2: div2); |
1455 | |
1456 | n_row = div1->n_row; |
1457 | n_col = div1->n_col; |
1458 | div1->n_row = div2->n_row; |
1459 | div1->n_col = div2->n_col; |
1460 | |
1461 | equal = isl_mat_is_equal(mat1: div1, mat2: div2); |
1462 | |
1463 | div1->n_row = n_row; |
1464 | div1->n_col = n_col; |
1465 | |
1466 | return equal; |
1467 | } |
1468 | |
1469 | static int cmp_row(__isl_keep isl_mat *div, int i, int j) |
1470 | { |
1471 | int li, lj; |
1472 | |
1473 | li = isl_seq_last_non_zero(p: div->row[i], len: div->n_col); |
1474 | lj = isl_seq_last_non_zero(p: div->row[j], len: div->n_col); |
1475 | |
1476 | if (li != lj) |
1477 | return li - lj; |
1478 | |
1479 | return isl_seq_cmp(p1: div->row[i], p2: div->row[j], len: div->n_col); |
1480 | } |
1481 | |
1482 | struct isl_div_sort_info { |
1483 | isl_mat *div; |
1484 | int row; |
1485 | }; |
1486 | |
1487 | static int div_sort_cmp(const void *p1, const void *p2) |
1488 | { |
1489 | const struct isl_div_sort_info *i1, *i2; |
1490 | i1 = (const struct isl_div_sort_info *) p1; |
1491 | i2 = (const struct isl_div_sort_info *) p2; |
1492 | |
1493 | return cmp_row(div: i1->div, i: i1->row, j: i2->row); |
1494 | } |
1495 | |
1496 | /* Sort divs and remove duplicates. |
1497 | */ |
1498 | static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp) |
1499 | { |
1500 | int i; |
1501 | int skip; |
1502 | int len; |
1503 | struct isl_div_sort_info *array = NULL; |
1504 | int *pos = NULL, *at = NULL; |
1505 | int *reordering = NULL; |
1506 | isl_size div_pos; |
1507 | |
1508 | if (!qp) |
1509 | return NULL; |
1510 | if (qp->div->n_row <= 1) |
1511 | return qp; |
1512 | |
1513 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
1514 | if (div_pos < 0) |
1515 | return isl_qpolynomial_free(qp); |
1516 | |
1517 | array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info, |
1518 | qp->div->n_row); |
1519 | pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); |
1520 | at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); |
1521 | len = qp->div->n_col - 2; |
1522 | reordering = isl_alloc_array(qp->div->ctx, int, len); |
1523 | if (!array || !pos || !at || !reordering) |
1524 | goto error; |
1525 | |
1526 | for (i = 0; i < qp->div->n_row; ++i) { |
1527 | array[i].div = qp->div; |
1528 | array[i].row = i; |
1529 | pos[i] = i; |
1530 | at[i] = i; |
1531 | } |
1532 | |
1533 | qsort(base: array, nmemb: qp->div->n_row, size: sizeof(struct isl_div_sort_info), |
1534 | compar: div_sort_cmp); |
1535 | |
1536 | for (i = 0; i < div_pos; ++i) |
1537 | reordering[i] = i; |
1538 | |
1539 | for (i = 0; i < qp->div->n_row; ++i) { |
1540 | if (pos[array[i].row] == i) |
1541 | continue; |
1542 | qp->div = isl_mat_swap_rows(mat: qp->div, i, j: pos[array[i].row]); |
1543 | pos[at[i]] = pos[array[i].row]; |
1544 | at[pos[array[i].row]] = at[i]; |
1545 | at[i] = array[i].row; |
1546 | pos[array[i].row] = i; |
1547 | } |
1548 | |
1549 | skip = 0; |
1550 | for (i = 0; i < len - div_pos; ++i) { |
1551 | if (i > 0 && |
1552 | isl_seq_eq(p1: qp->div->row[i - skip - 1], |
1553 | p2: qp->div->row[i - skip], len: qp->div->n_col)) { |
1554 | qp->div = isl_mat_drop_rows(mat: qp->div, row: i - skip, n: 1); |
1555 | isl_mat_col_add(mat: qp->div, dst_col: 2 + div_pos + i - skip - 1, |
1556 | src_col: 2 + div_pos + i - skip); |
1557 | qp->div = isl_mat_drop_cols(mat: qp->div, |
1558 | col: 2 + div_pos + i - skip, n: 1); |
1559 | skip++; |
1560 | } |
1561 | reordering[div_pos + array[i].row] = div_pos + i - skip; |
1562 | } |
1563 | |
1564 | qp->poly = reorder(poly: qp->poly, r: reordering); |
1565 | |
1566 | if (!qp->poly || !qp->div) |
1567 | goto error; |
1568 | |
1569 | free(ptr: at); |
1570 | free(ptr: pos); |
1571 | free(ptr: array); |
1572 | free(ptr: reordering); |
1573 | |
1574 | return qp; |
1575 | error: |
1576 | free(ptr: at); |
1577 | free(ptr: pos); |
1578 | free(ptr: array); |
1579 | free(ptr: reordering); |
1580 | isl_qpolynomial_free(qp); |
1581 | return NULL; |
1582 | } |
1583 | |
1584 | static __isl_give isl_poly *expand(__isl_take isl_poly *poly, int *exp, |
1585 | int first) |
1586 | { |
1587 | int i; |
1588 | isl_bool is_cst; |
1589 | isl_poly_rec *rec; |
1590 | |
1591 | is_cst = isl_poly_is_cst(poly); |
1592 | if (is_cst < 0) |
1593 | return isl_poly_free(poly); |
1594 | if (is_cst) |
1595 | return poly; |
1596 | |
1597 | if (poly->var < first) |
1598 | return poly; |
1599 | |
1600 | if (exp[poly->var - first] == poly->var - first) |
1601 | return poly; |
1602 | |
1603 | poly = isl_poly_cow(poly); |
1604 | if (!poly) |
1605 | goto error; |
1606 | |
1607 | poly->var = exp[poly->var - first] + first; |
1608 | |
1609 | rec = isl_poly_as_rec(poly); |
1610 | if (!rec) |
1611 | goto error; |
1612 | |
1613 | for (i = 0; i < rec->n; ++i) { |
1614 | rec->p[i] = expand(poly: rec->p[i], exp, first); |
1615 | if (!rec->p[i]) |
1616 | goto error; |
1617 | } |
1618 | |
1619 | return poly; |
1620 | error: |
1621 | isl_poly_free(poly); |
1622 | return NULL; |
1623 | } |
1624 | |
1625 | static __isl_give isl_qpolynomial *with_merged_divs( |
1626 | __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1, |
1627 | __isl_take isl_qpolynomial *qp2), |
1628 | __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) |
1629 | { |
1630 | int *exp1 = NULL; |
1631 | int *exp2 = NULL; |
1632 | isl_mat *div = NULL; |
1633 | int n_div1, n_div2; |
1634 | |
1635 | qp1 = isl_qpolynomial_cow(qp: qp1); |
1636 | qp2 = isl_qpolynomial_cow(qp: qp2); |
1637 | |
1638 | if (!qp1 || !qp2) |
1639 | goto error; |
1640 | |
1641 | isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row && |
1642 | qp1->div->n_col >= qp2->div->n_col, goto error); |
1643 | |
1644 | n_div1 = qp1->div->n_row; |
1645 | n_div2 = qp2->div->n_row; |
1646 | exp1 = isl_alloc_array(qp1->div->ctx, int, n_div1); |
1647 | exp2 = isl_alloc_array(qp2->div->ctx, int, n_div2); |
1648 | if ((n_div1 && !exp1) || (n_div2 && !exp2)) |
1649 | goto error; |
1650 | |
1651 | div = isl_merge_divs(div1: qp1->div, div2: qp2->div, exp1, exp2); |
1652 | if (!div) |
1653 | goto error; |
1654 | |
1655 | isl_mat_free(mat: qp1->div); |
1656 | qp1->div = isl_mat_copy(mat: div); |
1657 | isl_mat_free(mat: qp2->div); |
1658 | qp2->div = isl_mat_copy(mat: div); |
1659 | |
1660 | qp1->poly = expand(poly: qp1->poly, exp: exp1, first: div->n_col - div->n_row - 2); |
1661 | qp2->poly = expand(poly: qp2->poly, exp: exp2, first: div->n_col - div->n_row - 2); |
1662 | |
1663 | if (!qp1->poly || !qp2->poly) |
1664 | goto error; |
1665 | |
1666 | isl_mat_free(mat: div); |
1667 | free(ptr: exp1); |
1668 | free(ptr: exp2); |
1669 | |
1670 | return fn(qp1, qp2); |
1671 | error: |
1672 | isl_mat_free(mat: div); |
1673 | free(ptr: exp1); |
1674 | free(ptr: exp2); |
1675 | isl_qpolynomial_free(qp: qp1); |
1676 | isl_qpolynomial_free(qp: qp2); |
1677 | return NULL; |
1678 | } |
1679 | |
1680 | __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1, |
1681 | __isl_take isl_qpolynomial *qp2) |
1682 | { |
1683 | isl_bool compatible; |
1684 | |
1685 | qp1 = isl_qpolynomial_cow(qp: qp1); |
1686 | |
1687 | if (isl_qpolynomial_check_equal_space(obj1: qp1, obj2: qp2) < 0) |
1688 | goto error; |
1689 | |
1690 | if (qp1->div->n_row < qp2->div->n_row) |
1691 | return isl_qpolynomial_add(qp1: qp2, qp2: qp1); |
1692 | |
1693 | compatible = compatible_divs(div1: qp1->div, div2: qp2->div); |
1694 | if (compatible < 0) |
1695 | goto error; |
1696 | if (!compatible) |
1697 | return with_merged_divs(fn: isl_qpolynomial_add, qp1, qp2); |
1698 | |
1699 | qp1->poly = isl_poly_sum(poly1: qp1->poly, poly2: isl_poly_copy(poly: qp2->poly)); |
1700 | if (!qp1->poly) |
1701 | goto error; |
1702 | |
1703 | isl_qpolynomial_free(qp: qp2); |
1704 | |
1705 | return qp1; |
1706 | error: |
1707 | isl_qpolynomial_free(qp: qp1); |
1708 | isl_qpolynomial_free(qp: qp2); |
1709 | return NULL; |
1710 | } |
1711 | |
1712 | __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain( |
1713 | __isl_keep isl_set *dom, |
1714 | __isl_take isl_qpolynomial *qp1, |
1715 | __isl_take isl_qpolynomial *qp2) |
1716 | { |
1717 | qp1 = isl_qpolynomial_add(qp1, qp2); |
1718 | qp1 = isl_qpolynomial_gist(qp: qp1, context: isl_set_copy(set: dom)); |
1719 | return qp1; |
1720 | } |
1721 | |
1722 | __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1, |
1723 | __isl_take isl_qpolynomial *qp2) |
1724 | { |
1725 | return isl_qpolynomial_add(qp1, qp2: isl_qpolynomial_neg(qp: qp2)); |
1726 | } |
1727 | |
1728 | __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int( |
1729 | __isl_take isl_qpolynomial *qp, isl_int v) |
1730 | { |
1731 | if (isl_int_is_zero(v)) |
1732 | return qp; |
1733 | |
1734 | qp = isl_qpolynomial_cow(qp); |
1735 | if (!qp) |
1736 | return NULL; |
1737 | |
1738 | qp->poly = isl_poly_add_isl_int(poly: qp->poly, v); |
1739 | if (!qp->poly) |
1740 | goto error; |
1741 | |
1742 | return qp; |
1743 | error: |
1744 | isl_qpolynomial_free(qp); |
1745 | return NULL; |
1746 | |
1747 | } |
1748 | |
1749 | __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp) |
1750 | { |
1751 | if (!qp) |
1752 | return NULL; |
1753 | |
1754 | return isl_qpolynomial_mul_isl_int(qp, v: qp->dim->ctx->negone); |
1755 | } |
1756 | |
1757 | __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int( |
1758 | __isl_take isl_qpolynomial *qp, isl_int v) |
1759 | { |
1760 | if (isl_int_is_one(v)) |
1761 | return qp; |
1762 | |
1763 | if (qp && isl_int_is_zero(v)) { |
1764 | isl_qpolynomial *zero; |
1765 | zero = isl_qpolynomial_zero_on_domain(domain: isl_space_copy(space: qp->dim)); |
1766 | isl_qpolynomial_free(qp); |
1767 | return zero; |
1768 | } |
1769 | |
1770 | qp = isl_qpolynomial_cow(qp); |
1771 | if (!qp) |
1772 | return NULL; |
1773 | |
1774 | qp->poly = isl_poly_mul_isl_int(poly: qp->poly, v); |
1775 | if (!qp->poly) |
1776 | goto error; |
1777 | |
1778 | return qp; |
1779 | error: |
1780 | isl_qpolynomial_free(qp); |
1781 | return NULL; |
1782 | } |
1783 | |
1784 | __isl_give isl_qpolynomial *isl_qpolynomial_scale( |
1785 | __isl_take isl_qpolynomial *qp, isl_int v) |
1786 | { |
1787 | return isl_qpolynomial_mul_isl_int(qp, v); |
1788 | } |
1789 | |
1790 | /* Multiply "qp" by "v". |
1791 | */ |
1792 | __isl_give isl_qpolynomial *isl_qpolynomial_scale_val( |
1793 | __isl_take isl_qpolynomial *qp, __isl_take isl_val *v) |
1794 | { |
1795 | if (!qp || !v) |
1796 | goto error; |
1797 | |
1798 | if (!isl_val_is_rat(v)) |
1799 | isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, |
1800 | "expecting rational factor" , goto error); |
1801 | |
1802 | if (isl_val_is_one(v)) { |
1803 | isl_val_free(v); |
1804 | return qp; |
1805 | } |
1806 | |
1807 | if (isl_val_is_zero(v)) { |
1808 | isl_space *space; |
1809 | |
1810 | space = isl_qpolynomial_get_domain_space(qp); |
1811 | isl_qpolynomial_free(qp); |
1812 | isl_val_free(v); |
1813 | return isl_qpolynomial_zero_on_domain(domain: space); |
1814 | } |
1815 | |
1816 | qp = isl_qpolynomial_cow(qp); |
1817 | if (!qp) |
1818 | goto error; |
1819 | |
1820 | qp->poly = isl_poly_scale_val(poly: qp->poly, v); |
1821 | if (!qp->poly) |
1822 | qp = isl_qpolynomial_free(qp); |
1823 | |
1824 | isl_val_free(v); |
1825 | return qp; |
1826 | error: |
1827 | isl_val_free(v); |
1828 | isl_qpolynomial_free(qp); |
1829 | return NULL; |
1830 | } |
1831 | |
1832 | /* Divide "qp" by "v". |
1833 | */ |
1834 | __isl_give isl_qpolynomial *isl_qpolynomial_scale_down_val( |
1835 | __isl_take isl_qpolynomial *qp, __isl_take isl_val *v) |
1836 | { |
1837 | if (!qp || !v) |
1838 | goto error; |
1839 | |
1840 | if (!isl_val_is_rat(v)) |
1841 | isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, |
1842 | "expecting rational factor" , goto error); |
1843 | if (isl_val_is_zero(v)) |
1844 | isl_die(isl_val_get_ctx(v), isl_error_invalid, |
1845 | "cannot scale down by zero" , goto error); |
1846 | |
1847 | return isl_qpolynomial_scale_val(qp, v: isl_val_inv(v)); |
1848 | error: |
1849 | isl_val_free(v); |
1850 | isl_qpolynomial_free(qp); |
1851 | return NULL; |
1852 | } |
1853 | |
1854 | __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1, |
1855 | __isl_take isl_qpolynomial *qp2) |
1856 | { |
1857 | isl_bool compatible; |
1858 | |
1859 | qp1 = isl_qpolynomial_cow(qp: qp1); |
1860 | |
1861 | if (isl_qpolynomial_check_equal_space(obj1: qp1, obj2: qp2) < 0) |
1862 | goto error; |
1863 | |
1864 | if (qp1->div->n_row < qp2->div->n_row) |
1865 | return isl_qpolynomial_mul(qp1: qp2, qp2: qp1); |
1866 | |
1867 | compatible = compatible_divs(div1: qp1->div, div2: qp2->div); |
1868 | if (compatible < 0) |
1869 | goto error; |
1870 | if (!compatible) |
1871 | return with_merged_divs(fn: isl_qpolynomial_mul, qp1, qp2); |
1872 | |
1873 | qp1->poly = isl_poly_mul(poly1: qp1->poly, poly2: isl_poly_copy(poly: qp2->poly)); |
1874 | if (!qp1->poly) |
1875 | goto error; |
1876 | |
1877 | isl_qpolynomial_free(qp: qp2); |
1878 | |
1879 | return qp1; |
1880 | error: |
1881 | isl_qpolynomial_free(qp: qp1); |
1882 | isl_qpolynomial_free(qp: qp2); |
1883 | return NULL; |
1884 | } |
1885 | |
1886 | __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp, |
1887 | unsigned power) |
1888 | { |
1889 | qp = isl_qpolynomial_cow(qp); |
1890 | |
1891 | if (!qp) |
1892 | return NULL; |
1893 | |
1894 | qp->poly = isl_poly_pow(poly: qp->poly, power); |
1895 | if (!qp->poly) |
1896 | goto error; |
1897 | |
1898 | return qp; |
1899 | error: |
1900 | isl_qpolynomial_free(qp); |
1901 | return NULL; |
1902 | } |
1903 | |
1904 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow( |
1905 | __isl_take isl_pw_qpolynomial *pwqp, unsigned power) |
1906 | { |
1907 | int i; |
1908 | |
1909 | if (power == 1) |
1910 | return pwqp; |
1911 | |
1912 | pwqp = isl_pw_qpolynomial_cow(pwqp); |
1913 | if (!pwqp) |
1914 | return NULL; |
1915 | |
1916 | for (i = 0; i < pwqp->n; ++i) { |
1917 | pwqp->p[i].qp = isl_qpolynomial_pow(qp: pwqp->p[i].qp, power); |
1918 | if (!pwqp->p[i].qp) |
1919 | return isl_pw_qpolynomial_free(pwqp); |
1920 | } |
1921 | |
1922 | return pwqp; |
1923 | } |
1924 | |
1925 | __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain( |
1926 | __isl_take isl_space *domain) |
1927 | { |
1928 | if (!domain) |
1929 | return NULL; |
1930 | return isl_qpolynomial_alloc(space: domain, n_div: 0, poly: isl_poly_zero(ctx: domain->ctx)); |
1931 | } |
1932 | |
1933 | __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain( |
1934 | __isl_take isl_space *domain) |
1935 | { |
1936 | if (!domain) |
1937 | return NULL; |
1938 | return isl_qpolynomial_alloc(space: domain, n_div: 0, poly: isl_poly_one(ctx: domain->ctx)); |
1939 | } |
1940 | |
1941 | __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain( |
1942 | __isl_take isl_space *domain) |
1943 | { |
1944 | if (!domain) |
1945 | return NULL; |
1946 | return isl_qpolynomial_alloc(space: domain, n_div: 0, poly: isl_poly_infty(ctx: domain->ctx)); |
1947 | } |
1948 | |
1949 | __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain( |
1950 | __isl_take isl_space *domain) |
1951 | { |
1952 | if (!domain) |
1953 | return NULL; |
1954 | return isl_qpolynomial_alloc(space: domain, n_div: 0, poly: isl_poly_neginfty(ctx: domain->ctx)); |
1955 | } |
1956 | |
1957 | __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain( |
