| 1 | /* |
| 2 | * Copyright 2010 INRIA Saclay |
| 3 | * |
| 4 | * Use of this software is governed by the MIT license |
| 5 | * |
| 6 | * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, |
| 7 | * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, |
| 8 | * 91893 Orsay, France |
| 9 | */ |
| 10 | |
| 11 | #include <stdlib.h> |
| 12 | #include <isl_ctx_private.h> |
| 13 | #include <isl_map_private.h> |
| 14 | #include <isl_factorization.h> |
| 15 | #include <isl_lp_private.h> |
| 16 | #include <isl_seq.h> |
| 17 | #include <isl_union_map_private.h> |
| 18 | #include <isl_constraint_private.h> |
| 19 | #include <isl_polynomial_private.h> |
| 20 | #include <isl_point_private.h> |
| 21 | #include <isl_space_private.h> |
| 22 | #include <isl_mat_private.h> |
| 23 | #include <isl_vec_private.h> |
| 24 | #include <isl_range.h> |
| 25 | #include <isl_local.h> |
| 26 | #include <isl_local_space_private.h> |
| 27 | #include <isl_aff_private.h> |
| 28 | #include <isl_val_private.h> |
| 29 | #include <isl_config.h> |
| 30 | |
| 31 | #undef EL_BASE |
| 32 | #define EL_BASE qpolynomial |
| 33 | |
| 34 | #include <isl_list_templ.c> |
| 35 | |
| 36 | #undef EL_BASE |
| 37 | #define EL_BASE pw_qpolynomial |
| 38 | |
| 39 | #include <isl_list_templ.c> |
| 40 | |
| 41 | static unsigned pos(__isl_keep isl_space *space, enum isl_dim_type type) |
| 42 | { |
| 43 | switch (type) { |
| 44 | case isl_dim_param: return 0; |
| 45 | case isl_dim_in: return space->nparam; |
| 46 | case isl_dim_out: return space->nparam + space->n_in; |
| 47 | default: return 0; |
| 48 | } |
| 49 | } |
| 50 | |
| 51 | isl_bool isl_poly_is_cst(__isl_keep isl_poly *poly) |
| 52 | { |
| 53 | if (!poly) |
| 54 | return isl_bool_error; |
| 55 | |
| 56 | return isl_bool_ok(b: poly->var < 0); |
| 57 | } |
| 58 | |
| 59 | __isl_keep isl_poly_cst *isl_poly_as_cst(__isl_keep isl_poly *poly) |
| 60 | { |
| 61 | if (!poly) |
| 62 | return NULL; |
| 63 | |
| 64 | isl_assert(poly->ctx, poly->var < 0, return NULL); |
| 65 | |
| 66 | return (isl_poly_cst *) poly; |
| 67 | } |
| 68 | |
| 69 | __isl_keep isl_poly_rec *isl_poly_as_rec(__isl_keep isl_poly *poly) |
| 70 | { |
| 71 | if (!poly) |
| 72 | return NULL; |
| 73 | |
| 74 | isl_assert(poly->ctx, poly->var >= 0, return NULL); |
| 75 | |
| 76 | return (isl_poly_rec *) poly; |
| 77 | } |
| 78 | |
| 79 | /* Compare two polynomials. |
| 80 | * |
| 81 | * Return -1 if "poly1" is "smaller" than "poly2", 1 if "poly1" is "greater" |
| 82 | * than "poly2" and 0 if they are equal. |
| 83 | */ |
| 84 | static int isl_poly_plain_cmp(__isl_keep isl_poly *poly1, |
| 85 | __isl_keep isl_poly *poly2) |
| 86 | { |
| 87 | int i; |
| 88 | isl_bool is_cst1; |
| 89 | isl_poly_rec *rec1, *rec2; |
| 90 | |
| 91 | if (poly1 == poly2) |
| 92 | return 0; |
| 93 | is_cst1 = isl_poly_is_cst(poly: poly1); |
| 94 | if (is_cst1 < 0) |
| 95 | return -1; |
| 96 | if (!poly2) |
| 97 | return 1; |
| 98 | if (poly1->var != poly2->var) |
| 99 | return poly1->var - poly2->var; |
| 100 | |
| 101 | if (is_cst1) { |
| 102 | isl_poly_cst *cst1, *cst2; |
| 103 | int cmp; |
| 104 | |
| 105 | cst1 = isl_poly_as_cst(poly: poly1); |
| 106 | cst2 = isl_poly_as_cst(poly: poly2); |
| 107 | if (!cst1 || !cst2) |
| 108 | return 0; |
| 109 | cmp = isl_int_cmp(cst1->n, cst2->n); |
| 110 | if (cmp != 0) |
| 111 | return cmp; |
| 112 | return isl_int_cmp(cst1->d, cst2->d); |
| 113 | } |
| 114 | |
| 115 | rec1 = isl_poly_as_rec(poly: poly1); |
| 116 | rec2 = isl_poly_as_rec(poly: poly2); |
| 117 | if (!rec1 || !rec2) |
| 118 | return 0; |
| 119 | |
| 120 | if (rec1->n != rec2->n) |
| 121 | return rec1->n - rec2->n; |
| 122 | |
| 123 | for (i = 0; i < rec1->n; ++i) { |
| 124 | int cmp = isl_poly_plain_cmp(poly1: rec1->p[i], poly2: rec2->p[i]); |
| 125 | if (cmp != 0) |
| 126 | return cmp; |
| 127 | } |
| 128 | |
| 129 | return 0; |
| 130 | } |
| 131 | |
| 132 | isl_bool isl_poly_is_equal(__isl_keep isl_poly *poly1, |
| 133 | __isl_keep isl_poly *poly2) |
| 134 | { |
| 135 | int i; |
| 136 | isl_bool is_cst1; |
| 137 | isl_poly_rec *rec1, *rec2; |
| 138 | |
| 139 | is_cst1 = isl_poly_is_cst(poly: poly1); |
| 140 | if (is_cst1 < 0 || !poly2) |
| 141 | return isl_bool_error; |
| 142 | if (poly1 == poly2) |
| 143 | return isl_bool_true; |
| 144 | if (poly1->var != poly2->var) |
| 145 | return isl_bool_false; |
| 146 | if (is_cst1) { |
| 147 | isl_poly_cst *cst1, *cst2; |
| 148 | int r; |
| 149 | cst1 = isl_poly_as_cst(poly: poly1); |
| 150 | cst2 = isl_poly_as_cst(poly: poly2); |
| 151 | if (!cst1 || !cst2) |
| 152 | return isl_bool_error; |
| 153 | r = isl_int_eq(cst1->n, cst2->n) && |
| 154 | isl_int_eq(cst1->d, cst2->d); |
| 155 | return isl_bool_ok(b: r); |
| 156 | } |
| 157 | |
| 158 | rec1 = isl_poly_as_rec(poly: poly1); |
| 159 | rec2 = isl_poly_as_rec(poly: poly2); |
| 160 | if (!rec1 || !rec2) |
| 161 | return isl_bool_error; |
| 162 | |
| 163 | if (rec1->n != rec2->n) |
| 164 | return isl_bool_false; |
| 165 | |
| 166 | for (i = 0; i < rec1->n; ++i) { |
| 167 | isl_bool eq = isl_poly_is_equal(poly1: rec1->p[i], poly2: rec2->p[i]); |
| 168 | if (eq < 0 || !eq) |
| 169 | return eq; |
| 170 | } |
| 171 | |
| 172 | return isl_bool_true; |
| 173 | } |
| 174 | |
| 175 | isl_bool isl_poly_is_zero(__isl_keep isl_poly *poly) |
| 176 | { |
| 177 | isl_bool is_cst; |
| 178 | isl_poly_cst *cst; |
| 179 | |
| 180 | is_cst = isl_poly_is_cst(poly); |
| 181 | if (is_cst < 0 || !is_cst) |
| 182 | return is_cst; |
| 183 | |
| 184 | cst = isl_poly_as_cst(poly); |
| 185 | if (!cst) |
| 186 | return isl_bool_error; |
| 187 | |
| 188 | return isl_bool_ok(isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d)); |
| 189 | } |
| 190 | |
| 191 | int isl_poly_sgn(__isl_keep isl_poly *poly) |
| 192 | { |
| 193 | isl_bool is_cst; |
| 194 | isl_poly_cst *cst; |
| 195 | |
| 196 | is_cst = isl_poly_is_cst(poly); |
| 197 | if (is_cst < 0 || !is_cst) |
| 198 | return 0; |
| 199 | |
| 200 | cst = isl_poly_as_cst(poly); |
| 201 | if (!cst) |
| 202 | return 0; |
| 203 | |
| 204 | return isl_int_sgn(cst->n); |
| 205 | } |
| 206 | |
| 207 | isl_bool isl_poly_is_nan(__isl_keep isl_poly *poly) |
| 208 | { |
| 209 | isl_bool is_cst; |
| 210 | isl_poly_cst *cst; |
| 211 | |
| 212 | is_cst = isl_poly_is_cst(poly); |
| 213 | if (is_cst < 0 || !is_cst) |
| 214 | return is_cst; |
| 215 | |
| 216 | cst = isl_poly_as_cst(poly); |
| 217 | if (!cst) |
| 218 | return isl_bool_error; |
| 219 | |
| 220 | return isl_bool_ok(isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d)); |
| 221 | } |
| 222 | |
| 223 | isl_bool isl_poly_is_infty(__isl_keep isl_poly *poly) |
| 224 | { |
| 225 | isl_bool is_cst; |
| 226 | isl_poly_cst *cst; |
| 227 | |
| 228 | is_cst = isl_poly_is_cst(poly); |
| 229 | if (is_cst < 0 || !is_cst) |
| 230 | return is_cst; |
| 231 | |
| 232 | cst = isl_poly_as_cst(poly); |
| 233 | if (!cst) |
| 234 | return isl_bool_error; |
| 235 | |
| 236 | return isl_bool_ok(isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d)); |
| 237 | } |
| 238 | |
| 239 | isl_bool isl_poly_is_neginfty(__isl_keep isl_poly *poly) |
| 240 | { |
| 241 | isl_bool is_cst; |
| 242 | isl_poly_cst *cst; |
| 243 | |
| 244 | is_cst = isl_poly_is_cst(poly); |
| 245 | if (is_cst < 0 || !is_cst) |
| 246 | return is_cst; |
| 247 | |
| 248 | cst = isl_poly_as_cst(poly); |
| 249 | if (!cst) |
| 250 | return isl_bool_error; |
| 251 | |
| 252 | return isl_bool_ok(isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d)); |
| 253 | } |
| 254 | |
| 255 | isl_bool isl_poly_is_one(__isl_keep isl_poly *poly) |
| 256 | { |
| 257 | isl_bool is_cst; |
| 258 | isl_poly_cst *cst; |
| 259 | int r; |
| 260 | |
| 261 | is_cst = isl_poly_is_cst(poly); |
| 262 | if (is_cst < 0 || !is_cst) |
| 263 | return is_cst; |
| 264 | |
| 265 | cst = isl_poly_as_cst(poly); |
| 266 | if (!cst) |
| 267 | return isl_bool_error; |
| 268 | |
| 269 | r = isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d); |
| 270 | return isl_bool_ok(b: r); |
| 271 | } |
| 272 | |
| 273 | isl_bool isl_poly_is_negone(__isl_keep isl_poly *poly) |
| 274 | { |
| 275 | isl_bool is_cst; |
| 276 | isl_poly_cst *cst; |
| 277 | |
| 278 | is_cst = isl_poly_is_cst(poly); |
| 279 | if (is_cst < 0 || !is_cst) |
| 280 | return is_cst; |
| 281 | |
| 282 | cst = isl_poly_as_cst(poly); |
| 283 | if (!cst) |
| 284 | return isl_bool_error; |
| 285 | |
| 286 | return isl_bool_ok(isl_int_is_negone(cst->n) && isl_int_is_one(cst->d)); |
| 287 | } |
| 288 | |
| 289 | __isl_give isl_poly_cst *isl_poly_cst_alloc(isl_ctx *ctx) |
| 290 | { |
| 291 | isl_poly_cst *cst; |
| 292 | |
| 293 | cst = isl_alloc_type(ctx, struct isl_poly_cst); |
| 294 | if (!cst) |
| 295 | return NULL; |
| 296 | |
| 297 | cst->poly.ref = 1; |
| 298 | cst->poly.ctx = ctx; |
| 299 | isl_ctx_ref(ctx); |
| 300 | cst->poly.var = -1; |
| 301 | |
| 302 | isl_int_init(cst->n); |
| 303 | isl_int_init(cst->d); |
| 304 | |
| 305 | return cst; |
| 306 | } |
| 307 | |
| 308 | __isl_give isl_poly *isl_poly_zero(isl_ctx *ctx) |
| 309 | { |
| 310 | isl_poly_cst *cst; |
| 311 | |
| 312 | cst = isl_poly_cst_alloc(ctx); |
| 313 | if (!cst) |
| 314 | return NULL; |
| 315 | |
| 316 | isl_int_set_si(cst->n, 0); |
| 317 | isl_int_set_si(cst->d, 1); |
| 318 | |
| 319 | return &cst->poly; |
| 320 | } |
| 321 | |
| 322 | __isl_give isl_poly *isl_poly_one(isl_ctx *ctx) |
| 323 | { |
| 324 | isl_poly_cst *cst; |
| 325 | |
| 326 | cst = isl_poly_cst_alloc(ctx); |
| 327 | if (!cst) |
| 328 | return NULL; |
| 329 | |
| 330 | isl_int_set_si(cst->n, 1); |
| 331 | isl_int_set_si(cst->d, 1); |
| 332 | |
| 333 | return &cst->poly; |
| 334 | } |
| 335 | |
| 336 | __isl_give isl_poly *isl_poly_infty(isl_ctx *ctx) |
| 337 | { |
| 338 | isl_poly_cst *cst; |
| 339 | |
| 340 | cst = isl_poly_cst_alloc(ctx); |
| 341 | if (!cst) |
| 342 | return NULL; |
| 343 | |
| 344 | isl_int_set_si(cst->n, 1); |
| 345 | isl_int_set_si(cst->d, 0); |
| 346 | |
| 347 | return &cst->poly; |
| 348 | } |
| 349 | |
| 350 | __isl_give isl_poly *isl_poly_neginfty(isl_ctx *ctx) |
| 351 | { |
| 352 | isl_poly_cst *cst; |
| 353 | |
| 354 | cst = isl_poly_cst_alloc(ctx); |
| 355 | if (!cst) |
| 356 | return NULL; |
| 357 | |
| 358 | isl_int_set_si(cst->n, -1); |
| 359 | isl_int_set_si(cst->d, 0); |
| 360 | |
| 361 | return &cst->poly; |
| 362 | } |
| 363 | |
| 364 | __isl_give isl_poly *isl_poly_nan(isl_ctx *ctx) |
| 365 | { |
| 366 | isl_poly_cst *cst; |
| 367 | |
| 368 | cst = isl_poly_cst_alloc(ctx); |
| 369 | if (!cst) |
| 370 | return NULL; |
| 371 | |
| 372 | isl_int_set_si(cst->n, 0); |
| 373 | isl_int_set_si(cst->d, 0); |
| 374 | |
| 375 | return &cst->poly; |
| 376 | } |
| 377 | |
| 378 | __isl_give isl_poly *isl_poly_rat_cst(isl_ctx *ctx, isl_int n, isl_int d) |
| 379 | { |
| 380 | isl_poly_cst *cst; |
| 381 | |
| 382 | cst = isl_poly_cst_alloc(ctx); |
| 383 | if (!cst) |
| 384 | return NULL; |
| 385 | |
| 386 | isl_int_set(cst->n, n); |
| 387 | isl_int_set(cst->d, d); |
| 388 | |
| 389 | return &cst->poly; |
| 390 | } |
| 391 | |
| 392 | __isl_give isl_poly_rec *isl_poly_alloc_rec(isl_ctx *ctx, int var, int size) |
| 393 | { |
| 394 | isl_poly_rec *rec; |
| 395 | |
| 396 | isl_assert(ctx, var >= 0, return NULL); |
| 397 | isl_assert(ctx, size >= 0, return NULL); |
| 398 | rec = isl_calloc(ctx, struct isl_poly_rec, |
| 399 | sizeof(struct isl_poly_rec) + |
| 400 | size * sizeof(struct isl_poly *)); |
| 401 | if (!rec) |
| 402 | return NULL; |
| 403 | |
| 404 | rec->poly.ref = 1; |
| 405 | rec->poly.ctx = ctx; |
| 406 | isl_ctx_ref(ctx); |
| 407 | rec->poly.var = var; |
| 408 | |
| 409 | rec->n = 0; |
| 410 | rec->size = size; |
| 411 | |
| 412 | return rec; |
| 413 | } |
| 414 | |
| 415 | __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space( |
| 416 | __isl_take isl_qpolynomial *qp, __isl_take isl_space *space) |
| 417 | { |
| 418 | qp = isl_qpolynomial_cow(qp); |
| 419 | if (!qp || !space) |
| 420 | goto error; |
| 421 | |
| 422 | isl_space_free(space: qp->dim); |
| 423 | qp->dim = space; |
| 424 | |
| 425 | return qp; |
| 426 | error: |
| 427 | isl_qpolynomial_free(qp); |
| 428 | isl_space_free(space); |
| 429 | return NULL; |
| 430 | } |
| 431 | |
| 432 | /* Reset the space of "qp". This function is called from isl_pw_templ.c |
| 433 | * and doesn't know if the space of an element object is represented |
| 434 | * directly or through its domain. It therefore passes along both. |
| 435 | */ |
| 436 | __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain( |
| 437 | __isl_take isl_qpolynomial *qp, __isl_take isl_space *space, |
| 438 | __isl_take isl_space *domain) |
| 439 | { |
| 440 | isl_space_free(space); |
| 441 | return isl_qpolynomial_reset_domain_space(qp, space: domain); |
| 442 | } |
| 443 | |
| 444 | isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp) |
| 445 | { |
| 446 | return qp ? qp->dim->ctx : NULL; |
| 447 | } |
| 448 | |
| 449 | /* Return the domain space of "qp". |
| 450 | */ |
| 451 | static __isl_keep isl_space *isl_qpolynomial_peek_domain_space( |
| 452 | __isl_keep isl_qpolynomial *qp) |
| 453 | { |
| 454 | return qp ? qp->dim : NULL; |
| 455 | } |
| 456 | |
| 457 | /* Return a copy of the domain space of "qp". |
| 458 | */ |
| 459 | __isl_give isl_space *isl_qpolynomial_get_domain_space( |
| 460 | __isl_keep isl_qpolynomial *qp) |
| 461 | { |
| 462 | return isl_space_copy(space: isl_qpolynomial_peek_domain_space(qp)); |
| 463 | } |
| 464 | |
| 465 | #undef TYPE |
| 466 | #define TYPE isl_qpolynomial |
| 467 | #undef PEEK_SPACE |
| 468 | #define PEEK_SPACE peek_domain_space |
| 469 | |
| 470 | static |
| 471 | #include "isl_type_has_equal_space_bin_templ.c" |
| 472 | static |
| 473 | #include "isl_type_check_equal_space_templ.c" |
| 474 | |
| 475 | #undef PEEK_SPACE |
| 476 | |
| 477 | /* Return a copy of the local space on which "qp" is defined. |
| 478 | */ |
| 479 | static __isl_give isl_local_space *isl_qpolynomial_get_domain_local_space( |
| 480 | __isl_keep isl_qpolynomial *qp) |
| 481 | { |
| 482 | isl_space *space; |
| 483 | |
| 484 | if (!qp) |
| 485 | return NULL; |
| 486 | |
| 487 | space = isl_qpolynomial_get_domain_space(qp); |
| 488 | return isl_local_space_alloc_div(space, div: isl_mat_copy(mat: qp->div)); |
| 489 | } |
| 490 | |
| 491 | __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp) |
| 492 | { |
| 493 | isl_space *space; |
| 494 | if (!qp) |
| 495 | return NULL; |
| 496 | space = isl_space_copy(space: qp->dim); |
| 497 | space = isl_space_from_domain(space); |
| 498 | space = isl_space_add_dims(space, type: isl_dim_out, n: 1); |
| 499 | return space; |
| 500 | } |
| 501 | |
| 502 | /* Return the number of variables of the given type in the domain of "qp". |
| 503 | */ |
| 504 | isl_size isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial *qp, |
| 505 | enum isl_dim_type type) |
| 506 | { |
| 507 | isl_space *space; |
| 508 | isl_size dim; |
| 509 | |
| 510 | space = isl_qpolynomial_peek_domain_space(qp); |
| 511 | |
| 512 | if (!space) |
| 513 | return isl_size_error; |
| 514 | if (type == isl_dim_div) |
| 515 | return qp->div->n_row; |
| 516 | dim = isl_space_dim(space, type); |
| 517 | if (dim < 0) |
| 518 | return isl_size_error; |
| 519 | if (type == isl_dim_all) { |
| 520 | isl_size n_div; |
| 521 | |
| 522 | n_div = isl_qpolynomial_domain_dim(qp, type: isl_dim_div); |
| 523 | if (n_div < 0) |
| 524 | return isl_size_error; |
| 525 | dim += n_div; |
| 526 | } |
| 527 | return dim; |
| 528 | } |
| 529 | |
| 530 | /* Given the type of a dimension of an isl_qpolynomial, |
| 531 | * return the type of the corresponding dimension in its domain. |
| 532 | * This function is only called for "type" equal to isl_dim_in or |
| 533 | * isl_dim_param. |
| 534 | */ |
| 535 | static enum isl_dim_type domain_type(enum isl_dim_type type) |
| 536 | { |
| 537 | return type == isl_dim_in ? isl_dim_set : type; |
| 538 | } |
| 539 | |
| 540 | /* Externally, an isl_qpolynomial has a map space, but internally, the |
| 541 | * ls field corresponds to the domain of that space. |
| 542 | */ |
| 543 | isl_size isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp, |
| 544 | enum isl_dim_type type) |
| 545 | { |
| 546 | if (!qp) |
| 547 | return isl_size_error; |
| 548 | if (type == isl_dim_out) |
| 549 | return 1; |
| 550 | type = domain_type(type); |
| 551 | return isl_qpolynomial_domain_dim(qp, type); |
| 552 | } |
| 553 | |
| 554 | /* Return the offset of the first variable of type "type" within |
| 555 | * the variables of the domain of "qp". |
| 556 | */ |
| 557 | static isl_size isl_qpolynomial_domain_var_offset( |
| 558 | __isl_keep isl_qpolynomial *qp, enum isl_dim_type type) |
| 559 | { |
| 560 | isl_space *space; |
| 561 | |
| 562 | space = isl_qpolynomial_peek_domain_space(qp); |
| 563 | if (!space) |
| 564 | return isl_size_error; |
| 565 | |
| 566 | switch (type) { |
| 567 | case isl_dim_param: |
| 568 | case isl_dim_set: return isl_space_offset(space, type); |
| 569 | case isl_dim_div: return isl_space_dim(space, type: isl_dim_all); |
| 570 | case isl_dim_cst: |
| 571 | default: |
| 572 | isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, |
| 573 | "invalid dimension type" , return isl_size_error); |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | /* Return the offset of the first coefficient of type "type" in |
| 578 | * the domain of "qp". |
| 579 | */ |
| 580 | unsigned isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial *qp, |
| 581 | enum isl_dim_type type) |
| 582 | { |
| 583 | switch (type) { |
| 584 | case isl_dim_cst: |
| 585 | return 0; |
| 586 | case isl_dim_param: |
| 587 | case isl_dim_set: |
| 588 | case isl_dim_div: |
| 589 | return 1 + isl_qpolynomial_domain_var_offset(qp, type); |
| 590 | default: |
| 591 | return 0; |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | isl_bool isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp) |
| 596 | { |
| 597 | return qp ? isl_poly_is_zero(poly: qp->poly) : isl_bool_error; |
| 598 | } |
| 599 | |
| 600 | isl_bool isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp) |
| 601 | { |
| 602 | return qp ? isl_poly_is_one(poly: qp->poly) : isl_bool_error; |
| 603 | } |
| 604 | |
| 605 | isl_bool isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp) |
| 606 | { |
| 607 | return qp ? isl_poly_is_nan(poly: qp->poly) : isl_bool_error; |
| 608 | } |
| 609 | |
| 610 | isl_bool isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp) |
| 611 | { |
| 612 | return qp ? isl_poly_is_infty(poly: qp->poly) : isl_bool_error; |
| 613 | } |
| 614 | |
| 615 | isl_bool isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp) |
| 616 | { |
| 617 | return qp ? isl_poly_is_neginfty(poly: qp->poly) : isl_bool_error; |
| 618 | } |
| 619 | |
| 620 | int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp) |
| 621 | { |
| 622 | return qp ? isl_poly_sgn(poly: qp->poly) : 0; |
| 623 | } |
| 624 | |
| 625 | static void poly_free_cst(__isl_take isl_poly_cst *cst) |
| 626 | { |
| 627 | isl_int_clear(cst->n); |
| 628 | isl_int_clear(cst->d); |
| 629 | } |
| 630 | |
| 631 | static void poly_free_rec(__isl_take isl_poly_rec *rec) |
| 632 | { |
| 633 | int i; |
| 634 | |
| 635 | for (i = 0; i < rec->n; ++i) |
| 636 | isl_poly_free(poly: rec->p[i]); |
| 637 | } |
| 638 | |
| 639 | __isl_give isl_poly *isl_poly_copy(__isl_keep isl_poly *poly) |
| 640 | { |
| 641 | if (!poly) |
| 642 | return NULL; |
| 643 | |
| 644 | poly->ref++; |
| 645 | return poly; |
| 646 | } |
| 647 | |
| 648 | __isl_give isl_poly *isl_poly_dup_cst(__isl_keep isl_poly *poly) |
| 649 | { |
| 650 | isl_poly_cst *cst; |
| 651 | isl_poly_cst *dup; |
| 652 | |
| 653 | cst = isl_poly_as_cst(poly); |
| 654 | if (!cst) |
| 655 | return NULL; |
| 656 | |
| 657 | dup = isl_poly_as_cst(poly: isl_poly_zero(ctx: poly->ctx)); |
| 658 | if (!dup) |
| 659 | return NULL; |
| 660 | isl_int_set(dup->n, cst->n); |
| 661 | isl_int_set(dup->d, cst->d); |
| 662 | |
| 663 | return &dup->poly; |
| 664 | } |
| 665 | |
| 666 | __isl_give isl_poly *isl_poly_dup_rec(__isl_keep isl_poly *poly) |
| 667 | { |
| 668 | int i; |
| 669 | isl_poly_rec *rec; |
| 670 | isl_poly_rec *dup; |
| 671 | |
| 672 | rec = isl_poly_as_rec(poly); |
| 673 | if (!rec) |
| 674 | return NULL; |
| 675 | |
| 676 | dup = isl_poly_alloc_rec(ctx: poly->ctx, var: poly->var, size: rec->n); |
| 677 | if (!dup) |
| 678 | return NULL; |
| 679 | |
| 680 | for (i = 0; i < rec->n; ++i) { |
| 681 | dup->p[i] = isl_poly_copy(poly: rec->p[i]); |
| 682 | if (!dup->p[i]) |