1958 | __isl_take isl_space *domain) |
1959 | { |
1960 | if (!domain) |
1961 | return NULL; |
1962 | return isl_qpolynomial_alloc(space: domain, n_div: 0, poly: isl_poly_nan(ctx: domain->ctx)); |
1963 | } |
1964 | |
1965 | __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain( |
1966 | __isl_take isl_space *domain, |
1967 | isl_int v) |
1968 | { |
1969 | struct isl_qpolynomial *qp; |
1970 | isl_poly_cst *cst; |
1971 | |
1972 | qp = isl_qpolynomial_zero_on_domain(domain); |
1973 | if (!qp) |
1974 | return NULL; |
1975 | |
1976 | cst = isl_poly_as_cst(poly: qp->poly); |
1977 | isl_int_set(cst->n, v); |
1978 | |
1979 | return qp; |
1980 | } |
1981 | |
1982 | isl_bool isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp, |
1983 | isl_int *n, isl_int *d) |
1984 | { |
1985 | isl_bool is_cst; |
1986 | isl_poly_cst *cst; |
1987 | |
1988 | if (!qp) |
1989 | return isl_bool_error; |
1990 | |
1991 | is_cst = isl_poly_is_cst(poly: qp->poly); |
1992 | if (is_cst < 0 || !is_cst) |
1993 | return is_cst; |
1994 | |
1995 | cst = isl_poly_as_cst(poly: qp->poly); |
1996 | if (!cst) |
1997 | return isl_bool_error; |
1998 | |
1999 | if (n) |
2000 | isl_int_set(*n, cst->n); |
2001 | if (d) |
2002 | isl_int_set(*d, cst->d); |
2003 | |
2004 | return isl_bool_true; |
2005 | } |
2006 | |
2007 | /* Return the constant term of "poly". |
2008 | */ |
2009 | static __isl_give isl_val *isl_poly_get_constant_val(__isl_keep isl_poly *poly) |
2010 | { |
2011 | isl_bool is_cst; |
2012 | isl_poly_cst *cst; |
2013 | |
2014 | if (!poly) |
2015 | return NULL; |
2016 | |
2017 | while ((is_cst = isl_poly_is_cst(poly)) == isl_bool_false) { |
2018 | isl_poly_rec *rec; |
2019 | |
2020 | rec = isl_poly_as_rec(poly); |
2021 | if (!rec) |
2022 | return NULL; |
2023 | poly = rec->p[0]; |
2024 | } |
2025 | if (is_cst < 0) |
2026 | return NULL; |
2027 | |
2028 | cst = isl_poly_as_cst(poly); |
2029 | if (!cst) |
2030 | return NULL; |
2031 | return isl_val_rat_from_isl_int(ctx: cst->poly.ctx, n: cst->n, d: cst->d); |
2032 | } |
2033 | |
2034 | /* Return the constant term of "qp". |
2035 | */ |
2036 | __isl_give isl_val *isl_qpolynomial_get_constant_val( |
2037 | __isl_keep isl_qpolynomial *qp) |
2038 | { |
2039 | if (!qp) |
2040 | return NULL; |
2041 | |
2042 | return isl_poly_get_constant_val(poly: qp->poly); |
2043 | } |
2044 | |
2045 | isl_bool isl_poly_is_affine(__isl_keep isl_poly *poly) |
2046 | { |
2047 | isl_bool is_cst; |
2048 | isl_poly_rec *rec; |
2049 | |
2050 | if (!poly) |
2051 | return isl_bool_error; |
2052 | |
2053 | if (poly->var < 0) |
2054 | return isl_bool_true; |
2055 | |
2056 | rec = isl_poly_as_rec(poly); |
2057 | if (!rec) |
2058 | return isl_bool_error; |
2059 | |
2060 | if (rec->n > 2) |
2061 | return isl_bool_false; |
2062 | |
2063 | isl_assert(poly->ctx, rec->n > 1, return isl_bool_error); |
2064 | |
2065 | is_cst = isl_poly_is_cst(poly: rec->p[1]); |
2066 | if (is_cst < 0 || !is_cst) |
2067 | return is_cst; |
2068 | |
2069 | return isl_poly_is_affine(poly: rec->p[0]); |
2070 | } |
2071 | |
2072 | isl_bool isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp) |
2073 | { |
2074 | if (!qp) |
2075 | return isl_bool_error; |
2076 | |
2077 | if (qp->div->n_row > 0) |
2078 | return isl_bool_false; |
2079 | |
2080 | return isl_poly_is_affine(poly: qp->poly); |
2081 | } |
2082 | |
2083 | static void update_coeff(__isl_keep isl_vec *aff, |
2084 | __isl_keep isl_poly_cst *cst, int pos) |
2085 | { |
2086 | isl_int gcd; |
2087 | isl_int f; |
2088 | |
2089 | if (isl_int_is_zero(cst->n)) |
2090 | return; |
2091 | |
2092 | isl_int_init(gcd); |
2093 | isl_int_init(f); |
2094 | isl_int_gcd(gcd, cst->d, aff->el[0]); |
2095 | isl_int_divexact(f, cst->d, gcd); |
2096 | isl_int_divexact(gcd, aff->el[0], gcd); |
2097 | isl_seq_scale(dst: aff->el, src: aff->el, f, len: aff->size); |
2098 | isl_int_mul(aff->el[1 + pos], gcd, cst->n); |
2099 | isl_int_clear(gcd); |
2100 | isl_int_clear(f); |
2101 | } |
2102 | |
2103 | int isl_poly_update_affine(__isl_keep isl_poly *poly, __isl_keep isl_vec *aff) |
2104 | { |
2105 | isl_poly_cst *cst; |
2106 | isl_poly_rec *rec; |
2107 | |
2108 | if (!poly || !aff) |
2109 | return -1; |
2110 | |
2111 | if (poly->var < 0) { |
2112 | isl_poly_cst *cst; |
2113 | |
2114 | cst = isl_poly_as_cst(poly); |
2115 | if (!cst) |
2116 | return -1; |
2117 | update_coeff(aff, cst, pos: 0); |
2118 | return 0; |
2119 | } |
2120 | |
2121 | rec = isl_poly_as_rec(poly); |
2122 | if (!rec) |
2123 | return -1; |
2124 | isl_assert(poly->ctx, rec->n == 2, return -1); |
2125 | |
2126 | cst = isl_poly_as_cst(poly: rec->p[1]); |
2127 | if (!cst) |
2128 | return -1; |
2129 | update_coeff(aff, cst, pos: 1 + poly->var); |
2130 | |
2131 | return isl_poly_update_affine(poly: rec->p[0], aff); |
2132 | } |
2133 | |
2134 | __isl_give isl_vec *( |
2135 | __isl_keep isl_qpolynomial *qp) |
2136 | { |
2137 | isl_vec *aff; |
2138 | isl_size d; |
2139 | |
2140 | d = isl_qpolynomial_domain_dim(qp, type: isl_dim_all); |
2141 | if (d < 0) |
2142 | return NULL; |
2143 | |
2144 | aff = isl_vec_alloc(ctx: qp->div->ctx, size: 2 + d); |
2145 | if (!aff) |
2146 | return NULL; |
2147 | |
2148 | isl_seq_clr(p: aff->el + 1, len: 1 + d); |
2149 | isl_int_set_si(aff->el[0], 1); |
2150 | |
2151 | if (isl_poly_update_affine(poly: qp->poly, aff) < 0) |
2152 | goto error; |
2153 | |
2154 | return aff; |
2155 | error: |
2156 | isl_vec_free(vec: aff); |
2157 | return NULL; |
2158 | } |
2159 | |
2160 | /* Compare two quasi-polynomials. |
2161 | * |
2162 | * Return -1 if "qp1" is "smaller" than "qp2", 1 if "qp1" is "greater" |
2163 | * than "qp2" and 0 if they are equal. |
2164 | */ |
2165 | int isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial *qp1, |
2166 | __isl_keep isl_qpolynomial *qp2) |
2167 | { |
2168 | int cmp; |
2169 | |
2170 | if (qp1 == qp2) |
2171 | return 0; |
2172 | if (!qp1) |
2173 | return -1; |
2174 | if (!qp2) |
2175 | return 1; |
2176 | |
2177 | cmp = isl_space_cmp(space1: qp1->dim, space2: qp2->dim); |
2178 | if (cmp != 0) |
2179 | return cmp; |
2180 | |
2181 | cmp = isl_local_cmp(local1: qp1->div, local2: qp2->div); |
2182 | if (cmp != 0) |
2183 | return cmp; |
2184 | |
2185 | return isl_poly_plain_cmp(poly1: qp1->poly, poly2: qp2->poly); |
2186 | } |
2187 | |
2188 | /* Is "qp1" obviously equal to "qp2"? |
2189 | * |
2190 | * NaN is not equal to anything, not even to another NaN. |
2191 | */ |
2192 | isl_bool isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1, |
2193 | __isl_keep isl_qpolynomial *qp2) |
2194 | { |
2195 | isl_bool equal; |
2196 | |
2197 | if (!qp1 || !qp2) |
2198 | return isl_bool_error; |
2199 | |
2200 | if (isl_qpolynomial_is_nan(qp: qp1) || isl_qpolynomial_is_nan(qp: qp2)) |
2201 | return isl_bool_false; |
2202 | |
2203 | equal = isl_space_is_equal(space1: qp1->dim, space2: qp2->dim); |
2204 | if (equal < 0 || !equal) |
2205 | return equal; |
2206 | |
2207 | equal = isl_mat_is_equal(mat1: qp1->div, mat2: qp2->div); |
2208 | if (equal < 0 || !equal) |
2209 | return equal; |
2210 | |
2211 | return isl_poly_is_equal(poly1: qp1->poly, poly2: qp2->poly); |
2212 | } |
2213 | |
2214 | static isl_stat poly_update_den(__isl_keep isl_poly *poly, isl_int *d) |
2215 | { |
2216 | int i; |
2217 | isl_bool is_cst; |
2218 | isl_poly_rec *rec; |
2219 | |
2220 | is_cst = isl_poly_is_cst(poly); |
2221 | if (is_cst < 0) |
2222 | return isl_stat_error; |
2223 | if (is_cst) { |
2224 | isl_poly_cst *cst; |
2225 | cst = isl_poly_as_cst(poly); |
2226 | if (!cst) |
2227 | return isl_stat_error; |
2228 | isl_int_lcm(*d, *d, cst->d); |
2229 | return isl_stat_ok; |
2230 | } |
2231 | |
2232 | rec = isl_poly_as_rec(poly); |
2233 | if (!rec) |
2234 | return isl_stat_error; |
2235 | |
2236 | for (i = 0; i < rec->n; ++i) |
2237 | poly_update_den(poly: rec->p[i], d); |
2238 | |
2239 | return isl_stat_ok; |
2240 | } |
2241 | |
2242 | __isl_give isl_val *isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp) |
2243 | { |
2244 | isl_val *d; |
2245 | |
2246 | if (!qp) |
2247 | return NULL; |
2248 | d = isl_val_one(ctx: isl_qpolynomial_get_ctx(qp)); |
2249 | if (!d) |
2250 | return NULL; |
2251 | if (poly_update_den(poly: qp->poly, d: &d->n) < 0) |
2252 | return isl_val_free(v: d); |
2253 | return d; |
2254 | } |
2255 | |
2256 | __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain( |
2257 | __isl_take isl_space *domain, int pos, int power) |
2258 | { |
2259 | struct isl_ctx *ctx; |
2260 | |
2261 | if (!domain) |
2262 | return NULL; |
2263 | |
2264 | ctx = domain->ctx; |
2265 | |
2266 | return isl_qpolynomial_alloc(space: domain, n_div: 0, |
2267 | poly: isl_poly_var_pow(ctx, pos, power)); |
2268 | } |
2269 | |
2270 | __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain( |
2271 | __isl_take isl_space *domain, enum isl_dim_type type, unsigned pos) |
2272 | { |
2273 | if (isl_space_check_is_set(space: domain ) < 0) |
2274 | goto error; |
2275 | if (isl_space_check_range(space: domain, type, first: pos, n: 1) < 0) |
2276 | goto error; |
2277 | |
2278 | pos += isl_space_offset(space: domain, type); |
2279 | |
2280 | return isl_qpolynomial_var_pow_on_domain(domain, pos, power: 1); |
2281 | error: |
2282 | isl_space_free(space: domain); |
2283 | return NULL; |
2284 | } |
2285 | |
2286 | __isl_give isl_poly *isl_poly_subs(__isl_take isl_poly *poly, |
2287 | unsigned first, unsigned n, __isl_keep isl_poly **subs) |
2288 | { |
2289 | int i; |
2290 | isl_bool is_cst; |
2291 | isl_poly_rec *rec; |
2292 | isl_poly *base, *res; |
2293 | |
2294 | is_cst = isl_poly_is_cst(poly); |
2295 | if (is_cst < 0) |
2296 | return isl_poly_free(poly); |
2297 | if (is_cst) |
2298 | return poly; |
2299 | |
2300 | if (poly->var < first) |
2301 | return poly; |
2302 | |
2303 | rec = isl_poly_as_rec(poly); |
2304 | if (!rec) |
2305 | goto error; |
2306 | |
2307 | isl_assert(poly->ctx, rec->n >= 1, goto error); |
2308 | |
2309 | if (poly->var >= first + n) |
2310 | base = isl_poly_var_pow(ctx: poly->ctx, pos: poly->var, power: 1); |
2311 | else |
2312 | base = isl_poly_copy(poly: subs[poly->var - first]); |
2313 | |
2314 | res = isl_poly_subs(poly: isl_poly_copy(poly: rec->p[rec->n - 1]), first, n, subs); |
2315 | for (i = rec->n - 2; i >= 0; --i) { |
2316 | isl_poly *t; |
2317 | t = isl_poly_subs(poly: isl_poly_copy(poly: rec->p[i]), first, n, subs); |
2318 | res = isl_poly_mul(poly1: res, poly2: isl_poly_copy(poly: base)); |
2319 | res = isl_poly_sum(poly1: res, poly2: t); |
2320 | } |
2321 | |
2322 | isl_poly_free(poly: base); |
2323 | isl_poly_free(poly); |
2324 | |
2325 | return res; |
2326 | error: |
2327 | isl_poly_free(poly); |
2328 | return NULL; |
2329 | } |
2330 | |
2331 | __isl_give isl_poly *isl_poly_from_affine(isl_ctx *ctx, isl_int *f, |
2332 | isl_int denom, unsigned len) |
2333 | { |
2334 | int i; |
2335 | isl_poly *poly; |
2336 | |
2337 | isl_assert(ctx, len >= 1, return NULL); |
2338 | |
2339 | poly = isl_poly_rat_cst(ctx, n: f[0], d: denom); |
2340 | for (i = 0; i < len - 1; ++i) { |
2341 | isl_poly *t; |
2342 | isl_poly *c; |
2343 | |
2344 | if (isl_int_is_zero(f[1 + i])) |
2345 | continue; |
2346 | |
2347 | c = isl_poly_rat_cst(ctx, n: f[1 + i], d: denom); |
2348 | t = isl_poly_var_pow(ctx, pos: i, power: 1); |
2349 | t = isl_poly_mul(poly1: c, poly2: t); |
2350 | poly = isl_poly_sum(poly1: poly, poly2: t); |
2351 | } |
2352 | |
2353 | return poly; |
2354 | } |
2355 | |
2356 | /* Remove common factor of non-constant terms and denominator. |
2357 | */ |
2358 | static void normalize_div(__isl_keep isl_qpolynomial *qp, int div) |
2359 | { |
2360 | isl_ctx *ctx = qp->div->ctx; |
2361 | unsigned total = qp->div->n_col - 2; |
2362 | |
2363 | isl_seq_gcd(p: qp->div->row[div] + 2, len: total, gcd: &ctx->normalize_gcd); |
2364 | isl_int_gcd(ctx->normalize_gcd, |
2365 | ctx->normalize_gcd, qp->div->row[div][0]); |
2366 | if (isl_int_is_one(ctx->normalize_gcd)) |
2367 | return; |
2368 | |
2369 | isl_seq_scale_down(dst: qp->div->row[div] + 2, src: qp->div->row[div] + 2, |
2370 | f: ctx->normalize_gcd, len: total); |
2371 | isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0], |
2372 | ctx->normalize_gcd); |
2373 | isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1], |
2374 | ctx->normalize_gcd); |
2375 | } |
2376 | |
2377 | /* Replace the integer division identified by "div" by the polynomial "s". |
2378 | * The integer division is assumed not to appear in the definition |
2379 | * of any other integer divisions. |
2380 | */ |
2381 | static __isl_give isl_qpolynomial *substitute_div( |
2382 | __isl_take isl_qpolynomial *qp, int div, __isl_take isl_poly *s) |
2383 | { |
2384 | int i; |
2385 | isl_size div_pos; |
2386 | int *reordering; |
2387 | isl_ctx *ctx; |
2388 | |
2389 | if (!qp || !s) |
2390 | goto error; |
2391 | |
2392 | qp = isl_qpolynomial_cow(qp); |
2393 | if (!qp) |
2394 | goto error; |
2395 | |
2396 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
2397 | if (div_pos < 0) |
2398 | goto error; |
2399 | qp->poly = isl_poly_subs(poly: qp->poly, first: div_pos + div, n: 1, subs: &s); |
2400 | if (!qp->poly) |
2401 | goto error; |
2402 | |
2403 | ctx = isl_qpolynomial_get_ctx(qp); |
2404 | reordering = isl_alloc_array(ctx, int, div_pos + qp->div->n_row); |
2405 | if (!reordering) |
2406 | goto error; |
2407 | for (i = 0; i < div_pos + div; ++i) |
2408 | reordering[i] = i; |
2409 | for (i = div_pos + div + 1; i < div_pos + qp->div->n_row; ++i) |
2410 | reordering[i] = i - 1; |
2411 | qp->div = isl_mat_drop_rows(mat: qp->div, row: div, n: 1); |
2412 | qp->div = isl_mat_drop_cols(mat: qp->div, col: 2 + div_pos + div, n: 1); |
2413 | qp->poly = reorder(poly: qp->poly, r: reordering); |
2414 | free(ptr: reordering); |
2415 | |
2416 | if (!qp->poly || !qp->div) |
2417 | goto error; |
2418 | |
2419 | isl_poly_free(poly: s); |
2420 | return qp; |
2421 | error: |
2422 | isl_qpolynomial_free(qp); |
2423 | isl_poly_free(poly: s); |
2424 | return NULL; |
2425 | } |
2426 | |
2427 | /* Replace all integer divisions [e/d] that turn out to not actually be integer |
2428 | * divisions because d is equal to 1 by their definition, i.e., e. |
2429 | */ |
2430 | static __isl_give isl_qpolynomial *substitute_non_divs( |
2431 | __isl_take isl_qpolynomial *qp) |
2432 | { |
2433 | int i, j; |
2434 | isl_size div_pos; |
2435 | isl_poly *s; |
2436 | |
2437 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
2438 | if (div_pos < 0) |
2439 | return isl_qpolynomial_free(qp); |
2440 | |
2441 | for (i = 0; qp && i < qp->div->n_row; ++i) { |
2442 | if (!isl_int_is_one(qp->div->row[i][0])) |
2443 | continue; |
2444 | for (j = i + 1; j < qp->div->n_row; ++j) { |
2445 | if (isl_int_is_zero(qp->div->row[j][2 + div_pos + i])) |
2446 | continue; |
2447 | isl_seq_combine(dst: qp->div->row[j] + 1, |
2448 | m1: qp->div->ctx->one, src1: qp->div->row[j] + 1, |
2449 | m2: qp->div->row[j][2 + div_pos + i], |
2450 | src2: qp->div->row[i] + 1, len: 1 + div_pos + i); |
2451 | isl_int_set_si(qp->div->row[j][2 + div_pos + i], 0); |
2452 | normalize_div(qp, div: j); |
2453 | } |
2454 | s = isl_poly_from_affine(ctx: qp->dim->ctx, f: qp->div->row[i] + 1, |
2455 | denom: qp->div->row[i][0], len: qp->div->n_col - 1); |
2456 | qp = substitute_div(qp, div: i, s); |
2457 | --i; |
2458 | } |
2459 | |
2460 | return qp; |
2461 | } |
2462 | |
2463 | /* Reduce the coefficients of div "div" to lie in the interval [0, d-1], |
2464 | * with d the denominator. When replacing the coefficient e of x by |
2465 | * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x |
2466 | * inside the division, so we need to add floor(e/d) * x outside. |
2467 | * That is, we replace q by q' + floor(e/d) * x and we therefore need |
2468 | * to adjust the coefficient of x in each later div that depends on the |
2469 | * current div "div" and also in the affine expressions in the rows of "mat" |
2470 | * (if they too depend on "div"). |
2471 | */ |
2472 | static void reduce_div(__isl_keep isl_qpolynomial *qp, int div, |
2473 | __isl_keep isl_mat **mat) |
2474 | { |
2475 | int i, j; |
2476 | isl_int v; |
2477 | unsigned total = qp->div->n_col - qp->div->n_row - 2; |
2478 | |
2479 | isl_int_init(v); |
2480 | for (i = 0; i < 1 + total + div; ++i) { |
2481 | if (isl_int_is_nonneg(qp->div->row[div][1 + i]) && |
2482 | isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0])) |
2483 | continue; |
2484 | isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]); |
2485 | isl_int_fdiv_r(qp->div->row[div][1 + i], |
2486 | qp->div->row[div][1 + i], qp->div->row[div][0]); |
2487 | *mat = isl_mat_col_addmul(mat: *mat, dst_col: i, f: v, src_col: 1 + total + div); |
2488 | for (j = div + 1; j < qp->div->n_row; ++j) { |
2489 | if (isl_int_is_zero(qp->div->row[j][2 + total + div])) |
2490 | continue; |
2491 | isl_int_addmul(qp->div->row[j][1 + i], |
2492 | v, qp->div->row[j][2 + total + div]); |
2493 | } |
2494 | } |
2495 | isl_int_clear(v); |
2496 | } |
2497 | |
2498 | /* Check if the last non-zero coefficient is bigger that half of the |
2499 | * denominator. If so, we will invert the div to further reduce the number |
2500 | * of distinct divs that may appear. |
2501 | * If the last non-zero coefficient is exactly half the denominator, |
2502 | * then we continue looking for earlier coefficients that are bigger |
2503 | * than half the denominator. |
2504 | */ |
2505 | static int needs_invert(__isl_keep isl_mat *div, int row) |
2506 | { |
2507 | int i; |
2508 | int cmp; |
2509 | |
2510 | for (i = div->n_col - 1; i >= 1; --i) { |
2511 | if (isl_int_is_zero(div->row[row][i])) |
2512 | continue; |
2513 | isl_int_mul_ui(div->row[row][i], div->row[row][i], 2); |
2514 | cmp = isl_int_cmp(div->row[row][i], div->row[row][0]); |
2515 | isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2); |
2516 | if (cmp) |
2517 | return cmp > 0; |
2518 | if (i == 1) |
2519 | return 1; |
2520 | } |
2521 | |
2522 | return 0; |
2523 | } |
2524 | |
2525 | /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d]. |
2526 | * We only invert the coefficients of e (and the coefficient of q in |
2527 | * later divs and in the rows of "mat"). After calling this function, the |
2528 | * coefficients of e should be reduced again. |
2529 | */ |
2530 | static void invert_div(__isl_keep isl_qpolynomial *qp, int div, |
2531 | __isl_keep isl_mat **mat) |
2532 | { |
2533 | unsigned total = qp->div->n_col - qp->div->n_row - 2; |
2534 | |
2535 | isl_seq_neg(dst: qp->div->row[div] + 1, |
2536 | src: qp->div->row[div] + 1, len: qp->div->n_col - 1); |
2537 | isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1); |
2538 | isl_int_add(qp->div->row[div][1], |
2539 | qp->div->row[div][1], qp->div->row[div][0]); |
2540 | *mat = isl_mat_col_neg(mat: *mat, col: 1 + total + div); |
2541 | isl_mat_col_mul(mat: qp->div, dst_col: 2 + total + div, |
2542 | f: qp->div->ctx->negone, src_col: 2 + total + div); |
2543 | } |
2544 | |
2545 | /* Reduce all divs of "qp" to have coefficients |
2546 | * in the interval [0, d-1], with d the denominator and such that the |
2547 | * last non-zero coefficient that is not equal to d/2 is smaller than d/2. |
2548 | * The modifications to the integer divisions need to be reflected |
2549 | * in the factors of the polynomial that refer to the original |
2550 | * integer divisions. To this end, the modifications are collected |
2551 | * as a set of affine expressions and then plugged into the polynomial. |
2552 | * |
2553 | * After the reduction, some divs may have become redundant or identical, |
2554 | * so we call substitute_non_divs and sort_divs. If these functions |
2555 | * eliminate divs or merge two or more divs into one, the coefficients |
2556 | * of the enclosing divs may have to be reduced again, so we call |
2557 | * ourselves recursively if the number of divs decreases. |
2558 | */ |
2559 | static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp) |
2560 | { |
2561 | int i; |
2562 | isl_ctx *ctx; |
2563 | isl_mat *mat; |
2564 | isl_poly **s; |
2565 | unsigned o_div; |
2566 | isl_size n_div, total, new_n_div; |
2567 | |
2568 | total = isl_qpolynomial_domain_dim(qp, type: isl_dim_all); |
2569 | n_div = isl_qpolynomial_domain_dim(qp, type: isl_dim_div); |
2570 | o_div = isl_qpolynomial_domain_offset(qp, type: isl_dim_div); |
2571 | if (total < 0 || n_div < 0) |
2572 | return isl_qpolynomial_free(qp); |
2573 | ctx = isl_qpolynomial_get_ctx(qp); |
2574 | mat = isl_mat_zero(ctx, n_row: n_div, n_col: 1 + total); |
2575 | |
2576 | for (i = 0; i < n_div; ++i) |
2577 | mat = isl_mat_set_element_si(mat, row: i, col: o_div + i, v: 1); |
2578 | |
2579 | for (i = 0; i < qp->div->n_row; ++i) { |
2580 | normalize_div(qp, div: i); |
2581 | reduce_div(qp, div: i, mat: &mat); |
2582 | if (needs_invert(div: qp->div, row: i)) { |
2583 | invert_div(qp, div: i, mat: &mat); |
2584 | reduce_div(qp, div: i, mat: &mat); |
2585 | } |
2586 | } |
2587 | if (!mat) |
2588 | goto error; |
2589 | |
2590 | s = isl_alloc_array(ctx, struct isl_poly *, n_div); |
2591 | if (n_div && !s) |
2592 | goto error; |
2593 | for (i = 0; i < n_div; ++i) |
2594 | s[i] = isl_poly_from_affine(ctx, f: mat->row[i], denom: ctx->one, |
2595 | len: 1 + total); |
2596 | qp->poly = isl_poly_subs(poly: qp->poly, first: o_div - 1, n: n_div, subs: s); |
2597 | for (i = 0; i < n_div; ++i) |
2598 | isl_poly_free(poly: s[i]); |
2599 | free(ptr: s); |
2600 | if (!qp->poly) |
2601 | goto error; |
2602 | |
2603 | isl_mat_free(mat); |
2604 | |
2605 | qp = substitute_non_divs(qp); |
2606 | qp = sort_divs(qp); |
2607 | new_n_div = isl_qpolynomial_domain_dim(qp, type: isl_dim_div); |
2608 | if (new_n_div < 0) |
2609 | return isl_qpolynomial_free(qp); |
2610 | if (new_n_div < n_div) |
2611 | return reduce_divs(qp); |
2612 | |
2613 | return qp; |
2614 | error: |
2615 | isl_qpolynomial_free(qp); |
2616 | isl_mat_free(mat); |
2617 | return NULL; |
2618 | } |
2619 | |
2620 | __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain( |
2621 | __isl_take isl_space *domain, const isl_int n, const isl_int d) |
2622 | { |
2623 | struct isl_qpolynomial *qp; |
2624 | isl_poly_cst *cst; |
2625 | |
2626 | qp = isl_qpolynomial_zero_on_domain(domain); |
2627 | if (!qp) |
2628 | return NULL; |
2629 | |
2630 | cst = isl_poly_as_cst(poly: qp->poly); |
2631 | isl_int_set(cst->n, n); |
2632 | isl_int_set(cst->d, d); |
2633 | |
2634 | return qp; |
2635 | } |
2636 | |
2637 | /* Return an isl_qpolynomial that is equal to "val" on domain space "domain". |
2638 | */ |
2639 | __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain( |
2640 | __isl_take isl_space *domain, __isl_take isl_val *val) |
2641 | { |
2642 | isl_qpolynomial *qp; |
2643 | isl_poly_cst *cst; |
2644 | |
2645 | qp = isl_qpolynomial_zero_on_domain(domain); |
2646 | if (!qp || !val) |
2647 | goto error; |
2648 | |
2649 | cst = isl_poly_as_cst(poly: qp->poly); |
2650 | isl_int_set(cst->n, val->n); |
2651 | isl_int_set(cst->d, val->d); |
2652 | |
2653 | isl_val_free(v: val); |
2654 | return qp; |
2655 | error: |
2656 | isl_val_free(v: val); |
2657 | isl_qpolynomial_free(qp); |
2658 | return NULL; |
2659 | } |
2660 | |
2661 | static isl_stat poly_set_active(__isl_keep isl_poly *poly, int *active, int d) |
2662 | { |
2663 | isl_bool is_cst; |
2664 | isl_poly_rec *rec; |
2665 | int i; |
2666 | |
2667 | is_cst = isl_poly_is_cst(poly); |
2668 | if (is_cst < 0) |
2669 | return isl_stat_error; |
2670 | if (is_cst) |
2671 | return isl_stat_ok; |
2672 | |
2673 | if (poly->var < d) |
2674 | active[poly->var] = 1; |
2675 | |
2676 | rec = isl_poly_as_rec(poly); |
2677 | for (i = 0; i < rec->n; ++i) |
2678 | if (poly_set_active(poly: rec->p[i], active, d) < 0) |
2679 | return isl_stat_error; |
2680 | |
2681 | return isl_stat_ok; |
2682 | } |
2683 | |
2684 | static isl_stat set_active(__isl_keep isl_qpolynomial *qp, int *active) |
2685 | { |
2686 | int i, j; |
2687 | isl_size d; |
2688 | isl_space *space; |
2689 | |
2690 | space = isl_qpolynomial_peek_domain_space(qp); |
2691 | d = isl_space_dim(space, type: isl_dim_all); |
2692 | if (d < 0 || !active) |
2693 | return isl_stat_error; |
2694 | |
2695 | for (i = 0; i < d; ++i) |
2696 | for (j = 0; j < qp->div->n_row; ++j) { |
2697 | if (isl_int_is_zero(qp->div->row[j][2 + i])) |
2698 | continue; |
2699 | active[i] = 1; |
2700 | break; |
2701 | } |
2702 | |
2703 | return poly_set_active(poly: qp->poly, active, d); |
2704 | } |
2705 | |
2706 | #undef TYPE |
2707 | #define TYPE isl_qpolynomial |
2708 | static |
2709 | #include "check_type_range_templ.c" |
2710 | |
2711 | isl_bool isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp, |
2712 | enum isl_dim_type type, unsigned first, unsigned n) |
2713 | { |
2714 | int i; |
2715 | int *active = NULL; |
2716 | isl_bool involves = isl_bool_false; |
2717 | isl_size offset; |
2718 | isl_size d; |
2719 | isl_space *space; |
2720 | |
2721 | if (!qp) |
2722 | return isl_bool_error; |
2723 | if (n == 0) |
2724 | return isl_bool_false; |
2725 | |
2726 | if (isl_qpolynomial_check_range(obj: qp, type, first, n) < 0) |
2727 | return isl_bool_error; |
2728 | isl_assert(qp->dim->ctx, type == isl_dim_param || |
2729 | type == isl_dim_in, return isl_bool_error); |
2730 | |
2731 | space = isl_qpolynomial_peek_domain_space(qp); |
2732 | d = isl_space_dim(space, type: isl_dim_all); |
2733 | if (d < 0) |
2734 | return isl_bool_error; |
2735 | active = isl_calloc_array(qp->dim->ctx, int, d); |
2736 | if (set_active(qp, active) < 0) |
2737 | goto error; |
2738 | |
2739 | offset = isl_qpolynomial_domain_var_offset(qp, type: domain_type(type)); |
2740 | if (offset < 0) |
2741 | goto error; |
2742 | first += offset; |
2743 | for (i = 0; i < n; ++i) |
2744 | if (active[first + i]) { |
2745 | involves = isl_bool_true; |
2746 | break; |
2747 | } |
2748 | |
2749 | free(ptr: active); |
2750 | |
2751 | return involves; |
2752 | error: |
2753 | free(ptr: active); |
2754 | return isl_bool_error; |
2755 | } |
2756 | |
2757 | /* Remove divs that do not appear in the quasi-polynomial, nor in any |
2758 | * of the divs that do appear in the quasi-polynomial. |
2759 | */ |
2760 | static __isl_give isl_qpolynomial *remove_redundant_divs( |
2761 | __isl_take isl_qpolynomial *qp) |
2762 | { |
2763 | int i, j; |
2764 | isl_size div_pos; |
2765 | int len; |
2766 | int skip; |
2767 | int *active = NULL; |
2768 | int *reordering = NULL; |
2769 | int redundant = 0; |
2770 | int n_div; |
2771 | isl_ctx *ctx; |
2772 | |
2773 | if (!qp) |
2774 | return NULL; |
2775 | if (qp->div->n_row == 0) |
2776 | return qp; |
2777 | |
2778 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
2779 | if (div_pos < 0) |
2780 | return isl_qpolynomial_free(qp); |
2781 | len = qp->div->n_col - 2; |
2782 | ctx = isl_qpolynomial_get_ctx(qp); |
2783 | active = isl_calloc_array(ctx, int, len); |
2784 | if (!active) |
2785 | goto error; |
2786 | |
2787 | if (poly_set_active(poly: qp->poly, active, d: len) < 0) |
2788 | goto error; |
2789 | |
2790 | for (i = qp->div->n_row - 1; i >= 0; --i) { |
2791 | if (!active[div_pos + i]) { |
2792 | redundant = 1; |
2793 | continue; |
2794 | } |
2795 | for (j = 0; j < i; ++j) { |
2796 | if (isl_int_is_zero(qp->div->row[i][2 + div_pos + j])) |
2797 | continue; |
2798 | active[div_pos + j] = 1; |
2799 | break; |
2800 | } |
2801 | } |
2802 | |
2803 | if (!redundant) { |
2804 | free(ptr: active); |
2805 | return qp; |
2806 | } |
2807 | |
2808 | reordering = isl_alloc_array(qp->div->ctx, int, len); |
2809 | if (!reordering) |
2810 | goto error; |
2811 | |
2812 | for (i = 0; i < div_pos; ++i) |
2813 | reordering[i] = i; |
2814 | |
2815 | skip = 0; |
2816 | n_div = qp->div->n_row; |
2817 | for (i = 0; i < n_div; ++i) { |
2818 | if (!active[div_pos + i]) { |
2819 | qp->div = isl_mat_drop_rows(mat: qp->div, row: i - skip, n: 1); |
2820 | qp->div = isl_mat_drop_cols(mat: qp->div, |
2821 | col: 2 + div_pos + i - skip, n: 1); |
2822 | skip++; |
2823 | } |
2824 | reordering[div_pos + i] = div_pos + i - skip; |
2825 | } |
2826 | |
2827 | qp->poly = reorder(poly: qp->poly, r: reordering); |
2828 | |
2829 | if (!qp->poly || !qp->div) |
2830 | goto error; |
2831 | |
2832 | free(ptr: active); |
2833 | free(ptr: reordering); |
2834 | |
2835 | return qp; |
2836 | error: |
2837 | free(ptr: active); |
2838 | free(ptr: reordering); |
2839 | isl_qpolynomial_free(qp); |
2840 | return NULL; |
2841 | } |
2842 | |
2843 | __isl_give isl_poly *isl_poly_drop(__isl_take isl_poly *poly, |
2844 | unsigned first, unsigned n) |
2845 | { |
2846 | int i; |
2847 | isl_poly_rec *rec; |
2848 | |
2849 | if (!poly) |
2850 | return NULL; |
2851 | if (n == 0 || poly->var < 0 || poly->var < first) |
2852 | return poly; |
2853 | if (poly->var < first + n) { |
2854 | poly = replace_by_constant_term(poly); |
2855 | return isl_poly_drop(poly, first, n); |
2856 | } |
2857 | poly = isl_poly_cow(poly); |
2858 | if (!poly) |
2859 | return NULL; |
2860 | poly->var -= n; |
2861 | rec = isl_poly_as_rec(poly); |
2862 | if (!rec) |
2863 | goto error; |
2864 | |
2865 | for (i = 0; i < rec->n; ++i) { |
2866 | rec->p[i] = isl_poly_drop(poly: rec->p[i], first, n); |
2867 | if (!rec->p[i]) |
2868 | goto error; |
2869 | } |
2870 | |
2871 | return poly; |
2872 | error: |
2873 | isl_poly_free(poly); |
2874 | return NULL; |
2875 | } |
2876 | |
2877 | __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name( |
2878 | __isl_take isl_qpolynomial *qp, |
2879 | enum isl_dim_type type, unsigned pos, const char *s) |
2880 | { |
2881 | qp = isl_qpolynomial_cow(qp); |
2882 | if (!qp) |
2883 | return NULL; |
2884 | if (type == isl_dim_out) |
2885 | isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, |
2886 | "cannot set name of output/set dimension" , |
2887 | return isl_qpolynomial_free(qp)); |
2888 | type = domain_type(type); |
2889 | qp->dim = isl_space_set_dim_name(space: qp->dim, type, pos, name: s); |
2890 | if (!qp->dim) |
2891 | goto error; |
2892 | return qp; |
2893 | error: |
2894 | isl_qpolynomial_free(qp); |
2895 | return NULL; |
2896 | } |
2897 | |
2898 | __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims( |
2899 | __isl_take isl_qpolynomial *qp, |
2900 | enum isl_dim_type type, unsigned first, unsigned n) |
2901 | { |
2902 | isl_size offset; |
2903 | |
2904 | if (!qp) |
2905 | return NULL; |
2906 | if (type == isl_dim_out) |
2907 | isl_die(qp->dim->ctx, isl_error_invalid, |
2908 | "cannot drop output/set dimension" , |
2909 | goto error); |
2910 | if (isl_qpolynomial_check_range(obj: qp, type, first, n) < 0) |
2911 | return isl_qpolynomial_free(qp); |