| 683 | goto error; |
| 684 | dup->n++; |
| 685 | } |
| 686 | |
| 687 | return &dup->poly; |
| 688 | error: |
| 689 | isl_poly_free(poly: &dup->poly); |
| 690 | return NULL; |
| 691 | } |
| 692 | |
| 693 | __isl_give isl_poly *isl_poly_dup(__isl_keep isl_poly *poly) |
| 694 | { |
| 695 | isl_bool is_cst; |
| 696 | |
| 697 | is_cst = isl_poly_is_cst(poly); |
| 698 | if (is_cst < 0) |
| 699 | return NULL; |
| 700 | if (is_cst) |
| 701 | return isl_poly_dup_cst(poly); |
| 702 | else |
| 703 | return isl_poly_dup_rec(poly); |
| 704 | } |
| 705 | |
| 706 | __isl_give isl_poly *isl_poly_cow(__isl_take isl_poly *poly) |
| 707 | { |
| 708 | if (!poly) |
| 709 | return NULL; |
| 710 | |
| 711 | if (poly->ref == 1) |
| 712 | return poly; |
| 713 | poly->ref--; |
| 714 | return isl_poly_dup(poly); |
| 715 | } |
| 716 | |
| 717 | __isl_null isl_poly *isl_poly_free(__isl_take isl_poly *poly) |
| 718 | { |
| 719 | if (!poly) |
| 720 | return NULL; |
| 721 | |
| 722 | if (--poly->ref > 0) |
| 723 | return NULL; |
| 724 | |
| 725 | if (poly->var < 0) |
| 726 | poly_free_cst(cst: (isl_poly_cst *) poly); |
| 727 | else |
| 728 | poly_free_rec(rec: (isl_poly_rec *) poly); |
| 729 | |
| 730 | isl_ctx_deref(ctx: poly->ctx); |
| 731 | free(ptr: poly); |
| 732 | return NULL; |
| 733 | } |
| 734 | |
| 735 | static void isl_poly_cst_reduce(__isl_keep isl_poly_cst *cst) |
| 736 | { |
| 737 | isl_int gcd; |
| 738 | |
| 739 | isl_int_init(gcd); |
| 740 | isl_int_gcd(gcd, cst->n, cst->d); |
| 741 | if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) { |
| 742 | isl_int_divexact(cst->n, cst->n, gcd); |
| 743 | isl_int_divexact(cst->d, cst->d, gcd); |
| 744 | } |
| 745 | isl_int_clear(gcd); |
| 746 | } |
| 747 | |
| 748 | __isl_give isl_poly *isl_poly_sum_cst(__isl_take isl_poly *poly1, |
| 749 | __isl_take isl_poly *poly2) |
| 750 | { |
| 751 | isl_poly_cst *cst1; |
| 752 | isl_poly_cst *cst2; |
| 753 | |
| 754 | poly1 = isl_poly_cow(poly: poly1); |
| 755 | if (!poly1 || !poly2) |
| 756 | goto error; |
| 757 | |
| 758 | cst1 = isl_poly_as_cst(poly: poly1); |
| 759 | cst2 = isl_poly_as_cst(poly: poly2); |
| 760 | |
| 761 | if (isl_int_eq(cst1->d, cst2->d)) |
| 762 | isl_int_add(cst1->n, cst1->n, cst2->n); |
| 763 | else { |
| 764 | isl_int_mul(cst1->n, cst1->n, cst2->d); |
| 765 | isl_int_addmul(cst1->n, cst2->n, cst1->d); |
| 766 | isl_int_mul(cst1->d, cst1->d, cst2->d); |
| 767 | } |
| 768 | |
| 769 | isl_poly_cst_reduce(cst: cst1); |
| 770 | |
| 771 | isl_poly_free(poly: poly2); |
| 772 | return poly1; |
| 773 | error: |
| 774 | isl_poly_free(poly: poly1); |
| 775 | isl_poly_free(poly: poly2); |
| 776 | return NULL; |
| 777 | } |
| 778 | |
| 779 | static __isl_give isl_poly *replace_by_zero(__isl_take isl_poly *poly) |
| 780 | { |
| 781 | struct isl_ctx *ctx; |
| 782 | |
| 783 | if (!poly) |
| 784 | return NULL; |
| 785 | ctx = poly->ctx; |
| 786 | isl_poly_free(poly); |
| 787 | return isl_poly_zero(ctx); |
| 788 | } |
| 789 | |
| 790 | static __isl_give isl_poly *replace_by_constant_term(__isl_take isl_poly *poly) |
| 791 | { |
| 792 | isl_poly_rec *rec; |
| 793 | isl_poly *cst; |
| 794 | |
| 795 | if (!poly) |
| 796 | return NULL; |
| 797 | |
| 798 | rec = isl_poly_as_rec(poly); |
| 799 | if (!rec) |
| 800 | goto error; |
| 801 | cst = isl_poly_copy(poly: rec->p[0]); |
| 802 | isl_poly_free(poly); |
| 803 | return cst; |
| 804 | error: |
| 805 | isl_poly_free(poly); |
| 806 | return NULL; |
| 807 | } |
| 808 | |
| 809 | __isl_give isl_poly *isl_poly_sum(__isl_take isl_poly *poly1, |
| 810 | __isl_take isl_poly *poly2) |
| 811 | { |
| 812 | int i; |
| 813 | isl_bool is_zero, is_nan, is_cst; |
| 814 | isl_poly_rec *rec1, *rec2; |
| 815 | |
| 816 | if (!poly1 || !poly2) |
| 817 | goto error; |
| 818 | |
| 819 | is_nan = isl_poly_is_nan(poly: poly1); |
| 820 | if (is_nan < 0) |
| 821 | goto error; |
| 822 | if (is_nan) { |
| 823 | isl_poly_free(poly: poly2); |
| 824 | return poly1; |
| 825 | } |
| 826 | |
| 827 | is_nan = isl_poly_is_nan(poly: poly2); |
| 828 | if (is_nan < 0) |
| 829 | goto error; |
| 830 | if (is_nan) { |
| 831 | isl_poly_free(poly: poly1); |
| 832 | return poly2; |
| 833 | } |
| 834 | |
| 835 | is_zero = isl_poly_is_zero(poly: poly1); |
| 836 | if (is_zero < 0) |
| 837 | goto error; |
| 838 | if (is_zero) { |
| 839 | isl_poly_free(poly: poly1); |
| 840 | return poly2; |
| 841 | } |
| 842 | |
| 843 | is_zero = isl_poly_is_zero(poly: poly2); |
| 844 | if (is_zero < 0) |
| 845 | goto error; |
| 846 | if (is_zero) { |
| 847 | isl_poly_free(poly: poly2); |
| 848 | return poly1; |
| 849 | } |
| 850 | |
| 851 | if (poly1->var < poly2->var) |
| 852 | return isl_poly_sum(poly1: poly2, poly2: poly1); |
| 853 | |
| 854 | if (poly2->var < poly1->var) { |
| 855 | isl_poly_rec *rec; |
| 856 | isl_bool is_infty; |
| 857 | |
| 858 | is_infty = isl_poly_is_infty(poly: poly2); |
| 859 | if (is_infty >= 0 && !is_infty) |
| 860 | is_infty = isl_poly_is_neginfty(poly: poly2); |
| 861 | if (is_infty < 0) |
| 862 | goto error; |
| 863 | if (is_infty) { |
| 864 | isl_poly_free(poly: poly1); |
| 865 | return poly2; |
| 866 | } |
| 867 | poly1 = isl_poly_cow(poly: poly1); |
| 868 | rec = isl_poly_as_rec(poly: poly1); |
| 869 | if (!rec) |
| 870 | goto error; |
| 871 | rec->p[0] = isl_poly_sum(poly1: rec->p[0], poly2); |
| 872 | if (rec->n == 1) |
| 873 | poly1 = replace_by_constant_term(poly: poly1); |
| 874 | return poly1; |
| 875 | } |
| 876 | |
| 877 | is_cst = isl_poly_is_cst(poly: poly1); |
| 878 | if (is_cst < 0) |
| 879 | goto error; |
| 880 | if (is_cst) |
| 881 | return isl_poly_sum_cst(poly1, poly2); |
| 882 | |
| 883 | rec1 = isl_poly_as_rec(poly: poly1); |
| 884 | rec2 = isl_poly_as_rec(poly: poly2); |
| 885 | if (!rec1 || !rec2) |
| 886 | goto error; |
| 887 | |
| 888 | if (rec1->n < rec2->n) |
| 889 | return isl_poly_sum(poly1: poly2, poly2: poly1); |
| 890 | |
| 891 | poly1 = isl_poly_cow(poly: poly1); |
| 892 | rec1 = isl_poly_as_rec(poly: poly1); |
| 893 | if (!rec1) |
| 894 | goto error; |
| 895 | |
| 896 | for (i = rec2->n - 1; i >= 0; --i) { |
| 897 | isl_bool is_zero; |
| 898 | |
| 899 | rec1->p[i] = isl_poly_sum(poly1: rec1->p[i], |
| 900 | poly2: isl_poly_copy(poly: rec2->p[i])); |
| 901 | if (!rec1->p[i]) |
| 902 | goto error; |
| 903 | if (i != rec1->n - 1) |
| 904 | continue; |
| 905 | is_zero = isl_poly_is_zero(poly: rec1->p[i]); |
| 906 | if (is_zero < 0) |
| 907 | goto error; |
| 908 | if (is_zero) { |
| 909 | isl_poly_free(poly: rec1->p[i]); |
| 910 | rec1->n--; |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | if (rec1->n == 0) |
| 915 | poly1 = replace_by_zero(poly: poly1); |
| 916 | else if (rec1->n == 1) |
| 917 | poly1 = replace_by_constant_term(poly: poly1); |
| 918 | |
| 919 | isl_poly_free(poly: poly2); |
| 920 | |
| 921 | return poly1; |
| 922 | error: |
| 923 | isl_poly_free(poly: poly1); |
| 924 | isl_poly_free(poly: poly2); |
| 925 | return NULL; |
| 926 | } |
| 927 | |
| 928 | __isl_give isl_poly *isl_poly_cst_add_isl_int(__isl_take isl_poly *poly, |
| 929 | isl_int v) |
| 930 | { |
| 931 | isl_poly_cst *cst; |
| 932 | |
| 933 | poly = isl_poly_cow(poly); |
| 934 | if (!poly) |
| 935 | return NULL; |
| 936 | |
| 937 | cst = isl_poly_as_cst(poly); |
| 938 | |
| 939 | isl_int_addmul(cst->n, cst->d, v); |
| 940 | |
| 941 | return poly; |
| 942 | } |
| 943 | |
| 944 | __isl_give isl_poly *isl_poly_add_isl_int(__isl_take isl_poly *poly, isl_int v) |
| 945 | { |
| 946 | isl_bool is_cst; |
| 947 | isl_poly_rec *rec; |
| 948 | |
| 949 | is_cst = isl_poly_is_cst(poly); |
| 950 | if (is_cst < 0) |
| 951 | return isl_poly_free(poly); |
| 952 | if (is_cst) |
| 953 | return isl_poly_cst_add_isl_int(poly, v); |
| 954 | |
| 955 | poly = isl_poly_cow(poly); |
| 956 | rec = isl_poly_as_rec(poly); |
| 957 | if (!rec) |
| 958 | goto error; |
| 959 | |
| 960 | rec->p[0] = isl_poly_add_isl_int(poly: rec->p[0], v); |
| 961 | if (!rec->p[0]) |
| 962 | goto error; |
| 963 | |
| 964 | return poly; |
| 965 | error: |
| 966 | isl_poly_free(poly); |
| 967 | return NULL; |
| 968 | } |
| 969 | |
| 970 | __isl_give isl_poly *isl_poly_cst_mul_isl_int(__isl_take isl_poly *poly, |
| 971 | isl_int v) |
| 972 | { |
| 973 | isl_bool is_zero; |
| 974 | isl_poly_cst *cst; |
| 975 | |
| 976 | is_zero = isl_poly_is_zero(poly); |
| 977 | if (is_zero < 0) |
| 978 | return isl_poly_free(poly); |
| 979 | if (is_zero) |
| 980 | return poly; |
| 981 | |
| 982 | poly = isl_poly_cow(poly); |
| 983 | if (!poly) |
| 984 | return NULL; |
| 985 | |
| 986 | cst = isl_poly_as_cst(poly); |
| 987 | |
| 988 | isl_int_mul(cst->n, cst->n, v); |
| 989 | |
| 990 | return poly; |
| 991 | } |
| 992 | |
| 993 | __isl_give isl_poly *isl_poly_mul_isl_int(__isl_take isl_poly *poly, isl_int v) |
| 994 | { |
| 995 | int i; |
| 996 | isl_bool is_cst; |
| 997 | isl_poly_rec *rec; |
| 998 | |
| 999 | is_cst = isl_poly_is_cst(poly); |
| 1000 | if (is_cst < 0) |
| 1001 | return isl_poly_free(poly); |
| 1002 | if (is_cst) |
| 1003 | return isl_poly_cst_mul_isl_int(poly, v); |
| 1004 | |
| 1005 | poly = isl_poly_cow(poly); |
| 1006 | rec = isl_poly_as_rec(poly); |
| 1007 | if (!rec) |
| 1008 | goto error; |
| 1009 | |
| 1010 | for (i = 0; i < rec->n; ++i) { |
| 1011 | rec->p[i] = isl_poly_mul_isl_int(poly: rec->p[i], v); |
| 1012 | if (!rec->p[i]) |
| 1013 | goto error; |
| 1014 | } |
| 1015 | |
| 1016 | return poly; |
| 1017 | error: |
| 1018 | isl_poly_free(poly); |
| 1019 | return NULL; |
| 1020 | } |
| 1021 | |
| 1022 | /* Multiply the constant polynomial "poly" by "v". |
| 1023 | */ |
| 1024 | static __isl_give isl_poly *isl_poly_cst_scale_val(__isl_take isl_poly *poly, |
| 1025 | __isl_keep isl_val *v) |
| 1026 | { |
| 1027 | isl_bool is_zero; |
| 1028 | isl_poly_cst *cst; |
| 1029 | |
| 1030 | is_zero = isl_poly_is_zero(poly); |
| 1031 | if (is_zero < 0) |
| 1032 | return isl_poly_free(poly); |
| 1033 | if (is_zero) |
| 1034 | return poly; |
| 1035 | |
| 1036 | poly = isl_poly_cow(poly); |
| 1037 | if (!poly) |
| 1038 | return NULL; |
| 1039 | |
| 1040 | cst = isl_poly_as_cst(poly); |
| 1041 | |
| 1042 | isl_int_mul(cst->n, cst->n, v->n); |
| 1043 | isl_int_mul(cst->d, cst->d, v->d); |
| 1044 | isl_poly_cst_reduce(cst); |
| 1045 | |
| 1046 | return poly; |
| 1047 | } |
| 1048 | |
| 1049 | /* Multiply the polynomial "poly" by "v". |
| 1050 | */ |
| 1051 | static __isl_give isl_poly *isl_poly_scale_val(__isl_take isl_poly *poly, |
| 1052 | __isl_keep isl_val *v) |
| 1053 | { |
| 1054 | int i; |
| 1055 | isl_bool is_cst; |
| 1056 | isl_poly_rec *rec; |
| 1057 | |
| 1058 | is_cst = isl_poly_is_cst(poly); |
| 1059 | if (is_cst < 0) |
| 1060 | return isl_poly_free(poly); |
| 1061 | if (is_cst) |
| 1062 | return isl_poly_cst_scale_val(poly, v); |
| 1063 | |
| 1064 | poly = isl_poly_cow(poly); |
| 1065 | rec = isl_poly_as_rec(poly); |
| 1066 | if (!rec) |
| 1067 | goto error; |
| 1068 | |
| 1069 | for (i = 0; i < rec->n; ++i) { |
| 1070 | rec->p[i] = isl_poly_scale_val(poly: rec->p[i], v); |
| 1071 | if (!rec->p[i]) |
| 1072 | goto error; |
| 1073 | } |
| 1074 | |
| 1075 | return poly; |
| 1076 | error: |
| 1077 | isl_poly_free(poly); |
| 1078 | return NULL; |
| 1079 | } |
| 1080 | |
| 1081 | __isl_give isl_poly *isl_poly_mul_cst(__isl_take isl_poly *poly1, |
| 1082 | __isl_take isl_poly *poly2) |
| 1083 | { |
| 1084 | isl_poly_cst *cst1; |
| 1085 | isl_poly_cst *cst2; |
| 1086 | |
| 1087 | poly1 = isl_poly_cow(poly: poly1); |
| 1088 | if (!poly1 || !poly2) |
| 1089 | goto error; |
| 1090 | |
| 1091 | cst1 = isl_poly_as_cst(poly: poly1); |
| 1092 | cst2 = isl_poly_as_cst(poly: poly2); |
| 1093 | |
| 1094 | isl_int_mul(cst1->n, cst1->n, cst2->n); |
| 1095 | isl_int_mul(cst1->d, cst1->d, cst2->d); |
| 1096 | |
| 1097 | isl_poly_cst_reduce(cst: cst1); |
| 1098 | |
| 1099 | isl_poly_free(poly: poly2); |
| 1100 | return poly1; |
| 1101 | error: |
| 1102 | isl_poly_free(poly: poly1); |
| 1103 | isl_poly_free(poly: poly2); |
| 1104 | return NULL; |
| 1105 | } |
| 1106 | |
| 1107 | __isl_give isl_poly *isl_poly_mul_rec(__isl_take isl_poly *poly1, |
| 1108 | __isl_take isl_poly *poly2) |
| 1109 | { |
| 1110 | isl_poly_rec *rec1; |
| 1111 | isl_poly_rec *rec2; |
| 1112 | isl_poly_rec *res = NULL; |
| 1113 | int i, j; |
| 1114 | int size; |
| 1115 | |
| 1116 | rec1 = isl_poly_as_rec(poly: poly1); |
| 1117 | rec2 = isl_poly_as_rec(poly: poly2); |
| 1118 | if (!rec1 || !rec2) |
| 1119 | goto error; |
| 1120 | size = rec1->n + rec2->n - 1; |
| 1121 | res = isl_poly_alloc_rec(ctx: poly1->ctx, var: poly1->var, size); |
| 1122 | if (!res) |
| 1123 | goto error; |
| 1124 | |
| 1125 | for (i = 0; i < rec1->n; ++i) { |
| 1126 | res->p[i] = isl_poly_mul(poly1: isl_poly_copy(poly: rec2->p[0]), |
| 1127 | poly2: isl_poly_copy(poly: rec1->p[i])); |
| 1128 | if (!res->p[i]) |
| 1129 | goto error; |
| 1130 | res->n++; |
| 1131 | } |
| 1132 | for (; i < size; ++i) { |
| 1133 | res->p[i] = isl_poly_zero(ctx: poly1->ctx); |
| 1134 | if (!res->p[i]) |
| 1135 | goto error; |
| 1136 | res->n++; |
| 1137 | } |
| 1138 | for (i = 0; i < rec1->n; ++i) { |
| 1139 | for (j = 1; j < rec2->n; ++j) { |
| 1140 | isl_poly *poly; |
| 1141 | poly = isl_poly_mul(poly1: isl_poly_copy(poly: rec2->p[j]), |
| 1142 | poly2: isl_poly_copy(poly: rec1->p[i])); |
| 1143 | res->p[i + j] = isl_poly_sum(poly1: res->p[i + j], poly2: poly); |
| 1144 | if (!res->p[i + j]) |
| 1145 | goto error; |
| 1146 | } |
| 1147 | } |
| 1148 | |
| 1149 | isl_poly_free(poly: poly1); |
| 1150 | isl_poly_free(poly: poly2); |
| 1151 | |
| 1152 | return &res->poly; |
| 1153 | error: |
| 1154 | isl_poly_free(poly: poly1); |
| 1155 | isl_poly_free(poly: poly2); |
| 1156 | isl_poly_free(poly: &res->poly); |
| 1157 | return NULL; |
| 1158 | } |
| 1159 | |
| 1160 | __isl_give isl_poly *isl_poly_mul(__isl_take isl_poly *poly1, |
| 1161 | __isl_take isl_poly *poly2) |
| 1162 | { |
| 1163 | isl_bool is_zero, is_nan, is_one, is_cst; |
| 1164 | |
| 1165 | if (!poly1 || !poly2) |
| 1166 | goto error; |
| 1167 | |
| 1168 | is_nan = isl_poly_is_nan(poly: poly1); |
| 1169 | if (is_nan < 0) |
| 1170 | goto error; |
| 1171 | if (is_nan) { |
| 1172 | isl_poly_free(poly: poly2); |
| 1173 | return poly1; |
| 1174 | } |
| 1175 | |
| 1176 | is_nan = isl_poly_is_nan(poly: poly2); |
| 1177 | if (is_nan < 0) |
| 1178 | goto error; |
| 1179 | if (is_nan) { |
| 1180 | isl_poly_free(poly: poly1); |
| 1181 | return poly2; |
| 1182 | } |
| 1183 | |
| 1184 | is_zero = isl_poly_is_zero(poly: poly1); |
| 1185 | if (is_zero < 0) |
| 1186 | goto error; |
| 1187 | if (is_zero) { |
| 1188 | isl_poly_free(poly: poly2); |
| 1189 | return poly1; |
| 1190 | } |
| 1191 | |
| 1192 | is_zero = isl_poly_is_zero(poly: poly2); |
| 1193 | if (is_zero < 0) |
| 1194 | goto error; |
| 1195 | if (is_zero) { |
| 1196 | isl_poly_free(poly: poly1); |
| 1197 | return poly2; |
| 1198 | } |
| 1199 | |
| 1200 | is_one = isl_poly_is_one(poly: poly1); |
| 1201 | if (is_one < 0) |
| 1202 | goto error; |
| 1203 | if (is_one) { |
| 1204 | isl_poly_free(poly: poly1); |
| 1205 | return poly2; |
| 1206 | } |
| 1207 | |
| 1208 | is_one = isl_poly_is_one(poly: poly2); |
| 1209 | if (is_one < 0) |
| 1210 | goto error; |
| 1211 | if (is_one) { |
| 1212 | isl_poly_free(poly: poly2); |
| 1213 | return poly1; |
| 1214 | } |
| 1215 | |
| 1216 | if (poly1->var < poly2->var) |
| 1217 | return isl_poly_mul(poly1: poly2, poly2: poly1); |
| 1218 | |
| 1219 | if (poly2->var < poly1->var) { |
| 1220 | int i; |
| 1221 | isl_poly_rec *rec; |
| 1222 | isl_bool is_infty; |
| 1223 | |
| 1224 | is_infty = isl_poly_is_infty(poly: poly2); |
| 1225 | if (is_infty >= 0 && !is_infty) |
| 1226 | is_infty = isl_poly_is_neginfty(poly: poly2); |
| 1227 | if (is_infty < 0) |
| 1228 | goto error; |
| 1229 | if (is_infty) { |
| 1230 | isl_ctx *ctx = poly1->ctx; |
| 1231 | isl_poly_free(poly: poly1); |
| 1232 | isl_poly_free(poly: poly2); |
| 1233 | return isl_poly_nan(ctx); |
| 1234 | } |
| 1235 | poly1 = isl_poly_cow(poly: poly1); |
| 1236 | rec = isl_poly_as_rec(poly: poly1); |
| 1237 | if (!rec) |
| 1238 | goto error; |
| 1239 | |
| 1240 | for (i = 0; i < rec->n; ++i) { |
| 1241 | rec->p[i] = isl_poly_mul(poly1: rec->p[i], |
| 1242 | poly2: isl_poly_copy(poly: poly2)); |
| 1243 | if (!rec->p[i]) |
| 1244 | goto error; |
| 1245 | } |
| 1246 | isl_poly_free(poly: poly2); |
| 1247 | return poly1; |
| 1248 | } |
| 1249 | |
| 1250 | is_cst = isl_poly_is_cst(poly: poly1); |
| 1251 | if (is_cst < 0) |
| 1252 | goto error; |
| 1253 | if (is_cst) |
| 1254 | return isl_poly_mul_cst(poly1, poly2); |
| 1255 | |
| 1256 | return isl_poly_mul_rec(poly1, poly2); |
| 1257 | error: |
| 1258 | isl_poly_free(poly: poly1); |
| 1259 | isl_poly_free(poly: poly2); |
| 1260 | return NULL; |
| 1261 | } |
| 1262 | |
| 1263 | __isl_give isl_poly *isl_poly_pow(__isl_take isl_poly *poly, unsigned power) |
| 1264 | { |
| 1265 | isl_poly *res; |
| 1266 | |
| 1267 | if (!poly) |
| 1268 | return NULL; |
| 1269 | if (power == 1) |
| 1270 | return poly; |
| 1271 | |
| 1272 | if (power % 2) |
| 1273 | res = isl_poly_copy(poly); |
| 1274 | else |
| 1275 | res = isl_poly_one(ctx: poly->ctx); |
| 1276 | |
| 1277 | while (power >>= 1) { |
| 1278 | poly = isl_poly_mul(poly1: poly, poly2: isl_poly_copy(poly)); |
| 1279 | if (power % 2) |
| 1280 | res = isl_poly_mul(poly1: res, poly2: isl_poly_copy(poly)); |
| 1281 | } |
| 1282 | |
| 1283 | isl_poly_free(poly); |
| 1284 | return res; |
| 1285 | } |
| 1286 | |
| 1287 | __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *space, |
| 1288 | unsigned n_div, __isl_take isl_poly *poly) |
| 1289 | { |
| 1290 | struct isl_qpolynomial *qp = NULL; |
| 1291 | isl_size total; |
| 1292 | |
| 1293 | total = isl_space_dim(space, type: isl_dim_all); |
| 1294 | if (total < 0 || !poly) |
| 1295 | goto error; |
| 1296 | |
| 1297 | if (!isl_space_is_set(space)) |
| 1298 | isl_die(isl_space_get_ctx(space), isl_error_invalid, |
| 1299 | "domain of polynomial should be a set" , goto error); |
| 1300 | |
| 1301 | qp = isl_calloc_type(space->ctx, struct isl_qpolynomial); |
| 1302 | if (!qp) |
| 1303 | goto error; |
| 1304 | |
| 1305 | qp->ref = 1; |
| 1306 | qp->div = isl_mat_alloc(ctx: space->ctx, n_row: n_div, n_col: 1 + 1 + total + n_div); |
| 1307 | if (!qp->div) |
| 1308 | goto error; |
| 1309 | |
| 1310 | qp->dim = space; |
| 1311 | qp->poly = poly; |
| 1312 | |
| 1313 | return qp; |
| 1314 | error: |
| 1315 | isl_space_free(space); |
| 1316 | isl_poly_free(poly); |
| 1317 | isl_qpolynomial_free(qp); |
| 1318 | return NULL; |
| 1319 | } |
| 1320 | |
| 1321 | __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp) |
| 1322 | { |
| 1323 | if (!qp) |
| 1324 | return NULL; |
| 1325 | |
| 1326 | qp->ref++; |
| 1327 | return qp; |
| 1328 | } |
| 1329 | |
| 1330 | __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp) |
| 1331 | { |
| 1332 | struct isl_qpolynomial *dup; |
| 1333 | |
| 1334 | if (!qp) |
| 1335 | return NULL; |
| 1336 | |
| 1337 | dup = isl_qpolynomial_alloc(space: isl_space_copy(space: qp->dim), n_div: qp->div->n_row, |
| 1338 | poly: isl_poly_copy(poly: qp->poly)); |
| 1339 | if (!dup) |
| 1340 | return NULL; |
| 1341 | isl_mat_free(mat: dup->div); |
| 1342 | dup->div = isl_mat_copy(mat: qp->div); |
| 1343 | if (!dup->div) |
| 1344 | goto error; |
| 1345 | |
| 1346 | return dup; |
| 1347 | error: |
| 1348 | isl_qpolynomial_free(qp: dup); |
| 1349 | return NULL; |
| 1350 | } |
| 1351 | |
| 1352 | __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp) |
| 1353 | { |
| 1354 | if (!qp) |
| 1355 | return NULL; |
| 1356 | |
| 1357 | if (qp->ref == 1) |
| 1358 | return qp; |
| 1359 | qp->ref--; |
| 1360 | return isl_qpolynomial_dup(qp); |
| 1361 | } |
| 1362 | |
| 1363 | __isl_null isl_qpolynomial *isl_qpolynomial_free( |
| 1364 | __isl_take isl_qpolynomial *qp) |
| 1365 | { |
| 1366 | if (!qp) |
| 1367 | return NULL; |
| 1368 | |
| 1369 | if (--qp->ref > 0) |
| 1370 | return NULL; |
| 1371 | |
| 1372 | isl_space_free(space: qp->dim); |
| 1373 | isl_mat_free(mat: qp->div); |
| 1374 | isl_poly_free(poly: qp->poly); |
| 1375 | |
| 1376 | free(ptr: qp); |
| 1377 | return NULL; |
| 1378 | } |
| 1379 | |
| 1380 | __isl_give isl_poly *isl_poly_var_pow(isl_ctx *ctx, int pos, int power) |
| 1381 | { |
| 1382 | int i; |
| 1383 | isl_poly_rec *rec; |
| 1384 | isl_poly_cst *cst; |
| 1385 | |
| 1386 | rec = isl_poly_alloc_rec(ctx, var: pos, size: 1 + power); |
| 1387 | if (!rec) |
| 1388 | return NULL; |
| 1389 | for (i = 0; i < 1 + power; ++i) { |
| 1390 | rec->p[i] = isl_poly_zero(ctx); |