2912 | type = domain_type(type); |
2913 | if (n == 0 && !isl_space_is_named_or_nested(space: qp->dim, type)) |
2914 | return qp; |
2915 | |
2916 | qp = isl_qpolynomial_cow(qp); |
2917 | if (!qp) |
2918 | return NULL; |
2919 | |
2920 | isl_assert(qp->dim->ctx, type == isl_dim_param || |
2921 | type == isl_dim_set, goto error); |
2922 | |
2923 | qp->dim = isl_space_drop_dims(space: qp->dim, type, first, num: n); |
2924 | if (!qp->dim) |
2925 | goto error; |
2926 | |
2927 | offset = isl_qpolynomial_domain_var_offset(qp, type); |
2928 | if (offset < 0) |
2929 | goto error; |
2930 | first += offset; |
2931 | |
2932 | qp->div = isl_mat_drop_cols(mat: qp->div, col: 2 + first, n); |
2933 | if (!qp->div) |
2934 | goto error; |
2935 | |
2936 | qp->poly = isl_poly_drop(poly: qp->poly, first, n); |
2937 | if (!qp->poly) |
2938 | goto error; |
2939 | |
2940 | return qp; |
2941 | error: |
2942 | isl_qpolynomial_free(qp); |
2943 | return NULL; |
2944 | } |
2945 | |
2946 | /* Project the domain of the quasi-polynomial onto its parameter space. |
2947 | * The quasi-polynomial may not involve any of the domain dimensions. |
2948 | */ |
2949 | __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params( |
2950 | __isl_take isl_qpolynomial *qp) |
2951 | { |
2952 | isl_space *space; |
2953 | isl_size n; |
2954 | isl_bool involves; |
2955 | |
2956 | n = isl_qpolynomial_dim(qp, type: isl_dim_in); |
2957 | if (n < 0) |
2958 | return isl_qpolynomial_free(qp); |
2959 | involves = isl_qpolynomial_involves_dims(qp, type: isl_dim_in, first: 0, n); |
2960 | if (involves < 0) |
2961 | return isl_qpolynomial_free(qp); |
2962 | if (involves) |
2963 | isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, |
2964 | "polynomial involves some of the domain dimensions" , |
2965 | return isl_qpolynomial_free(qp)); |
2966 | qp = isl_qpolynomial_drop_dims(qp, type: isl_dim_in, first: 0, n); |
2967 | space = isl_qpolynomial_get_domain_space(qp); |
2968 | space = isl_space_params(space); |
2969 | qp = isl_qpolynomial_reset_domain_space(qp, space); |
2970 | return qp; |
2971 | } |
2972 | |
2973 | static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted( |
2974 | __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq) |
2975 | { |
2976 | int i, j, k; |
2977 | isl_int denom; |
2978 | unsigned total; |
2979 | unsigned n_div; |
2980 | isl_poly *poly; |
2981 | |
2982 | if (!eq) |
2983 | goto error; |
2984 | if (eq->n_eq == 0) { |
2985 | isl_basic_set_free(bset: eq); |
2986 | return qp; |
2987 | } |
2988 | |
2989 | qp = isl_qpolynomial_cow(qp); |
2990 | if (!qp) |
2991 | goto error; |
2992 | qp->div = isl_mat_cow(mat: qp->div); |
2993 | if (!qp->div) |
2994 | goto error; |
2995 | |
2996 | total = isl_basic_set_offset(bset: eq, type: isl_dim_div); |
2997 | n_div = eq->n_div; |
2998 | isl_int_init(denom); |
2999 | for (i = 0; i < eq->n_eq; ++i) { |
3000 | j = isl_seq_last_non_zero(p: eq->eq[i], len: total + n_div); |
3001 | if (j < 0 || j == 0 || j >= total) |
3002 | continue; |
3003 | |
3004 | for (k = 0; k < qp->div->n_row; ++k) { |
3005 | if (isl_int_is_zero(qp->div->row[k][1 + j])) |
3006 | continue; |
3007 | isl_seq_elim(dst: qp->div->row[k] + 1, src: eq->eq[i], pos: j, len: total, |
3008 | m: &qp->div->row[k][0]); |
3009 | normalize_div(qp, div: k); |
3010 | } |
3011 | |
3012 | if (isl_int_is_pos(eq->eq[i][j])) |
3013 | isl_seq_neg(dst: eq->eq[i], src: eq->eq[i], len: total); |
3014 | isl_int_abs(denom, eq->eq[i][j]); |
3015 | isl_int_set_si(eq->eq[i][j], 0); |
3016 | |
3017 | poly = isl_poly_from_affine(ctx: qp->dim->ctx, |
3018 | f: eq->eq[i], denom, len: total); |
3019 | qp->poly = isl_poly_subs(poly: qp->poly, first: j - 1, n: 1, subs: &poly); |
3020 | isl_poly_free(poly); |
3021 | } |
3022 | isl_int_clear(denom); |
3023 | |
3024 | if (!qp->poly) |
3025 | goto error; |
3026 | |
3027 | isl_basic_set_free(bset: eq); |
3028 | |
3029 | qp = substitute_non_divs(qp); |
3030 | qp = sort_divs(qp); |
3031 | |
3032 | return qp; |
3033 | error: |
3034 | isl_basic_set_free(bset: eq); |
3035 | isl_qpolynomial_free(qp); |
3036 | return NULL; |
3037 | } |
3038 | |
3039 | /* Exploit the equalities in "eq" to simplify the quasi-polynomial. |
3040 | */ |
3041 | __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities( |
3042 | __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq) |
3043 | { |
3044 | if (!qp || !eq) |
3045 | goto error; |
3046 | if (qp->div->n_row > 0) |
3047 | eq = isl_basic_set_add_dims(bset: eq, type: isl_dim_set, n: qp->div->n_row); |
3048 | return isl_qpolynomial_substitute_equalities_lifted(qp, eq); |
3049 | error: |
3050 | isl_basic_set_free(bset: eq); |
3051 | isl_qpolynomial_free(qp); |
3052 | return NULL; |
3053 | } |
3054 | |
3055 | /* Look for equalities among the variables shared by context and qp |
3056 | * and the integer divisions of qp, if any. |
3057 | * The equalities are then used to eliminate variables and/or integer |
3058 | * divisions from qp. |
3059 | */ |
3060 | __isl_give isl_qpolynomial *isl_qpolynomial_gist( |
3061 | __isl_take isl_qpolynomial *qp, __isl_take isl_set *context) |
3062 | { |
3063 | isl_local_space *ls; |
3064 | isl_basic_set *aff; |
3065 | |
3066 | ls = isl_qpolynomial_get_domain_local_space(qp); |
3067 | context = isl_local_space_lift_set(ls, set: context); |
3068 | |
3069 | aff = isl_set_affine_hull(set: context); |
3070 | return isl_qpolynomial_substitute_equalities_lifted(qp, eq: aff); |
3071 | } |
3072 | |
3073 | __isl_give isl_qpolynomial *isl_qpolynomial_gist_params( |
3074 | __isl_take isl_qpolynomial *qp, __isl_take isl_set *context) |
3075 | { |
3076 | isl_space *space = isl_qpolynomial_get_domain_space(qp); |
3077 | isl_set *dom_context = isl_set_universe(space); |
3078 | dom_context = isl_set_intersect_params(set: dom_context, params: context); |
3079 | return isl_qpolynomial_gist(qp, context: dom_context); |
3080 | } |
3081 | |
3082 | /* Return a zero isl_qpolynomial in the given space. |
3083 | * |
3084 | * This is a helper function for isl_pw_*_as_* that ensures a uniform |
3085 | * interface over all piecewise types. |
3086 | */ |
3087 | static __isl_give isl_qpolynomial *isl_qpolynomial_zero_in_space( |
3088 | __isl_take isl_space *space) |
3089 | { |
3090 | return isl_qpolynomial_zero_on_domain(domain: isl_space_domain(space)); |
3091 | } |
3092 | |
3093 | #define isl_qpolynomial_involves_nan isl_qpolynomial_is_nan |
3094 | |
3095 | #undef PW |
3096 | #define PW isl_pw_qpolynomial |
3097 | #undef BASE |
3098 | #define BASE qpolynomial |
3099 | #undef EL_IS_ZERO |
3100 | #define EL_IS_ZERO is_zero |
3101 | #undef ZERO |
3102 | #define ZERO zero |
3103 | #undef IS_ZERO |
3104 | #define IS_ZERO is_zero |
3105 | #undef FIELD |
3106 | #define FIELD qp |
3107 | #undef DEFAULT_IS_ZERO |
3108 | #define DEFAULT_IS_ZERO 1 |
3109 | |
3110 | #include <isl_pw_templ.c> |
3111 | #include <isl_pw_un_op_templ.c> |
3112 | #include <isl_pw_add_disjoint_templ.c> |
3113 | #include <isl_pw_eval.c> |
3114 | #include <isl_pw_fix_templ.c> |
3115 | #include <isl_pw_from_range_templ.c> |
3116 | #include <isl_pw_insert_dims_templ.c> |
3117 | #include <isl_pw_lift_templ.c> |
3118 | #include <isl_pw_morph_templ.c> |
3119 | #include <isl_pw_move_dims_templ.c> |
3120 | #include <isl_pw_neg_templ.c> |
3121 | #include <isl_pw_opt_templ.c> |
3122 | #include <isl_pw_split_dims_templ.c> |
3123 | #include <isl_pw_sub_templ.c> |
3124 | |
3125 | #undef BASE |
3126 | #define BASE pw_qpolynomial |
3127 | |
3128 | #include <isl_union_single.c> |
3129 | #include <isl_union_eval.c> |
3130 | #include <isl_union_neg.c> |
3131 | #include <isl_union_sub_templ.c> |
3132 | |
3133 | int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp) |
3134 | { |
3135 | if (!pwqp) |
3136 | return -1; |
3137 | |
3138 | if (pwqp->n != -1) |
3139 | return 0; |
3140 | |
3141 | if (!isl_set_plain_is_universe(set: pwqp->p[0].set)) |
3142 | return 0; |
3143 | |
3144 | return isl_qpolynomial_is_one(qp: pwqp->p[0].qp); |
3145 | } |
3146 | |
3147 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add( |
3148 | __isl_take isl_pw_qpolynomial *pwqp1, |
3149 | __isl_take isl_pw_qpolynomial *pwqp2) |
3150 | { |
3151 | return isl_pw_qpolynomial_union_add_(pw1: pwqp1, pw2: pwqp2); |
3152 | } |
3153 | |
3154 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul( |
3155 | __isl_take isl_pw_qpolynomial *pwqp1, |
3156 | __isl_take isl_pw_qpolynomial *pwqp2) |
3157 | { |
3158 | int i, j, n; |
3159 | struct isl_pw_qpolynomial *res; |
3160 | |
3161 | if (!pwqp1 || !pwqp2) |
3162 | goto error; |
3163 | |
3164 | isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim), |
3165 | goto error); |
3166 | |
3167 | if (isl_pw_qpolynomial_is_zero(pw: pwqp1)) { |
3168 | isl_pw_qpolynomial_free(pw: pwqp2); |
3169 | return pwqp1; |
3170 | } |
3171 | |
3172 | if (isl_pw_qpolynomial_is_zero(pw: pwqp2)) { |
3173 | isl_pw_qpolynomial_free(pw: pwqp1); |
3174 | return pwqp2; |
3175 | } |
3176 | |
3177 | if (isl_pw_qpolynomial_is_one(pwqp: pwqp1)) { |
3178 | isl_pw_qpolynomial_free(pw: pwqp1); |
3179 | return pwqp2; |
3180 | } |
3181 | |
3182 | if (isl_pw_qpolynomial_is_one(pwqp: pwqp2)) { |
3183 | isl_pw_qpolynomial_free(pw: pwqp2); |
3184 | return pwqp1; |
3185 | } |
3186 | |
3187 | n = pwqp1->n * pwqp2->n; |
3188 | res = isl_pw_qpolynomial_alloc_size(space: isl_space_copy(space: pwqp1->dim), n); |
3189 | |
3190 | for (i = 0; i < pwqp1->n; ++i) { |
3191 | for (j = 0; j < pwqp2->n; ++j) { |
3192 | struct isl_set *common; |
3193 | struct isl_qpolynomial *prod; |
3194 | common = isl_set_intersect(set1: isl_set_copy(set: pwqp1->p[i].set), |
3195 | set2: isl_set_copy(set: pwqp2->p[j].set)); |
3196 | if (isl_set_plain_is_empty(set: common)) { |
3197 | isl_set_free(set: common); |
3198 | continue; |
3199 | } |
3200 | |
3201 | prod = isl_qpolynomial_mul( |
3202 | qp1: isl_qpolynomial_copy(qp: pwqp1->p[i].qp), |
3203 | qp2: isl_qpolynomial_copy(qp: pwqp2->p[j].qp)); |
3204 | |
3205 | res = isl_pw_qpolynomial_add_piece(pw: res, set: common, el: prod); |
3206 | } |
3207 | } |
3208 | |
3209 | isl_pw_qpolynomial_free(pw: pwqp1); |
3210 | isl_pw_qpolynomial_free(pw: pwqp2); |
3211 | |
3212 | return res; |
3213 | error: |
3214 | isl_pw_qpolynomial_free(pw: pwqp1); |
3215 | isl_pw_qpolynomial_free(pw: pwqp2); |
3216 | return NULL; |
3217 | } |
3218 | |
3219 | __isl_give isl_val *isl_poly_eval(__isl_take isl_poly *poly, |
3220 | __isl_take isl_vec *vec) |
3221 | { |
3222 | int i; |
3223 | isl_bool is_cst; |
3224 | isl_poly_rec *rec; |
3225 | isl_val *res; |
3226 | isl_val *base; |
3227 | |
3228 | is_cst = isl_poly_is_cst(poly); |
3229 | if (is_cst < 0) |
3230 | goto error; |
3231 | if (is_cst) { |
3232 | isl_vec_free(vec); |
3233 | res = isl_poly_get_constant_val(poly); |
3234 | isl_poly_free(poly); |
3235 | return res; |
3236 | } |
3237 | |
3238 | rec = isl_poly_as_rec(poly); |
3239 | if (!rec || !vec) |
3240 | goto error; |
3241 | |
3242 | isl_assert(poly->ctx, rec->n >= 1, goto error); |
3243 | |
3244 | base = isl_val_rat_from_isl_int(ctx: poly->ctx, |
3245 | n: vec->el[1 + poly->var], d: vec->el[0]); |
3246 | |
3247 | res = isl_poly_eval(poly: isl_poly_copy(poly: rec->p[rec->n - 1]), |
3248 | vec: isl_vec_copy(vec)); |
3249 | |
3250 | for (i = rec->n - 2; i >= 0; --i) { |
3251 | res = isl_val_mul(v1: res, v2: isl_val_copy(v: base)); |
3252 | res = isl_val_add(v1: res, v2: isl_poly_eval(poly: isl_poly_copy(poly: rec->p[i]), |
3253 | vec: isl_vec_copy(vec))); |
3254 | } |
3255 | |
3256 | isl_val_free(v: base); |
3257 | isl_poly_free(poly); |
3258 | isl_vec_free(vec); |
3259 | return res; |
3260 | error: |
3261 | isl_poly_free(poly); |
3262 | isl_vec_free(vec); |
3263 | return NULL; |
3264 | } |
3265 | |
3266 | /* Evaluate "qp" in the void point "pnt". |
3267 | * In particular, return the value NaN. |
3268 | */ |
3269 | static __isl_give isl_val *eval_void(__isl_take isl_qpolynomial *qp, |
3270 | __isl_take isl_point *pnt) |
3271 | { |
3272 | isl_ctx *ctx; |
3273 | |
3274 | ctx = isl_point_get_ctx(pnt); |
3275 | isl_qpolynomial_free(qp); |
3276 | isl_point_free(pnt); |
3277 | return isl_val_nan(ctx); |
3278 | } |
3279 | |
3280 | __isl_give isl_val *isl_qpolynomial_eval(__isl_take isl_qpolynomial *qp, |
3281 | __isl_take isl_point *pnt) |
3282 | { |
3283 | isl_bool is_void; |
3284 | isl_vec *ext; |
3285 | isl_val *v; |
3286 | |
3287 | if (!qp || !pnt) |
3288 | goto error; |
3289 | isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error); |
3290 | is_void = isl_point_is_void(pnt); |
3291 | if (is_void < 0) |
3292 | goto error; |
3293 | if (is_void) |
3294 | return eval_void(qp, pnt); |
3295 | |
3296 | ext = isl_local_extend_point_vec(local: qp->div, v: isl_vec_copy(vec: pnt->vec)); |
3297 | |
3298 | v = isl_poly_eval(poly: isl_poly_copy(poly: qp->poly), vec: ext); |
3299 | |
3300 | isl_qpolynomial_free(qp); |
3301 | isl_point_free(pnt); |
3302 | |
3303 | return v; |
3304 | error: |
3305 | isl_qpolynomial_free(qp); |
3306 | isl_point_free(pnt); |
3307 | return NULL; |
3308 | } |
3309 | |
3310 | int isl_poly_cmp(__isl_keep isl_poly_cst *cst1, __isl_keep isl_poly_cst *cst2) |
3311 | { |
3312 | int cmp; |
3313 | isl_int t; |
3314 | isl_int_init(t); |
3315 | isl_int_mul(t, cst1->n, cst2->d); |
3316 | isl_int_submul(t, cst2->n, cst1->d); |
3317 | cmp = isl_int_sgn(t); |
3318 | isl_int_clear(t); |
3319 | return cmp; |
3320 | } |
3321 | |
3322 | __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims( |
3323 | __isl_take isl_qpolynomial *qp, enum isl_dim_type type, |
3324 | unsigned first, unsigned n) |
3325 | { |
3326 | unsigned total; |
3327 | unsigned g_pos; |
3328 | int *exp; |
3329 | |
3330 | if (!qp) |
3331 | return NULL; |
3332 | if (type == isl_dim_out) |
3333 | isl_die(qp->div->ctx, isl_error_invalid, |
3334 | "cannot insert output/set dimensions" , |
3335 | goto error); |
3336 | if (isl_qpolynomial_check_range(obj: qp, type, first, n: 0) < 0) |
3337 | return isl_qpolynomial_free(qp); |
3338 | type = domain_type(type); |
3339 | if (n == 0 && !isl_space_is_named_or_nested(space: qp->dim, type)) |
3340 | return qp; |
3341 | |
3342 | qp = isl_qpolynomial_cow(qp); |
3343 | if (!qp) |
3344 | return NULL; |
3345 | |
3346 | g_pos = pos(space: qp->dim, type) + first; |
3347 | |
3348 | qp->div = isl_mat_insert_zero_cols(mat: qp->div, first: 2 + g_pos, n); |
3349 | if (!qp->div) |
3350 | goto error; |
3351 | |
3352 | total = qp->div->n_col - 2; |
3353 | if (total > g_pos) { |
3354 | int i; |
3355 | exp = isl_alloc_array(qp->div->ctx, int, total - g_pos); |
3356 | if (!exp) |
3357 | goto error; |
3358 | for (i = 0; i < total - g_pos; ++i) |
3359 | exp[i] = i + n; |
3360 | qp->poly = expand(poly: qp->poly, exp, first: g_pos); |
3361 | free(ptr: exp); |
3362 | if (!qp->poly) |
3363 | goto error; |
3364 | } |
3365 | |
3366 | qp->dim = isl_space_insert_dims(space: qp->dim, type, pos: first, n); |
3367 | if (!qp->dim) |
3368 | goto error; |
3369 | |
3370 | return qp; |
3371 | error: |
3372 | isl_qpolynomial_free(qp); |
3373 | return NULL; |
3374 | } |
3375 | |
3376 | __isl_give isl_qpolynomial *isl_qpolynomial_add_dims( |
3377 | __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n) |
3378 | { |
3379 | isl_size pos; |
3380 | |
3381 | pos = isl_qpolynomial_dim(qp, type); |
3382 | if (pos < 0) |