| 1391 | if (!rec->p[i]) |
| 1392 | goto error; |
| 1393 | rec->n++; |
| 1394 | } |
| 1395 | cst = isl_poly_as_cst(poly: rec->p[power]); |
| 1396 | isl_int_set_si(cst->n, 1); |
| 1397 | |
| 1398 | return &rec->poly; |
| 1399 | error: |
| 1400 | isl_poly_free(poly: &rec->poly); |
| 1401 | return NULL; |
| 1402 | } |
| 1403 | |
| 1404 | /* r array maps original positions to new positions. |
| 1405 | */ |
| 1406 | static __isl_give isl_poly *reorder(__isl_take isl_poly *poly, int *r) |
| 1407 | { |
| 1408 | int i; |
| 1409 | isl_bool is_cst; |
| 1410 | isl_poly_rec *rec; |
| 1411 | isl_poly *base; |
| 1412 | isl_poly *res; |
| 1413 | |
| 1414 | is_cst = isl_poly_is_cst(poly); |
| 1415 | if (is_cst < 0) |
| 1416 | return isl_poly_free(poly); |
| 1417 | if (is_cst) |
| 1418 | return poly; |
| 1419 | |
| 1420 | rec = isl_poly_as_rec(poly); |
| 1421 | if (!rec) |
| 1422 | goto error; |
| 1423 | |
| 1424 | isl_assert(poly->ctx, rec->n >= 1, goto error); |
| 1425 | |
| 1426 | base = isl_poly_var_pow(ctx: poly->ctx, pos: r[poly->var], power: 1); |
| 1427 | res = reorder(poly: isl_poly_copy(poly: rec->p[rec->n - 1]), r); |
| 1428 | |
| 1429 | for (i = rec->n - 2; i >= 0; --i) { |
| 1430 | res = isl_poly_mul(poly1: res, poly2: isl_poly_copy(poly: base)); |
| 1431 | res = isl_poly_sum(poly1: res, poly2: reorder(poly: isl_poly_copy(poly: rec->p[i]), r)); |
| 1432 | } |
| 1433 | |
| 1434 | isl_poly_free(poly: base); |
| 1435 | isl_poly_free(poly); |
| 1436 | |
| 1437 | return res; |
| 1438 | error: |
| 1439 | isl_poly_free(poly); |
| 1440 | return NULL; |
| 1441 | } |
| 1442 | |
| 1443 | static isl_bool compatible_divs(__isl_keep isl_mat *div1, |
| 1444 | __isl_keep isl_mat *div2) |
| 1445 | { |
| 1446 | int n_row, n_col; |
| 1447 | isl_bool equal; |
| 1448 | |
| 1449 | isl_assert(div1->ctx, div1->n_row >= div2->n_row && |
| 1450 | div1->n_col >= div2->n_col, |
| 1451 | return isl_bool_error); |
| 1452 | |
| 1453 | if (div1->n_row == div2->n_row) |
| 1454 | return isl_mat_is_equal(mat1: div1, mat2: div2); |
| 1455 | |
| 1456 | n_row = div1->n_row; |
| 1457 | n_col = div1->n_col; |
| 1458 | div1->n_row = div2->n_row; |
| 1459 | div1->n_col = div2->n_col; |
| 1460 | |
| 1461 | equal = isl_mat_is_equal(mat1: div1, mat2: div2); |
| 1462 | |
| 1463 | div1->n_row = n_row; |
| 1464 | div1->n_col = n_col; |
| 1465 | |
| 1466 | return equal; |
| 1467 | } |
| 1468 | |
| 1469 | static int cmp_row(__isl_keep isl_mat *div, int i, int j) |
| 1470 | { |
| 1471 | int li, lj; |
| 1472 | |
| 1473 | li = isl_seq_last_non_zero(p: div->row[i], len: div->n_col); |
| 1474 | lj = isl_seq_last_non_zero(p: div->row[j], len: div->n_col); |
| 1475 | |
| 1476 | if (li != lj) |
| 1477 | return li - lj; |
| 1478 | |
| 1479 | return isl_seq_cmp(p1: div->row[i], p2: div->row[j], len: div->n_col); |
| 1480 | } |
| 1481 | |
| 1482 | struct isl_div_sort_info { |
| 1483 | isl_mat *div; |
| 1484 | int row; |
| 1485 | }; |
| 1486 | |
| 1487 | static int div_sort_cmp(const void *p1, const void *p2) |
| 1488 | { |
| 1489 | const struct isl_div_sort_info *i1, *i2; |
| 1490 | i1 = (const struct isl_div_sort_info *) p1; |
| 1491 | i2 = (const struct isl_div_sort_info *) p2; |
| 1492 | |
| 1493 | return cmp_row(div: i1->div, i: i1->row, j: i2->row); |
| 1494 | } |
| 1495 | |
| 1496 | /* Sort divs and remove duplicates. |
| 1497 | */ |
| 1498 | static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp) |
| 1499 | { |
| 1500 | int i; |
| 1501 | int skip; |
| 1502 | int len; |
| 1503 | struct isl_div_sort_info *array = NULL; |
| 1504 | int *pos = NULL, *at = NULL; |
| 1505 | int *reordering = NULL; |
| 1506 | isl_size div_pos; |
| 1507 | |
| 1508 | if (!qp) |
| 1509 | return NULL; |
| 1510 | if (qp->div->n_row <= 1) |
| 1511 | return qp; |
| 1512 | |
| 1513 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
| 1514 | if (div_pos < 0) |
| 1515 | return isl_qpolynomial_free(qp); |
| 1516 | |
| 1517 | array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info, |
| 1518 | qp->div->n_row); |
| 1519 | pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); |
| 1520 | at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); |
| 1521 | len = qp->div->n_col - 2; |
| 1522 | reordering = isl_alloc_array(qp->div->ctx, int, len); |
| 1523 | if (!array || !pos || !at || !reordering) |
| 1524 | goto error; |
| 1525 | |
| 1526 | for (i = 0; i < qp->div->n_row; ++i) { |
| 1527 | array[i].div = qp->div; |
| 1528 | array[i].row = i; |
| 1529 | pos[i] = i; |
| 1530 | at[i] = i; |
| 1531 | } |
| 1532 | |
| 1533 | qsort(base: array, nmemb: qp->div->n_row, size: sizeof(struct isl_div_sort_info), |
| 1534 | compar: div_sort_cmp); |
| 1535 | |
| 1536 | for (i = 0; i < div_pos; ++i) |
| 1537 | reordering[i] = i; |
| 1538 | |
| 1539 | for (i = 0; i < qp->div->n_row; ++i) { |
| 1540 | if (pos[array[i].row] == i) |
| 1541 | continue; |
| 1542 | qp->div = isl_mat_swap_rows(mat: qp->div, i, j: pos[array[i].row]); |
| 1543 | pos[at[i]] = pos[array[i].row]; |
| 1544 | at[pos[array[i].row]] = at[i]; |
| 1545 | at[i] = array[i].row; |
| 1546 | pos[array[i].row] = i; |
| 1547 | } |
| 1548 | |
| 1549 | skip = 0; |
| 1550 | for (i = 0; i < len - div_pos; ++i) { |
| 1551 | if (i > 0 && |
| 1552 | isl_seq_eq(p1: qp->div->row[i - skip - 1], |
| 1553 | p2: qp->div->row[i - skip], len: qp->div->n_col)) { |
| 1554 | qp->div = isl_mat_drop_rows(mat: qp->div, row: i - skip, n: 1); |
| 1555 | isl_mat_col_add(mat: qp->div, dst_col: 2 + div_pos + i - skip - 1, |
| 1556 | src_col: 2 + div_pos + i - skip); |
| 1557 | qp->div = isl_mat_drop_cols(mat: qp->div, |
| 1558 | col: 2 + div_pos + i - skip, n: 1); |
| 1559 | skip++; |
| 1560 | } |
| 1561 | reordering[div_pos + array[i].row] = div_pos + i - skip; |
| 1562 | } |
| 1563 | |
| 1564 | qp->poly = reorder(poly: qp->poly, r: reordering); |
| 1565 | |
| 1566 | if (!qp->poly || !qp->div) |
| 1567 | goto error; |
| 1568 | |
| 1569 | free(ptr: at); |
| 1570 | free(ptr: pos); |
| 1571 | free(ptr: array); |
| 1572 | free(ptr: reordering); |
| 1573 | |
| 1574 | return qp; |
| 1575 | error: |
| 1576 | free(ptr: at); |
| 1577 | free(ptr: pos); |
| 1578 | free(ptr: array); |
| 1579 | free(ptr: reordering); |
| 1580 | isl_qpolynomial_free(qp); |
| 1581 | return NULL; |
| 1582 | } |
| 1583 | |
| 1584 | static __isl_give isl_poly *expand(__isl_take isl_poly *poly, int *exp, |
| 1585 | int first) |
| 1586 | { |
| 1587 | int i; |
| 1588 | isl_bool is_cst; |
| 1589 | isl_poly_rec *rec; |
| 1590 | |
| 1591 | is_cst = isl_poly_is_cst(poly); |
| 1592 | if (is_cst < 0) |
| 1593 | return isl_poly_free(poly); |
| 1594 | if (is_cst) |
| 1595 | return poly; |
| 1596 | |
| 1597 | if (poly->var < first) |
| 1598 | return poly; |
| 1599 | |
| 1600 | if (exp[poly->var - first] == poly->var - first) |
| 1601 | return poly; |
| 1602 | |
| 1603 | poly = isl_poly_cow(poly); |
| 1604 | if (!poly) |
| 1605 | goto error; |
| 1606 | |
| 1607 | poly->var = exp[poly->var - first] + first; |
| 1608 | |
| 1609 | rec = isl_poly_as_rec(poly); |
| 1610 | if (!rec) |
| 1611 | goto error; |
| 1612 | |
| 1613 | for (i = 0; i < rec->n; ++i) { |
| 1614 | rec->p[i] = expand(poly: rec->p[i], exp, first); |
| 1615 | if (!rec->p[i]) |
| 1616 | goto error; |
| 1617 | } |
| 1618 | |
| 1619 | return poly; |
| 1620 | error: |
| 1621 | isl_poly_free(poly); |
| 1622 | return NULL; |
| 1623 | } |
| 1624 | |
| 1625 | static __isl_give isl_qpolynomial *with_merged_divs( |
| 1626 | __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1, |
| 1627 | __isl_take isl_qpolynomial *qp2), |
| 1628 | __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) |
| 1629 | { |
| 1630 | int *exp1 = NULL; |
| 1631 | int *exp2 = NULL; |
| 1632 | isl_mat *div = NULL; |
| 1633 | int n_div1, n_div2; |
| 1634 | |
| 1635 | qp1 = isl_qpolynomial_cow(qp: qp1); |
| 1636 | qp2 = isl_qpolynomial_cow(qp: qp2); |
| 1637 | |
| 1638 | if (!qp1 || !qp2) |
| 1639 | goto error; |
| 1640 | |
| 1641 | isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row && |
| 1642 | qp1->div->n_col >= qp2->div->n_col, goto error); |
| 1643 | |
| 1644 | n_div1 = qp1->div->n_row; |
| 1645 | n_div2 = qp2->div->n_row; |
| 1646 | exp1 = isl_alloc_array(qp1->div->ctx, int, n_div1); |
| 1647 | exp2 = isl_alloc_array(qp2->div->ctx, int, n_div2); |
| 1648 | if ((n_div1 && !exp1) || (n_div2 && !exp2)) |
| 1649 | goto error; |
| 1650 | |
| 1651 | div = isl_merge_divs(div1: qp1->div, div2: qp2->div, exp1, exp2); |
| 1652 | if (!div) |
| 1653 | goto error; |
| 1654 | |
| 1655 | isl_mat_free(mat: qp1->div); |
| 1656 | qp1->div = isl_mat_copy(mat: div); |
| 1657 | isl_mat_free(mat: qp2->div); |
| 1658 | qp2->div = isl_mat_copy(mat: div); |
| 1659 | |
| 1660 | qp1->poly = expand(poly: qp1->poly, exp: exp1, first: div->n_col - div->n_row - 2); |
| 1661 | qp2->poly = expand(poly: qp2->poly, exp: exp2, first: div->n_col - div->n_row - 2); |
| 1662 | |
| 1663 | if (!qp1->poly || !qp2->poly) |
| 1664 | goto error; |
| 1665 | |
| 1666 | isl_mat_free(mat: div); |
| 1667 | free(ptr: exp1); |
| 1668 | free(ptr: exp2); |
| 1669 | |
| 1670 | return fn(qp1, qp2); |
| 1671 | error: |
| 1672 | isl_mat_free(mat: div); |
| 1673 | free(ptr: exp1); |
| 1674 | free(ptr: exp2); |
| 1675 | isl_qpolynomial_free(qp: qp1); |
| 1676 | isl_qpolynomial_free(qp: qp2); |
| 1677 | return NULL; |
| 1678 | } |
| 1679 | |
| 1680 | __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1, |
| 1681 | __isl_take isl_qpolynomial *qp2) |
| 1682 | { |
| 1683 | isl_bool compatible; |
| 1684 | |
| 1685 | qp1 = isl_qpolynomial_cow(qp: qp1); |
| 1686 | |
| 1687 | if (isl_qpolynomial_check_equal_space(obj1: qp1, obj2: qp2) < 0) |
| 1688 | goto error; |
| 1689 | |
| 1690 | if (qp1->div->n_row < qp2->div->n_row) |
| 1691 | return isl_qpolynomial_add(qp1: qp2, qp2: qp1); |
| 1692 | |
| 1693 | compatible = compatible_divs(div1: qp1->div, div2: qp2->div); |
| 1694 | if (compatible < 0) |
| 1695 | goto error; |
| 1696 | if (!compatible) |
| 1697 | return with_merged_divs(fn: isl_qpolynomial_add, qp1, qp2); |
| 1698 | |
| 1699 | qp1->poly = isl_poly_sum(poly1: qp1->poly, poly2: isl_poly_copy(poly: qp2->poly)); |
| 1700 | if (!qp1->poly) |
| 1701 | goto error; |
| 1702 | |
| 1703 | isl_qpolynomial_free(qp: qp2); |
| 1704 | |
| 1705 | return qp1; |
| 1706 | error: |
| 1707 | isl_qpolynomial_free(qp: qp1); |
| 1708 | isl_qpolynomial_free(qp: qp2); |
| 1709 | return NULL; |
| 1710 | } |
| 1711 | |
| 1712 | __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain( |
| 1713 | __isl_keep isl_set *dom, |
| 1714 | __isl_take isl_qpolynomial *qp1, |
| 1715 | __isl_take isl_qpolynomial *qp2) |
| 1716 | { |
| 1717 | qp1 = isl_qpolynomial_add(qp1, qp2); |
| 1718 | qp1 = isl_qpolynomial_gist(qp: qp1, context: isl_set_copy(set: dom)); |
| 1719 | return qp1; |
| 1720 | } |
| 1721 | |
| 1722 | __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1, |
| 1723 | __isl_take isl_qpolynomial *qp2) |
| 1724 | { |
| 1725 | return isl_qpolynomial_add(qp1, qp2: isl_qpolynomial_neg(qp: qp2)); |
| 1726 | } |
| 1727 | |
| 1728 | __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int( |
| 1729 | __isl_take isl_qpolynomial *qp, isl_int v) |
| 1730 | { |
| 1731 | if (isl_int_is_zero(v)) |
| 1732 | return qp; |
| 1733 | |
| 1734 | qp = isl_qpolynomial_cow(qp); |
| 1735 | if (!qp) |
| 1736 | return NULL; |
| 1737 | |
| 1738 | qp->poly = isl_poly_add_isl_int(poly: qp->poly, v); |
| 1739 | if (!qp->poly) |
| 1740 | goto error; |
| 1741 | |
| 1742 | return qp; |
| 1743 | error: |
| 1744 | isl_qpolynomial_free(qp); |
| 1745 | return NULL; |
| 1746 | |
| 1747 | } |
| 1748 | |
| 1749 | __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp) |
| 1750 | { |
| 1751 | if (!qp) |
| 1752 | return NULL; |
| 1753 | |
| 1754 | return isl_qpolynomial_mul_isl_int(qp, v: qp->dim->ctx->negone); |
| 1755 | } |
| 1756 | |
| 1757 | __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int( |
| 1758 | __isl_take isl_qpolynomial *qp, isl_int v) |
| 1759 | { |
| 1760 | if (isl_int_is_one(v)) |
| 1761 | return qp; |
| 1762 | |
| 1763 | if (qp && isl_int_is_zero(v)) { |
| 1764 | isl_qpolynomial *zero; |
| 1765 | zero = isl_qpolynomial_zero_on_domain(domain: isl_space_copy(space: qp->dim)); |
| 1766 | isl_qpolynomial_free(qp); |
| 1767 | return zero; |
| 1768 | } |
| 1769 | |
| 1770 | qp = isl_qpolynomial_cow(qp); |
| 1771 | if (!qp) |
| 1772 | return NULL; |
| 1773 | |
| 1774 | qp->poly = isl_poly_mul_isl_int(poly: qp->poly, v); |
| 1775 | if (!qp->poly) |
| 1776 | goto error; |
| 1777 | |
| 1778 | return qp; |
| 1779 | error: |
| 1780 | isl_qpolynomial_free(qp); |
| 1781 | return NULL; |
| 1782 | } |
| 1783 | |
| 1784 | __isl_give isl_qpolynomial *isl_qpolynomial_scale( |
| 1785 | __isl_take isl_qpolynomial *qp, isl_int v) |
| 1786 | { |
| 1787 | return isl_qpolynomial_mul_isl_int(qp, v); |
| 1788 | } |
| 1789 | |
| 1790 | /* Multiply "qp" by "v". |
| 1791 | */ |
| 1792 | __isl_give isl_qpolynomial *isl_qpolynomial_scale_val( |
| 1793 | __isl_take isl_qpolynomial *qp, __isl_take isl_val *v) |
| 1794 | { |
| 1795 | if (!qp || !v) |
| 1796 | goto error; |
| 1797 | |
| 1798 | if (!isl_val_is_rat(v)) |
| 1799 | isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, |
| 1800 | "expecting rational factor" , goto error); |
| 1801 | |
| 1802 | if (isl_val_is_one(v)) { |
| 1803 | isl_val_free(v); |
| 1804 | return qp; |
| 1805 | } |
| 1806 | |
| 1807 | if (isl_val_is_zero(v)) { |
| 1808 | isl_space *space; |
| 1809 | |
| 1810 | space = isl_qpolynomial_get_domain_space(qp); |
| 1811 | isl_qpolynomial_free(qp); |
| 1812 | isl_val_free(v); |
| 1813 | return isl_qpolynomial_zero_on_domain(domain: space); |
| 1814 | } |
| 1815 | |
| 1816 | qp = isl_qpolynomial_cow(qp); |
| 1817 | if (!qp) |
| 1818 | goto error; |
| 1819 | |
| 1820 | qp->poly = isl_poly_scale_val(poly: qp->poly, v); |
| 1821 | if (!qp->poly) |
| 1822 | qp = isl_qpolynomial_free(qp); |
| 1823 | |
| 1824 | isl_val_free(v); |
| 1825 | return qp; |
| 1826 | error: |
| 1827 | isl_val_free(v); |
| 1828 | isl_qpolynomial_free(qp); |
| 1829 | return NULL; |
| 1830 | } |
| 1831 | |
| 1832 | /* Divide "qp" by "v". |
| 1833 | */ |
| 1834 | __isl_give isl_qpolynomial *isl_qpolynomial_scale_down_val( |
| 1835 | __isl_take isl_qpolynomial *qp, __isl_take isl_val *v) |
| 1836 | { |
| 1837 | if (!qp || !v) |
| 1838 | goto error; |
| 1839 | |
| 1840 | if (!isl_val_is_rat(v)) |
| 1841 | isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, |
| 1842 | "expecting rational factor" , goto error); |
| 1843 | if (isl_val_is_zero(v)) |
| 1844 | isl_die(isl_val_get_ctx(v), isl_error_invalid, |
| 1845 | "cannot scale down by zero" , goto error); |
| 1846 | |
| 1847 | return isl_qpolynomial_scale_val(qp, v: isl_val_inv(v)); |
| 1848 | error: |
| 1849 | isl_val_free(v); |
| 1850 | isl_qpolynomial_free(qp); |
| 1851 | return NULL; |
| 1852 | } |
| 1853 | |
| 1854 | __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1, |
| 1855 | __isl_take isl_qpolynomial *qp2) |
| 1856 | { |
| 1857 | isl_bool compatible; |
| 1858 | |
| 1859 | qp1 = isl_qpolynomial_cow(qp: qp1); |
| 1860 | |
| 1861 | if (isl_qpolynomial_check_equal_space(obj1: qp1, obj2: qp2) < 0) |
| 1862 | goto error; |
| 1863 | |
| 1864 | if (qp1->div->n_row < qp2->div->n_row) |
| 1865 | return isl_qpolynomial_mul(qp1: qp2, qp2: qp1); |
| 1866 | |
| 1867 | compatible = compatible_divs(div1: qp1->div, div2: qp2->div); |
| 1868 | if (compatible < 0) |
| 1869 | goto error; |
| 1870 | if (!compatible) |
| 1871 | return with_merged_divs(fn: isl_qpolynomial_mul, qp1, qp2); |
| 1872 | |
| 1873 | qp1->poly = isl_poly_mul(poly1: qp1->poly, poly2: isl_poly_copy(poly: qp2->poly)); |
| 1874 | if (!qp1->poly) |
| 1875 | goto error; |
| 1876 | |
| 1877 | isl_qpolynomial_free(qp: qp2); |
| 1878 | |
| 1879 | return qp1; |
| 1880 | error: |
| 1881 | isl_qpolynomial_free(qp: qp1); |
| 1882 | isl_qpolynomial_free(qp: qp2); |
| 1883 | return NULL; |
| 1884 | } |
| 1885 | |
| 1886 | __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp, |
| 1887 | unsigned power) |
| 1888 | { |
| 1889 | qp = isl_qpolynomial_cow(qp); |
| 1890 | |
| 1891 | if (!qp) |
| 1892 | return NULL; |
| 1893 | |
| 1894 | qp->poly = isl_poly_pow(poly: qp->poly, power); |
| 1895 | if (!qp->poly) |
| 1896 | goto error; |
| 1897 | |
| 1898 | return qp; |
| 1899 | error: |
| 1900 | isl_qpolynomial_free(qp); |
| 1901 | return NULL; |
| 1902 | } |
| 1903 | |
| 1904 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow( |
| 1905 | __isl_take isl_pw_qpolynomial *pwqp, unsigned power) |
| 1906 | { |
| 1907 | int i; |
| 1908 | |
| 1909 | if (power == 1) |
| 1910 | return pwqp; |
| 1911 | |
| 1912 | pwqp = isl_pw_qpolynomial_cow(pwqp); |
| 1913 | if (!pwqp) |
| 1914 | return NULL; |
| 1915 | |
| 1916 | for (i = 0; i < pwqp->n; ++i) { |
| 1917 | pwqp->p[i].qp = isl_qpolynomial_pow(qp: pwqp->p[i].qp, power); |
| 1918 | if (!pwqp->p[i].qp) |
| 1919 | return isl_pw_qpolynomial_free(pwqp); |
| 1920 | } |
| 1921 | |
| 1922 | return pwqp; |
| 1923 | } |
| 1924 | |
| 1925 | __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain( |
| 1926 | __isl_take isl_space *domain) |
| 1927 | { |
| 1928 | if (!domain) |
| 1929 | return NULL; |
| 1930 | return isl_qpolynomial_alloc(space: domain, n_div: 0, poly: isl_poly_zero(ctx: domain->ctx)); |
| 1931 | } |
| 1932 | |
| 1933 | __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain( |
| 1934 | __isl_take isl_space *domain) |
| 1935 | { |
| 1936 | if (!domain) |
| 1937 | return NULL; |
| 1938 | return isl_qpolynomial_alloc(space: domain, n_div: 0, poly: isl_poly_one(ctx: domain->ctx)); |
| 1939 | } |
| 1940 | |
| 1941 | __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain( |
| 1942 | __isl_take isl_space *domain) |
| 1943 | { |
| 1944 | if (!domain) |
| 1945 | return NULL; |
| 1946 | return isl_qpolynomial_alloc(space: domain, n_div: 0, poly: isl_poly_infty(ctx: domain->ctx)); |
| 1947 | } |
| 1948 | |
| 1949 | __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain( |
| 1950 | __isl_take isl_space *domain) |
| 1951 | { |
| 1952 | if (!domain) |
| 1953 | return NULL; |
| 1954 | return isl_qpolynomial_alloc(space: domain, n_div: 0, poly: isl_poly_neginfty(ctx: domain->ctx)); |
| 1955 | } |
| 1956 | |
| 1957 | __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain( |
| 1958 | __isl_take isl_space *domain) |
| 1959 | { |
| 1960 | if (!domain) |
| 1961 | return NULL; |
| 1962 | return isl_qpolynomial_alloc(space: domain, n_div: 0, poly: isl_poly_nan(ctx: domain->ctx)); |
| 1963 | } |
| 1964 | |
| 1965 | __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain( |
| 1966 | __isl_take isl_space *domain, |
| 1967 | isl_int v) |
| 1968 | { |
| 1969 | struct isl_qpolynomial *qp; |
| 1970 | isl_poly_cst *cst; |
| 1971 | |
| 1972 | qp = isl_qpolynomial_zero_on_domain(domain); |
| 1973 | if (!qp) |
| 1974 | return NULL; |
| 1975 | |
| 1976 | cst = isl_poly_as_cst(poly: qp->poly); |
| 1977 | isl_int_set(cst->n, v); |
| 1978 | |
| 1979 | return qp; |
| 1980 | } |
| 1981 | |
| 1982 | isl_bool isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp, |
| 1983 | isl_int *n, isl_int *d) |
| 1984 | { |
| 1985 | isl_bool is_cst; |
| 1986 | isl_poly_cst *cst; |
| 1987 | |
| 1988 | if (!qp) |
| 1989 | return isl_bool_error; |
| 1990 | |
| 1991 | is_cst = isl_poly_is_cst(poly: qp->poly); |
| 1992 | if (is_cst < 0 || !is_cst) |
| 1993 | return is_cst; |
| 1994 | |
| 1995 | cst = isl_poly_as_cst(poly: qp->poly); |
| 1996 | if (!cst) |
| 1997 | return isl_bool_error; |
| 1998 | |
| 1999 | if (n) |
| 2000 | isl_int_set(*n, cst->n); |
| 2001 | if (d) |
| 2002 | isl_int_set(*d, cst->d); |
| 2003 | |
| 2004 | return isl_bool_true; |
| 2005 | } |
| 2006 | |
| 2007 | /* Return the constant term of "poly". |
| 2008 | */ |
| 2009 | static __isl_give isl_val *isl_poly_get_constant_val(__isl_keep isl_poly *poly) |
| 2010 | { |
| 2011 | isl_bool is_cst; |
| 2012 | isl_poly_cst *cst; |
| 2013 | |
| 2014 | if (!poly) |
| 2015 | return NULL; |
| 2016 | |
| 2017 | while ((is_cst = isl_poly_is_cst(poly)) == isl_bool_false) { |
| 2018 | isl_poly_rec *rec; |
| 2019 | |
| 2020 | rec = isl_poly_as_rec(poly); |
| 2021 | if (!rec) |
| 2022 | return NULL; |
| 2023 | poly = rec->p[0]; |
| 2024 | } |
| 2025 | if (is_cst < 0) |
| 2026 | return NULL; |
| 2027 | |
| 2028 | cst = isl_poly_as_cst(poly); |
| 2029 | if (!cst) |
| 2030 | return NULL; |
| 2031 | return isl_val_rat_from_isl_int(ctx: cst->poly.ctx, n: cst->n, d: cst->d); |
| 2032 | } |
| 2033 | |
| 2034 | /* Return the constant term of "qp". |
| 2035 | */ |
| 2036 | __isl_give isl_val *isl_qpolynomial_get_constant_val( |
| 2037 | __isl_keep isl_qpolynomial *qp) |
| 2038 | { |
| 2039 | if (!qp) |
| 2040 | return NULL; |
| 2041 | |
| 2042 | return isl_poly_get_constant_val(poly: qp->poly); |
| 2043 | } |
| 2044 | |
| 2045 | isl_bool isl_poly_is_affine(__isl_keep isl_poly *poly) |
| 2046 | { |
| 2047 | isl_bool is_cst; |
| 2048 | isl_poly_rec *rec; |
| 2049 | |
| 2050 | if (!poly) |
| 2051 | return isl_bool_error; |
| 2052 | |
| 2053 | if (poly->var < 0) |
| 2054 | return isl_bool_true; |
| 2055 | |
| 2056 | rec = isl_poly_as_rec(poly); |
| 2057 | if (!rec) |
| 2058 | return isl_bool_error; |
| 2059 | |
| 2060 | if (rec->n > 2) |
| 2061 | return isl_bool_false; |
| 2062 | |
| 2063 | isl_assert(poly->ctx, rec->n > 1, return isl_bool_error); |
| 2064 | |
| 2065 | is_cst = isl_poly_is_cst(poly: rec->p[1]); |
| 2066 | if (is_cst < 0 || !is_cst) |
| 2067 | return is_cst; |
| 2068 | |
| 2069 | return isl_poly_is_affine(poly: rec->p[0]); |
| 2070 | } |
| 2071 | |
| 2072 | isl_bool isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp) |
| 2073 | { |
| 2074 | if (!qp) |
| 2075 | return isl_bool_error; |
| 2076 | |
| 2077 | if (qp->div->n_row > 0) |
| 2078 | return isl_bool_false; |
| 2079 | |
| 2080 | return isl_poly_is_affine(poly: qp->poly); |
| 2081 | } |
| 2082 | |
| 2083 | static void update_coeff(__isl_keep isl_vec *aff, |
| 2084 | __isl_keep isl_poly_cst *cst, int pos) |
| 2085 | { |
| 2086 | isl_int gcd; |
| 2087 | isl_int f; |
| 2088 | |
| 2089 | if (isl_int_is_zero(cst->n)) |
| 2090 | return; |
| 2091 | |
| 2092 | isl_int_init(gcd); |
| 2093 | isl_int_init(f); |
| 2094 | isl_int_gcd(gcd, cst->d, aff->el[0]); |
| 2095 | isl_int_divexact(f, cst->d, gcd); |
| 2096 | isl_int_divexact(gcd, aff->el[0], gcd); |
| 2097 | isl_seq_scale(dst: aff->el, src: aff->el, f, len: aff->size); |
| 2098 | isl_int_mul(aff->el[1 + pos], gcd, cst->n); |
| 2099 | isl_int_clear(gcd); |
| 2100 | isl_int_clear(f); |
| 2101 | } |
| 2102 | |
| 2103 | int isl_poly_update_affine(__isl_keep isl_poly *poly, __isl_keep isl_vec *aff) |
| 2104 | { |
| 2105 | isl_poly_cst *cst; |
| 2106 | isl_poly_rec *rec; |
| 2107 | |
| 2108 | if (!poly || !aff) |
| 2109 | return -1; |
| 2110 | |
| 2111 | if (poly->var < 0) { |
| 2112 | isl_poly_cst *cst; |
| 2113 | |
| 2114 | cst = isl_poly_as_cst(poly); |
| 2115 | if (!cst) |
| 2116 | return -1; |
| 2117 | update_coeff(aff, cst, pos: 0); |
| 2118 | return 0; |
| 2119 | } |
| 2120 | |
| 2121 | rec = isl_poly_as_rec(poly); |
| 2122 | if (!rec) |
| 2123 | return -1; |
| 2124 | isl_assert(poly->ctx, rec->n == 2, return -1); |
| 2125 | |
| 2126 | cst = isl_poly_as_cst(poly: rec->p[1]); |
| 2127 | if (!cst) |
| 2128 | return -1; |
| 2129 | update_coeff(aff, cst, pos: 1 + poly->var); |
| 2130 | |
| 2131 | return isl_poly_update_affine(poly: rec->p[0], aff); |
| 2132 | } |
| 2133 | |
| 2134 | __isl_give isl_vec *( |
| 2135 | __isl_keep isl_qpolynomial *qp) |
| 2136 | { |
| 2137 | isl_vec *aff; |
| 2138 | isl_size d; |
| 2139 | |
| 2140 | d = isl_qpolynomial_domain_dim(qp, type: isl_dim_all); |
| 2141 | if (d < 0) |
| 2142 | return NULL; |
| 2143 | |
| 2144 | aff = isl_vec_alloc(ctx: qp->div->ctx, size: 2 + d); |
| 2145 | if (!aff) |
| 2146 | return NULL; |
| 2147 | |
| 2148 | isl_seq_clr(p: aff->el + 1, len: 1 + d); |
| 2149 | isl_int_set_si(aff->el[0], 1); |
| 2150 | |
| 2151 | if (isl_poly_update_affine(poly: qp->poly, aff) < 0) |
| 2152 | goto error; |
| 2153 | |
| 2154 | return aff; |
| 2155 | error: |
| 2156 | isl_vec_free(vec: aff); |
| 2157 | return NULL; |
| 2158 | } |
| 2159 | |
| 2160 | /* Compare two quasi-polynomials. |
| 2161 | * |
| 2162 | * Return -1 if "qp1" is "smaller" than "qp2", 1 if "qp1" is "greater" |
| 2163 | * than "qp2" and 0 if they are equal. |
| 2164 | */ |
| 2165 | int isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial *qp1, |
| 2166 | __isl_keep isl_qpolynomial *qp2) |
| 2167 | { |
| 2168 | int cmp; |
| 2169 | |
| 2170 | if (qp1 == qp2) |
| 2171 | return 0; |
| 2172 | if (!qp1) |
| 2173 | return -1; |
| 2174 | if (!qp2) |
| 2175 | return 1; |
| 2176 | |
| 2177 | cmp = isl_space_cmp(space1: qp1->dim, space2: qp2->dim); |
| 2178 | if (cmp != 0) |
| 2179 | return cmp; |
| 2180 | |
| 2181 | cmp = isl_local_cmp(local1: qp1->div, local2: qp2->div); |
| 2182 | if (cmp != 0) |
| 2183 | return cmp; |
| 2184 | |
| 2185 | return isl_poly_plain_cmp(poly1: qp1->poly, poly2: qp2->poly); |
| 2186 | } |
| 2187 | |
| 2188 | /* Is "qp1" obviously equal to "qp2"? |
| 2189 | * |
| 2190 | * NaN is not equal to anything, not even to another NaN. |
| 2191 | */ |
| 2192 | isl_bool isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1, |
| 2193 | __isl_keep isl_qpolynomial *qp2) |
| 2194 | { |
| 2195 | isl_bool equal; |
| 2196 | |
| 2197 | if (!qp1 || !qp2) |
| 2198 | return isl_bool_error; |
| 2199 | |
| 2200 | if (isl_qpolynomial_is_nan(qp: qp1) || isl_qpolynomial_is_nan(qp: qp2)) |
| 2201 | return isl_bool_false; |
| 2202 | |
| 2203 | equal = isl_space_is_equal(space1: qp1->dim, space2: qp2->dim); |
| 2204 | if (equal < 0 || !equal) |
| 2205 | return equal; |
| 2206 | |
| 2207 | equal = isl_mat_is_equal(mat1: qp1->div, mat2: qp2->div); |
| 2208 | if (equal < 0 || !equal) |
| 2209 | return equal; |
| 2210 | |
| 2211 | return isl_poly_is_equal(poly1: qp1->poly, poly2: qp2->poly); |
| 2212 | } |
| 2213 | |
| 2214 | static isl_stat poly_update_den(__isl_keep isl_poly *poly, isl_int *d) |
| 2215 | { |
| 2216 | int i; |
| 2217 | isl_bool is_cst; |
| 2218 | isl_poly_rec *rec; |
| 2219 | |
| 2220 | is_cst = isl_poly_is_cst(poly); |
| 2221 | if (is_cst < 0) |
| 2222 | return isl_stat_error; |
| 2223 | if (is_cst) { |
| 2224 | isl_poly_cst *cst; |
| 2225 | cst = isl_poly_as_cst(poly); |
| 2226 | if (!cst) |
| 2227 | return isl_stat_error; |
| 2228 | isl_int_lcm(*d, *d, cst->d); |
| 2229 | return isl_stat_ok; |
| 2230 | } |
| 2231 | |
| 2232 | rec = isl_poly_as_rec(poly); |
| 2233 | if (!rec) |
| 2234 | return isl_stat_error; |
| 2235 | |
| 2236 | for (i = 0; i < rec->n; ++i) |
| 2237 | poly_update_den(poly: rec->p[i], d); |
| 2238 | |
| 2239 | return isl_stat_ok; |
| 2240 | } |
| 2241 | |
| 2242 | __isl_give isl_val *isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp) |
| 2243 | { |
| 2244 | isl_val *d; |
| 2245 | |
| 2246 | if (!qp) |
| 2247 | return NULL; |
| 2248 | d = isl_val_one(ctx: isl_qpolynomial_get_ctx(qp)); |
| 2249 | if (!d) |
| 2250 | return NULL; |
| 2251 | if (poly_update_den(poly: qp->poly, d: &d->n) < 0) |
| 2252 | return isl_val_free(v: d); |
| 2253 | return d; |
| 2254 | } |
| 2255 | |
| 2256 | __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain( |
| 2257 | __isl_take isl_space *domain, int pos, int power) |
| 2258 | { |
| 2259 | struct isl_ctx *ctx; |
| 2260 | |
| 2261 | if (!domain) |
| 2262 | return NULL; |
| 2263 | |
| 2264 | ctx = domain->ctx; |
| 2265 | |
| 2266 | return isl_qpolynomial_alloc(space: domain, n_div: 0, |
| 2267 | poly: isl_poly_var_pow(ctx, pos, power)); |
| 2268 | } |
| 2269 | |
| 2270 | __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain( |
| 2271 | __isl_take isl_space *domain, enum isl_dim_type type, unsigned pos) |
| 2272 | { |
| 2273 | if (isl_space_check_is_set(space: domain ) < 0) |
| 2274 | goto error; |
| 2275 | if (isl_space_check_range(space: domain, type, first: pos, n: 1) < 0) |
| 2276 | goto error; |
| 2277 | |
| 2278 | pos += isl_space_offset(space: domain, type); |
| 2279 | |
| 2280 | return isl_qpolynomial_var_pow_on_domain(domain, pos, power: 1); |
| 2281 | error: |
| 2282 | isl_space_free(space: domain); |
| 2283 | return NULL; |
| 2284 | } |
| 2285 | |
| 2286 | __isl_give isl_poly *isl_poly_subs(__isl_take isl_poly *poly, |
| 2287 | unsigned first, unsigned n, __isl_keep isl_poly **subs) |
| 2288 | { |
| 2289 | int i; |
| 2290 | isl_bool is_cst; |
| 2291 | isl_poly_rec *rec; |
| 2292 | isl_poly *base, *res; |
| 2293 | |
| 2294 | is_cst = isl_poly_is_cst(poly); |
| 2295 | if (is_cst < 0) |
| 2296 | return isl_poly_free(poly); |
| 2297 | if (is_cst) |
| 2298 | return poly; |
| 2299 | |
| 2300 | if (poly->var < first) |
| 2301 | return poly; |
| 2302 | |
| 2303 | rec = isl_poly_as_rec(poly); |
| 2304 | if (!rec) |
| 2305 | goto error; |
| 2306 | |
| 2307 | isl_assert(poly->ctx, rec->n >= 1, goto error); |
| 2308 | |
| 2309 | if (poly->var >= first + n) |
| 2310 | base = isl_poly_var_pow(ctx: poly->ctx, pos: poly->var, power: 1); |
| 2311 | else |
| 2312 | base = isl_poly_copy(poly: subs[poly->var - first]); |
| 2313 | |
| 2314 | res = isl_poly_subs(poly: isl_poly_copy(poly: rec->p[rec->n - 1]), first, n, subs); |
| 2315 | for (i = rec->n - 2; i >= 0; --i) { |
| 2316 | isl_poly *t; |
| 2317 | t = isl_poly_subs(poly: isl_poly_copy(poly: rec->p[i]), first, n, subs); |
| 2318 | res = isl_poly_mul(poly1: res, poly2: isl_poly_copy(poly: base)); |
| 2319 | res = isl_poly_sum(poly1: res, poly2: t); |
| 2320 | } |
| 2321 | |
| 2322 | isl_poly_free(poly: base); |
| 2323 | isl_poly_free(poly); |
| 2324 | |
| 2325 | return res; |
| 2326 | error: |
| 2327 | isl_poly_free(poly); |
| 2328 | return NULL; |
| 2329 | } |
| 2330 | |
| 2331 | __isl_give isl_poly *isl_poly_from_affine(isl_ctx *ctx, isl_int *f, |
| 2332 | isl_int denom, unsigned len) |
| 2333 | { |
| 2334 | int i; |
| 2335 | isl_poly *poly; |
| 2336 | |
| 2337 | isl_assert(ctx, len >= 1, return NULL); |
| 2338 | |
| 2339 | poly = isl_poly_rat_cst(ctx, n: f[0], d: denom); |
| 2340 | for (i = 0; i < len - 1; ++i) { |
| 2341 | isl_poly *t; |
| 2342 | isl_poly *c; |
| 2343 | |
| 2344 | if (isl_int_is_zero(f[1 + i])) |
| 2345 | continue; |
| 2346 | |
| 2347 | c = isl_poly_rat_cst(ctx, n: f[1 + i], d: denom); |
| 2348 | t = isl_poly_var_pow(ctx, pos: i, power: 1); |
| 2349 | t = isl_poly_mul(poly1: c, poly2: t); |
| 2350 | poly = isl_poly_sum(poly1: poly, poly2: t); |
| 2351 | } |
| 2352 | |
| 2353 | return poly; |
| 2354 | } |
| 2355 | |
| 2356 | /* Remove common factor of non-constant terms and denominator. |
| 2357 | */ |
| 2358 | static void normalize_div(__isl_keep isl_qpolynomial *qp, int div) |
| 2359 | { |
| 2360 | isl_ctx *ctx = qp->div->ctx; |
| 2361 | unsigned total = qp->div->n_col - 2; |
| 2362 | |
| 2363 | isl_seq_gcd(p: qp->div->row[div] + 2, len: total, gcd: &ctx->normalize_gcd); |
| 2364 | isl_int_gcd(ctx->normalize_gcd, |
| 2365 | ctx->normalize_gcd, qp->div->row[div][0]); |
| 2366 | if (isl_int_is_one(ctx->normalize_gcd)) |
| 2367 | return; |
| 2368 | |
| 2369 | isl_seq_scale_down(dst: qp->div->row[div] + 2, src: qp->div->row[div] + 2, |
| 2370 | f: ctx->normalize_gcd, len: total); |
| 2371 | isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0], |
| 2372 | ctx->normalize_gcd); |
| 2373 | isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1], |
| 2374 | ctx->normalize_gcd); |
| 2375 | } |
| 2376 | |
| 2377 | /* Replace the integer division identified by "div" by the polynomial "s". |
| 2378 | * The integer division is assumed not to appear in the definition |
| 2379 | * of any other integer divisions. |
| 2380 | */ |
| 2381 | static __isl_give isl_qpolynomial *substitute_div( |
| 2382 | __isl_take isl_qpolynomial *qp, int div, __isl_take isl_poly *s) |
| 2383 | { |
| 2384 | int i; |
| 2385 | isl_size div_pos; |
| 2386 | int *reordering; |
| 2387 | isl_ctx *ctx; |
| 2388 | |
| 2389 | if (!qp || !s) |
| 2390 | goto error; |
| 2391 | |
| 2392 | qp = isl_qpolynomial_cow(qp); |
| 2393 | if (!qp) |
| 2394 | goto error; |
| 2395 | |
| 2396 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
| 2397 | if (div_pos < 0) |
| 2398 | goto error; |
| 2399 | qp->poly = isl_poly_subs(poly: qp->poly, first: div_pos + div, n: 1, subs: &s); |
| 2400 | if (!qp->poly) |
| 2401 | goto error; |
| 2402 | |
| 2403 | ctx = isl_qpolynomial_get_ctx(qp); |
| 2404 | reordering = isl_alloc_array(ctx, int, div_pos + qp->div->n_row); |
| 2405 | if (!reordering) |
| 2406 | goto error; |
| 2407 | for (i = 0; i < div_pos + div; ++i) |
| 2408 | reordering[i] = i; |
| 2409 | for (i = div_pos + div + 1; i < div_pos + qp->div->n_row; ++i) |
| 2410 | reordering[i] = i - 1; |
| 2411 | qp->div = isl_mat_drop_rows(mat: qp->div, row: div, n: 1); |
| 2412 | qp->div = isl_mat_drop_cols(mat: qp->div, col: 2 + div_pos + div, n: 1); |
| 2413 | qp->poly = reorder(poly: qp->poly, r: reordering); |
| 2414 | free(ptr: reordering); |
| 2415 | |
| 2416 | if (!qp->poly || !qp->div) |
| 2417 | goto error; |
| 2418 | |
| 2419 | isl_poly_free(poly: s); |
| 2420 | return qp; |
| 2421 | error: |
| 2422 | isl_qpolynomial_free(qp); |
| 2423 | isl_poly_free(poly: s); |
| 2424 | return NULL; |
| 2425 | } |
| 2426 | |
| 2427 | /* Replace all integer divisions [e/d] that turn out to not actually be integer |
| 2428 | * divisions because d is equal to 1 by their definition, i.e., e. |
| 2429 | */ |
| 2430 | static __isl_give isl_qpolynomial *substitute_non_divs( |
| 2431 | __isl_take isl_qpolynomial *qp) |
| 2432 | { |
| 2433 | int i, j; |
| 2434 | isl_size div_pos; |
| 2435 | isl_poly *s; |
| 2436 | |
| 2437 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
| 2438 | if (div_pos < 0) |
| 2439 | return isl_qpolynomial_free(qp); |
| 2440 | |
| 2441 | for (i = 0; qp && i < qp->div->n_row; ++i) { |
| 2442 | if (!isl_int_is_one(qp->div->row[i][0])) |
| 2443 | continue; |
| 2444 | for (j = i + 1; j < qp->div->n_row; ++j) { |
| 2445 | if (isl_int_is_zero(qp->div->row[j][2 + div_pos + i])) |
| 2446 | continue; |
| 2447 | isl_seq_combine(dst: qp->div->row[j] + 1, |
| 2448 | m1: qp->div->ctx->one, src1: qp->div->row[j] + 1, |
| 2449 | m2: qp->div->row[j][2 + div_pos + i], |
| 2450 | src2: qp->div->row[i] + 1, len: 1 + div_pos + i); |
| 2451 | isl_int_set_si(qp->div->row[j][2 + div_pos + i], 0); |
| 2452 | normalize_div(qp, div: j); |
| 2453 | } |
| 2454 | s = isl_poly_from_affine(ctx: qp->dim->ctx, f: qp->div->row[i] + 1, |
| 2455 | denom: qp->div->row[i][0], len: qp->div->n_col - 1); |
| 2456 | qp = substitute_div(qp, div: i, s); |
| 2457 | --i; |
| 2458 | } |
| 2459 | |
| 2460 | return qp; |
| 2461 | } |
| 2462 | |
| 2463 | /* Reduce the coefficients of div "div" to lie in the interval [0, d-1], |
| 2464 | * with d the denominator. When replacing the coefficient e of x by |
| 2465 | * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x |
| 2466 | * inside the division, so we need to add floor(e/d) * x outside. |
| 2467 | * That is, we replace q by q' + floor(e/d) * x and we therefore need |
| 2468 | * to adjust the coefficient of x in each later div that depends on the |
| 2469 | * current div "div" and also in the affine expressions in the rows of "mat" |
| 2470 | * (if they too depend on "div"). |
| 2471 | */ |
| 2472 | static void reduce_div(__isl_keep isl_qpolynomial *qp, int div, |
| 2473 | __isl_keep isl_mat **mat) |
| 2474 | { |
| 2475 | int i, j; |
| 2476 | isl_int v; |
| 2477 | unsigned total = qp->div->n_col - qp->div->n_row - 2; |
| 2478 | |
| 2479 | isl_int_init(v); |
| 2480 | for (i = 0; i < 1 + total + div; ++i) { |
| 2481 | if (isl_int_is_nonneg(qp->div->row[div][1 + i]) && |
| 2482 | isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0])) |
| 2483 | continue; |
| 2484 | isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]); |
| 2485 | isl_int_fdiv_r(qp->div->row[div][1 + i], |
| 2486 | qp->div->row[div][1 + i], qp->div->row[div][0]); |
| 2487 | *mat = isl_mat_col_addmul(mat: *mat, dst_col: i, f: v, src_col: 1 + total + div); |
| 2488 | for (j = div + 1; j < qp->div->n_row; ++j) { |
| 2489 | if (isl_int_is_zero(qp->div->row[j][2 + total + div])) |
| 2490 | continue; |
| 2491 | isl_int_addmul(qp->div->row[j][1 + i], |
| 2492 | v, qp->div->row[j][2 + total + div]); |
| 2493 | } |
| 2494 | } |
| 2495 | isl_int_clear(v); |
| 2496 | } |
| 2497 | |
| 2498 | /* Check if the last non-zero coefficient is bigger that half of the |
| 2499 | * denominator. If so, we will invert the div to further reduce the number |
| 2500 | * of distinct divs that may appear. |
| 2501 | * If the last non-zero coefficient is exactly half the denominator, |
| 2502 | * then we continue looking for earlier coefficients that are bigger |
| 2503 | * than half the denominator. |
| 2504 | */ |
| 2505 | static int needs_invert(__isl_keep isl_mat *div, int row) |
| 2506 | { |
| 2507 | int i; |
| 2508 | int cmp; |
| 2509 | |
| 2510 | for (i = div->n_col - 1; i >= 1; --i) { |
| 2511 | if (isl_int_is_zero(div->row[row][i])) |
| 2512 | continue; |
| 2513 | isl_int_mul_ui(div->row[row][i], div->row[row][i], 2); |
| 2514 | cmp = isl_int_cmp(div->row[row][i], div->row[row][0]); |
| 2515 | isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2); |
| 2516 | if (cmp) |
| 2517 | return cmp > 0; |
| 2518 | if (i == 1) |
| 2519 | return 1; |
| 2520 | } |
| 2521 | |
| 2522 | return 0; |
| 2523 | } |
| 2524 | |
| 2525 | /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d]. |
| 2526 | * We only invert the coefficients of e (and the coefficient of q in |
| 2527 | * later divs and in the rows of "mat"). After calling this function, the |
| 2528 | * coefficients of e should be reduced again. |
| 2529 | */ |
| 2530 | static void invert_div(__isl_keep isl_qpolynomial *qp, int div, |
| 2531 | __isl_keep isl_mat **mat) |
| 2532 | { |
| 2533 | unsigned total = qp->div->n_col - qp->div->n_row - 2; |
| 2534 | |
| 2535 | isl_seq_neg(dst: qp->div->row[div] + 1, |
| 2536 | src: qp->div->row[div] + 1, len: qp->div->n_col - 1); |
| 2537 | isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1); |
| 2538 | isl_int_add(qp->div->row[div][1], |
| 2539 | qp->div->row[div][1], qp->div->row[div][0]); |
| 2540 | *mat = isl_mat_col_neg(mat: *mat, col: 1 + total + div); |
| 2541 | isl_mat_col_mul(mat: qp->div, dst_col: 2 + total + div, |
| 2542 | f: qp->div->ctx->negone, src_col: 2 + total + div); |
| 2543 | } |
| 2544 | |
| 2545 | /* Reduce all divs of "qp" to have coefficients |
| 2546 | * in the interval [0, d-1], with d the denominator and such that the |
| 2547 | * last non-zero coefficient that is not equal to d/2 is smaller than d/2. |
| 2548 | * The modifications to the integer divisions need to be reflected |
| 2549 | * in the factors of the polynomial that refer to the original |
| 2550 | * integer divisions. To this end, the modifications are collected |
| 2551 | * as a set of affine expressions and then plugged into the polynomial. |
| 2552 | * |
| 2553 | * After the reduction, some divs may have become redundant or identical, |
| 2554 | * so we call substitute_non_divs and sort_divs. If these functions |
| 2555 | * eliminate divs or merge two or more divs into one, the coefficients |
| 2556 | * of the enclosing divs may have to be reduced again, so we call |
| 2557 | * ourselves recursively if the number of divs decreases. |
| 2558 | */ |
| 2559 | static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp) |
| 2560 | { |
| 2561 | int i; |
| 2562 | isl_ctx *ctx; |
| 2563 | isl_mat *mat; |
| 2564 | isl_poly **s; |
| 2565 | unsigned o_div; |
| 2566 | isl_size n_div, total, new_n_div; |
| 2567 | |
| 2568 | total = isl_qpolynomial_domain_dim(qp, type: isl_dim_all); |
| 2569 | n_div = isl_qpolynomial_domain_dim(qp, type: isl_dim_div); |
| 2570 | o_div = isl_qpolynomial_domain_offset(qp, type: isl_dim_div); |
| 2571 | if (total < 0 || n_div < 0) |
| 2572 | return isl_qpolynomial_free(qp); |
| 2573 | ctx = isl_qpolynomial_get_ctx(qp); |
| 2574 | mat = isl_mat_zero(ctx, n_row: n_div, n_col: 1 + total); |
| 2575 | |
| 2576 | for (i = 0; i < n_div; ++i) |
| 2577 | mat = isl_mat_set_element_si(mat, row: i, col: o_div + i, v: 1); |
| 2578 | |
| 2579 | for (i = 0; i < qp->div->n_row; ++i) { |
| 2580 | normalize_div(qp, div: i); |
| 2581 | reduce_div(qp, div: i, mat: &mat); |
| 2582 | if (needs_invert(div: qp->div, row: i)) { |
| 2583 | invert_div(qp, div: i, mat: &mat); |
| 2584 | reduce_div(qp, div: i, mat: &mat); |
| 2585 | } |
| 2586 | } |
| 2587 | if (!mat) |
| 2588 | goto error; |
| 2589 | |
| 2590 | s = isl_alloc_array(ctx, struct isl_poly *, n_div); |
| 2591 | if (n_div && !s) |
| 2592 | goto error; |
| 2593 | for (i = 0; i < n_div; ++i) |
| 2594 | s[i] = isl_poly_from_affine(ctx, f: mat->row[i], denom: ctx->one, |
| 2595 | len: 1 + total); |
| 2596 | qp->poly = isl_poly_subs(poly: qp->poly, first: o_div - 1, n: n_div, subs: s); |
| 2597 | for (i = 0; i < n_div; ++i) |
| 2598 | isl_poly_free(poly: s[i]); |
| 2599 | free(ptr: s); |
| 2600 | if (!qp->poly) |
| 2601 | goto error; |
| 2602 | |