3383 | return isl_qpolynomial_free(qp); |
3384 | |
3385 | return isl_qpolynomial_insert_dims(qp, type, first: pos, n); |
3386 | } |
3387 | |
3388 | static int *reordering_move(isl_ctx *ctx, |
3389 | unsigned len, unsigned dst, unsigned src, unsigned n) |
3390 | { |
3391 | int i; |
3392 | int *reordering; |
3393 | |
3394 | reordering = isl_alloc_array(ctx, int, len); |
3395 | if (!reordering) |
3396 | return NULL; |
3397 | |
3398 | if (dst <= src) { |
3399 | for (i = 0; i < dst; ++i) |
3400 | reordering[i] = i; |
3401 | for (i = 0; i < n; ++i) |
3402 | reordering[src + i] = dst + i; |
3403 | for (i = 0; i < src - dst; ++i) |
3404 | reordering[dst + i] = dst + n + i; |
3405 | for (i = 0; i < len - src - n; ++i) |
3406 | reordering[src + n + i] = src + n + i; |
3407 | } else { |
3408 | for (i = 0; i < src; ++i) |
3409 | reordering[i] = i; |
3410 | for (i = 0; i < n; ++i) |
3411 | reordering[src + i] = dst + i; |
3412 | for (i = 0; i < dst - src; ++i) |
3413 | reordering[src + n + i] = src + i; |
3414 | for (i = 0; i < len - dst - n; ++i) |
3415 | reordering[dst + n + i] = dst + n + i; |
3416 | } |
3417 | |
3418 | return reordering; |
3419 | } |
3420 | |
3421 | __isl_give isl_qpolynomial *isl_qpolynomial_move_dims( |
3422 | __isl_take isl_qpolynomial *qp, |
3423 | enum isl_dim_type dst_type, unsigned dst_pos, |
3424 | enum isl_dim_type src_type, unsigned src_pos, unsigned n) |
3425 | { |
3426 | unsigned g_dst_pos; |
3427 | unsigned g_src_pos; |
3428 | int *reordering; |
3429 | |
3430 | if (!qp) |
3431 | return NULL; |
3432 | |
3433 | if (dst_type == isl_dim_out || src_type == isl_dim_out) |
3434 | isl_die(qp->dim->ctx, isl_error_invalid, |
3435 | "cannot move output/set dimension" , |
3436 | goto error); |
3437 | if (isl_qpolynomial_check_range(obj: qp, type: src_type, first: src_pos, n) < 0) |
3438 | return isl_qpolynomial_free(qp); |
3439 | if (dst_type == isl_dim_in) |
3440 | dst_type = isl_dim_set; |
3441 | if (src_type == isl_dim_in) |
3442 | src_type = isl_dim_set; |
3443 | |
3444 | if (n == 0 && |
3445 | !isl_space_is_named_or_nested(space: qp->dim, type: src_type) && |
3446 | !isl_space_is_named_or_nested(space: qp->dim, type: dst_type)) |
3447 | return qp; |
3448 | |
3449 | qp = isl_qpolynomial_cow(qp); |
3450 | if (!qp) |
3451 | return NULL; |
3452 | |
3453 | g_dst_pos = pos(space: qp->dim, type: dst_type) + dst_pos; |
3454 | g_src_pos = pos(space: qp->dim, type: src_type) + src_pos; |
3455 | if (dst_type > src_type) |
3456 | g_dst_pos -= n; |
3457 | |
3458 | qp->div = isl_mat_move_cols(mat: qp->div, dst_col: 2 + g_dst_pos, src_col: 2 + g_src_pos, n); |
3459 | if (!qp->div) |
3460 | goto error; |
3461 | qp = sort_divs(qp); |
3462 | if (!qp) |
3463 | goto error; |
3464 | |
3465 | reordering = reordering_move(ctx: qp->dim->ctx, |
3466 | len: qp->div->n_col - 2, dst: g_dst_pos, src: g_src_pos, n); |
3467 | if (!reordering) |
3468 | goto error; |
3469 | |
3470 | qp->poly = reorder(poly: qp->poly, r: reordering); |
3471 | free(ptr: reordering); |
3472 | if (!qp->poly) |
3473 | goto error; |
3474 | |
3475 | qp->dim = isl_space_move_dims(space: qp->dim, dst_type, dst_pos, src_type, src_pos, n); |
3476 | if (!qp->dim) |
3477 | goto error; |
3478 | |
3479 | return qp; |
3480 | error: |
3481 | isl_qpolynomial_free(qp); |
3482 | return NULL; |
3483 | } |
3484 | |
3485 | __isl_give isl_qpolynomial *isl_qpolynomial_from_affine( |
3486 | __isl_take isl_space *space, isl_int *f, isl_int denom) |
3487 | { |
3488 | isl_size d; |
3489 | isl_poly *poly; |
3490 | |
3491 | space = isl_space_domain(space); |
3492 | if (!space) |
3493 | return NULL; |
3494 | |
3495 | d = isl_space_dim(space, type: isl_dim_all); |
3496 | poly = d < 0 ? NULL : isl_poly_from_affine(ctx: space->ctx, f, denom, len: 1 + d); |
3497 | |
3498 | return isl_qpolynomial_alloc(space, n_div: 0, poly); |
3499 | } |
3500 | |
3501 | __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff) |
3502 | { |
3503 | isl_ctx *ctx; |
3504 | isl_poly *poly; |
3505 | isl_qpolynomial *qp; |
3506 | |
3507 | if (!aff) |
3508 | return NULL; |
3509 | |
3510 | ctx = isl_aff_get_ctx(aff); |
3511 | poly = isl_poly_from_affine(ctx, f: aff->v->el + 1, denom: aff->v->el[0], |
3512 | len: aff->v->size - 1); |
3513 | |
3514 | qp = isl_qpolynomial_alloc(space: isl_aff_get_domain_space(aff), |
3515 | n_div: aff->ls->div->n_row, poly); |
3516 | if (!qp) |
3517 | goto error; |
3518 | |
3519 | isl_mat_free(mat: qp->div); |
3520 | qp->div = isl_mat_copy(mat: aff->ls->div); |
3521 | qp->div = isl_mat_cow(mat: qp->div); |
3522 | if (!qp->div) |
3523 | goto error; |
3524 | |
3525 | isl_aff_free(aff); |
3526 | qp = reduce_divs(qp); |
3527 | qp = remove_redundant_divs(qp); |
3528 | return qp; |
3529 | error: |
3530 | isl_aff_free(aff); |
3531 | return isl_qpolynomial_free(qp); |
3532 | } |
3533 | |
3534 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff( |
3535 | __isl_take isl_pw_aff *pwaff) |
3536 | { |
3537 | int i; |
3538 | isl_pw_qpolynomial *pwqp; |
3539 | |
3540 | if (!pwaff) |
3541 | return NULL; |
3542 | |
3543 | pwqp = isl_pw_qpolynomial_alloc_size(space: isl_pw_aff_get_space(pwaff), |
3544 | n: pwaff->n); |
3545 | |
3546 | for (i = 0; i < pwaff->n; ++i) { |
3547 | isl_set *dom; |
3548 | isl_qpolynomial *qp; |
3549 | |
3550 | dom = isl_set_copy(set: pwaff->p[i].set); |
3551 | qp = isl_qpolynomial_from_aff(aff: isl_aff_copy(aff: pwaff->p[i].aff)); |
3552 | pwqp = isl_pw_qpolynomial_add_piece(pw: pwqp, set: dom, el: qp); |
3553 | } |
3554 | |
3555 | isl_pw_aff_free(pwaff); |
3556 | return pwqp; |
3557 | } |
3558 | |
3559 | __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint( |
3560 | __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos) |
3561 | { |
3562 | isl_aff *aff; |
3563 | |
3564 | aff = isl_constraint_get_bound(constraint: c, type, pos); |
3565 | isl_constraint_free(c); |
3566 | return isl_qpolynomial_from_aff(aff); |
3567 | } |
3568 | |
3569 | /* For each 0 <= i < "n", replace variable "first" + i of type "type" |
3570 | * in "qp" by subs[i]. |
3571 | */ |
3572 | __isl_give isl_qpolynomial *isl_qpolynomial_substitute( |
3573 | __isl_take isl_qpolynomial *qp, |
3574 | enum isl_dim_type type, unsigned first, unsigned n, |
3575 | __isl_keep isl_qpolynomial **subs) |
3576 | { |
3577 | int i; |
3578 | isl_poly **polys; |
3579 | |
3580 | if (n == 0) |
3581 | return qp; |
3582 | |
3583 | qp = isl_qpolynomial_cow(qp); |
3584 | if (!qp) |
3585 | return NULL; |
3586 | |
3587 | if (type == isl_dim_out) |
3588 | isl_die(qp->dim->ctx, isl_error_invalid, |
3589 | "cannot substitute output/set dimension" , |
3590 | goto error); |
3591 | if (isl_qpolynomial_check_range(obj: qp, type, first, n) < 0) |
3592 | return isl_qpolynomial_free(qp); |
3593 | type = domain_type(type); |
3594 | |
3595 | for (i = 0; i < n; ++i) |
3596 | if (!subs[i]) |
3597 | goto error; |
3598 | |
3599 | for (i = 0; i < n; ++i) |
3600 | if (isl_qpolynomial_check_equal_space(obj1: qp, obj2: subs[i]) < 0) |
3601 | goto error; |
3602 | |
3603 | isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error); |
3604 | for (i = 0; i < n; ++i) |
3605 | isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error); |
3606 | |
3607 | first += pos(space: qp->dim, type); |
3608 | |
3609 | polys = isl_alloc_array(qp->dim->ctx, struct isl_poly *, n); |
3610 | if (!polys) |
3611 | goto error; |
3612 | for (i = 0; i < n; ++i) |
3613 | polys[i] = subs[i]->poly; |
3614 | |
3615 | qp->poly = isl_poly_subs(poly: qp->poly, first, n, subs: polys); |
3616 | |
3617 | free(ptr: polys); |
3618 | |
3619 | if (!qp->poly) |
3620 | goto error; |
3621 | |
3622 | return qp; |
3623 | error: |
3624 | isl_qpolynomial_free(qp); |
3625 | return NULL; |
3626 | } |
3627 | |
3628 | /* Extend "bset" with extra set dimensions for each integer division |
3629 | * in "qp" and then call "fn" with the extended bset and the polynomial |
3630 | * that results from replacing each of the integer divisions by the |
3631 | * corresponding extra set dimension. |
3632 | */ |
3633 | isl_stat isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp, |
3634 | __isl_keep isl_basic_set *bset, |
3635 | isl_stat (*fn)(__isl_take isl_basic_set *bset, |
3636 | __isl_take isl_qpolynomial *poly, void *user), void *user) |
3637 | { |
3638 | isl_space *space; |
3639 | isl_local_space *ls; |
3640 | isl_qpolynomial *poly; |
3641 | |
3642 | if (!qp || !bset) |
3643 | return isl_stat_error; |
3644 | if (qp->div->n_row == 0) |
3645 | return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp), |
3646 | user); |
3647 | |
3648 | space = isl_space_copy(space: qp->dim); |
3649 | space = isl_space_add_dims(space, type: isl_dim_set, n: qp->div->n_row); |
3650 | poly = isl_qpolynomial_alloc(space, n_div: 0, poly: isl_poly_copy(poly: qp->poly)); |
3651 | bset = isl_basic_set_copy(bset); |
3652 | ls = isl_qpolynomial_get_domain_local_space(qp); |
3653 | bset = isl_local_space_lift_basic_set(ls, bset); |
3654 | |
3655 | return fn(bset, poly, user); |
3656 | } |
3657 | |
3658 | /* Return total degree in variables first (inclusive) up to last (exclusive). |
3659 | */ |
3660 | int isl_poly_degree(__isl_keep isl_poly *poly, int first, int last) |
3661 | { |
3662 | int deg = -1; |
3663 | int i; |
3664 | isl_bool is_zero, is_cst; |
3665 | isl_poly_rec *rec; |
3666 | |
3667 | is_zero = isl_poly_is_zero(poly); |
3668 | if (is_zero < 0) |
3669 | return -2; |
3670 | if (is_zero) |
3671 | return -1; |
3672 | is_cst = isl_poly_is_cst(poly); |
3673 | if (is_cst < 0) |
3674 | return -2; |
3675 | if (is_cst || poly->var < first) |
3676 | return 0; |
3677 | |
3678 | rec = isl_poly_as_rec(poly); |
3679 | if (!rec) |
3680 | return -2; |
3681 | |
3682 | for (i = 0; i < rec->n; ++i) { |
3683 | int d; |
3684 | |
3685 | is_zero = isl_poly_is_zero(poly: rec->p[i]); |
3686 | if (is_zero < 0) |
3687 | return -2; |
3688 | if (is_zero) |
3689 | continue; |
3690 | d = isl_poly_degree(poly: rec->p[i], first, last); |
3691 | if (poly->var < last) |
3692 | d += i; |
3693 | if (d > deg) |
3694 | deg = d; |
3695 | } |
3696 | |
3697 | return deg; |
3698 | } |
3699 | |
3700 | /* Return total degree in set variables. |
3701 | */ |
3702 | int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly) |
3703 | { |
3704 | unsigned ovar; |
3705 | isl_size nvar; |
3706 | |
3707 | if (!poly) |
3708 | return -2; |
3709 | |
3710 | ovar = isl_space_offset(space: poly->dim, type: isl_dim_set); |
3711 | nvar = isl_space_dim(space: poly->dim, type: isl_dim_set); |
3712 | if (nvar < 0) |
3713 | return -2; |
3714 | return isl_poly_degree(poly: poly->poly, first: ovar, last: ovar + nvar); |
3715 | } |
3716 | |
3717 | __isl_give isl_poly *isl_poly_coeff(__isl_keep isl_poly *poly, |
3718 | unsigned pos, int deg) |
3719 | { |
3720 | int i; |
3721 | isl_bool is_cst; |
3722 | isl_poly_rec *rec; |
3723 | |
3724 | is_cst = isl_poly_is_cst(poly); |
3725 | if (is_cst < 0) |
3726 | return NULL; |
3727 | if (is_cst || poly->var < pos) { |
3728 | if (deg == 0) |
3729 | return isl_poly_copy(poly); |
3730 | else |
3731 | return isl_poly_zero(ctx: poly->ctx); |
3732 | } |
3733 | |
3734 | rec = isl_poly_as_rec(poly); |
3735 | if (!rec) |
3736 | return NULL; |
3737 | |
3738 | if (poly->var == pos) { |
3739 | if (deg < rec->n) |
3740 | return isl_poly_copy(poly: rec->p[deg]); |
3741 | else |
3742 | return isl_poly_zero(ctx: poly->ctx); |
3743 | } |
3744 | |
3745 | poly = isl_poly_copy(poly); |
3746 | poly = isl_poly_cow(poly); |
3747 | rec = isl_poly_as_rec(poly); |
3748 | if (!rec) |
3749 | goto error; |
3750 | |
3751 | for (i = 0; i < rec->n; ++i) { |
3752 | isl_poly *t; |
3753 | t = isl_poly_coeff(poly: rec->p[i], pos, deg); |
3754 | if (!t) |
3755 | goto error; |
3756 | isl_poly_free(poly: rec->p[i]); |
3757 | rec->p[i] = t; |
3758 | } |
3759 | |
3760 | return poly; |
3761 | error: |
3762 | isl_poly_free(poly); |
3763 | return NULL; |
3764 | } |
3765 | |
3766 | /* Return coefficient of power "deg" of variable "t_pos" of type "type". |
3767 | */ |
3768 | __isl_give isl_qpolynomial *isl_qpolynomial_coeff( |
3769 | __isl_keep isl_qpolynomial *qp, |
3770 | enum isl_dim_type type, unsigned t_pos, int deg) |
3771 | { |
3772 | unsigned g_pos; |
3773 | isl_poly *poly; |
3774 | isl_qpolynomial *c; |
3775 | |
3776 | if (!qp) |
3777 | return NULL; |
3778 | |
3779 | if (type == isl_dim_out) |
3780 | isl_die(qp->div->ctx, isl_error_invalid, |
3781 | "output/set dimension does not have a coefficient" , |
3782 | return NULL); |
3783 | if (isl_qpolynomial_check_range(obj: qp, type, first: t_pos, n: 1) < 0) |
3784 | return NULL; |
3785 | type = domain_type(type); |
3786 | |
3787 | g_pos = pos(space: qp->dim, type) + t_pos; |
3788 | poly = isl_poly_coeff(poly: qp->poly, pos: g_pos, deg); |
3789 | |
3790 | c = isl_qpolynomial_alloc(space: isl_space_copy(space: qp->dim), |
3791 | n_div: qp->div->n_row, poly); |
3792 | if (!c) |
3793 | return NULL; |
3794 | isl_mat_free(mat: c->div); |
3795 | c->div = isl_mat_copy(mat: qp->div); |
3796 | if (!c->div) |
3797 | goto error; |
3798 | return c; |
3799 | error: |
3800 | isl_qpolynomial_free(qp: c); |
3801 | return NULL; |
3802 | } |
3803 | |
3804 | /* Homogenize the polynomial in the variables first (inclusive) up to |
3805 | * last (exclusive) by inserting powers of variable first. |
3806 | * Variable first is assumed not to appear in the input. |
3807 | */ |
3808 | __isl_give isl_poly *isl_poly_homogenize(__isl_take isl_poly *poly, int deg, |
3809 | int target, int first, int last) |
3810 | { |
3811 | int i; |
3812 | isl_bool is_zero, is_cst; |
3813 | isl_poly_rec *rec; |
3814 | |
3815 | is_zero = isl_poly_is_zero(poly); |
3816 | if (is_zero < 0) |
3817 | return isl_poly_free(poly); |
3818 | if (is_zero) |
3819 | return poly; |
3820 | if (deg == target) |
3821 | return poly; |
3822 | is_cst = isl_poly_is_cst(poly); |
3823 | if (is_cst < 0) |
3824 | return isl_poly_free(poly); |
3825 | if (is_cst || poly->var < first) { |
3826 | isl_poly *hom; |
3827 | |
3828 | hom = isl_poly_var_pow(ctx: poly->ctx, pos: first, power: target - deg); |
3829 | if (!hom) |
3830 | goto error; |
3831 | rec = isl_poly_as_rec(poly: hom); |
3832 | rec->p[target - deg] = isl_poly_mul(poly1: rec->p[target - deg], poly2: poly); |
3833 | |
3834 | return hom; |
3835 | } |
3836 | |
3837 | poly = isl_poly_cow(poly); |
3838 | rec = isl_poly_as_rec(poly); |
3839 | if (!rec) |
3840 | goto error; |
3841 | |
3842 | for (i = 0; i < rec->n; ++i) { |
3843 | is_zero = isl_poly_is_zero(poly: rec->p[i]); |
3844 | if (is_zero < 0) |
3845 | return isl_poly_free(poly); |
3846 | if (is_zero) |
3847 | continue; |
3848 | rec->p[i] = isl_poly_homogenize(poly: rec->p[i], |
3849 | deg: poly->var < last ? deg + i : i, target, |
3850 | first, last); |
3851 | if (!rec->p[i]) |
3852 | goto error; |
3853 | } |
3854 | |
3855 | return poly; |
3856 | error: |
3857 | isl_poly_free(poly); |
3858 | return NULL; |
3859 | } |
3860 | |
3861 | /* Homogenize the polynomial in the set variables by introducing |
3862 | * powers of an extra set variable at position 0. |
3863 | */ |
3864 | __isl_give isl_qpolynomial *isl_qpolynomial_homogenize( |
3865 | __isl_take isl_qpolynomial *poly) |
3866 | { |
3867 | unsigned ovar; |
3868 | isl_size nvar; |
3869 | int deg = isl_qpolynomial_degree(poly); |
3870 | |