| 2603 | isl_mat_free(mat); |
| 2604 | |
| 2605 | qp = substitute_non_divs(qp); |
| 2606 | qp = sort_divs(qp); |
| 2607 | new_n_div = isl_qpolynomial_domain_dim(qp, type: isl_dim_div); |
| 2608 | if (new_n_div < 0) |
| 2609 | return isl_qpolynomial_free(qp); |
| 2610 | if (new_n_div < n_div) |
| 2611 | return reduce_divs(qp); |
| 2612 | |
| 2613 | return qp; |
| 2614 | error: |
| 2615 | isl_qpolynomial_free(qp); |
| 2616 | isl_mat_free(mat); |
| 2617 | return NULL; |
| 2618 | } |
| 2619 | |
| 2620 | __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain( |
| 2621 | __isl_take isl_space *domain, const isl_int n, const isl_int d) |
| 2622 | { |
| 2623 | struct isl_qpolynomial *qp; |
| 2624 | isl_poly_cst *cst; |
| 2625 | |
| 2626 | qp = isl_qpolynomial_zero_on_domain(domain); |
| 2627 | if (!qp) |
| 2628 | return NULL; |
| 2629 | |
| 2630 | cst = isl_poly_as_cst(poly: qp->poly); |
| 2631 | isl_int_set(cst->n, n); |
| 2632 | isl_int_set(cst->d, d); |
| 2633 | |
| 2634 | return qp; |
| 2635 | } |
| 2636 | |
| 2637 | /* Return an isl_qpolynomial that is equal to "val" on domain space "domain". |
| 2638 | */ |
| 2639 | __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain( |
| 2640 | __isl_take isl_space *domain, __isl_take isl_val *val) |
| 2641 | { |
| 2642 | isl_qpolynomial *qp; |
| 2643 | isl_poly_cst *cst; |
| 2644 | |
| 2645 | qp = isl_qpolynomial_zero_on_domain(domain); |
| 2646 | if (!qp || !val) |
| 2647 | goto error; |
| 2648 | |
| 2649 | cst = isl_poly_as_cst(poly: qp->poly); |
| 2650 | isl_int_set(cst->n, val->n); |
| 2651 | isl_int_set(cst->d, val->d); |
| 2652 | |
| 2653 | isl_val_free(v: val); |
| 2654 | return qp; |
| 2655 | error: |
| 2656 | isl_val_free(v: val); |
| 2657 | isl_qpolynomial_free(qp); |
| 2658 | return NULL; |
| 2659 | } |
| 2660 | |
| 2661 | static isl_stat poly_set_active(__isl_keep isl_poly *poly, int *active, int d) |
| 2662 | { |
| 2663 | isl_bool is_cst; |
| 2664 | isl_poly_rec *rec; |
| 2665 | int i; |
| 2666 | |
| 2667 | is_cst = isl_poly_is_cst(poly); |
| 2668 | if (is_cst < 0) |
| 2669 | return isl_stat_error; |
| 2670 | if (is_cst) |
| 2671 | return isl_stat_ok; |
| 2672 | |
| 2673 | if (poly->var < d) |
| 2674 | active[poly->var] = 1; |
| 2675 | |
| 2676 | rec = isl_poly_as_rec(poly); |
| 2677 | for (i = 0; i < rec->n; ++i) |
| 2678 | if (poly_set_active(poly: rec->p[i], active, d) < 0) |
| 2679 | return isl_stat_error; |
| 2680 | |
| 2681 | return isl_stat_ok; |
| 2682 | } |
| 2683 | |
| 2684 | static isl_stat set_active(__isl_keep isl_qpolynomial *qp, int *active) |
| 2685 | { |
| 2686 | int i, j; |
| 2687 | isl_size d; |
| 2688 | isl_space *space; |
| 2689 | |
| 2690 | space = isl_qpolynomial_peek_domain_space(qp); |
| 2691 | d = isl_space_dim(space, type: isl_dim_all); |
| 2692 | if (d < 0 || !active) |
| 2693 | return isl_stat_error; |
| 2694 | |
| 2695 | for (i = 0; i < d; ++i) |
| 2696 | for (j = 0; j < qp->div->n_row; ++j) { |
| 2697 | if (isl_int_is_zero(qp->div->row[j][2 + i])) |
| 2698 | continue; |
| 2699 | active[i] = 1; |
| 2700 | break; |
| 2701 | } |
| 2702 | |
| 2703 | return poly_set_active(poly: qp->poly, active, d); |
| 2704 | } |
| 2705 | |
| 2706 | #undef TYPE |
| 2707 | #define TYPE isl_qpolynomial |
| 2708 | static |
| 2709 | #include "check_type_range_templ.c" |
| 2710 | |
| 2711 | isl_bool isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp, |
| 2712 | enum isl_dim_type type, unsigned first, unsigned n) |
| 2713 | { |
| 2714 | int i; |
| 2715 | int *active = NULL; |
| 2716 | isl_bool involves = isl_bool_false; |
| 2717 | isl_size offset; |
| 2718 | isl_size d; |
| 2719 | isl_space *space; |
| 2720 | |
| 2721 | if (!qp) |
| 2722 | return isl_bool_error; |
| 2723 | if (n == 0) |
| 2724 | return isl_bool_false; |
| 2725 | |
| 2726 | if (isl_qpolynomial_check_range(obj: qp, type, first, n) < 0) |
| 2727 | return isl_bool_error; |
| 2728 | isl_assert(qp->dim->ctx, type == isl_dim_param || |
| 2729 | type == isl_dim_in, return isl_bool_error); |
| 2730 | |
| 2731 | space = isl_qpolynomial_peek_domain_space(qp); |
| 2732 | d = isl_space_dim(space, type: isl_dim_all); |
| 2733 | if (d < 0) |
| 2734 | return isl_bool_error; |
| 2735 | active = isl_calloc_array(qp->dim->ctx, int, d); |
| 2736 | if (set_active(qp, active) < 0) |
| 2737 | goto error; |
| 2738 | |
| 2739 | offset = isl_qpolynomial_domain_var_offset(qp, type: domain_type(type)); |
| 2740 | if (offset < 0) |
| 2741 | goto error; |
| 2742 | first += offset; |
| 2743 | for (i = 0; i < n; ++i) |
| 2744 | if (active[first + i]) { |
| 2745 | involves = isl_bool_true; |
| 2746 | break; |
| 2747 | } |
| 2748 | |
| 2749 | free(ptr: active); |
| 2750 | |
| 2751 | return involves; |
| 2752 | error: |
| 2753 | free(ptr: active); |
| 2754 | return isl_bool_error; |
| 2755 | } |
| 2756 | |
| 2757 | /* Remove divs that do not appear in the quasi-polynomial, nor in any |
| 2758 | * of the divs that do appear in the quasi-polynomial. |
| 2759 | */ |
| 2760 | static __isl_give isl_qpolynomial *remove_redundant_divs( |
| 2761 | __isl_take isl_qpolynomial *qp) |
| 2762 | { |
| 2763 | int i, j; |
| 2764 | isl_size div_pos; |
| 2765 | int len; |
| 2766 | int skip; |
| 2767 | int *active = NULL; |
| 2768 | int *reordering = NULL; |
| 2769 | int redundant = 0; |
| 2770 | int n_div; |
| 2771 | isl_ctx *ctx; |
| 2772 | |
| 2773 | if (!qp) |
| 2774 | return NULL; |
| 2775 | if (qp->div->n_row == 0) |
| 2776 | return qp; |
| 2777 | |
| 2778 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
| 2779 | if (div_pos < 0) |
| 2780 | return isl_qpolynomial_free(qp); |
| 2781 | len = qp->div->n_col - 2; |
| 2782 | ctx = isl_qpolynomial_get_ctx(qp); |
| 2783 | active = isl_calloc_array(ctx, int, len); |
| 2784 | if (!active) |
| 2785 | goto error; |
| 2786 | |
| 2787 | if (poly_set_active(poly: qp->poly, active, d: len) < 0) |
| 2788 | goto error; |
| 2789 | |
| 2790 | for (i = qp->div->n_row - 1; i >= 0; --i) { |
| 2791 | if (!active[div_pos + i]) { |
| 2792 | redundant = 1; |
| 2793 | continue; |
| 2794 | } |
| 2795 | for (j = 0; j < i; ++j) { |
| 2796 | if (isl_int_is_zero(qp->div->row[i][2 + div_pos + j])) |
| 2797 | continue; |
| 2798 | active[div_pos + j] = 1; |
| 2799 | break; |
| 2800 | } |
| 2801 | } |
| 2802 | |
| 2803 | if (!redundant) { |
| 2804 | free(ptr: active); |
| 2805 | return qp; |
| 2806 | } |
| 2807 | |
| 2808 | reordering = isl_alloc_array(qp->div->ctx, int, len); |
| 2809 | if (!reordering) |
| 2810 | goto error; |
| 2811 | |
| 2812 | for (i = 0; i < div_pos; ++i) |
| 2813 | reordering[i] = i; |
| 2814 | |
| 2815 | skip = 0; |
| 2816 | n_div = qp->div->n_row; |
| 2817 | for (i = 0; i < n_div; ++i) { |
| 2818 | if (!active[div_pos + i]) { |
| 2819 | qp->div = isl_mat_drop_rows(mat: qp->div, row: i - skip, n: 1); |
| 2820 | qp->div = isl_mat_drop_cols(mat: qp->div, |
| 2821 | col: 2 + div_pos + i - skip, n: 1); |
| 2822 | skip++; |
| 2823 | } |
| 2824 | reordering[div_pos + i] = div_pos + i - skip; |
| 2825 | } |
| 2826 | |
| 2827 | qp->poly = reorder(poly: qp->poly, r: reordering); |
| 2828 | |
| 2829 | if (!qp->poly || !qp->div) |
| 2830 | goto error; |
| 2831 | |
| 2832 | free(ptr: active); |
| 2833 | free(ptr: reordering); |
| 2834 | |
| 2835 | return qp; |
| 2836 | error: |
| 2837 | free(ptr: active); |
| 2838 | free(ptr: reordering); |
| 2839 | isl_qpolynomial_free(qp); |
| 2840 | return NULL; |
| 2841 | } |
| 2842 | |
| 2843 | __isl_give isl_poly *isl_poly_drop(__isl_take isl_poly *poly, |
| 2844 | unsigned first, unsigned n) |
| 2845 | { |
| 2846 | int i; |
| 2847 | isl_poly_rec *rec; |
| 2848 | |
| 2849 | if (!poly) |
| 2850 | return NULL; |
| 2851 | if (n == 0 || poly->var < 0 || poly->var < first) |
| 2852 | return poly; |
| 2853 | if (poly->var < first + n) { |
| 2854 | poly = replace_by_constant_term(poly); |
| 2855 | return isl_poly_drop(poly, first, n); |
| 2856 | } |
| 2857 | poly = isl_poly_cow(poly); |
| 2858 | if (!poly) |
| 2859 | return NULL; |
| 2860 | poly->var -= n; |
| 2861 | rec = isl_poly_as_rec(poly); |
| 2862 | if (!rec) |
| 2863 | goto error; |
| 2864 | |
| 2865 | for (i = 0; i < rec->n; ++i) { |
| 2866 | rec->p[i] = isl_poly_drop(poly: rec->p[i], first, n); |
| 2867 | if (!rec->p[i]) |
| 2868 | goto error; |
| 2869 | } |
| 2870 | |
| 2871 | return poly; |
| 2872 | error: |
| 2873 | isl_poly_free(poly); |
| 2874 | return NULL; |
| 2875 | } |
| 2876 | |
| 2877 | __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name( |
| 2878 | __isl_take isl_qpolynomial *qp, |
| 2879 | enum isl_dim_type type, unsigned pos, const char *s) |
| 2880 | { |
| 2881 | qp = isl_qpolynomial_cow(qp); |
| 2882 | if (!qp) |
| 2883 | return NULL; |
| 2884 | if (type == isl_dim_out) |
| 2885 | isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, |
| 2886 | "cannot set name of output/set dimension" , |
| 2887 | return isl_qpolynomial_free(qp)); |
| 2888 | type = domain_type(type); |
| 2889 | qp->dim = isl_space_set_dim_name(space: qp->dim, type, pos, name: s); |
| 2890 | if (!qp->dim) |
| 2891 | goto error; |
| 2892 | return qp; |
| 2893 | error: |
| 2894 | isl_qpolynomial_free(qp); |
| 2895 | return NULL; |
| 2896 | } |
| 2897 | |
| 2898 | __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims( |
| 2899 | __isl_take isl_qpolynomial *qp, |
| 2900 | enum isl_dim_type type, unsigned first, unsigned n) |
| 2901 | { |
| 2902 | isl_size offset; |
| 2903 | |
| 2904 | if (!qp) |
| 2905 | return NULL; |
| 2906 | if (type == isl_dim_out) |
| 2907 | isl_die(qp->dim->ctx, isl_error_invalid, |
| 2908 | "cannot drop output/set dimension" , |
| 2909 | goto error); |
| 2910 | if (isl_qpolynomial_check_range(obj: qp, type, first, n) < 0) |
| 2911 | return isl_qpolynomial_free(qp); |
| 2912 | type = domain_type(type); |
| 2913 | if (n == 0 && !isl_space_is_named_or_nested(space: qp->dim, type)) |
| 2914 | return qp; |
| 2915 | |
| 2916 | qp = isl_qpolynomial_cow(qp); |
| 2917 | if (!qp) |
| 2918 | return NULL; |
| 2919 | |
| 2920 | isl_assert(qp->dim->ctx, type == isl_dim_param || |
| 2921 | type == isl_dim_set, goto error); |
| 2922 | |
| 2923 | qp->dim = isl_space_drop_dims(space: qp->dim, type, first, num: n); |
| 2924 | if (!qp->dim) |
| 2925 | goto error; |
| 2926 | |
| 2927 | offset = isl_qpolynomial_domain_var_offset(qp, type); |
| 2928 | if (offset < 0) |
| 2929 | goto error; |
| 2930 | first += offset; |
| 2931 | |
| 2932 | qp->div = isl_mat_drop_cols(mat: qp->div, col: 2 + first, n); |
| 2933 | if (!qp->div) |
| 2934 | goto error; |
| 2935 | |
| 2936 | qp->poly = isl_poly_drop(poly: qp->poly, first, n); |
| 2937 | if (!qp->poly) |
| 2938 | goto error; |
| 2939 | |
| 2940 | return qp; |
| 2941 | error: |
| 2942 | isl_qpolynomial_free(qp); |
| 2943 | return NULL; |
| 2944 | } |
| 2945 | |
| 2946 | /* Project the domain of the quasi-polynomial onto its parameter space. |
| 2947 | * The quasi-polynomial may not involve any of the domain dimensions. |
| 2948 | */ |
| 2949 | __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params( |
| 2950 | __isl_take isl_qpolynomial *qp) |
| 2951 | { |
| 2952 | isl_space *space; |
| 2953 | isl_size n; |
| 2954 | isl_bool involves; |
| 2955 | |
| 2956 | n = isl_qpolynomial_dim(qp, type: isl_dim_in); |
| 2957 | if (n < 0) |
| 2958 | return isl_qpolynomial_free(qp); |
| 2959 | involves = isl_qpolynomial_involves_dims(qp, type: isl_dim_in, first: 0, n); |
| 2960 | if (involves < 0) |
| 2961 | return isl_qpolynomial_free(qp); |
| 2962 | if (involves) |
| 2963 | isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, |
| 2964 | "polynomial involves some of the domain dimensions" , |
| 2965 | return isl_qpolynomial_free(qp)); |
| 2966 | qp = isl_qpolynomial_drop_dims(qp, type: isl_dim_in, first: 0, n); |
| 2967 | space = isl_qpolynomial_get_domain_space(qp); |
| 2968 | space = isl_space_params(space); |
| 2969 | qp = isl_qpolynomial_reset_domain_space(qp, space); |
| 2970 | return qp; |
| 2971 | } |
| 2972 | |
| 2973 | static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted( |
| 2974 | __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq) |
| 2975 | { |
| 2976 | int i, j, k; |
| 2977 | isl_int denom; |
| 2978 | unsigned total; |
| 2979 | unsigned n_div; |
| 2980 | isl_poly *poly; |
| 2981 | |
| 2982 | if (!eq) |
| 2983 | goto error; |
| 2984 | if (eq->n_eq == 0) { |
| 2985 | isl_basic_set_free(bset: eq); |
| 2986 | return qp; |
| 2987 | } |
| 2988 | |
| 2989 | qp = isl_qpolynomial_cow(qp); |
| 2990 | if (!qp) |
| 2991 | goto error; |
| 2992 | qp->div = isl_mat_cow(mat: qp->div); |
| 2993 | if (!qp->div) |
| 2994 | goto error; |
| 2995 | |
| 2996 | total = isl_basic_set_offset(bset: eq, type: isl_dim_div); |
| 2997 | n_div = eq->n_div; |
| 2998 | isl_int_init(denom); |
| 2999 | for (i = 0; i < eq->n_eq; ++i) { |
| 3000 | j = isl_seq_last_non_zero(p: eq->eq[i], len: total + n_div); |
| 3001 | if (j < 0 || j == 0 || j >= total) |
| 3002 | continue; |
| 3003 | |
| 3004 | for (k = 0; k < qp->div->n_row; ++k) { |
| 3005 | if (isl_int_is_zero(qp->div->row[k][1 + j])) |
| 3006 | continue; |
| 3007 | isl_seq_elim(dst: qp->div->row[k] + 1, src: eq->eq[i], pos: j, len: total, |
| 3008 | m: &qp->div->row[k][0]); |
| 3009 | normalize_div(qp, div: k); |
| 3010 | } |
| 3011 | |
| 3012 | if (isl_int_is_pos(eq->eq[i][j])) |
| 3013 | isl_seq_neg(dst: eq->eq[i], src: eq->eq[i], len: total); |
| 3014 | isl_int_abs(denom, eq->eq[i][j]); |
| 3015 | isl_int_set_si(eq->eq[i][j], 0); |
| 3016 | |
| 3017 | poly = isl_poly_from_affine(ctx: qp->dim->ctx, |
| 3018 | f: eq->eq[i], denom, len: total); |
| 3019 | qp->poly = isl_poly_subs(poly: qp->poly, first: j - 1, n: 1, subs: &poly); |
| 3020 | isl_poly_free(poly); |
| 3021 | } |
| 3022 | isl_int_clear(denom); |
| 3023 | |
| 3024 | if (!qp->poly) |
| 3025 | goto error; |
| 3026 | |
| 3027 | isl_basic_set_free(bset: eq); |
| 3028 | |
| 3029 | qp = substitute_non_divs(qp); |
| 3030 | qp = sort_divs(qp); |
| 3031 | |
| 3032 | return qp; |
| 3033 | error: |
| 3034 | isl_basic_set_free(bset: eq); |
| 3035 | isl_qpolynomial_free(qp); |
| 3036 | return NULL; |
| 3037 | } |
| 3038 | |
| 3039 | /* Exploit the equalities in "eq" to simplify the quasi-polynomial. |
| 3040 | */ |
| 3041 | __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities( |
| 3042 | __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq) |
| 3043 | { |
| 3044 | if (!qp || !eq) |
| 3045 | goto error; |
| 3046 | if (qp->div->n_row > 0) |
| 3047 | eq = isl_basic_set_add_dims(bset: eq, type: isl_dim_set, n: qp->div->n_row); |
| 3048 | return isl_qpolynomial_substitute_equalities_lifted(qp, eq); |
| 3049 | error: |
| 3050 | isl_basic_set_free(bset: eq); |
| 3051 | isl_qpolynomial_free(qp); |
| 3052 | return NULL; |
| 3053 | } |
| 3054 | |
| 3055 | /* Look for equalities among the variables shared by context and qp |
| 3056 | * and the integer divisions of qp, if any. |
| 3057 | * The equalities are then used to eliminate variables and/or integer |
| 3058 | * divisions from qp. |
| 3059 | */ |
| 3060 | __isl_give isl_qpolynomial *isl_qpolynomial_gist( |
| 3061 | __isl_take isl_qpolynomial *qp, __isl_take isl_set *context) |
| 3062 | { |
| 3063 | isl_local_space *ls; |
| 3064 | isl_basic_set *aff; |
| 3065 | |
| 3066 | ls = isl_qpolynomial_get_domain_local_space(qp); |
| 3067 | context = isl_local_space_lift_set(ls, set: context); |
| 3068 | |
| 3069 | aff = isl_set_affine_hull(set: context); |
| 3070 | return isl_qpolynomial_substitute_equalities_lifted(qp, eq: aff); |
| 3071 | } |
| 3072 | |
| 3073 | __isl_give isl_qpolynomial *isl_qpolynomial_gist_params( |
| 3074 | __isl_take isl_qpolynomial *qp, __isl_take isl_set *context) |
| 3075 | { |
| 3076 | isl_space *space = isl_qpolynomial_get_domain_space(qp); |
| 3077 | isl_set *dom_context = isl_set_universe(space); |
| 3078 | dom_context = isl_set_intersect_params(set: dom_context, params: context); |
| 3079 | return isl_qpolynomial_gist(qp, context: dom_context); |
| 3080 | } |
| 3081 | |
| 3082 | /* Return a zero isl_qpolynomial in the given space. |
| 3083 | * |
| 3084 | * This is a helper function for isl_pw_*_as_* that ensures a uniform |
| 3085 | * interface over all piecewise types. |
| 3086 | */ |
| 3087 | static __isl_give isl_qpolynomial *isl_qpolynomial_zero_in_space( |
| 3088 | __isl_take isl_space *space) |
| 3089 | { |
| 3090 | return isl_qpolynomial_zero_on_domain(domain: isl_space_domain(space)); |
| 3091 | } |
| 3092 | |
| 3093 | #define isl_qpolynomial_involves_nan isl_qpolynomial_is_nan |
| 3094 | |
| 3095 | #undef PW |
| 3096 | #define PW isl_pw_qpolynomial |
| 3097 | #undef BASE |
| 3098 | #define BASE qpolynomial |
| 3099 | #undef EL_IS_ZERO |
| 3100 | #define EL_IS_ZERO is_zero |
| 3101 | #undef ZERO |
| 3102 | #define ZERO zero |
| 3103 | #undef IS_ZERO |
| 3104 | #define IS_ZERO is_zero |
| 3105 | #undef FIELD |
| 3106 | #define FIELD qp |
| 3107 | #undef DEFAULT_IS_ZERO |
| 3108 | #define DEFAULT_IS_ZERO 1 |
| 3109 | |
| 3110 | #include <isl_pw_templ.c> |
| 3111 | #include <isl_pw_un_op_templ.c> |
| 3112 | #include <isl_pw_add_disjoint_templ.c> |
| 3113 | #include <isl_pw_eval.c> |
| 3114 | #include <isl_pw_fix_templ.c> |
| 3115 | #include <isl_pw_from_range_templ.c> |
| 3116 | #include <isl_pw_insert_dims_templ.c> |
| 3117 | #include <isl_pw_lift_templ.c> |
| 3118 | #include <isl_pw_morph_templ.c> |
| 3119 | #include <isl_pw_move_dims_templ.c> |
| 3120 | #include <isl_pw_neg_templ.c> |
| 3121 | #include <isl_pw_opt_templ.c> |
| 3122 | #include <isl_pw_split_dims_templ.c> |
| 3123 | #include <isl_pw_sub_templ.c> |
| 3124 | |
| 3125 | #undef BASE |
| 3126 | #define BASE pw_qpolynomial |
| 3127 | |
| 3128 | #include <isl_union_single.c> |
| 3129 | #include <isl_union_eval.c> |
| 3130 | #include <isl_union_neg.c> |
| 3131 | #include <isl_union_sub_templ.c> |
| 3132 | |
| 3133 | int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp) |
| 3134 | { |
| 3135 | if (!pwqp) |
| 3136 | return -1; |
| 3137 | |
| 3138 | if (pwqp->n != -1) |
| 3139 | return 0; |
| 3140 | |
| 3141 | if (!isl_set_plain_is_universe(set: pwqp->p[0].set)) |
| 3142 | return 0; |
| 3143 | |
| 3144 | return isl_qpolynomial_is_one(qp: pwqp->p[0].qp); |
| 3145 | } |
| 3146 | |
| 3147 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add( |
| 3148 | __isl_take isl_pw_qpolynomial *pwqp1, |
| 3149 | __isl_take isl_pw_qpolynomial *pwqp2) |
| 3150 | { |
| 3151 | return isl_pw_qpolynomial_union_add_(pw1: pwqp1, pw2: pwqp2); |
| 3152 | } |
| 3153 | |
| 3154 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul( |
| 3155 | __isl_take isl_pw_qpolynomial *pwqp1, |
| 3156 | __isl_take isl_pw_qpolynomial *pwqp2) |
| 3157 | { |
| 3158 | int i, j, n; |
| 3159 | struct isl_pw_qpolynomial *res; |
| 3160 | |
| 3161 | if (!pwqp1 || !pwqp2) |
| 3162 | goto error; |
| 3163 | |
| 3164 | isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim), |
| 3165 | goto error); |
| 3166 | |
| 3167 | if (isl_pw_qpolynomial_is_zero(pw: pwqp1)) { |
| 3168 | isl_pw_qpolynomial_free(pw: pwqp2); |
| 3169 | return pwqp1; |
| 3170 | } |
| 3171 | |
| 3172 | if (isl_pw_qpolynomial_is_zero(pw: pwqp2)) { |
| 3173 | isl_pw_qpolynomial_free(pw: pwqp1); |
| 3174 | return pwqp2; |
| 3175 | } |
| 3176 | |
| 3177 | if (isl_pw_qpolynomial_is_one(pwqp: pwqp1)) { |
| 3178 | isl_pw_qpolynomial_free(pw: pwqp1); |
| 3179 | return pwqp2; |
| 3180 | } |
| 3181 | |
| 3182 | if (isl_pw_qpolynomial_is_one(pwqp: pwqp2)) { |
| 3183 | isl_pw_qpolynomial_free(pw: pwqp2); |
| 3184 | return pwqp1; |
| 3185 | } |
| 3186 | |
| 3187 | n = pwqp1->n * pwqp2->n; |
| 3188 | res = isl_pw_qpolynomial_alloc_size(space: isl_space_copy(space: pwqp1->dim), n); |
| 3189 | |
| 3190 | for (i = 0; i < pwqp1->n; ++i) { |
| 3191 | for (j = 0; j < pwqp2->n; ++j) { |
| 3192 | struct isl_set *common; |
| 3193 | struct isl_qpolynomial *prod; |
| 3194 | common = isl_set_intersect(set1: isl_set_copy(set: pwqp1->p[i].set), |
| 3195 | set2: isl_set_copy(set: pwqp2->p[j].set)); |
| 3196 | if (isl_set_plain_is_empty(set: common)) { |
| 3197 | isl_set_free(set: common); |
| 3198 | continue; |
| 3199 | } |
| 3200 | |
| 3201 | prod = isl_qpolynomial_mul( |
| 3202 | qp1: isl_qpolynomial_copy(qp: pwqp1->p[i].qp), |
| 3203 | qp2: isl_qpolynomial_copy(qp: pwqp2->p[j].qp)); |
| 3204 | |
| 3205 | res = isl_pw_qpolynomial_add_piece(pw: res, set: common, el: prod); |
| 3206 | } |
| 3207 | } |
| 3208 | |
| 3209 | isl_pw_qpolynomial_free(pw: pwqp1); |
| 3210 | isl_pw_qpolynomial_free(pw: pwqp2); |
| 3211 | |
| 3212 | return res; |
| 3213 | error: |