3871 | if (deg < -1) |
3872 | goto error; |
3873 | |
3874 | poly = isl_qpolynomial_insert_dims(qp: poly, type: isl_dim_in, first: 0, n: 1); |
3875 | poly = isl_qpolynomial_cow(qp: poly); |
3876 | if (!poly) |
3877 | goto error; |
3878 | |
3879 | ovar = isl_space_offset(space: poly->dim, type: isl_dim_set); |
3880 | nvar = isl_space_dim(space: poly->dim, type: isl_dim_set); |
3881 | if (nvar < 0) |
3882 | return isl_qpolynomial_free(qp: poly); |
3883 | poly->poly = isl_poly_homogenize(poly: poly->poly, deg: 0, target: deg, first: ovar, last: ovar + nvar); |
3884 | if (!poly->poly) |
3885 | goto error; |
3886 | |
3887 | return poly; |
3888 | error: |
3889 | isl_qpolynomial_free(qp: poly); |
3890 | return NULL; |
3891 | } |
3892 | |
3893 | __isl_give isl_term *isl_term_alloc(__isl_take isl_space *space, |
3894 | __isl_take isl_mat *div) |
3895 | { |
3896 | isl_term *term; |
3897 | isl_size d; |
3898 | int n; |
3899 | |
3900 | d = isl_space_dim(space, type: isl_dim_all); |
3901 | if (d < 0 || !div) |
3902 | goto error; |
3903 | |
3904 | n = d + div->n_row; |
3905 | |
3906 | term = isl_calloc(space->ctx, struct isl_term, |
3907 | sizeof(struct isl_term) + (n - 1) * sizeof(int)); |
3908 | if (!term) |
3909 | goto error; |
3910 | |
3911 | term->ref = 1; |
3912 | term->dim = space; |
3913 | term->div = div; |
3914 | isl_int_init(term->n); |
3915 | isl_int_init(term->d); |
3916 | |
3917 | return term; |
3918 | error: |
3919 | isl_space_free(space); |
3920 | isl_mat_free(mat: div); |
3921 | return NULL; |
3922 | } |
3923 | |
3924 | __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term) |
3925 | { |
3926 | if (!term) |
3927 | return NULL; |
3928 | |
3929 | term->ref++; |
3930 | return term; |
3931 | } |
3932 | |
3933 | __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term) |
3934 | { |
3935 | int i; |
3936 | isl_term *dup; |
3937 | isl_size total; |
3938 | |
3939 | total = isl_term_dim(term, type: isl_dim_all); |
3940 | if (total < 0) |
3941 | return NULL; |
3942 | |
3943 | dup = isl_term_alloc(space: isl_space_copy(space: term->dim), div: isl_mat_copy(mat: term->div)); |
3944 | if (!dup) |
3945 | return NULL; |
3946 | |
3947 | isl_int_set(dup->n, term->n); |
3948 | isl_int_set(dup->d, term->d); |
3949 | |
3950 | for (i = 0; i < total; ++i) |
3951 | dup->pow[i] = term->pow[i]; |
3952 | |
3953 | return dup; |
3954 | } |
3955 | |
3956 | __isl_give isl_term *isl_term_cow(__isl_take isl_term *term) |
3957 | { |
3958 | if (!term) |
3959 | return NULL; |
3960 | |
3961 | if (term->ref == 1) |
3962 | return term; |
3963 | term->ref--; |
3964 | return isl_term_dup(term); |
3965 | } |
3966 | |
3967 | __isl_null isl_term *isl_term_free(__isl_take isl_term *term) |
3968 | { |
3969 | if (!term) |
3970 | return NULL; |
3971 | |
3972 | if (--term->ref > 0) |
3973 | return NULL; |
3974 | |
3975 | isl_space_free(space: term->dim); |
3976 | isl_mat_free(mat: term->div); |
3977 | isl_int_clear(term->n); |
3978 | isl_int_clear(term->d); |
3979 | free(ptr: term); |
3980 | |
3981 | return NULL; |
3982 | } |
3983 | |
3984 | isl_size isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type) |
3985 | { |
3986 | isl_size dim; |
3987 | |
3988 | if (!term) |
3989 | return isl_size_error; |
3990 | |
3991 | switch (type) { |
3992 | case isl_dim_param: |
3993 | case isl_dim_in: |
3994 | case isl_dim_out: return isl_space_dim(space: term->dim, type); |
3995 | case isl_dim_div: return term->div->n_row; |
3996 | case isl_dim_all: dim = isl_space_dim(space: term->dim, type: isl_dim_all); |
3997 | if (dim < 0) |
3998 | return isl_size_error; |
3999 | return dim + term->div->n_row; |
4000 | default: return isl_size_error; |
4001 | } |
4002 | } |
4003 | |
4004 | /* Return the space of "term". |
4005 | */ |
4006 | static __isl_keep isl_space *isl_term_peek_space(__isl_keep isl_term *term) |
4007 | { |
4008 | return term ? term->dim : NULL; |
4009 | } |
4010 | |
4011 | /* Return the offset of the first variable of type "type" within |
4012 | * the variables of "term". |
4013 | */ |
4014 | static isl_size isl_term_offset(__isl_keep isl_term *term, |
4015 | enum isl_dim_type type) |
4016 | { |
4017 | isl_space *space; |
4018 | |
4019 | space = isl_term_peek_space(term); |
4020 | if (!space) |
4021 | return isl_size_error; |
4022 | |
4023 | switch (type) { |
4024 | case isl_dim_param: |
4025 | case isl_dim_set: return isl_space_offset(space, type); |
4026 | case isl_dim_div: return isl_space_dim(space, type: isl_dim_all); |
4027 | default: |
4028 | isl_die(isl_term_get_ctx(term), isl_error_invalid, |
4029 | "invalid dimension type" , return isl_size_error); |
4030 | } |
4031 | } |
4032 | |
4033 | isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term) |
4034 | { |
4035 | return term ? term->dim->ctx : NULL; |
4036 | } |
4037 | |
4038 | void isl_term_get_num(__isl_keep isl_term *term, isl_int *n) |
4039 | { |
4040 | if (!term) |
4041 | return; |
4042 | isl_int_set(*n, term->n); |
4043 | } |
4044 | |
4045 | /* Return the coefficient of the term "term". |
4046 | */ |
4047 | __isl_give isl_val *isl_term_get_coefficient_val(__isl_keep isl_term *term) |
4048 | { |
4049 | if (!term) |
4050 | return NULL; |
4051 | |
4052 | return isl_val_rat_from_isl_int(ctx: isl_term_get_ctx(term), |
4053 | n: term->n, d: term->d); |
4054 | } |
4055 | |
4056 | #undef TYPE |
4057 | #define TYPE isl_term |
4058 | static |
4059 | #include "check_type_range_templ.c" |
4060 | |
4061 | isl_size isl_term_get_exp(__isl_keep isl_term *term, |
4062 | enum isl_dim_type type, unsigned pos) |
4063 | { |
4064 | isl_size offset; |
4065 | |
4066 | if (isl_term_check_range(obj: term, type, first: pos, n: 1) < 0) |
4067 | return isl_size_error; |
4068 | offset = isl_term_offset(term, type); |
4069 | if (offset < 0) |
4070 | return isl_size_error; |
4071 | |
4072 | return term->pow[offset + pos]; |
4073 | } |
4074 | |
4075 | __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos) |
4076 | { |
4077 | isl_local_space *ls; |
4078 | isl_aff *aff; |
4079 | |
4080 | if (isl_term_check_range(obj: term, type: isl_dim_div, first: pos, n: 1) < 0) |
4081 | return NULL; |
4082 | |
4083 | ls = isl_local_space_alloc_div(space: isl_space_copy(space: term->dim), |
4084 | div: isl_mat_copy(mat: term->div)); |
4085 | aff = isl_aff_alloc(ls); |
4086 | if (!aff) |
4087 | return NULL; |
4088 | |
4089 | isl_seq_cpy(dst: aff->v->el, src: term->div->row[pos], len: aff->v->size); |
4090 | |
4091 | aff = isl_aff_normalize(aff); |
4092 | |
4093 | return aff; |
4094 | } |
4095 | |
4096 | __isl_give isl_term *isl_poly_foreach_term(__isl_keep isl_poly *poly, |
4097 | isl_stat (*fn)(__isl_take isl_term *term, void *user), |
4098 | __isl_take isl_term *term, void *user) |
4099 | { |
4100 | int i; |
4101 | isl_bool is_zero, is_bad, is_cst; |
4102 | isl_poly_rec *rec; |
4103 | |
4104 | is_zero = isl_poly_is_zero(poly); |
4105 | if (is_zero < 0 || !term) |
4106 | goto error; |
4107 | |
4108 | if (is_zero) |
4109 | return term; |
4110 | |
4111 | is_cst = isl_poly_is_cst(poly); |
4112 | is_bad = isl_poly_is_nan(poly); |
4113 | if (is_bad >= 0 && !is_bad) |
4114 | is_bad = isl_poly_is_infty(poly); |
4115 | if (is_bad >= 0 && !is_bad) |
4116 | is_bad = isl_poly_is_neginfty(poly); |
4117 | if (is_cst < 0 || is_bad < 0) |
4118 | return isl_term_free(term); |
4119 | if (is_bad) |
4120 | isl_die(isl_term_get_ctx(term), isl_error_invalid, |
4121 | "cannot handle NaN/infty polynomial" , |
4122 | return isl_term_free(term)); |
4123 | |
4124 | if (is_cst) { |
4125 | isl_poly_cst *cst; |
4126 | cst = isl_poly_as_cst(poly); |
4127 | if (!cst) |
4128 | goto error; |
4129 | term = isl_term_cow(term); |
4130 | if (!term) |
4131 | goto error; |
4132 | isl_int_set(term->n, cst->n); |
4133 | isl_int_set(term->d, cst->d); |
4134 | if (fn(isl_term_copy(term), user) < 0) |
4135 | goto error; |
4136 | return term; |
4137 | } |
4138 | |
4139 | rec = isl_poly_as_rec(poly); |
4140 | if (!rec) |
4141 | goto error; |
4142 | |
4143 | for (i = 0; i < rec->n; ++i) { |
4144 | term = isl_term_cow(term); |
4145 | if (!term) |
4146 | goto error; |
4147 | term->pow[poly->var] = i; |
4148 | term = isl_poly_foreach_term(poly: rec->p[i], fn, term, user); |
4149 | if (!term) |
4150 | goto error; |
4151 | } |
4152 | term = isl_term_cow(term); |
4153 | if (!term) |
4154 | return NULL; |
4155 | term->pow[poly->var] = 0; |
4156 | |
4157 | return term; |
4158 | error: |
4159 | isl_term_free(term); |
4160 | return NULL; |
4161 | } |
4162 | |
4163 | isl_stat isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp, |
4164 | isl_stat (*fn)(__isl_take isl_term *term, void *user), void *user) |
4165 | { |
4166 | isl_term *term; |
4167 | |
4168 | if (!qp) |
4169 | return isl_stat_error; |
4170 | |
4171 | term = isl_term_alloc(space: isl_space_copy(space: qp->dim), div: isl_mat_copy(mat: qp->div)); |
4172 | if (!term) |
4173 | return isl_stat_error; |
4174 | |
4175 | term = isl_poly_foreach_term(poly: qp->poly, fn, term, user); |
4176 | |
4177 | isl_term_free(term); |
4178 | |
4179 | return term ? isl_stat_ok : isl_stat_error; |
4180 | } |
4181 | |
4182 | __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term) |
4183 | { |
4184 | isl_poly *poly; |
4185 | isl_qpolynomial *qp; |
4186 | int i; |
4187 | isl_size n; |
4188 | |
4189 | n = isl_term_dim(term, type: isl_dim_all); |
4190 | if (n < 0) |
4191 | term = isl_term_free(term); |
4192 | if (!term) |
4193 | return NULL; |
4194 | |
4195 | poly = isl_poly_rat_cst(ctx: term->dim->ctx, n: term->n, d: term->d); |
4196 | for (i = 0; i < n; ++i) { |
4197 | if (!term->pow[i]) |
4198 | continue; |
4199 | poly = isl_poly_mul(poly1: poly, |
4200 | poly2: isl_poly_var_pow(ctx: term->dim->ctx, pos: i, power: term->pow[i])); |
4201 | } |
4202 | |
4203 | qp = isl_qpolynomial_alloc(space: isl_space_copy(space: term->dim), |
4204 | n_div: term->div->n_row, poly); |
4205 | if (!qp) |
4206 | goto error; |
4207 | isl_mat_free(mat: qp->div); |
4208 | qp->div = isl_mat_copy(mat: term->div); |
4209 | if (!qp->div) |
4210 | goto error; |
4211 | |
4212 | isl_term_free(term); |
4213 | return qp; |
4214 | error: |
4215 | isl_qpolynomial_free(qp); |
4216 | isl_term_free(term); |
4217 | return NULL; |
4218 | } |
4219 | |
4220 | __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp, |
4221 | __isl_take isl_space *space) |
4222 | { |
4223 | int i; |
4224 | int ; |
4225 | isl_size total, d_set, d_qp; |
4226 | |
4227 | if (!qp || !space) |
4228 | goto error; |
4229 | |
4230 | if (isl_space_is_equal(space1: qp->dim, space2: space)) { |
4231 | isl_space_free(space); |
4232 | return qp; |
4233 | } |
4234 | |
4235 | qp = isl_qpolynomial_cow(qp); |
4236 | if (!qp) |
4237 | goto error; |
4238 | |
4239 | d_set = isl_space_dim(space, type: isl_dim_set); |
4240 | d_qp = isl_qpolynomial_domain_dim(qp, type: isl_dim_set); |
4241 | extra = d_set - d_qp; |
4242 | total = isl_space_dim(space: qp->dim, type: isl_dim_all); |
4243 | if (d_set < 0 || d_qp < 0 || total < 0) |
4244 | goto error; |
4245 | if (qp->div->n_row) { |
4246 | int *exp; |
4247 | |
4248 | exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); |
4249 | if (!exp) |
4250 | goto error; |
4251 | for (i = 0; i < qp->div->n_row; ++i) |
4252 | exp[i] = extra + i; |
4253 | qp->poly = expand(poly: qp->poly, exp, first: total); |
4254 | free(ptr: exp); |
4255 | if (!qp->poly) |
4256 | goto error; |
4257 | } |
4258 | qp->div = isl_mat_insert_cols(mat: qp->div, col: 2 + total, n: extra); |
4259 | if (!qp->div) |
4260 | goto error; |
4261 | for (i = 0; i < qp->div->n_row; ++i) |
4262 | isl_seq_clr(p: qp->div->row[i] + 2 + total, len: extra); |
4263 | |
4264 | isl_space_free(space: qp->dim); |
4265 | qp->dim = space; |
4266 | |
4267 | return qp; |
4268 | error: |
4269 | isl_space_free(space); |
4270 | isl_qpolynomial_free(qp); |
4271 | return NULL; |
4272 | } |
4273 | |
4274 | /* For each parameter or variable that does not appear in qp, |
4275 | * first eliminate the variable from all constraints and then set it to zero. |
4276 | */ |
4277 | static __isl_give isl_set *fix_inactive(__isl_take isl_set *set, |
4278 | __isl_keep isl_qpolynomial *qp) |
4279 | { |
4280 | int *active = NULL; |
4281 | int i; |
4282 | isl_size d; |
4283 | isl_size nparam; |
4284 | isl_size nvar; |
4285 | |
4286 | d = isl_set_dim(set, type: isl_dim_all); |
4287 | if (d < 0 || !qp) |
4288 | goto error; |
4289 | |
4290 | active = isl_calloc_array(set->ctx, int, d); |
4291 | if (set_active(qp, active) < 0) |
4292 | goto error; |
4293 | |
4294 | for (i = 0; i < d; ++i) |
4295 | if (!active[i]) |
4296 | break; |
4297 | |
4298 | if (i == d) { |
4299 | free(ptr: active); |
4300 | return set; |
4301 | } |
4302 | |
4303 | nparam = isl_set_dim(set, type: isl_dim_param); |
4304 | nvar = isl_set_dim(set, type: isl_dim_set); |
4305 | if (nparam < 0 || nvar < 0) |
4306 | goto error; |
4307 | for (i = 0; i < nparam; ++i) { |
4308 | if (active[i]) |
4309 | continue; |
4310 | set = isl_set_eliminate(set, type: isl_dim_param, first: i, n: 1); |
4311 | set = isl_set_fix_si(set, type: isl_dim_param, pos: i, value: 0); |
4312 | } |
4313 | for (i = 0; i < nvar; ++i) { |
4314 | if (active[nparam + i]) |
4315 | continue; |
4316 | set = isl_set_eliminate(set, type: isl_dim_set, first: i, n: 1); |
4317 | set = isl_set_fix_si(set, type: isl_dim_set, pos: i, value: 0); |
4318 | } |
4319 | |
4320 | free(ptr: active); |
4321 | |
4322 | return set; |
4323 | error: |
4324 | free(ptr: active); |
4325 | isl_set_free(set); |
4326 | return NULL; |
4327 | } |
4328 | |
4329 | struct isl_opt_data { |
4330 | isl_qpolynomial *qp; |
4331 | int first; |
4332 | isl_val *opt; |
4333 | int max; |
4334 | }; |
4335 | |
4336 | static isl_stat opt_fn(__isl_take isl_point *pnt, void *user) |
4337 | { |
4338 | struct isl_opt_data *data = (struct isl_opt_data *)user; |
4339 | isl_val *val; |
4340 | |
4341 | val = isl_qpolynomial_eval(qp: isl_qpolynomial_copy(qp: data->qp), pnt); |
4342 | if (data->first) { |
4343 | data->first = 0; |
4344 | data->opt = val; |
4345 | } else if (data->max) { |
4346 | data->opt = isl_val_max(v1: data->opt, v2: val); |
4347 | } else { |
4348 | data->opt = isl_val_min(v1: data->opt, v2: val); |
4349 | } |
4350 | |
4351 | return isl_stat_ok; |
4352 | } |
4353 | |
4354 | __isl_give isl_val *isl_qpolynomial_opt_on_domain( |
4355 | __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max) |
4356 | { |
4357 | struct isl_opt_data data = { NULL, 1, NULL, max }; |
4358 | isl_bool is_cst; |
4359 | |
4360 | if (!set || !qp) |
4361 | goto error; |
4362 | |
4363 | is_cst = isl_poly_is_cst(poly: qp->poly); |
4364 | if (is_cst < 0) |
4365 | goto error; |
4366 | if (is_cst) { |
4367 | isl_set_free(set); |
4368 | data.opt = isl_qpolynomial_get_constant_val(qp); |
4369 | isl_qpolynomial_free(qp); |
4370 | return data.opt; |
4371 | } |
4372 | |
4373 | set = fix_inactive(set, qp); |
4374 | |
4375 | data.qp = qp; |
4376 | if (isl_set_foreach_point(set, fn: opt_fn, user: &data) < 0) |
4377 | goto error; |
4378 | |
4379 | if (data.first) |
4380 | data.opt = isl_val_zero(ctx: isl_set_get_ctx(set)); |
4381 | |
4382 | isl_set_free(set); |
4383 | isl_qpolynomial_free(qp); |
4384 | return data.opt; |
4385 | error: |
4386 | isl_set_free(set); |
4387 | isl_qpolynomial_free(qp); |