| 3214 | isl_pw_qpolynomial_free(pw: pwqp1); |
| 3215 | isl_pw_qpolynomial_free(pw: pwqp2); |
| 3216 | return NULL; |
| 3217 | } |
| 3218 | |
| 3219 | __isl_give isl_val *isl_poly_eval(__isl_take isl_poly *poly, |
| 3220 | __isl_take isl_vec *vec) |
| 3221 | { |
| 3222 | int i; |
| 3223 | isl_bool is_cst; |
| 3224 | isl_poly_rec *rec; |
| 3225 | isl_val *res; |
| 3226 | isl_val *base; |
| 3227 | |
| 3228 | is_cst = isl_poly_is_cst(poly); |
| 3229 | if (is_cst < 0) |
| 3230 | goto error; |
| 3231 | if (is_cst) { |
| 3232 | isl_vec_free(vec); |
| 3233 | res = isl_poly_get_constant_val(poly); |
| 3234 | isl_poly_free(poly); |
| 3235 | return res; |
| 3236 | } |
| 3237 | |
| 3238 | rec = isl_poly_as_rec(poly); |
| 3239 | if (!rec || !vec) |
| 3240 | goto error; |
| 3241 | |
| 3242 | isl_assert(poly->ctx, rec->n >= 1, goto error); |
| 3243 | |
| 3244 | base = isl_val_rat_from_isl_int(ctx: poly->ctx, |
| 3245 | n: vec->el[1 + poly->var], d: vec->el[0]); |
| 3246 | |
| 3247 | res = isl_poly_eval(poly: isl_poly_copy(poly: rec->p[rec->n - 1]), |
| 3248 | vec: isl_vec_copy(vec)); |
| 3249 | |
| 3250 | for (i = rec->n - 2; i >= 0; --i) { |
| 3251 | res = isl_val_mul(v1: res, v2: isl_val_copy(v: base)); |
| 3252 | res = isl_val_add(v1: res, v2: isl_poly_eval(poly: isl_poly_copy(poly: rec->p[i]), |
| 3253 | vec: isl_vec_copy(vec))); |
| 3254 | } |
| 3255 | |
| 3256 | isl_val_free(v: base); |
| 3257 | isl_poly_free(poly); |
| 3258 | isl_vec_free(vec); |
| 3259 | return res; |
| 3260 | error: |
| 3261 | isl_poly_free(poly); |
| 3262 | isl_vec_free(vec); |
| 3263 | return NULL; |
| 3264 | } |
| 3265 | |
| 3266 | /* Evaluate "qp" in the void point "pnt". |
| 3267 | * In particular, return the value NaN. |
| 3268 | */ |
| 3269 | static __isl_give isl_val *eval_void(__isl_take isl_qpolynomial *qp, |
| 3270 | __isl_take isl_point *pnt) |
| 3271 | { |
| 3272 | isl_ctx *ctx; |
| 3273 | |
| 3274 | ctx = isl_point_get_ctx(pnt); |
| 3275 | isl_qpolynomial_free(qp); |
| 3276 | isl_point_free(pnt); |
| 3277 | return isl_val_nan(ctx); |
| 3278 | } |
| 3279 | |
| 3280 | __isl_give isl_val *isl_qpolynomial_eval(__isl_take isl_qpolynomial *qp, |
| 3281 | __isl_take isl_point *pnt) |
| 3282 | { |
| 3283 | isl_bool is_void; |
| 3284 | isl_vec *ext; |
| 3285 | isl_val *v; |
| 3286 | |
| 3287 | if (!qp || !pnt) |
| 3288 | goto error; |
| 3289 | isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error); |
| 3290 | is_void = isl_point_is_void(pnt); |
| 3291 | if (is_void < 0) |
| 3292 | goto error; |
| 3293 | if (is_void) |
| 3294 | return eval_void(qp, pnt); |
| 3295 | |
| 3296 | ext = isl_local_extend_point_vec(local: qp->div, v: isl_vec_copy(vec: pnt->vec)); |
| 3297 | |
| 3298 | v = isl_poly_eval(poly: isl_poly_copy(poly: qp->poly), vec: ext); |
| 3299 | |
| 3300 | isl_qpolynomial_free(qp); |
| 3301 | isl_point_free(pnt); |
| 3302 | |
| 3303 | return v; |
| 3304 | error: |
| 3305 | isl_qpolynomial_free(qp); |
| 3306 | isl_point_free(pnt); |
| 3307 | return NULL; |
| 3308 | } |
| 3309 | |
| 3310 | int isl_poly_cmp(__isl_keep isl_poly_cst *cst1, __isl_keep isl_poly_cst *cst2) |
| 3311 | { |
| 3312 | int cmp; |
| 3313 | isl_int t; |
| 3314 | isl_int_init(t); |
| 3315 | isl_int_mul(t, cst1->n, cst2->d); |
| 3316 | isl_int_submul(t, cst2->n, cst1->d); |
| 3317 | cmp = isl_int_sgn(t); |
| 3318 | isl_int_clear(t); |
| 3319 | return cmp; |
| 3320 | } |
| 3321 | |
| 3322 | __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims( |
| 3323 | __isl_take isl_qpolynomial *qp, enum isl_dim_type type, |
| 3324 | unsigned first, unsigned n) |
| 3325 | { |
| 3326 | unsigned total; |
| 3327 | unsigned g_pos; |
| 3328 | int *exp; |
| 3329 | |
| 3330 | if (!qp) |
| 3331 | return NULL; |
| 3332 | if (type == isl_dim_out) |
| 3333 | isl_die(qp->div->ctx, isl_error_invalid, |
| 3334 | "cannot insert output/set dimensions" , |
| 3335 | goto error); |
| 3336 | if (isl_qpolynomial_check_range(obj: qp, type, first, n: 0) < 0) |
| 3337 | return isl_qpolynomial_free(qp); |
| 3338 | type = domain_type(type); |
| 3339 | if (n == 0 && !isl_space_is_named_or_nested(space: qp->dim, type)) |
| 3340 | return qp; |
| 3341 | |
| 3342 | qp = isl_qpolynomial_cow(qp); |
| 3343 | if (!qp) |
| 3344 | return NULL; |
| 3345 | |
| 3346 | g_pos = pos(space: qp->dim, type) + first; |
| 3347 | |
| 3348 | qp->div = isl_mat_insert_zero_cols(mat: qp->div, first: 2 + g_pos, n); |
| 3349 | if (!qp->div) |
| 3350 | goto error; |
| 3351 | |
| 3352 | total = qp->div->n_col - 2; |
| 3353 | if (total > g_pos) { |
| 3354 | int i; |
| 3355 | exp = isl_alloc_array(qp->div->ctx, int, total - g_pos); |
| 3356 | if (!exp) |
| 3357 | goto error; |
| 3358 | for (i = 0; i < total - g_pos; ++i) |
| 3359 | exp[i] = i + n; |
| 3360 | qp->poly = expand(poly: qp->poly, exp, first: g_pos); |
| 3361 | free(ptr: exp); |
| 3362 | if (!qp->poly) |
| 3363 | goto error; |
| 3364 | } |
| 3365 | |
| 3366 | qp->dim = isl_space_insert_dims(space: qp->dim, type, pos: first, n); |
| 3367 | if (!qp->dim) |
| 3368 | goto error; |
| 3369 | |
| 3370 | return qp; |
| 3371 | error: |
| 3372 | isl_qpolynomial_free(qp); |
| 3373 | return NULL; |
| 3374 | } |
| 3375 | |
| 3376 | __isl_give isl_qpolynomial *isl_qpolynomial_add_dims( |
| 3377 | __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n) |
| 3378 | { |
| 3379 | isl_size pos; |
| 3380 | |
| 3381 | pos = isl_qpolynomial_dim(qp, type); |
| 3382 | if (pos < 0) |
| 3383 | return isl_qpolynomial_free(qp); |
| 3384 | |
| 3385 | return isl_qpolynomial_insert_dims(qp, type, first: pos, n); |
| 3386 | } |
| 3387 | |
| 3388 | static int *reordering_move(isl_ctx *ctx, |
| 3389 | unsigned len, unsigned dst, unsigned src, unsigned n) |
| 3390 | { |
| 3391 | int i; |
| 3392 | int *reordering; |
| 3393 | |
| 3394 | reordering = isl_alloc_array(ctx, int, len); |
| 3395 | if (!reordering) |
| 3396 | return NULL; |
| 3397 | |
| 3398 | if (dst <= src) { |
| 3399 | for (i = 0; i < dst; ++i) |
| 3400 | reordering[i] = i; |
| 3401 | for (i = 0; i < n; ++i) |
| 3402 | reordering[src + i] = dst + i; |
| 3403 | for (i = 0; i < src - dst; ++i) |
| 3404 | reordering[dst + i] = dst + n + i; |
| 3405 | for (i = 0; i < len - src - n; ++i) |
| 3406 | reordering[src + n + i] = src + n + i; |
| 3407 | } else { |
| 3408 | for (i = 0; i < src; ++i) |
| 3409 | reordering[i] = i; |
| 3410 | for (i = 0; i < n; ++i) |
| 3411 | reordering[src + i] = dst + i; |
| 3412 | for (i = 0; i < dst - src; ++i) |
| 3413 | reordering[src + n + i] = src + i; |
| 3414 | for (i = 0; i < len - dst - n; ++i) |
| 3415 | reordering[dst + n + i] = dst + n + i; |
| 3416 | } |
| 3417 | |
| 3418 | return reordering; |
| 3419 | } |
| 3420 | |
| 3421 | __isl_give isl_qpolynomial *isl_qpolynomial_move_dims( |
| 3422 | __isl_take isl_qpolynomial *qp, |
| 3423 | enum isl_dim_type dst_type, unsigned dst_pos, |
| 3424 | enum isl_dim_type src_type, unsigned src_pos, unsigned n) |
| 3425 | { |
| 3426 | unsigned g_dst_pos; |
| 3427 | unsigned g_src_pos; |
| 3428 | int *reordering; |
| 3429 | |
| 3430 | if (!qp) |
| 3431 | return NULL; |
| 3432 | |
| 3433 | if (dst_type == isl_dim_out || src_type == isl_dim_out) |
| 3434 | isl_die(qp->dim->ctx, isl_error_invalid, |
| 3435 | "cannot move output/set dimension" , |
| 3436 | goto error); |
| 3437 | if (isl_qpolynomial_check_range(obj: qp, type: src_type, first: src_pos, n) < 0) |
| 3438 | return isl_qpolynomial_free(qp); |
| 3439 | if (dst_type == isl_dim_in) |
| 3440 | dst_type = isl_dim_set; |
| 3441 | if (src_type == isl_dim_in) |
| 3442 | src_type = isl_dim_set; |
| 3443 | |
| 3444 | if (n == 0 && |
| 3445 | !isl_space_is_named_or_nested(space: qp->dim, type: src_type) && |
| 3446 | !isl_space_is_named_or_nested(space: qp->dim, type: dst_type)) |
| 3447 | return qp; |
| 3448 | |
| 3449 | qp = isl_qpolynomial_cow(qp); |
| 3450 | if (!qp) |
| 3451 | return NULL; |
| 3452 | |
| 3453 | g_dst_pos = pos(space: qp->dim, type: dst_type) + dst_pos; |
| 3454 | g_src_pos = pos(space: qp->dim, type: src_type) + src_pos; |
| 3455 | if (dst_type > src_type) |
| 3456 | g_dst_pos -= n; |
| 3457 | |
| 3458 | qp->div = isl_mat_move_cols(mat: qp->div, dst_col: 2 + g_dst_pos, src_col: 2 + g_src_pos, n); |
| 3459 | if (!qp->div) |
| 3460 | goto error; |
| 3461 | qp = sort_divs(qp); |
| 3462 | if (!qp) |
| 3463 | goto error; |
| 3464 | |
| 3465 | reordering = reordering_move(ctx: qp->dim->ctx, |
| 3466 | len: qp->div->n_col - 2, dst: g_dst_pos, src: g_src_pos, n); |
| 3467 | if (!reordering) |
| 3468 | goto error; |
| 3469 | |
| 3470 | qp->poly = reorder(poly: qp->poly, r: reordering); |
| 3471 | free(ptr: reordering); |
| 3472 | if (!qp->poly) |
| 3473 | goto error; |
| 3474 | |
| 3475 | qp->dim = isl_space_move_dims(space: qp->dim, dst_type, dst_pos, src_type, src_pos, n); |
| 3476 | if (!qp->dim) |
| 3477 | goto error; |
| 3478 | |
| 3479 | return qp; |
| 3480 | error: |
| 3481 | isl_qpolynomial_free(qp); |
| 3482 | return NULL; |
| 3483 | } |
| 3484 | |
| 3485 | __isl_give isl_qpolynomial *isl_qpolynomial_from_affine( |
| 3486 | __isl_take isl_space *space, isl_int *f, isl_int denom) |
| 3487 | { |
| 3488 | isl_size d; |
| 3489 | isl_poly *poly; |
| 3490 | |
| 3491 | space = isl_space_domain(space); |
| 3492 | if (!space) |
| 3493 | return NULL; |
| 3494 | |
| 3495 | d = isl_space_dim(space, type: isl_dim_all); |
| 3496 | poly = d < 0 ? NULL : isl_poly_from_affine(ctx: space->ctx, f, denom, len: 1 + d); |
| 3497 | |
| 3498 | return isl_qpolynomial_alloc(space, n_div: 0, poly); |
| 3499 | } |
| 3500 | |
| 3501 | __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff) |
| 3502 | { |
| 3503 | isl_ctx *ctx; |
| 3504 | isl_poly *poly; |
| 3505 | isl_qpolynomial *qp; |
| 3506 | |
| 3507 | if (!aff) |
| 3508 | return NULL; |
| 3509 | |
| 3510 | ctx = isl_aff_get_ctx(aff); |
| 3511 | poly = isl_poly_from_affine(ctx, f: aff->v->el + 1, denom: aff->v->el[0], |
| 3512 | len: aff->v->size - 1); |
| 3513 | |
| 3514 | qp = isl_qpolynomial_alloc(space: isl_aff_get_domain_space(aff), |
| 3515 | n_div: aff->ls->div->n_row, poly); |
| 3516 | if (!qp) |
| 3517 | goto error; |
| 3518 | |
| 3519 | isl_mat_free(mat: qp->div); |
| 3520 | qp->div = isl_mat_copy(mat: aff->ls->div); |
| 3521 | qp->div = isl_mat_cow(mat: qp->div); |
| 3522 | if (!qp->div) |
| 3523 | goto error; |
| 3524 | |
| 3525 | isl_aff_free(aff); |
| 3526 | qp = reduce_divs(qp); |
| 3527 | qp = remove_redundant_divs(qp); |
| 3528 | return qp; |
| 3529 | error: |
| 3530 | isl_aff_free(aff); |
| 3531 | return isl_qpolynomial_free(qp); |
| 3532 | } |
| 3533 | |
| 3534 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff( |
| 3535 | __isl_take isl_pw_aff *pwaff) |
| 3536 | { |
| 3537 | int i; |
| 3538 | isl_pw_qpolynomial *pwqp; |
| 3539 | |
| 3540 | if (!pwaff) |
| 3541 | return NULL; |
| 3542 | |
| 3543 | pwqp = isl_pw_qpolynomial_alloc_size(space: isl_pw_aff_get_space(pwaff), |
| 3544 | n: pwaff->n); |
| 3545 | |
| 3546 | for (i = 0; i < pwaff->n; ++i) { |
| 3547 | isl_set *dom; |
| 3548 | isl_qpolynomial *qp; |
| 3549 | |
| 3550 | dom = isl_set_copy(set: pwaff->p[i].set); |
| 3551 | qp = isl_qpolynomial_from_aff(aff: isl_aff_copy(aff: pwaff->p[i].aff)); |
| 3552 | pwqp = isl_pw_qpolynomial_add_piece(pw: pwqp, set: dom, el: qp); |
| 3553 | } |
| 3554 | |
| 3555 | isl_pw_aff_free(pwaff); |
| 3556 | return pwqp; |
| 3557 | } |
| 3558 | |
| 3559 | __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint( |
| 3560 | __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos) |
| 3561 | { |
| 3562 | isl_aff *aff; |
| 3563 | |
| 3564 | aff = isl_constraint_get_bound(constraint: c, type, pos); |
| 3565 | isl_constraint_free(c); |
| 3566 | return isl_qpolynomial_from_aff(aff); |
| 3567 | } |
| 3568 | |
| 3569 | /* For each 0 <= i < "n", replace variable "first" + i of type "type" |
| 3570 | * in "qp" by subs[i]. |
| 3571 | */ |
| 3572 | __isl_give isl_qpolynomial *isl_qpolynomial_substitute( |
| 3573 | __isl_take isl_qpolynomial *qp, |
| 3574 | enum isl_dim_type type, unsigned first, unsigned n, |
| 3575 | __isl_keep isl_qpolynomial **subs) |
| 3576 | { |
| 3577 | int i; |
| 3578 | isl_poly **polys; |
| 3579 | |
| 3580 | if (n == 0) |
| 3581 | return qp; |
| 3582 | |
| 3583 | qp = isl_qpolynomial_cow(qp); |
| 3584 | if (!qp) |
| 3585 | return NULL; |
| 3586 | |
| 3587 | if (type == isl_dim_out) |
| 3588 | isl_die(qp->dim->ctx, isl_error_invalid, |
| 3589 | "cannot substitute output/set dimension" , |
| 3590 | goto error); |
| 3591 | if (isl_qpolynomial_check_range(obj: qp, type, first, n) < 0) |
| 3592 | return isl_qpolynomial_free(qp); |
| 3593 | type = domain_type(type); |
| 3594 | |
| 3595 | for (i = 0; i < n; ++i) |
| 3596 | if (!subs[i]) |
| 3597 | goto error; |
| 3598 | |
| 3599 | for (i = 0; i < n; ++i) |
| 3600 | if (isl_qpolynomial_check_equal_space(obj1: qp, obj2: subs[i]) < 0) |
| 3601 | goto error; |
| 3602 | |
| 3603 | isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error); |
| 3604 | for (i = 0; i < n; ++i) |
| 3605 | isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error); |
| 3606 | |
| 3607 | first += pos(space: qp->dim, type); |
| 3608 | |
| 3609 | polys = isl_alloc_array(qp->dim->ctx, struct isl_poly *, n); |
| 3610 | if (!polys) |
| 3611 | goto error; |
| 3612 | for (i = 0; i < n; ++i) |
| 3613 | polys[i] = subs[i]->poly; |
| 3614 | |
| 3615 | qp->poly = isl_poly_subs(poly: qp->poly, first, n, subs: polys); |
| 3616 | |
| 3617 | free(ptr: polys); |
| 3618 | |
| 3619 | if (!qp->poly) |
| 3620 | goto error; |
| 3621 | |
| 3622 | return qp; |
| 3623 | error: |
| 3624 | isl_qpolynomial_free(qp); |
| 3625 | return NULL; |
| 3626 | } |
| 3627 | |
| 3628 | /* Extend "bset" with extra set dimensions for each integer division |
| 3629 | * in "qp" and then call "fn" with the extended bset and the polynomial |
| 3630 | * that results from replacing each of the integer divisions by the |
| 3631 | * corresponding extra set dimension. |
| 3632 | */ |
| 3633 | isl_stat isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp, |
| 3634 | __isl_keep isl_basic_set *bset, |
| 3635 | isl_stat (*fn)(__isl_take isl_basic_set *bset, |
| 3636 | __isl_take isl_qpolynomial *poly, void *user), void *user) |
| 3637 | { |
| 3638 | isl_space *space; |
| 3639 | isl_local_space *ls; |
| 3640 | isl_qpolynomial *poly; |
| 3641 | |
| 3642 | if (!qp || !bset) |
| 3643 | return isl_stat_error; |
| 3644 | if (qp->div->n_row == 0) |
| 3645 | return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp), |
| 3646 | user); |
| 3647 | |
| 3648 | space = isl_space_copy(space: qp->dim); |
| 3649 | space = isl_space_add_dims(space, type: isl_dim_set, n: qp->div->n_row); |
| 3650 | poly = isl_qpolynomial_alloc(space, n_div: 0, poly: isl_poly_copy(poly: qp->poly)); |
| 3651 | bset = isl_basic_set_copy(bset); |
| 3652 | ls = isl_qpolynomial_get_domain_local_space(qp); |
| 3653 | bset = isl_local_space_lift_basic_set(ls, bset); |
| 3654 | |
| 3655 | return fn(bset, poly, user); |
| 3656 | } |
| 3657 | |
| 3658 | /* Return total degree in variables first (inclusive) up to last (exclusive). |
| 3659 | */ |
| 3660 | int isl_poly_degree(__isl_keep isl_poly *poly, int first, int last) |
| 3661 | { |
| 3662 | int deg = -1; |
| 3663 | int i; |
| 3664 | isl_bool is_zero, is_cst; |
| 3665 | isl_poly_rec *rec; |
| 3666 | |
| 3667 | is_zero = isl_poly_is_zero(poly); |
| 3668 | if (is_zero < 0) |
| 3669 | return -2; |
| 3670 | if (is_zero) |
| 3671 | return -1; |
| 3672 | is_cst = isl_poly_is_cst(poly); |
| 3673 | if (is_cst < 0) |
| 3674 | return -2; |
| 3675 | if (is_cst || poly->var < first) |
| 3676 | return 0; |
| 3677 | |
| 3678 | rec = isl_poly_as_rec(poly); |
| 3679 | if (!rec) |
| 3680 | return -2; |
| 3681 | |
| 3682 | for (i = 0; i < rec->n; ++i) { |
| 3683 | int d; |
| 3684 | |
| 3685 | is_zero = isl_poly_is_zero(poly: rec->p[i]); |
| 3686 | if (is_zero < 0) |
| 3687 | return -2; |
| 3688 | if (is_zero) |
| 3689 | continue; |
| 3690 | d = isl_poly_degree(poly: rec->p[i], first, last); |
| 3691 | if (poly->var < last) |
| 3692 | d += i; |
| 3693 | if (d > deg) |
| 3694 | deg = d; |
| 3695 | } |
| 3696 | |
| 3697 | return deg; |
| 3698 | } |
| 3699 | |
| 3700 | /* Return total degree in set variables. |
| 3701 | */ |
| 3702 | int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly) |
| 3703 | { |
| 3704 | unsigned ovar; |
| 3705 | isl_size nvar; |
| 3706 | |
| 3707 | if (!poly) |
| 3708 | return -2; |
| 3709 | |
| 3710 | ovar = isl_space_offset(space: poly->dim, type: isl_dim_set); |
| 3711 | nvar = isl_space_dim(space: poly->dim, type: isl_dim_set); |
| 3712 | if (nvar < 0) |
| 3713 | return -2; |
| 3714 | return isl_poly_degree(poly: poly->poly, first: ovar, last: ovar + nvar); |
| 3715 | } |
| 3716 | |
| 3717 | __isl_give isl_poly *isl_poly_coeff(__isl_keep isl_poly *poly, |
| 3718 | unsigned pos, int deg) |
| 3719 | { |
| 3720 | int i; |
| 3721 | isl_bool is_cst; |
| 3722 | isl_poly_rec *rec; |
| 3723 | |
| 3724 | is_cst = isl_poly_is_cst(poly); |
| 3725 | if (is_cst < 0) |
| 3726 | return NULL; |
| 3727 | if (is_cst || poly->var < pos) { |
| 3728 | if (deg == 0) |
| 3729 | return isl_poly_copy(poly); |
| 3730 | else |
| 3731 | return isl_poly_zero(ctx: poly->ctx); |
| 3732 | } |
| 3733 | |
| 3734 | rec = isl_poly_as_rec(poly); |
| 3735 | if (!rec) |
| 3736 | return NULL; |
| 3737 | |
| 3738 | if (poly->var == pos) { |
| 3739 | if (deg < rec->n) |
| 3740 | return isl_poly_copy(poly: rec->p[deg]); |
| 3741 | else |
| 3742 | return isl_poly_zero(ctx: poly->ctx); |
| 3743 | } |
| 3744 | |
| 3745 | poly = isl_poly_copy(poly); |
| 3746 | poly = isl_poly_cow(poly); |
| 3747 | rec = isl_poly_as_rec(poly); |
| 3748 | if (!rec) |
| 3749 | goto error; |
| 3750 | |
| 3751 | for (i = 0; i < rec->n; ++i) { |
| 3752 | isl_poly *t; |
| 3753 | t = isl_poly_coeff(poly: rec->p[i], pos, deg); |
| 3754 | if (!t) |
| 3755 | goto error; |
| 3756 | isl_poly_free(poly: rec->p[i]); |
| 3757 | rec->p[i] = t; |
| 3758 | } |
| 3759 | |
| 3760 | return poly; |
| 3761 | error: |
| 3762 | isl_poly_free(poly); |
| 3763 | return NULL; |
| 3764 | } |
| 3765 | |
| 3766 | /* Return coefficient of power "deg" of variable "t_pos" of type "type". |
| 3767 | */ |
| 3768 | __isl_give isl_qpolynomial *isl_qpolynomial_coeff( |
| 3769 | __isl_keep isl_qpolynomial *qp, |
| 3770 | enum isl_dim_type type, unsigned t_pos, int deg) |
| 3771 | { |
| 3772 | unsigned g_pos; |
| 3773 | isl_poly *poly; |
| 3774 | isl_qpolynomial *c; |
| 3775 | |
| 3776 | if (!qp) |
| 3777 | return NULL; |
| 3778 | |
| 3779 | if (type == isl_dim_out) |
| 3780 | isl_die(qp->div->ctx, isl_error_invalid, |
| 3781 | "output/set dimension does not have a coefficient" , |
| 3782 | return NULL); |
| 3783 | if (isl_qpolynomial_check_range(obj: qp, type, first: t_pos, n: 1) < 0) |
| 3784 | return NULL; |
| 3785 | type = domain_type(type); |
| 3786 | |
| 3787 | g_pos = pos(space: qp->dim, type) + t_pos; |
| 3788 | poly = isl_poly_coeff(poly: qp->poly, pos: g_pos, deg); |
| 3789 | |
| 3790 | c = isl_qpolynomial_alloc(space: isl_space_copy(space: qp->dim), |
| 3791 | n_div: qp->div->n_row, poly); |
| 3792 | if (!c) |
| 3793 | return NULL; |
| 3794 | isl_mat_free(mat: c->div); |
| 3795 | c->div = isl_mat_copy(mat: qp->div); |
| 3796 | if (!c->div) |
| 3797 | goto error; |
| 3798 | return c; |
| 3799 | error: |
| 3800 | isl_qpolynomial_free(qp: c); |
| 3801 | return NULL; |
| 3802 | } |
| 3803 | |
| 3804 | /* Homogenize the polynomial in the variables first (inclusive) up to |
| 3805 | * last (exclusive) by inserting powers of variable first. |
| 3806 | * Variable first is assumed not to appear in the input. |
| 3807 | */ |
| 3808 | __isl_give isl_poly *isl_poly_homogenize(__isl_take isl_poly *poly, int deg, |
| 3809 | int target, int first, int last) |
| 3810 | { |
| 3811 | int i; |
| 3812 | isl_bool is_zero, is_cst; |
| 3813 | isl_poly_rec *rec; |
| 3814 | |
| 3815 | is_zero = isl_poly_is_zero(poly); |
| 3816 | if (is_zero < 0) |
| 3817 | return isl_poly_free(poly); |
| 3818 | if (is_zero) |
| 3819 | return poly; |
| 3820 | if (deg == target) |
| 3821 | return poly; |
| 3822 | is_cst = isl_poly_is_cst(poly); |
| 3823 | if (is_cst < 0) |
| 3824 | return isl_poly_free(poly); |
| 3825 | if (is_cst || poly->var < first) { |
| 3826 | isl_poly *hom; |
| 3827 | |
| 3828 | hom = isl_poly_var_pow(ctx: poly->ctx, pos: first, power: target - deg); |
| 3829 | if (!hom) |
| 3830 | goto error; |
| 3831 | rec = isl_poly_as_rec(poly: hom); |
| 3832 | rec->p[target - deg] = isl_poly_mul(poly1: rec->p[target - deg], poly2: poly); |
| 3833 | |
| 3834 | return hom; |
| 3835 | } |
| 3836 | |
| 3837 | poly = isl_poly_cow(poly); |
| 3838 | rec = isl_poly_as_rec(poly); |
| 3839 | if (!rec) |
| 3840 | goto error; |
| 3841 | |
| 3842 | for (i = 0; i < rec->n; ++i) { |
| 3843 | is_zero = isl_poly_is_zero(poly: rec->p[i]); |
| 3844 | if (is_zero < 0) |
| 3845 | return isl_poly_free(poly); |
| 3846 | if (is_zero) |
| 3847 | continue; |
| 3848 | rec->p[i] = isl_poly_homogenize(poly: rec->p[i], |
| 3849 | deg: poly->var < last ? deg + i : i, target, |
| 3850 | first, last); |
| 3851 | if (!rec->p[i]) |
| 3852 | goto error; |
| 3853 | } |
| 3854 | |
| 3855 | return poly; |
| 3856 | error: |
| 3857 | isl_poly_free(poly); |
| 3858 | return NULL; |
| 3859 | } |
| 3860 | |
| 3861 | /* Homogenize the polynomial in the set variables by introducing |
| 3862 | * powers of an extra set variable at position 0. |
| 3863 | */ |
| 3864 | __isl_give isl_qpolynomial *isl_qpolynomial_homogenize( |
| 3865 | __isl_take isl_qpolynomial *poly) |
| 3866 | { |
| 3867 | unsigned ovar; |
| 3868 | isl_size nvar; |
| 3869 | int deg = isl_qpolynomial_degree(poly); |
| 3870 | |
| 3871 | if (deg < -1) |
| 3872 | goto error; |
| 3873 | |
| 3874 | poly = isl_qpolynomial_insert_dims(qp: poly, type: isl_dim_in, first: 0, n: 1); |
| 3875 | poly = isl_qpolynomial_cow(qp: poly); |
| 3876 | if (!poly) |
| 3877 | goto error; |
| 3878 | |
| 3879 | ovar = isl_space_offset(space: poly->dim, type: isl_dim_set); |
| 3880 | nvar = isl_space_dim(space: poly->dim, type: isl_dim_set); |
| 3881 | if (nvar < 0) |
| 3882 | return isl_qpolynomial_free(qp: poly); |
| 3883 | poly->poly = isl_poly_homogenize(poly: poly->poly, deg: 0, target: deg, first: ovar, last: ovar + nvar); |
| 3884 | if (!poly->poly) |
| 3885 | goto error; |
| 3886 | |
| 3887 | return poly; |
| 3888 | error: |
| 3889 | isl_qpolynomial_free(qp: poly); |
| 3890 | return NULL; |
| 3891 | } |
| 3892 | |
| 3893 | __isl_give isl_term *isl_term_alloc(__isl_take isl_space *space, |
| 3894 | __isl_take isl_mat *div) |
| 3895 | { |
| 3896 | isl_term *term; |
| 3897 | isl_size d; |
| 3898 | int n; |
| 3899 | |
| 3900 | d = isl_space_dim(space, type: isl_dim_all); |
| 3901 | if (d < 0 || !div) |
| 3902 | goto error; |
| 3903 | |
| 3904 | n = d + div->n_row; |
| 3905 | |
| 3906 | term = isl_calloc(space->ctx, struct isl_term, |
| 3907 | sizeof(struct isl_term) + (n - 1) * sizeof(int)); |
| 3908 | if (!term) |
| 3909 | goto error; |
| 3910 | |
| 3911 | term->ref = 1; |
| 3912 | term->dim = space; |
| 3913 | term->div = div; |
| 3914 | isl_int_init(term->n); |
| 3915 | isl_int_init(term->d); |
| 3916 | |
| 3917 | return term; |
| 3918 | error: |
| 3919 | isl_space_free(space); |
| 3920 | isl_mat_free(mat: div); |
| 3921 | return NULL; |
| 3922 | } |
| 3923 | |
| 3924 | __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term) |
| 3925 | { |
| 3926 | if (!term) |
| 3927 | return NULL; |
| 3928 | |
| 3929 | term->ref++; |
| 3930 | return term; |
| 3931 | } |
| 3932 | |
| 3933 | __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term) |
| 3934 | { |
| 3935 | int i; |
| 3936 | isl_term *dup; |
| 3937 | isl_size total; |
| 3938 | |
| 3939 | total = isl_term_dim(term, type: isl_dim_all); |
| 3940 | if (total < 0) |
| 3941 | return NULL; |
| 3942 | |
| 3943 | dup = isl_term_alloc(space: isl_space_copy(space: term->dim), div: isl_mat_copy(mat: term->div)); |
| 3944 | if (!dup) |
| 3945 | return NULL; |
| 3946 | |
| 3947 | isl_int_set(dup->n, term->n); |
| 3948 | isl_int_set(dup->d, term->d); |
| 3949 | |
| 3950 | for (i = 0; i < total; ++i) |
| 3951 | dup->pow[i] = term->pow[i]; |
| 3952 | |
| 3953 | return dup; |
| 3954 | } |
| 3955 | |
| 3956 | __isl_give isl_term *isl_term_cow(__isl_take isl_term *term) |
| 3957 | { |
| 3958 | if (!term) |
| 3959 | return NULL; |
| 3960 | |
| 3961 | if (term->ref == 1) |
| 3962 | return term; |
| 3963 | term->ref--; |
| 3964 | return isl_term_dup(term); |
| 3965 | } |
| 3966 | |
| 3967 | __isl_null isl_term *isl_term_free(__isl_take isl_term *term) |
| 3968 | { |
| 3969 | if (!term) |
| 3970 | return NULL; |
| 3971 | |
| 3972 | if (--term->ref > 0) |
| 3973 | return NULL; |
| 3974 | |
| 3975 | isl_space_free(space: term->dim); |
| 3976 | isl_mat_free(mat: term->div); |
| 3977 | isl_int_clear(term->n); |
| 3978 | isl_int_clear(term->d); |
| 3979 | free(ptr: term); |
| 3980 | |
| 3981 | return NULL; |
| 3982 | } |
| 3983 | |
| 3984 | isl_size isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type) |
| 3985 | { |
| 3986 | isl_size dim; |
| 3987 | |
| 3988 | if (!term) |
| 3989 | return isl_size_error; |
| 3990 | |
| 3991 | switch (type) { |
| 3992 | case isl_dim_param: |
| 3993 | case isl_dim_in: |
| 3994 | case isl_dim_out: return isl_space_dim(space: term->dim, type); |
| 3995 | case isl_dim_div: return term->div->n_row; |
| 3996 | case isl_dim_all: dim = isl_space_dim(space: term->dim, type: isl_dim_all); |
| 3997 | if (dim < 0) |
| 3998 | return isl_size_error; |
| 3999 | return dim + term->div->n_row; |
| 4000 | default: return isl_size_error; |
| 4001 | } |
| 4002 | } |
| 4003 | |
| 4004 | /* Return the space of "term". |
| 4005 | */ |
| 4006 | static __isl_keep isl_space *isl_term_peek_space(__isl_keep isl_term *term) |
| 4007 | { |
| 4008 | return term ? term->dim : NULL; |
| 4009 | } |
| 4010 | |
| 4011 | /* Return the offset of the first variable of type "type" within |
| 4012 | * the variables of "term". |
| 4013 | */ |
| 4014 | static isl_size isl_term_offset(__isl_keep isl_term *term, |
| 4015 | enum isl_dim_type type) |
| 4016 | { |
| 4017 | isl_space *space; |
| 4018 | |
| 4019 | space = isl_term_peek_space(term); |
| 4020 | if (!space) |
| 4021 | return isl_size_error; |
| 4022 | |
| 4023 | switch (type) { |
| 4024 | case isl_dim_param: |
| 4025 | case isl_dim_set: return isl_space_offset(space, type); |
| 4026 | case isl_dim_div: return isl_space_dim(space, type: isl_dim_all); |
| 4027 | default: |
| 4028 | isl_die(isl_term_get_ctx(term), isl_error_invalid, |
| 4029 | "invalid dimension type" , return isl_size_error); |
| 4030 | } |
| 4031 | } |
| 4032 | |
| 4033 | isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term) |
| 4034 | { |
| 4035 | return term ? term->dim->ctx : NULL; |
| 4036 | } |
| 4037 | |
| 4038 | void isl_term_get_num(__isl_keep isl_term *term, isl_int *n) |
| 4039 | { |
| 4040 | if (!term) |
| 4041 | return; |
| 4042 | isl_int_set(*n, term->n); |
| 4043 | } |
| 4044 | |
| 4045 | /* Return the coefficient of the term "term". |
| 4046 | */ |
| 4047 | __isl_give isl_val *isl_term_get_coefficient_val(__isl_keep isl_term *term) |
| 4048 | { |
| 4049 | if (!term) |
| 4050 | return NULL; |
| 4051 | |
| 4052 | return isl_val_rat_from_isl_int(ctx: isl_term_get_ctx(term), |
| 4053 | n: term->n, d: term->d); |
| 4054 | } |
| 4055 | |
| 4056 | #undef TYPE |
| 4057 | #define TYPE isl_term |
| 4058 | static |
| 4059 | #include "check_type_range_templ.c" |
| 4060 | |
| 4061 | isl_size isl_term_get_exp(__isl_keep isl_term *term, |
| 4062 | enum isl_dim_type type, unsigned pos) |
| 4063 | { |
| 4064 | isl_size offset; |
| 4065 | |
| 4066 | if (isl_term_check_range(obj: term, type, first: pos, n: 1) < 0) |
| 4067 | return isl_size_error; |
| 4068 | offset = isl_term_offset(term, type); |
| 4069 | if (offset < 0) |
| 4070 | return isl_size_error; |
| 4071 | |
| 4072 | return term->pow[offset + pos]; |
| 4073 | } |
| 4074 | |
| 4075 | __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos) |
| 4076 | { |
| 4077 | isl_local_space *ls; |
| 4078 | isl_aff *aff; |
| 4079 | |
| 4080 | if (isl_term_check_range(obj: term, type: isl_dim_div, first: pos, n: 1) < 0) |
| 4081 | return NULL; |
| 4082 | |
| 4083 | ls = isl_local_space_alloc_div(space: isl_space_copy(space: term->dim), |
| 4084 | div: isl_mat_copy(mat: term->div)); |
| 4085 | aff = isl_aff_alloc(ls); |
| 4086 | if (!aff) |
| 4087 | return NULL; |
| 4088 | |
| 4089 | isl_seq_cpy(dst: aff->v->el, src: term->div->row[pos], len: aff->v->size); |
| 4090 | |
| 4091 | aff = isl_aff_normalize(aff); |
| 4092 | |
| 4093 | return aff; |
| 4094 | } |
| 4095 | |
| 4096 | __isl_give isl_term *isl_poly_foreach_term(__isl_keep isl_poly *poly, |
| 4097 | isl_stat (*fn)(__isl_take isl_term *term, void *user), |
| 4098 | __isl_take isl_term *term, void *user) |
| 4099 | { |
| 4100 | int i; |
| 4101 | isl_bool is_zero, is_bad, is_cst; |
| 4102 | isl_poly_rec *rec; |
| 4103 | |
| 4104 | is_zero = isl_poly_is_zero(poly); |
| 4105 | if (is_zero < 0 || !term) |
| 4106 | goto error; |
| 4107 | |
| 4108 | if (is_zero) |
| 4109 | return term; |
| 4110 | |
| 4111 | is_cst = isl_poly_is_cst(poly); |
| 4112 | is_bad = isl_poly_is_nan(poly); |
| 4113 | if (is_bad >= 0 && !is_bad) |
| 4114 | is_bad = isl_poly_is_infty(poly); |
| 4115 | if (is_bad >= 0 && !is_bad) |
| 4116 | is_bad = isl_poly_is_neginfty(poly); |
| 4117 | if (is_cst < 0 || is_bad < 0) |
| 4118 | return isl_term_free(term); |
| 4119 | if (is_bad) |
| 4120 | isl_die(isl_term_get_ctx(term), isl_error_invalid, |
| 4121 | "cannot handle NaN/infty polynomial" , |
| 4122 | return isl_term_free(term)); |
| 4123 | |
| 4124 | if (is_cst) { |
| 4125 | isl_poly_cst *cst; |
| 4126 | cst = isl_poly_as_cst(poly); |
| 4127 | if (!cst) |
| 4128 | goto error; |
| 4129 | term = isl_term_cow(term); |
| 4130 | if (!term) |
| 4131 | goto error; |
| 4132 | isl_int_set(term->n, cst->n); |
| 4133 | isl_int_set(term->d, cst->d); |
| 4134 | if (fn(isl_term_copy(term), user) < 0) |
| 4135 | goto error; |
| 4136 | return term; |
| 4137 | } |
| 4138 | |
| 4139 | rec = isl_poly_as_rec(poly); |
| 4140 | if (!rec) |
| 4141 | goto error; |
| 4142 | |
| 4143 | for (i = 0; i < rec->n; ++i) { |
| 4144 | term = isl_term_cow(term); |
| 4145 | if (!term) |
| 4146 | goto error; |
| 4147 | term->pow[poly->var] = i; |
| 4148 | term = isl_poly_foreach_term(poly: rec->p[i], fn, term, user); |
| 4149 | if (!term) |
| 4150 | goto error; |
| 4151 | } |
| 4152 | term = isl_term_cow(term); |
| 4153 | if (!term) |
| 4154 | return NULL; |
| 4155 | term->pow[poly->var] = 0; |
| 4156 | |
| 4157 | return term; |
| 4158 | error: |
| 4159 | isl_term_free(term); |
| 4160 | return NULL; |
| 4161 | } |
| 4162 | |
| 4163 | isl_stat isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp, |
| 4164 | isl_stat (*fn)(__isl_take isl_term *term, void *user), void *user) |
| 4165 | { |
| 4166 | isl_term *term; |
| 4167 | |
| 4168 | if (!qp) |
| 4169 | return isl_stat_error; |
| 4170 | |
| 4171 | term = isl_term_alloc(space: isl_space_copy(space: qp->dim), div: isl_mat_copy(mat: qp->div)); |
| 4172 | if (!term) |
| 4173 | return isl_stat_error; |
| 4174 | |
| 4175 | term = isl_poly_foreach_term(poly: qp->poly, fn, term, user); |
| 4176 | |
| 4177 | isl_term_free(term); |
| 4178 | |
| 4179 | return term ? isl_stat_ok : isl_stat_error; |
| 4180 | } |
| 4181 | |
| 4182 | __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term) |
| 4183 | { |
| 4184 | isl_poly *poly; |
| 4185 | isl_qpolynomial *qp; |
| 4186 | int i; |
| 4187 | isl_size n; |
| 4188 | |
| 4189 | n = isl_term_dim(term, type: isl_dim_all); |
| 4190 | if (n < 0) |
| 4191 | term = isl_term_free(term); |
| 4192 | if (!term) |
| 4193 | return NULL; |
| 4194 | |
| 4195 | poly = isl_poly_rat_cst(ctx: term->dim->ctx, n: term->n, d: term->d); |
| 4196 | for (i = 0; i < n; ++i) { |
| 4197 | if (!term->pow[i]) |
| 4198 | continue; |
| 4199 | poly = isl_poly_mul(poly1: poly, |
| 4200 | poly2: isl_poly_var_pow(ctx: term->dim->ctx, pos: i, power: term->pow[i])); |
| 4201 | } |
| 4202 | |
| 4203 | qp = isl_qpolynomial_alloc(space: isl_space_copy(space: term->dim), |
| 4204 | n_div: term->div->n_row, poly); |
| 4205 | if (!qp) |
| 4206 | goto error; |
| 4207 | isl_mat_free(mat: qp->div); |
| 4208 | qp->div = isl_mat_copy(mat: term->div); |
| 4209 | if (!qp->div) |
| 4210 | goto error; |
| 4211 | |
| 4212 | isl_term_free(term); |
| 4213 | return qp; |
| 4214 | error: |
| 4215 | isl_qpolynomial_free(qp); |
| 4216 | isl_term_free(term); |
| 4217 | return NULL; |
| 4218 | } |
| 4219 | |
| 4220 | __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp, |
| 4221 | __isl_take isl_space *space) |
| 4222 | { |
| 4223 | int i; |
| 4224 | int ; |
| 4225 | isl_size total, d_set, d_qp; |
| 4226 | |
| 4227 | if (!qp || !space) |
| 4228 | goto error; |
| 4229 | |
| 4230 | if (isl_space_is_equal(space1: qp->dim, space2: space)) { |
| 4231 | isl_space_free(space); |
| 4232 | return qp; |
| 4233 | } |
| 4234 | |
| 4235 | qp = isl_qpolynomial_cow(qp); |
| 4236 | if (!qp) |
| 4237 | goto error; |
| 4238 | |
| 4239 | d_set = isl_space_dim(space, type: isl_dim_set); |
| 4240 | d_qp = isl_qpolynomial_domain_dim(qp, type: isl_dim_set); |
| 4241 | extra = d_set - d_qp; |
| 4242 | total = isl_space_dim(space: qp->dim, type: isl_dim_all); |
| 4243 | if (d_set < 0 || d_qp < 0 || total < 0) |
| 4244 | goto error; |
| 4245 | if (qp->div->n_row) { |
| 4246 | int *exp; |
| 4247 | |
| 4248 | exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); |
| 4249 | if (!exp) |
| 4250 | goto error; |
| 4251 | for (i = 0; i < qp->div->n_row; ++i) |
| 4252 | exp[i] = extra + i; |
| 4253 | qp->poly = expand(poly: qp->poly, exp, first: total); |
| 4254 | free(ptr: exp); |
| 4255 | if (!qp->poly) |
| 4256 | goto error; |
| 4257 | } |
| 4258 | qp->div = isl_mat_insert_cols(mat: qp->div, col: 2 + total, n: extra); |
| 4259 | if (!qp->div) |
| 4260 | goto error; |
| 4261 | for (i = 0; i < qp->div->n_row; ++i) |
| 4262 | isl_seq_clr(p: qp->div->row[i] + 2 + total, len: extra); |
| 4263 | |
| 4264 | isl_space_free(space: qp->dim); |
| 4265 | qp->dim = space; |
| 4266 | |
| 4267 | return qp; |
| 4268 | error: |
| 4269 | isl_space_free(space); |
| 4270 | isl_qpolynomial_free(qp); |
| 4271 | return NULL; |
| 4272 | } |
| 4273 | |
| 4274 | /* For each parameter or variable that does not appear in qp, |
| 4275 | * first eliminate the variable from all constraints and then set it to zero. |
| 4276 | */ |
| 4277 | static __isl_give isl_set *fix_inactive(__isl_take isl_set *set, |
| 4278 | __isl_keep isl_qpolynomial *qp) |
| 4279 | { |
| 4280 | int *active = NULL; |
| 4281 | int i; |
| 4282 | isl_size d; |
| 4283 | isl_size nparam; |
| 4284 | isl_size nvar; |
| 4285 | |
| 4286 | d = isl_set_dim(set, type: isl_dim_all); |
| 4287 | if (d < 0 || !qp) |
| 4288 | goto error; |
| 4289 | |
| 4290 | active = isl_calloc_array(set->ctx, int, d); |
| 4291 | if (set_active(qp, active) < 0) |
| 4292 | goto error; |
| 4293 | |
| 4294 | for (i = 0; i < d; ++i) |
| 4295 | if (!active[i]) |
| 4296 | break; |
| 4297 | |
| 4298 | if (i == d) { |
| 4299 | free(ptr: active); |
| 4300 | return set; |
| 4301 | } |
| 4302 | |
| 4303 | nparam = isl_set_dim(set, type: isl_dim_param); |
| 4304 | nvar = isl_set_dim(set, type: isl_dim_set); |
| 4305 | if (nparam < 0 || nvar < 0) |
| 4306 | goto error; |
| 4307 | for (i = 0; i < nparam; ++i) { |
| 4308 | if (active[i]) |
| 4309 | continue; |
| 4310 | set = isl_set_eliminate(set, type: isl_dim_param, first: i, n: 1); |
| 4311 | set = isl_set_fix_si(set, type: isl_dim_param, pos: i, value: 0); |
| 4312 | } |
| 4313 | for (i = 0; i < nvar; ++i) { |
| 4314 | if (active[nparam + i]) |
| 4315 | continue; |
| 4316 | set = isl_set_eliminate(set, type: isl_dim_set, first: i, n: 1); |
| 4317 | set = isl_set_fix_si(set, type: isl_dim_set, pos: i, value: 0); |
| 4318 | } |
| 4319 | |
| 4320 | free(ptr: active); |
| 4321 | |
| 4322 | return set; |
| 4323 | error: |
| 4324 | free(ptr: active); |
| 4325 | isl_set_free(set); |
| 4326 | return NULL; |
| 4327 | } |
| 4328 | |
| 4329 | struct isl_opt_data { |
| 4330 | isl_qpolynomial *qp; |
| 4331 | int first; |
| 4332 | isl_val *opt; |
| 4333 | int max; |
| 4334 | }; |
| 4335 | |
| 4336 | static isl_stat opt_fn(__isl_take isl_point *pnt, void *user) |
| 4337 | { |
| 4338 | struct isl_opt_data *data = (struct isl_opt_data *)user; |
| 4339 | isl_val *val; |
| 4340 | |
| 4341 | val = isl_qpolynomial_eval(qp: isl_qpolynomial_copy(qp: data->qp), pnt); |
| 4342 | if (data->first) { |
| 4343 | data->first = 0; |
| 4344 | data->opt = val; |
| 4345 | } else if (data->max) { |
| 4346 | data->opt = isl_val_max(v1: data->opt, v2: val); |
| 4347 | } else { |
| 4348 | data->opt = isl_val_min(v1: data->opt, v2: val); |
| 4349 | } |
| 4350 | |
| 4351 | return isl_stat_ok; |
| 4352 | } |
| 4353 | |
| 4354 | __isl_give isl_val *isl_qpolynomial_opt_on_domain( |
| 4355 | __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max) |
| 4356 | { |
| 4357 | struct isl_opt_data data = { NULL, 1, NULL, max }; |
| 4358 | isl_bool is_cst; |
| 4359 | |
| 4360 | if (!set || !qp) |
| 4361 | goto error; |
| 4362 | |
| 4363 | is_cst = isl_poly_is_cst(poly: qp->poly); |
| 4364 | if (is_cst < 0) |
| 4365 | goto error; |
| 4366 | if (is_cst) { |
| 4367 | isl_set_free(set); |
| 4368 | data.opt = isl_qpolynomial_get_constant_val(qp); |
| 4369 | isl_qpolynomial_free(qp); |
| 4370 | return data.opt; |
| 4371 | } |
| 4372 | |
| 4373 | set = fix_inactive(set, qp); |
| 4374 | |
| 4375 | data.qp = qp; |
| 4376 | if (isl_set_foreach_point(set, fn: opt_fn, user: &data) < 0) |
| 4377 | goto error; |
| 4378 | |
| 4379 | if (data.first) |
| 4380 | data.opt = isl_val_zero(ctx: isl_set_get_ctx(set)); |
| 4381 | |
| 4382 | isl_set_free(set); |
| 4383 | isl_qpolynomial_free(qp); |
| 4384 | return data.opt; |
| 4385 | error: |
| 4386 | isl_set_free(set); |
| 4387 | isl_qpolynomial_free(qp); |
| 4388 | isl_val_free(v: data.opt); |
| 4389 | return NULL; |
| 4390 | } |
| 4391 | |
| 4392 | __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain( |
| 4393 | __isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph) |
| 4394 | { |
| 4395 | int i; |
| 4396 | int n_sub; |
| 4397 | isl_ctx *ctx; |
| 4398 | isl_space *space; |
| 4399 | isl_poly **subs; |
| 4400 | isl_mat *mat, *diag; |
| 4401 | |
| 4402 | qp = isl_qpolynomial_cow(qp); |
| 4403 | |
| 4404 | space = isl_qpolynomial_peek_domain_space(qp); |
| 4405 | if (isl_morph_check_applies(morph, space) < 0) |
| 4406 | goto error; |
| 4407 | |
| 4408 | ctx = isl_qpolynomial_get_ctx(qp); |
| 4409 | n_sub = morph->inv->n_row - 1; |
| 4410 | if (morph->inv->n_row != morph->inv->n_col) |
| 4411 | n_sub += qp->div->n_row; |
| 4412 | subs = isl_calloc_array(ctx, struct isl_poly *, n_sub); |
| 4413 | if (n_sub && !subs) |
| 4414 | goto error; |
| 4415 | |
| 4416 | for (i = 0; 1 + i < morph->inv->n_row; ++i) |
| 4417 | subs[i] = isl_poly_from_affine(ctx, f: morph->inv->row[1 + i], |
| 4418 | denom: morph->inv->row[0][0], len: morph->inv->n_col); |
| 4419 | if (morph->inv->n_row != morph->inv->n_col) |
| 4420 | for (i = 0; i < qp->div->n_row; ++i) |
| 4421 | subs[morph->inv->n_row - 1 + i] = |
| 4422 | isl_poly_var_pow(ctx, pos: morph->inv->n_col - 1 + i, power: 1); |
| 4423 | |
| 4424 | qp->poly = isl_poly_subs(poly: qp->poly, first: 0, n: n_sub, subs); |
| 4425 | |
| 4426 | for (i = 0; i < n_sub; ++i) |
| 4427 | isl_poly_free(poly: subs[i]); |
| 4428 | free(ptr: subs); |
| 4429 | |
| 4430 | diag = isl_mat_diag(ctx, n_row: 1, d: morph->inv->row[0][0]); |
| 4431 | mat = isl_mat_diagonal(mat1: diag, mat2: isl_mat_copy(mat: morph->inv)); |
| 4432 | diag = isl_mat_diag(ctx, n_row: qp->div->n_row, d: morph->inv->row[0][0]); |
| 4433 | mat = isl_mat_diagonal(mat1: mat, mat2: diag); |
| 4434 | qp->div = isl_mat_product(left: qp->div, right: mat); |
| 4435 | isl_space_free(space: qp->dim); |
| 4436 | qp->dim = isl_space_copy(space: morph->ran->dim); |
| 4437 | |
| 4438 | if (!qp->poly || !qp->div || !qp->dim) |
| 4439 | goto error; |
| 4440 | |
| 4441 | isl_morph_free(morph); |
| 4442 | |
| 4443 | return qp; |
| 4444 | error: |
| 4445 | isl_qpolynomial_free(qp); |
| 4446 | isl_morph_free(morph); |
| 4447 | return NULL; |
| 4448 | } |
| 4449 | |
| 4450 | __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul( |
| 4451 | __isl_take isl_union_pw_qpolynomial *upwqp1, |
| 4452 | __isl_take isl_union_pw_qpolynomial *upwqp2) |
| 4453 | { |
| 4454 | return isl_union_pw_qpolynomial_match_bin_op(u1: upwqp1, u2: upwqp2, |
| 4455 | fn: &isl_pw_qpolynomial_mul); |
| 4456 | } |
| 4457 | |
| 4458 | /* Reorder the dimension of "qp" according to the given reordering. |
| 4459 | */ |
| 4460 | __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain( |
| 4461 | __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r) |
| 4462 | { |
| 4463 | isl_space *space; |
| 4464 | |
| 4465 | qp = isl_qpolynomial_cow(qp); |
| 4466 | if (!qp) |
| 4467 | goto error; |