4388 | isl_val_free(v: data.opt); |
4389 | return NULL; |
4390 | } |
4391 | |
4392 | __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain( |
4393 | __isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph) |
4394 | { |
4395 | int i; |
4396 | int n_sub; |
4397 | isl_ctx *ctx; |
4398 | isl_space *space; |
4399 | isl_poly **subs; |
4400 | isl_mat *mat, *diag; |
4401 | |
4402 | qp = isl_qpolynomial_cow(qp); |
4403 | |
4404 | space = isl_qpolynomial_peek_domain_space(qp); |
4405 | if (isl_morph_check_applies(morph, space) < 0) |
4406 | goto error; |
4407 | |
4408 | ctx = isl_qpolynomial_get_ctx(qp); |
4409 | n_sub = morph->inv->n_row - 1; |
4410 | if (morph->inv->n_row != morph->inv->n_col) |
4411 | n_sub += qp->div->n_row; |
4412 | subs = isl_calloc_array(ctx, struct isl_poly *, n_sub); |
4413 | if (n_sub && !subs) |
4414 | goto error; |
4415 | |
4416 | for (i = 0; 1 + i < morph->inv->n_row; ++i) |
4417 | subs[i] = isl_poly_from_affine(ctx, f: morph->inv->row[1 + i], |
4418 | denom: morph->inv->row[0][0], len: morph->inv->n_col); |
4419 | if (morph->inv->n_row != morph->inv->n_col) |
4420 | for (i = 0; i < qp->div->n_row; ++i) |
4421 | subs[morph->inv->n_row - 1 + i] = |
4422 | isl_poly_var_pow(ctx, pos: morph->inv->n_col - 1 + i, power: 1); |
4423 | |
4424 | qp->poly = isl_poly_subs(poly: qp->poly, first: 0, n: n_sub, subs); |
4425 | |
4426 | for (i = 0; i < n_sub; ++i) |
4427 | isl_poly_free(poly: subs[i]); |
4428 | free(ptr: subs); |
4429 | |
4430 | diag = isl_mat_diag(ctx, n_row: 1, d: morph->inv->row[0][0]); |
4431 | mat = isl_mat_diagonal(mat1: diag, mat2: isl_mat_copy(mat: morph->inv)); |
4432 | diag = isl_mat_diag(ctx, n_row: qp->div->n_row, d: morph->inv->row[0][0]); |
4433 | mat = isl_mat_diagonal(mat1: mat, mat2: diag); |
4434 | qp->div = isl_mat_product(left: qp->div, right: mat); |
4435 | isl_space_free(space: qp->dim); |
4436 | qp->dim = isl_space_copy(space: morph->ran->dim); |
4437 | |
4438 | if (!qp->poly || !qp->div || !qp->dim) |
4439 | goto error; |
4440 | |
4441 | isl_morph_free(morph); |
4442 | |
4443 | return qp; |
4444 | error: |
4445 | isl_qpolynomial_free(qp); |
4446 | isl_morph_free(morph); |
4447 | return NULL; |
4448 | } |
4449 | |
4450 | __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul( |
4451 | __isl_take isl_union_pw_qpolynomial *upwqp1, |
4452 | __isl_take isl_union_pw_qpolynomial *upwqp2) |
4453 | { |
4454 | return isl_union_pw_qpolynomial_match_bin_op(u1: upwqp1, u2: upwqp2, |
4455 | fn: &isl_pw_qpolynomial_mul); |
4456 | } |
4457 | |
4458 | /* Reorder the dimension of "qp" according to the given reordering. |
4459 | */ |
4460 | __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain( |
4461 | __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r) |
4462 | { |
4463 | isl_space *space; |
4464 | |
4465 | qp = isl_qpolynomial_cow(qp); |
4466 | if (!qp) |
4467 | goto error; |
4468 | |
4469 | r = isl_reordering_extend(exp: r, extra: qp->div->n_row); |
4470 | if (!r) |
4471 | goto error; |
4472 | |
4473 | qp->div = isl_local_reorder(local: qp->div, r: isl_reordering_copy(exp: r)); |
4474 | if (!qp->div) |
4475 | goto error; |
4476 | |
4477 | qp->poly = reorder(poly: qp->poly, r: r->pos); |
4478 | if (!qp->poly) |
4479 | goto error; |
4480 | |
4481 | space = isl_reordering_get_space(r); |
4482 | qp = isl_qpolynomial_reset_domain_space(qp, space); |
4483 | |
4484 | isl_reordering_free(exp: r); |
4485 | return qp; |
4486 | error: |
4487 | isl_qpolynomial_free(qp); |
4488 | isl_reordering_free(exp: r); |
4489 | return NULL; |
4490 | } |
4491 | |
4492 | __isl_give isl_qpolynomial *isl_qpolynomial_align_params( |
4493 | __isl_take isl_qpolynomial *qp, __isl_take isl_space *model) |
4494 | { |
4495 | isl_space *domain_space; |
4496 | isl_bool equal_params; |
4497 | |
4498 | domain_space = isl_qpolynomial_peek_domain_space(qp); |
4499 | equal_params = isl_space_has_equal_params(space1: domain_space, space2: model); |
4500 | if (equal_params < 0) |
4501 | goto error; |
4502 | if (!equal_params) { |
4503 | isl_reordering *exp; |
4504 | |
4505 | exp = isl_parameter_alignment_reordering(alignee: domain_space, aligner: model); |
4506 | qp = isl_qpolynomial_realign_domain(qp, r: exp); |
4507 | } |
4508 | |
4509 | isl_space_free(space: model); |
4510 | return qp; |
4511 | error: |
4512 | isl_space_free(space: model); |
4513 | isl_qpolynomial_free(qp); |
4514 | return NULL; |
4515 | } |
4516 | |
4517 | struct isl_split_periods_data { |
4518 | int max_periods; |
4519 | isl_pw_qpolynomial *res; |
4520 | }; |
4521 | |
4522 | /* Create a slice where the integer division "div" has the fixed value "v". |
4523 | * In particular, if "div" refers to floor(f/m), then create a slice |
4524 | * |
4525 | * m v <= f <= m v + (m - 1) |
4526 | * |
4527 | * or |
4528 | * |
4529 | * f - m v >= 0 |
4530 | * -f + m v + (m - 1) >= 0 |
4531 | */ |
4532 | static __isl_give isl_set *set_div_slice(__isl_take isl_space *space, |
4533 | __isl_keep isl_qpolynomial *qp, int div, isl_int v) |
4534 | { |
4535 | isl_size total; |
4536 | isl_basic_set *bset = NULL; |
4537 | int k; |
4538 | |
4539 | total = isl_space_dim(space, type: isl_dim_all); |
4540 | if (total < 0 || !qp) |
4541 | goto error; |
4542 | |
4543 | bset = isl_basic_set_alloc_space(space: isl_space_copy(space), extra: 0, n_eq: 0, n_ineq: 2); |
4544 | |
4545 | k = isl_basic_set_alloc_inequality(bset); |
4546 | if (k < 0) |
4547 | goto error; |
4548 | isl_seq_cpy(dst: bset->ineq[k], src: qp->div->row[div] + 1, len: 1 + total); |
4549 | isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]); |
4550 | |
4551 | k = isl_basic_set_alloc_inequality(bset); |
4552 | if (k < 0) |
4553 | goto error; |
4554 | isl_seq_neg(dst: bset->ineq[k], src: qp->div->row[div] + 1, len: 1 + total); |
4555 | isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]); |
4556 | isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]); |
4557 | isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1); |
4558 | |
4559 | isl_space_free(space); |
4560 | return isl_set_from_basic_set(bset); |
4561 | error: |
4562 | isl_basic_set_free(bset); |
4563 | isl_space_free(space); |
4564 | return NULL; |
4565 | } |
4566 | |
4567 | static isl_stat split_periods(__isl_take isl_set *set, |
4568 | __isl_take isl_qpolynomial *qp, void *user); |
4569 | |
4570 | /* Create a slice of the domain "set" such that integer division "div" |
4571 | * has the fixed value "v" and add the results to data->res, |
4572 | * replacing the integer division by "v" in "qp". |
4573 | */ |
4574 | static isl_stat set_div(__isl_take isl_set *set, |
4575 | __isl_take isl_qpolynomial *qp, int div, isl_int v, |
4576 | struct isl_split_periods_data *data) |
4577 | { |
4578 | int i; |
4579 | isl_size div_pos; |
4580 | isl_set *slice; |
4581 | isl_poly *cst; |
4582 | |
4583 | slice = set_div_slice(space: isl_set_get_space(set), qp, div, v); |
4584 | set = isl_set_intersect(set1: set, set2: slice); |
4585 | |
4586 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
4587 | if (div_pos < 0) |
4588 | goto error; |
4589 | |
4590 | for (i = div + 1; i < qp->div->n_row; ++i) { |
4591 | if (isl_int_is_zero(qp->div->row[i][2 + div_pos + div])) |
4592 | continue; |
4593 | isl_int_addmul(qp->div->row[i][1], |
4594 | qp->div->row[i][2 + div_pos + div], v); |
4595 | isl_int_set_si(qp->div->row[i][2 + div_pos + div], 0); |
4596 | } |
4597 | |
4598 | cst = isl_poly_rat_cst(ctx: qp->dim->ctx, n: v, d: qp->dim->ctx->one); |
4599 | qp = substitute_div(qp, div, s: cst); |
4600 | |
4601 | return split_periods(set, qp, user: data); |
4602 | error: |
4603 | isl_set_free(set); |
4604 | isl_qpolynomial_free(qp); |
4605 | return isl_stat_error; |
4606 | } |
4607 | |
4608 | /* Split the domain "set" such that integer division "div" |
4609 | * has a fixed value (ranging from "min" to "max") on each slice |
4610 | * and add the results to data->res. |
4611 | */ |
4612 | static isl_stat split_div(__isl_take isl_set *set, |
4613 | __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max, |
4614 | struct isl_split_periods_data *data) |
4615 | { |
4616 | for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) { |
4617 | isl_set *set_i = isl_set_copy(set); |
4618 | isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp); |
4619 | |
4620 | if (set_div(set: set_i, qp: qp_i, div, v: min, data) < 0) |
4621 | goto error; |
4622 | } |
4623 | isl_set_free(set); |
4624 | isl_qpolynomial_free(qp); |
4625 | return isl_stat_ok; |
4626 | error: |
4627 | isl_set_free(set); |
4628 | isl_qpolynomial_free(qp); |
4629 | return isl_stat_error; |
4630 | } |
4631 | |
4632 | /* If "qp" refers to any integer division |
4633 | * that can only attain "max_periods" distinct values on "set" |
4634 | * then split the domain along those distinct values. |
4635 | * Add the results (or the original if no splitting occurs) |
4636 | * to data->res. |
4637 | */ |
4638 | static isl_stat split_periods(__isl_take isl_set *set, |
4639 | __isl_take isl_qpolynomial *qp, void *user) |
4640 | { |
4641 | int i; |
4642 | isl_pw_qpolynomial *pwqp; |
4643 | struct isl_split_periods_data *data; |
4644 | isl_int min, max; |
4645 | isl_size div_pos; |
4646 | isl_stat r = isl_stat_ok; |
4647 | |
4648 | data = (struct isl_split_periods_data *)user; |
4649 | |
4650 | if (!set || !qp) |
4651 | goto error; |
4652 | |
4653 | if (qp->div->n_row == 0) { |
4654 | pwqp = isl_pw_qpolynomial_alloc(set, el: qp); |
4655 | data->res = isl_pw_qpolynomial_add_disjoint(pw1: data->res, pw2: pwqp); |
4656 | return isl_stat_ok; |
4657 | } |
4658 | |
4659 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
4660 | if (div_pos < 0) |
4661 | goto error; |
4662 | |
4663 | isl_int_init(min); |
4664 | isl_int_init(max); |
4665 | for (i = 0; i < qp->div->n_row; ++i) { |
4666 | enum isl_lp_result lp_res; |
4667 | |
4668 | if (isl_seq_first_non_zero(p: qp->div->row[i] + 2 + div_pos, |
4669 | len: qp->div->n_row) != -1) |
4670 | continue; |
4671 | |
4672 | lp_res = isl_set_solve_lp(set, max: 0, f: qp->div->row[i] + 1, |
4673 | denom: set->ctx->one, opt: &min, NULL, NULL); |
4674 | if (lp_res == isl_lp_error) |
4675 | goto error2; |
4676 | if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty) |
4677 | continue; |
4678 | isl_int_fdiv_q(min, min, qp->div->row[i][0]); |
4679 | |
4680 | lp_res = isl_set_solve_lp(set, max: 1, f: qp->div->row[i] + 1, |
4681 | denom: set->ctx->one, opt: &max, NULL, NULL); |
4682 | if (lp_res == isl_lp_error) |
4683 | goto error2; |
4684 | if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty) |
4685 | continue; |
4686 | isl_int_fdiv_q(max, max, qp->div->row[i][0]); |
4687 | |
4688 | isl_int_sub(max, max, min); |
4689 | if (isl_int_cmp_si(max, data->max_periods) < 0) { |
4690 | isl_int_add(max, max, min); |
4691 | break; |
4692 | } |
4693 | } |
4694 | |
4695 | if (i < qp->div->n_row) { |
4696 | r = split_div(set, qp, div: i, min, max, data); |
4697 | } else { |
4698 | pwqp = isl_pw_qpolynomial_alloc(set, el: qp); |
4699 | data->res = isl_pw_qpolynomial_add_disjoint(pw1: data->res, pw2: pwqp); |
4700 | } |
4701 | |
4702 | isl_int_clear(max); |
4703 | isl_int_clear(min); |
4704 | |
4705 | return r; |
4706 | error2: |
4707 | isl_int_clear(max); |
4708 | isl_int_clear(min); |
4709 | error: |
4710 | isl_set_free(set); |
4711 | isl_qpolynomial_free(qp); |
4712 | return isl_stat_error; |
4713 | } |
4714 | |
4715 | /* If any quasi-polynomial in pwqp refers to any integer division |
4716 | * that can only attain "max_periods" distinct values on its domain |
4717 | * then split the domain along those distinct values. |
4718 | */ |
4719 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods( |
4720 | __isl_take isl_pw_qpolynomial *pwqp, int max_periods) |
4721 | { |
4722 | struct isl_split_periods_data data; |
4723 | |
4724 | data.max_periods = max_periods; |
4725 | data.res = isl_pw_qpolynomial_zero(space: isl_pw_qpolynomial_get_space(pw: pwqp)); |
4726 | |
4727 | if (isl_pw_qpolynomial_foreach_piece(pw: pwqp, fn: &split_periods, user: &data) < 0) |
4728 | goto error; |
4729 | |
4730 | isl_pw_qpolynomial_free(pw: pwqp); |
4731 | |
4732 | return data.res; |
4733 | error: |
4734 | isl_pw_qpolynomial_free(pw: data.res); |
4735 | isl_pw_qpolynomial_free(pw: pwqp); |
4736 | return NULL; |
4737 | } |
4738 | |
4739 | /* Construct a piecewise quasipolynomial that is constant on the given |
4740 | * domain. In particular, it is |
4741 | * 0 if cst == 0 |
4742 | * 1 if cst == 1 |
4743 | * infinity if cst == -1 |
4744 | * |
4745 | * If cst == -1, then explicitly check whether the domain is empty and, |
4746 | * if so, return 0 instead. |
4747 | */ |
4748 | static __isl_give isl_pw_qpolynomial *constant_on_domain( |
4749 | __isl_take isl_basic_set *bset, int cst) |
4750 | { |
4751 | isl_space *space; |
4752 | isl_qpolynomial *qp; |
4753 | |
4754 | if (cst < 0 && isl_basic_set_is_empty(bset) == isl_bool_true) |
4755 | cst = 0; |
4756 | if (!bset) |
4757 | return NULL; |
4758 | |
4759 | bset = isl_basic_set_params(bset); |
4760 | space = isl_basic_set_get_space(bset); |
4761 | if (cst < 0) |
4762 | qp = isl_qpolynomial_infty_on_domain(domain: space); |
4763 | else if (cst == 0) |
4764 | qp = isl_qpolynomial_zero_on_domain(domain: space); |
4765 | else |
4766 | qp = isl_qpolynomial_one_on_domain(domain: space); |
4767 | return isl_pw_qpolynomial_alloc(set: isl_set_from_basic_set(bset), el: qp); |
4768 | } |
4769 | |
4770 | /* Internal data structure for multiplicative_call_factor_pw_qpolynomial. |
4771 | * "fn" is the function that is called on each factor. |
4772 | * "pwpq" collects the results. |
4773 | */ |
4774 | struct isl_multiplicative_call_data_pw_qpolynomial { |
4775 | __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset); |
4776 | isl_pw_qpolynomial *pwqp; |
4777 | }; |
4778 | |
4779 | /* Call "fn" on "bset" and return the result, |
4780 | * but first check if "bset" has any redundant constraints or |
4781 | * implicit equality constraints. |
4782 | * If so, there may be further opportunities for detecting factors or |
4783 | * removing equality constraints, so recursively call |
4784 | * the top-level isl_basic_set_multiplicative_call. |
4785 | */ |
4786 | static __isl_give isl_pw_qpolynomial *multiplicative_call_base( |
4787 | __isl_take isl_basic_set *bset, |
4788 | __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset)) |
4789 | { |
4790 | isl_size n1, n2, n_eq; |
4791 | |
4792 | n1 = isl_basic_set_n_constraint(bset); |
4793 | if (n1 < 0) |
4794 | bset = isl_basic_set_free(bset); |
4795 | bset = isl_basic_set_remove_redundancies(bset); |
4796 | bset = isl_basic_set_detect_equalities(bset); |
4797 | n2 = isl_basic_set_n_constraint(bset); |
4798 | n_eq = isl_basic_set_n_equality(bset); |
4799 | if (n2 < 0 || n_eq < 0) |
4800 | bset = isl_basic_set_free(bset); |
4801 | else if (n2 < n1 || n_eq > 0) |
4802 | return isl_basic_set_multiplicative_call(bset, fn); |
4803 | return fn(bset); |
4804 | } |
4805 | |
4806 | /* isl_factorizer_every_factor_basic_set callback that applies |
4807 | * data->fn to the factor "bset" and multiplies in the result |
4808 | * in data->pwqp. |
4809 | */ |
4810 | static isl_bool multiplicative_call_factor_pw_qpolynomial( |
4811 | __isl_keep isl_basic_set *bset, void *user) |
4812 | { |
4813 | struct isl_multiplicative_call_data_pw_qpolynomial *data = user; |
4814 | isl_pw_qpolynomial *res; |
4815 | |
4816 | bset = isl_basic_set_copy(bset); |
4817 | res = multiplicative_call_base(bset, fn: data->fn); |
4818 | data->pwqp = isl_pw_qpolynomial_mul(pwqp1: data->pwqp, pwqp2: res); |
4819 | if (!data->pwqp) |
4820 | return isl_bool_error; |
4821 | |
4822 | return isl_bool_true; |
4823 | } |
4824 | |
4825 | /* Factor bset, call fn on each of the factors and return the product. |
4826 | * |
4827 | * If no factors can be found, simply call fn on the input. |
4828 | * Otherwise, construct the factors based on the factorizer, |
4829 | * call fn on each factor and compute the product. |
4830 | */ |
4831 | static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call( |
4832 | __isl_take isl_basic_set *bset, |
4833 | __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset)) |
4834 | { |
4835 | struct isl_multiplicative_call_data_pw_qpolynomial data = { fn }; |
4836 | isl_space *space; |
4837 | isl_set *set; |
4838 | isl_factorizer *f; |
4839 | isl_qpolynomial *qp; |
4840 | isl_bool every; |
4841 | |
4842 | f = isl_basic_set_factorizer(bset); |
4843 | if (!f) |
4844 | goto error; |
4845 | if (f->n_group == 0) { |
4846 | isl_factorizer_free(f); |
4847 | return multiplicative_call_base(bset, fn); |
4848 | } |
4849 | |
4850 | space = isl_basic_set_get_space(bset); |
4851 | space = isl_space_params(space); |
4852 | set = isl_set_universe(space: isl_space_copy(space)); |
4853 | qp = isl_qpolynomial_one_on_domain(domain: space); |
4854 | data.pwqp = isl_pw_qpolynomial_alloc(set, el: qp); |
4855 | |
4856 | every = isl_factorizer_every_factor_basic_set(f, |
4857 | test: &multiplicative_call_factor_pw_qpolynomial, user: &data); |
4858 | if (every < 0) |
4859 | data.pwqp = isl_pw_qpolynomial_free(pw: data.pwqp); |
4860 | |
4861 | isl_basic_set_free(bset); |
4862 | isl_factorizer_free(f); |
4863 | |
4864 | return data.pwqp; |
4865 | error: |
4866 | isl_basic_set_free(bset); |
4867 | return NULL; |
4868 | } |
4869 | |
4870 | /* Factor bset, call fn on each of the factors and return the product. |
4871 | * The function is assumed to evaluate to zero on empty domains, |
4872 | * to one on zero-dimensional domains and to infinity on unbounded domains |
4873 | * and will not be called explicitly on zero-dimensional or unbounded domains. |
4874 | * |
4875 | * We first check for some special cases and remove all equalities. |
4876 | * Then we hand over control to compressed_multiplicative_call. |
4877 | */ |
4878 | __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call( |
4879 | __isl_take isl_basic_set *bset, |
4880 | __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset)) |
4881 | { |
4882 | isl_bool bounded; |
4883 | isl_size dim; |
4884 | isl_morph *morph; |
4885 | isl_pw_qpolynomial *pwqp; |
4886 | |
4887 | if (!bset) |
4888 | return NULL; |
4889 | |
4890 | if (isl_basic_set_plain_is_empty(bset)) |
4891 | return constant_on_domain(bset, cst: 0); |
4892 | |
4893 | dim = isl_basic_set_dim(bset, type: isl_dim_set); |
4894 | if (dim < 0) |
4895 | goto error; |
4896 | if (dim == 0) |
4897 | return constant_on_domain(bset, cst: 1); |
4898 | |
4899 | bounded = isl_basic_set_is_bounded(bset); |
4900 | if (bounded < 0) |
4901 | goto error; |
4902 | if (!bounded) |
4903 | return constant_on_domain(bset, cst: -1); |
4904 | |
4905 | if (bset->n_eq == 0) |
4906 | return compressed_multiplicative_call(bset, fn); |
4907 | |
4908 | morph = isl_basic_set_full_compression(bset); |
4909 | bset = isl_morph_basic_set(morph: isl_morph_copy(morph), bset); |
4910 | |
4911 | pwqp = compressed_multiplicative_call(bset, fn); |
4912 | |
4913 | morph = isl_morph_dom_params(morph); |
4914 | morph = isl_morph_ran_params(morph); |
4915 | morph = isl_morph_inverse(morph); |
4916 | |
4917 | pwqp = isl_pw_qpolynomial_morph_domain(pw: pwqp, morph); |
4918 | |
4919 | return pwqp; |
4920 | error: |
4921 | isl_basic_set_free(bset); |
4922 | return NULL; |
4923 | } |
4924 | |
4925 | /* Drop all floors in "qp", turning each integer division [a/m] into |
4926 | * a rational division a/m. If "down" is set, then the integer division |
4927 | * is replaced by (a-(m-1))/m instead. |
4928 | */ |
4929 | static __isl_give isl_qpolynomial *qp_drop_floors( |
4930 | __isl_take isl_qpolynomial *qp, int down) |
4931 | { |
4932 | int i; |
4933 | isl_poly *s; |
4934 | |
4935 | if (!qp) |
4936 | return NULL; |
4937 | if (qp->div->n_row == 0) |
4938 | return qp; |
4939 | |
4940 | qp = isl_qpolynomial_cow(qp); |
4941 | if (!qp) |
4942 | return NULL; |
4943 | |
4944 | for (i = qp->div->n_row - 1; i >= 0; --i) { |
4945 | if (down) { |
4946 | isl_int_sub(qp->div->row[i][1], |
4947 | qp->div->row[i][1], qp->div->row[i][0]); |
4948 | isl_int_add_ui(qp->div->row[i][1], |
4949 | qp->div->row[i][1], 1); |
4950 | } |
4951 | s = isl_poly_from_affine(ctx: qp->dim->ctx, f: qp->div->row[i] + 1, |
4952 | denom: qp->div->row[i][0], len: qp->div->n_col - 1); |
4953 | qp = substitute_div(qp, div: i, s); |
4954 | if (!qp) |
4955 | return NULL; |
4956 | } |
4957 | |
4958 | return qp; |
4959 | } |
4960 | |
4961 | /* Drop all floors in "pwqp", turning each integer division [a/m] into |
4962 | * a rational division a/m. |
4963 | */ |
4964 | static __isl_give isl_pw_qpolynomial *pwqp_drop_floors( |
4965 | __isl_take isl_pw_qpolynomial *pwqp) |
4966 | { |
4967 | int i; |
4968 | |
4969 | if (!pwqp) |
4970 | return NULL; |
4971 | |
4972 | if (isl_pw_qpolynomial_is_zero(pw: pwqp)) |
4973 | return pwqp; |
4974 | |
4975 | pwqp = isl_pw_qpolynomial_cow(pw: pwqp); |
4976 | if (!pwqp) |
4977 | return NULL; |
4978 | |
4979 | for (i = 0; i < pwqp->n; ++i) { |
4980 | pwqp->p[i].qp = qp_drop_floors(qp: pwqp->p[i].qp, down: 0); |
4981 | if (!pwqp->p[i].qp) |
4982 | goto error; |
4983 | } |
4984 | |
4985 | return pwqp; |
4986 | error: |
4987 | isl_pw_qpolynomial_free(pw: pwqp); |
4988 | return NULL; |
4989 | } |
4990 | |
4991 | /* Adjust all the integer divisions in "qp" such that they are at least |
4992 | * one over the given orthant (identified by "signs"). This ensures |
4993 | * that they will still be non-negative even after subtracting (m-1)/m. |
4994 | * |
4995 | * In particular, f is replaced by f' + v, changing f = [a/m] |
4996 | * to f' = [(a - m v)/m]. |
4997 | * If the constant term k in a is smaller than m, |
4998 | * the constant term of v is set to floor(k/m) - 1. |
4999 | * For any other term, if the coefficient c and the variable x have |
5000 | * the same sign, then no changes are needed. |
5001 | * Otherwise, if the variable is positive (and c is negative), |
5002 | * then the coefficient of x in v is set to floor(c/m). |
5003 | * If the variable is negative (and c is positive), |
5004 | * then the coefficient of x in v is set to ceil(c/m). |
5005 | */ |
5006 | static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp, |
5007 | int *signs) |
5008 | { |
5009 | int i, j; |
5010 | isl_size div_pos; |
5011 | isl_vec *v = NULL; |
5012 | isl_poly *s; |
5013 | |
5014 | qp = isl_qpolynomial_cow(qp); |
5015 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
5016 | if (div_pos < 0) |
5017 | return isl_qpolynomial_free(qp); |
5018 | qp->div = isl_mat_cow(mat: qp->div); |
5019 | if (!qp->div) |
5020 | goto error; |
5021 | |
5022 | v = isl_vec_alloc(ctx: qp->div->ctx, size: qp->div->n_col - 1); |
5023 | |
5024 | for (i = 0; i < qp->div->n_row; ++i) { |
5025 | isl_int *row = qp->div->row[i]; |
5026 | v = isl_vec_clr(vec: v); |
5027 | if (!v) |
5028 | goto error; |
5029 | if (isl_int_lt(row[1], row[0])) { |
5030 | isl_int_fdiv_q(v->el[0], row[1], row[0]); |
5031 | isl_int_sub_ui(v->el[0], v->el[0], 1); |
5032 | isl_int_submul(row[1], row[0], v->el[0]); |
5033 | } |
5034 | for (j = 0; j < div_pos; ++j) { |
5035 | if (isl_int_sgn(row[2 + j]) * signs[j] >= 0) |
5036 | continue; |
5037 | if (signs[j] < 0) |
5038 | isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]); |
5039 | else |
5040 | isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]); |
5041 | isl_int_submul(row[2 + j], row[0], v->el[1 + j]); |
5042 | } |
5043 | for (j = 0; j < i; ++j) { |
5044 | if (isl_int_sgn(row[2 + div_pos + j]) >= 0) |
5045 | continue; |
5046 | isl_int_fdiv_q(v->el[1 + div_pos + j], |
5047 | row[2 + div_pos + j], row[0]); |
5048 | isl_int_submul(row[2 + div_pos + j], |
5049 | row[0], v->el[1 + div_pos + j]); |
5050 | } |
5051 | for (j = i + 1; j < qp->div->n_row; ++j) { |
5052 | if (isl_int_is_zero(qp->div->row[j][2 + div_pos + i])) |
5053 | continue; |
5054 | isl_seq_combine(dst: qp->div->row[j] + 1, |
5055 | m1: qp->div->ctx->one, src1: qp->div->row[j] + 1, |
5056 | m2: qp->div->row[j][2 + div_pos + i], src2: v->el, |
5057 | len: v->size); |
5058 | } |
5059 | isl_int_set_si(v->el[1 + div_pos + i], 1); |
5060 | s = isl_poly_from_affine(ctx: qp->dim->ctx, f: v->el, |
5061 | denom: qp->div->ctx->one, len: v->size); |
5062 | qp->poly = isl_poly_subs(poly: qp->poly, first: div_pos + i, n: 1, subs: &s); |
5063 | isl_poly_free(poly: s); |
5064 | if (!qp->poly) |
5065 | goto error; |
5066 | } |
5067 | |
5068 | isl_vec_free(vec: v); |
5069 | return qp; |
5070 | error: |
5071 | isl_vec_free(vec: v); |
5072 | isl_qpolynomial_free(qp); |
5073 | return NULL; |
5074 | } |
5075 | |
5076 | struct isl_to_poly_data { |
5077 | int sign; |
5078 | isl_pw_qpolynomial *res; |
5079 | isl_qpolynomial *qp; |
5080 | }; |
5081 | |
5082 | /* Appoximate data->qp by a polynomial on the orthant identified by "signs". |
5083 | * We first make all integer divisions positive and then split the |
5084 | * quasipolynomials into terms with sign data->sign (the direction |
5085 | * of the requested approximation) and terms with the opposite sign. |
5086 | * In the first set of terms, each integer division [a/m] is |
5087 | * overapproximated by a/m, while in the second it is underapproximated |
5088 | * by (a-(m-1))/m. |
5089 | */ |
5090 | static isl_stat to_polynomial_on_orthant(__isl_take isl_set *orthant, |
5091 | int *signs, void *user) |
5092 | { |
5093 | struct isl_to_poly_data *data = user; |
5094 | isl_pw_qpolynomial *t; |
5095 | isl_qpolynomial *qp, *up, *down; |
5096 | |
5097 | qp = isl_qpolynomial_copy(qp: data->qp); |
5098 | qp = make_divs_pos(qp, signs); |
5099 | |
5100 | up = isl_qpolynomial_terms_of_sign(poly: qp, signs, sign: data->sign); |
5101 | up = qp_drop_floors(qp: up, down: 0); |
5102 | down = isl_qpolynomial_terms_of_sign(poly: qp, signs, sign: -data->sign); |
5103 | down = qp_drop_floors(qp: down, down: 1); |
5104 | |
5105 | isl_qpolynomial_free(qp); |
5106 | qp = isl_qpolynomial_add(qp1: up, qp2: down); |
5107 | |
5108 | t = isl_pw_qpolynomial_alloc(set: orthant, el: qp); |
5109 | data->res = isl_pw_qpolynomial_add_disjoint(pw1: data->res, pw2: t); |
5110 | |
5111 | return isl_stat_ok; |
5112 | } |
5113 | |
5114 | /* Approximate each quasipolynomial by a polynomial. If "sign" is positive, |
5115 | * the polynomial will be an overapproximation. If "sign" is negative, |
5116 | * it will be an underapproximation. If "sign" is zero, the approximation |
5117 | * will lie somewhere in between. |
5118 | * |
5119 | * In particular, is sign == 0, we simply drop the floors, turning |
5120 | * the integer divisions into rational divisions. |
5121 | * Otherwise, we split the domains into orthants, make all integer divisions |
5122 | * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m, |
5123 | * depending on the requested sign and the sign of the term in which |
5124 | * the integer division appears. |
5125 | */ |
5126 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial( |
5127 | __isl_take isl_pw_qpolynomial *pwqp, int sign) |
5128 | { |
5129 | int i; |
5130 | struct isl_to_poly_data data; |
5131 | |
5132 | if (sign == 0) |
5133 | return pwqp_drop_floors(pwqp); |
5134 | |
5135 | if (!pwqp) |
5136 | return NULL; |
5137 | |
5138 | data.sign = sign; |
5139 | data.res = isl_pw_qpolynomial_zero(space: isl_pw_qpolynomial_get_space(pw: pwqp)); |
5140 | |
5141 | for (i = 0; i < pwqp->n; ++i) { |
5142 | if (pwqp->p[i].qp->div->n_row == 0) { |
5143 | isl_pw_qpolynomial *t; |
5144 | t = isl_pw_qpolynomial_alloc( |
5145 | set: isl_set_copy(set: pwqp->p[i].set), |
5146 | el: isl_qpolynomial_copy(qp: pwqp->p[i].qp)); |
5147 | data.res = isl_pw_qpolynomial_add_disjoint(pw1: data.res, pw2: t); |
5148 | continue; |
5149 | } |
5150 | data.qp = pwqp->p[i].qp; |
5151 | if (isl_set_foreach_orthant(set: pwqp->p[i].set, |
5152 | fn: &to_polynomial_on_orthant, user: &data) < 0) |
5153 | goto error; |
5154 | } |
5155 | |
5156 | isl_pw_qpolynomial_free(pw: pwqp); |
5157 | |
5158 | return data.res; |
5159 | error: |
5160 | isl_pw_qpolynomial_free(pw: pwqp); |
5161 | isl_pw_qpolynomial_free(pw: data.res); |
5162 | return NULL; |
5163 | } |
5164 | |
5165 | static __isl_give isl_pw_qpolynomial *poly_entry( |
5166 | __isl_take isl_pw_qpolynomial *pwqp, void *user) |
5167 | { |
5168 | int *sign = user; |
5169 | |
5170 | return isl_pw_qpolynomial_to_polynomial(pwqp, sign: *sign); |
5171 | } |
5172 | |
5173 | __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial( |
5174 | __isl_take isl_union_pw_qpolynomial *upwqp, int sign) |
5175 | { |
5176 | return isl_union_pw_qpolynomial_transform_inplace(u: upwqp, |
5177 | fn: &poly_entry, user: &sign); |
5178 | } |
5179 | |
5180 | __isl_give isl_basic_map *isl_basic_map_from_qpolynomial( |
5181 | __isl_take isl_qpolynomial *qp) |
5182 | { |
5183 | int i, k; |
5184 | isl_space *space; |
5185 | isl_vec *aff = NULL; |
5186 | isl_basic_map *bmap = NULL; |
5187 | isl_bool is_affine; |
5188 | unsigned pos; |
5189 | unsigned n_div; |
5190 | |
5191 | if (!qp) |
5192 | return NULL; |
5193 | is_affine = isl_poly_is_affine(poly: qp->poly); |
5194 | if (is_affine < 0) |
5195 | goto error; |
5196 | if (!is_affine) |
5197 | isl_die(qp->dim->ctx, isl_error_invalid, |
5198 | "input quasi-polynomial not affine" , goto error); |
5199 | aff = isl_qpolynomial_extract_affine(qp); |
5200 | if (!aff) |
5201 | goto error; |
5202 | space = isl_qpolynomial_get_space(qp); |
5203 | pos = 1 + isl_space_offset(space, type: isl_dim_out); |
5204 | n_div = qp->div->n_row; |
5205 | bmap = isl_basic_map_alloc_space(space, extra: n_div, n_eq: 1, n_ineq: 2 * n_div); |
5206 | |
5207 | for (i = 0; i < n_div; ++i) { |
5208 | k = isl_basic_map_alloc_div(bmap); |
5209 | if (k < 0) |
5210 | goto error; |
5211 | isl_seq_cpy(dst: bmap->div[k], src: qp->div->row[i], len: qp->div->n_col); |
5212 | isl_int_set_si(bmap->div[k][qp->div->n_col], 0); |
5213 | bmap = isl_basic_map_add_div_constraints(bmap, div: k); |
5214 | } |
5215 | k = isl_basic_map_alloc_equality(bmap); |
5216 | if (k < 0) |
5217 | goto error; |
5218 | isl_int_neg(bmap->eq[k][pos], aff->el[0]); |
5219 | isl_seq_cpy(dst: bmap->eq[k], src: aff->el + 1, len: pos); |
5220 | isl_seq_cpy(dst: bmap->eq[k] + pos + 1, src: aff->el + 1 + pos, len: n_div); |
5221 | |
5222 | isl_vec_free(vec: aff); |
5223 | isl_qpolynomial_free(qp); |
5224 | bmap = isl_basic_map_finalize(bmap); |
5225 | return bmap; |
5226 | error: |
5227 | isl_vec_free(vec: aff); |
5228 | isl_qpolynomial_free(qp); |
5229 | isl_basic_map_free(bmap); |
5230 | return NULL; |
5231 | } |
5232 | |