| 4468 | |
| 4469 | r = isl_reordering_extend(exp: r, extra: qp->div->n_row); |
| 4470 | if (!r) |
| 4471 | goto error; |
| 4472 | |
| 4473 | qp->div = isl_local_reorder(local: qp->div, r: isl_reordering_copy(exp: r)); |
| 4474 | if (!qp->div) |
| 4475 | goto error; |
| 4476 | |
| 4477 | qp->poly = reorder(poly: qp->poly, r: r->pos); |
| 4478 | if (!qp->poly) |
| 4479 | goto error; |
| 4480 | |
| 4481 | space = isl_reordering_get_space(r); |
| 4482 | qp = isl_qpolynomial_reset_domain_space(qp, space); |
| 4483 | |
| 4484 | isl_reordering_free(exp: r); |
| 4485 | return qp; |
| 4486 | error: |
| 4487 | isl_qpolynomial_free(qp); |
| 4488 | isl_reordering_free(exp: r); |
| 4489 | return NULL; |
| 4490 | } |
| 4491 | |
| 4492 | __isl_give isl_qpolynomial *isl_qpolynomial_align_params( |
| 4493 | __isl_take isl_qpolynomial *qp, __isl_take isl_space *model) |
| 4494 | { |
| 4495 | isl_space *domain_space; |
| 4496 | isl_bool equal_params; |
| 4497 | |
| 4498 | domain_space = isl_qpolynomial_peek_domain_space(qp); |
| 4499 | equal_params = isl_space_has_equal_params(space1: domain_space, space2: model); |
| 4500 | if (equal_params < 0) |
| 4501 | goto error; |
| 4502 | if (!equal_params) { |
| 4503 | isl_reordering *exp; |
| 4504 | |
| 4505 | exp = isl_parameter_alignment_reordering(alignee: domain_space, aligner: model); |
| 4506 | qp = isl_qpolynomial_realign_domain(qp, r: exp); |
| 4507 | } |
| 4508 | |
| 4509 | isl_space_free(space: model); |
| 4510 | return qp; |
| 4511 | error: |
| 4512 | isl_space_free(space: model); |
| 4513 | isl_qpolynomial_free(qp); |
| 4514 | return NULL; |
| 4515 | } |
| 4516 | |
| 4517 | struct isl_split_periods_data { |
| 4518 | int max_periods; |
| 4519 | isl_pw_qpolynomial *res; |
| 4520 | }; |
| 4521 | |
| 4522 | /* Create a slice where the integer division "div" has the fixed value "v". |
| 4523 | * In particular, if "div" refers to floor(f/m), then create a slice |
| 4524 | * |
| 4525 | * m v <= f <= m v + (m - 1) |
| 4526 | * |
| 4527 | * or |
| 4528 | * |
| 4529 | * f - m v >= 0 |
| 4530 | * -f + m v + (m - 1) >= 0 |
| 4531 | */ |
| 4532 | static __isl_give isl_set *set_div_slice(__isl_take isl_space *space, |
| 4533 | __isl_keep isl_qpolynomial *qp, int div, isl_int v) |
| 4534 | { |
| 4535 | isl_size total; |
| 4536 | isl_basic_set *bset = NULL; |
| 4537 | int k; |
| 4538 | |
| 4539 | total = isl_space_dim(space, type: isl_dim_all); |
| 4540 | if (total < 0 || !qp) |
| 4541 | goto error; |
| 4542 | |
| 4543 | bset = isl_basic_set_alloc_space(space: isl_space_copy(space), extra: 0, n_eq: 0, n_ineq: 2); |
| 4544 | |
| 4545 | k = isl_basic_set_alloc_inequality(bset); |
| 4546 | if (k < 0) |
| 4547 | goto error; |
| 4548 | isl_seq_cpy(dst: bset->ineq[k], src: qp->div->row[div] + 1, len: 1 + total); |
| 4549 | isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]); |
| 4550 | |
| 4551 | k = isl_basic_set_alloc_inequality(bset); |
| 4552 | if (k < 0) |
| 4553 | goto error; |
| 4554 | isl_seq_neg(dst: bset->ineq[k], src: qp->div->row[div] + 1, len: 1 + total); |
| 4555 | isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]); |
| 4556 | isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]); |
| 4557 | isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1); |
| 4558 | |
| 4559 | isl_space_free(space); |
| 4560 | return isl_set_from_basic_set(bset); |
| 4561 | error: |
| 4562 | isl_basic_set_free(bset); |
| 4563 | isl_space_free(space); |
| 4564 | return NULL; |
| 4565 | } |
| 4566 | |
| 4567 | static isl_stat split_periods(__isl_take isl_set *set, |
| 4568 | __isl_take isl_qpolynomial *qp, void *user); |
| 4569 | |
| 4570 | /* Create a slice of the domain "set" such that integer division "div" |
| 4571 | * has the fixed value "v" and add the results to data->res, |
| 4572 | * replacing the integer division by "v" in "qp". |
| 4573 | */ |
| 4574 | static isl_stat set_div(__isl_take isl_set *set, |
| 4575 | __isl_take isl_qpolynomial *qp, int div, isl_int v, |
| 4576 | struct isl_split_periods_data *data) |
| 4577 | { |
| 4578 | int i; |
| 4579 | isl_size div_pos; |
| 4580 | isl_set *slice; |
| 4581 | isl_poly *cst; |
| 4582 | |
| 4583 | slice = set_div_slice(space: isl_set_get_space(set), qp, div, v); |
| 4584 | set = isl_set_intersect(set1: set, set2: slice); |
| 4585 | |
| 4586 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
| 4587 | if (div_pos < 0) |
| 4588 | goto error; |
| 4589 | |
| 4590 | for (i = div + 1; i < qp->div->n_row; ++i) { |
| 4591 | if (isl_int_is_zero(qp->div->row[i][2 + div_pos + div])) |
| 4592 | continue; |
| 4593 | isl_int_addmul(qp->div->row[i][1], |
| 4594 | qp->div->row[i][2 + div_pos + div], v); |
| 4595 | isl_int_set_si(qp->div->row[i][2 + div_pos + div], 0); |
| 4596 | } |
| 4597 | |
| 4598 | cst = isl_poly_rat_cst(ctx: qp->dim->ctx, n: v, d: qp->dim->ctx->one); |
| 4599 | qp = substitute_div(qp, div, s: cst); |
| 4600 | |
| 4601 | return split_periods(set, qp, user: data); |
| 4602 | error: |
| 4603 | isl_set_free(set); |
| 4604 | isl_qpolynomial_free(qp); |
| 4605 | return isl_stat_error; |
| 4606 | } |
| 4607 | |
| 4608 | /* Split the domain "set" such that integer division "div" |
| 4609 | * has a fixed value (ranging from "min" to "max") on each slice |
| 4610 | * and add the results to data->res. |
| 4611 | */ |
| 4612 | static isl_stat split_div(__isl_take isl_set *set, |
| 4613 | __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max, |
| 4614 | struct isl_split_periods_data *data) |
| 4615 | { |
| 4616 | for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) { |
| 4617 | isl_set *set_i = isl_set_copy(set); |
| 4618 | isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp); |
| 4619 | |
| 4620 | if (set_div(set: set_i, qp: qp_i, div, v: min, data) < 0) |
| 4621 | goto error; |
| 4622 | } |
| 4623 | isl_set_free(set); |
| 4624 | isl_qpolynomial_free(qp); |
| 4625 | return isl_stat_ok; |
| 4626 | error: |
| 4627 | isl_set_free(set); |
| 4628 | isl_qpolynomial_free(qp); |
| 4629 | return isl_stat_error; |
| 4630 | } |
| 4631 | |
| 4632 | /* If "qp" refers to any integer division |
| 4633 | * that can only attain "max_periods" distinct values on "set" |
| 4634 | * then split the domain along those distinct values. |
| 4635 | * Add the results (or the original if no splitting occurs) |
| 4636 | * to data->res. |
| 4637 | */ |
| 4638 | static isl_stat split_periods(__isl_take isl_set *set, |
| 4639 | __isl_take isl_qpolynomial *qp, void *user) |
| 4640 | { |
| 4641 | int i; |
| 4642 | isl_pw_qpolynomial *pwqp; |
| 4643 | struct isl_split_periods_data *data; |
| 4644 | isl_int min, max; |
| 4645 | isl_size div_pos; |
| 4646 | isl_stat r = isl_stat_ok; |
| 4647 | |
| 4648 | data = (struct isl_split_periods_data *)user; |
| 4649 | |
| 4650 | if (!set || !qp) |
| 4651 | goto error; |
| 4652 | |
| 4653 | if (qp->div->n_row == 0) { |
| 4654 | pwqp = isl_pw_qpolynomial_alloc(set, el: qp); |
| 4655 | data->res = isl_pw_qpolynomial_add_disjoint(pw1: data->res, pw2: pwqp); |
| 4656 | return isl_stat_ok; |
| 4657 | } |
| 4658 | |
| 4659 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
| 4660 | if (div_pos < 0) |
| 4661 | goto error; |
| 4662 | |
| 4663 | isl_int_init(min); |
| 4664 | isl_int_init(max); |
| 4665 | for (i = 0; i < qp->div->n_row; ++i) { |
| 4666 | enum isl_lp_result lp_res; |
| 4667 | |
| 4668 | if (isl_seq_first_non_zero(p: qp->div->row[i] + 2 + div_pos, |
| 4669 | len: qp->div->n_row) != -1) |
| 4670 | continue; |
| 4671 | |
| 4672 | lp_res = isl_set_solve_lp(set, max: 0, f: qp->div->row[i] + 1, |
| 4673 | denom: set->ctx->one, opt: &min, NULL, NULL); |
| 4674 | if (lp_res == isl_lp_error) |
| 4675 | goto error2; |
| 4676 | if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty) |
| 4677 | continue; |
| 4678 | isl_int_fdiv_q(min, min, qp->div->row[i][0]); |
| 4679 | |
| 4680 | lp_res = isl_set_solve_lp(set, max: 1, f: qp->div->row[i] + 1, |
| 4681 | denom: set->ctx->one, opt: &max, NULL, NULL); |
| 4682 | if (lp_res == isl_lp_error) |
| 4683 | goto error2; |
| 4684 | if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty) |
| 4685 | continue; |
| 4686 | isl_int_fdiv_q(max, max, qp->div->row[i][0]); |
| 4687 | |
| 4688 | isl_int_sub(max, max, min); |
| 4689 | if (isl_int_cmp_si(max, data->max_periods) < 0) { |
| 4690 | isl_int_add(max, max, min); |
| 4691 | break; |
| 4692 | } |
| 4693 | } |
| 4694 | |
| 4695 | if (i < qp->div->n_row) { |
| 4696 | r = split_div(set, qp, div: i, min, max, data); |
| 4697 | } else { |
| 4698 | pwqp = isl_pw_qpolynomial_alloc(set, el: qp); |
| 4699 | data->res = isl_pw_qpolynomial_add_disjoint(pw1: data->res, pw2: pwqp); |
| 4700 | } |
| 4701 | |
| 4702 | isl_int_clear(max); |
| 4703 | isl_int_clear(min); |
| 4704 | |
| 4705 | return r; |
| 4706 | error2: |
| 4707 | isl_int_clear(max); |
| 4708 | isl_int_clear(min); |
| 4709 | error: |
| 4710 | isl_set_free(set); |
| 4711 | isl_qpolynomial_free(qp); |
| 4712 | return isl_stat_error; |
| 4713 | } |
| 4714 | |
| 4715 | /* If any quasi-polynomial in pwqp refers to any integer division |
| 4716 | * that can only attain "max_periods" distinct values on its domain |
| 4717 | * then split the domain along those distinct values. |
| 4718 | */ |
| 4719 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods( |
| 4720 | __isl_take isl_pw_qpolynomial *pwqp, int max_periods) |
| 4721 | { |
| 4722 | struct isl_split_periods_data data; |
| 4723 | |
| 4724 | data.max_periods = max_periods; |
| 4725 | data.res = isl_pw_qpolynomial_zero(space: isl_pw_qpolynomial_get_space(pw: pwqp)); |
| 4726 | |
| 4727 | if (isl_pw_qpolynomial_foreach_piece(pw: pwqp, fn: &split_periods, user: &data) < 0) |
| 4728 | goto error; |
| 4729 | |
| 4730 | isl_pw_qpolynomial_free(pw: pwqp); |
| 4731 | |
| 4732 | return data.res; |
| 4733 | error: |
| 4734 | isl_pw_qpolynomial_free(pw: data.res); |
| 4735 | isl_pw_qpolynomial_free(pw: pwqp); |
| 4736 | return NULL; |
| 4737 | } |
| 4738 | |
| 4739 | /* Construct a piecewise quasipolynomial that is constant on the given |
| 4740 | * domain. In particular, it is |
| 4741 | * 0 if cst == 0 |
| 4742 | * 1 if cst == 1 |
| 4743 | * infinity if cst == -1 |
| 4744 | * |
| 4745 | * If cst == -1, then explicitly check whether the domain is empty and, |
| 4746 | * if so, return 0 instead. |
| 4747 | */ |
| 4748 | static __isl_give isl_pw_qpolynomial *constant_on_domain( |
| 4749 | __isl_take isl_basic_set *bset, int cst) |
| 4750 | { |
| 4751 | isl_space *space; |
| 4752 | isl_qpolynomial *qp; |
| 4753 | |
| 4754 | if (cst < 0 && isl_basic_set_is_empty(bset) == isl_bool_true) |
| 4755 | cst = 0; |
| 4756 | if (!bset) |
| 4757 | return NULL; |
| 4758 | |
| 4759 | bset = isl_basic_set_params(bset); |
| 4760 | space = isl_basic_set_get_space(bset); |
| 4761 | if (cst < 0) |
| 4762 | qp = isl_qpolynomial_infty_on_domain(domain: space); |
| 4763 | else if (cst == 0) |
| 4764 | qp = isl_qpolynomial_zero_on_domain(domain: space); |
| 4765 | else |
| 4766 | qp = isl_qpolynomial_one_on_domain(domain: space); |
| 4767 | return isl_pw_qpolynomial_alloc(set: isl_set_from_basic_set(bset), el: qp); |
| 4768 | } |
| 4769 | |
| 4770 | /* Internal data structure for multiplicative_call_factor_pw_qpolynomial. |
| 4771 | * "fn" is the function that is called on each factor. |
| 4772 | * "pwpq" collects the results. |
| 4773 | */ |
| 4774 | struct isl_multiplicative_call_data_pw_qpolynomial { |
| 4775 | __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset); |
| 4776 | isl_pw_qpolynomial *pwqp; |
| 4777 | }; |
| 4778 | |
| 4779 | /* Call "fn" on "bset" and return the result, |
| 4780 | * but first check if "bset" has any redundant constraints or |
| 4781 | * implicit equality constraints. |
| 4782 | * If so, there may be further opportunities for detecting factors or |
| 4783 | * removing equality constraints, so recursively call |
| 4784 | * the top-level isl_basic_set_multiplicative_call. |
| 4785 | */ |
| 4786 | static __isl_give isl_pw_qpolynomial *multiplicative_call_base( |
| 4787 | __isl_take isl_basic_set *bset, |
| 4788 | __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset)) |
| 4789 | { |
| 4790 | isl_size n1, n2, n_eq; |
| 4791 | |
| 4792 | n1 = isl_basic_set_n_constraint(bset); |
| 4793 | if (n1 < 0) |
| 4794 | bset = isl_basic_set_free(bset); |
| 4795 | bset = isl_basic_set_remove_redundancies(bset); |
| 4796 | bset = isl_basic_set_detect_equalities(bset); |
| 4797 | n2 = isl_basic_set_n_constraint(bset); |
| 4798 | n_eq = isl_basic_set_n_equality(bset); |
| 4799 | if (n2 < 0 || n_eq < 0) |
| 4800 | bset = isl_basic_set_free(bset); |
| 4801 | else if (n2 < n1 || n_eq > 0) |
| 4802 | return isl_basic_set_multiplicative_call(bset, fn); |
| 4803 | return fn(bset); |
| 4804 | } |
| 4805 | |
| 4806 | /* isl_factorizer_every_factor_basic_set callback that applies |
| 4807 | * data->fn to the factor "bset" and multiplies in the result |
| 4808 | * in data->pwqp. |
| 4809 | */ |
| 4810 | static isl_bool multiplicative_call_factor_pw_qpolynomial( |
| 4811 | __isl_keep isl_basic_set *bset, void *user) |
| 4812 | { |
| 4813 | struct isl_multiplicative_call_data_pw_qpolynomial *data = user; |
| 4814 | isl_pw_qpolynomial *res; |
| 4815 | |
| 4816 | bset = isl_basic_set_copy(bset); |
| 4817 | res = multiplicative_call_base(bset, fn: data->fn); |
| 4818 | data->pwqp = isl_pw_qpolynomial_mul(pwqp1: data->pwqp, pwqp2: res); |
| 4819 | if (!data->pwqp) |
| 4820 | return isl_bool_error; |
| 4821 | |
| 4822 | return isl_bool_true; |
| 4823 | } |
| 4824 | |
| 4825 | /* Factor bset, call fn on each of the factors and return the product. |
| 4826 | * |
| 4827 | * If no factors can be found, simply call fn on the input. |
| 4828 | * Otherwise, construct the factors based on the factorizer, |
| 4829 | * call fn on each factor and compute the product. |
| 4830 | */ |
| 4831 | static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call( |
| 4832 | __isl_take isl_basic_set *bset, |
| 4833 | __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset)) |
| 4834 | { |
| 4835 | struct isl_multiplicative_call_data_pw_qpolynomial data = { fn }; |
| 4836 | isl_space *space; |
| 4837 | isl_set *set; |
| 4838 | isl_factorizer *f; |
| 4839 | isl_qpolynomial *qp; |
| 4840 | isl_bool every; |
| 4841 | |
| 4842 | f = isl_basic_set_factorizer(bset); |
| 4843 | if (!f) |
| 4844 | goto error; |
| 4845 | if (f->n_group == 0) { |
| 4846 | isl_factorizer_free(f); |
| 4847 | return multiplicative_call_base(bset, fn); |
| 4848 | } |
| 4849 | |
| 4850 | space = isl_basic_set_get_space(bset); |
| 4851 | space = isl_space_params(space); |
| 4852 | set = isl_set_universe(space: isl_space_copy(space)); |
| 4853 | qp = isl_qpolynomial_one_on_domain(domain: space); |
| 4854 | data.pwqp = isl_pw_qpolynomial_alloc(set, el: qp); |
| 4855 | |
| 4856 | every = isl_factorizer_every_factor_basic_set(f, |
| 4857 | test: &multiplicative_call_factor_pw_qpolynomial, user: &data); |
| 4858 | if (every < 0) |
| 4859 | data.pwqp = isl_pw_qpolynomial_free(pw: data.pwqp); |
| 4860 | |
| 4861 | isl_basic_set_free(bset); |
| 4862 | isl_factorizer_free(f); |
| 4863 | |
| 4864 | return data.pwqp; |
| 4865 | error: |
| 4866 | isl_basic_set_free(bset); |
| 4867 | return NULL; |
| 4868 | } |
| 4869 | |
| 4870 | /* Factor bset, call fn on each of the factors and return the product. |
| 4871 | * The function is assumed to evaluate to zero on empty domains, |
| 4872 | * to one on zero-dimensional domains and to infinity on unbounded domains |
| 4873 | * and will not be called explicitly on zero-dimensional or unbounded domains. |
| 4874 | * |
| 4875 | * We first check for some special cases and remove all equalities. |
| 4876 | * Then we hand over control to compressed_multiplicative_call. |
| 4877 | */ |
| 4878 | __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call( |
| 4879 | __isl_take isl_basic_set *bset, |
| 4880 | __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset)) |
| 4881 | { |
| 4882 | isl_bool bounded; |
| 4883 | isl_size dim; |
| 4884 | isl_morph *morph; |
| 4885 | isl_pw_qpolynomial *pwqp; |
| 4886 | |
| 4887 | if (!bset) |
| 4888 | return NULL; |
| 4889 | |
| 4890 | if (isl_basic_set_plain_is_empty(bset)) |
| 4891 | return constant_on_domain(bset, cst: 0); |
| 4892 | |
| 4893 | dim = isl_basic_set_dim(bset, type: isl_dim_set); |
| 4894 | if (dim < 0) |
| 4895 | goto error; |
| 4896 | if (dim == 0) |
| 4897 | return constant_on_domain(bset, cst: 1); |
| 4898 | |
| 4899 | bounded = isl_basic_set_is_bounded(bset); |
| 4900 | if (bounded < 0) |
| 4901 | goto error; |
| 4902 | if (!bounded) |
| 4903 | return constant_on_domain(bset, cst: -1); |
| 4904 | |
| 4905 | if (bset->n_eq == 0) |
| 4906 | return compressed_multiplicative_call(bset, fn); |
| 4907 | |
| 4908 | morph = isl_basic_set_full_compression(bset); |
| 4909 | bset = isl_morph_basic_set(morph: isl_morph_copy(morph), bset); |
| 4910 | |
| 4911 | pwqp = compressed_multiplicative_call(bset, fn); |
| 4912 | |
| 4913 | morph = isl_morph_dom_params(morph); |
| 4914 | morph = isl_morph_ran_params(morph); |
| 4915 | morph = isl_morph_inverse(morph); |
| 4916 | |
| 4917 | pwqp = isl_pw_qpolynomial_morph_domain(pw: pwqp, morph); |
| 4918 | |
| 4919 | return pwqp; |
| 4920 | error: |
| 4921 | isl_basic_set_free(bset); |
| 4922 | return NULL; |
| 4923 | } |
| 4924 | |
| 4925 | /* Drop all floors in "qp", turning each integer division [a/m] into |
| 4926 | * a rational division a/m. If "down" is set, then the integer division |
| 4927 | * is replaced by (a-(m-1))/m instead. |
| 4928 | */ |
| 4929 | static __isl_give isl_qpolynomial *qp_drop_floors( |
| 4930 | __isl_take isl_qpolynomial *qp, int down) |
| 4931 | { |
| 4932 | int i; |
| 4933 | isl_poly *s; |
| 4934 | |
| 4935 | if (!qp) |
| 4936 | return NULL; |
| 4937 | if (qp->div->n_row == 0) |
| 4938 | return qp; |
| 4939 | |
| 4940 | qp = isl_qpolynomial_cow(qp); |
| 4941 | if (!qp) |
| 4942 | return NULL; |
| 4943 | |
| 4944 | for (i = qp->div->n_row - 1; i >= 0; --i) { |
| 4945 | if (down) { |
| 4946 | isl_int_sub(qp->div->row[i][1], |
| 4947 | qp->div->row[i][1], qp->div->row[i][0]); |
| 4948 | isl_int_add_ui(qp->div->row[i][1], |
| 4949 | qp->div->row[i][1], 1); |
| 4950 | } |
| 4951 | s = isl_poly_from_affine(ctx: qp->dim->ctx, f: qp->div->row[i] + 1, |
| 4952 | denom: qp->div->row[i][0], len: qp->div->n_col - 1); |
| 4953 | qp = substitute_div(qp, div: i, s); |
| 4954 | if (!qp) |
| 4955 | return NULL; |
| 4956 | } |
| 4957 | |
| 4958 | return qp; |
| 4959 | } |
| 4960 | |
| 4961 | /* Drop all floors in "pwqp", turning each integer division [a/m] into |
| 4962 | * a rational division a/m. |
| 4963 | */ |
| 4964 | static __isl_give isl_pw_qpolynomial *pwqp_drop_floors( |
| 4965 | __isl_take isl_pw_qpolynomial *pwqp) |
| 4966 | { |
| 4967 | int i; |
| 4968 | |
| 4969 | if (!pwqp) |
| 4970 | return NULL; |
| 4971 | |
| 4972 | if (isl_pw_qpolynomial_is_zero(pw: pwqp)) |
| 4973 | return pwqp; |
| 4974 | |
| 4975 | pwqp = isl_pw_qpolynomial_cow(pw: pwqp); |
| 4976 | if (!pwqp) |
| 4977 | return NULL; |
| 4978 | |
| 4979 | for (i = 0; i < pwqp->n; ++i) { |
| 4980 | pwqp->p[i].qp = qp_drop_floors(qp: pwqp->p[i].qp, down: 0); |
| 4981 | if (!pwqp->p[i].qp) |
| 4982 | goto error; |
| 4983 | } |
| 4984 | |
| 4985 | return pwqp; |
| 4986 | error: |
| 4987 | isl_pw_qpolynomial_free(pw: pwqp); |
| 4988 | return NULL; |
| 4989 | } |
| 4990 | |
| 4991 | /* Adjust all the integer divisions in "qp" such that they are at least |
| 4992 | * one over the given orthant (identified by "signs"). This ensures |
| 4993 | * that they will still be non-negative even after subtracting (m-1)/m. |
| 4994 | * |
| 4995 | * In particular, f is replaced by f' + v, changing f = [a/m] |
| 4996 | * to f' = [(a - m v)/m]. |
| 4997 | * If the constant term k in a is smaller than m, |
| 4998 | * the constant term of v is set to floor(k/m) - 1. |
| 4999 | * For any other term, if the coefficient c and the variable x have |
| 5000 | * the same sign, then no changes are needed. |
| 5001 | * Otherwise, if the variable is positive (and c is negative), |
| 5002 | * then the coefficient of x in v is set to floor(c/m). |
| 5003 | * If the variable is negative (and c is positive), |
| 5004 | * then the coefficient of x in v is set to ceil(c/m). |
| 5005 | */ |
| 5006 | static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp, |
| 5007 | int *signs) |
| 5008 | { |
| 5009 | int i, j; |
| 5010 | isl_size div_pos; |
| 5011 | isl_vec *v = NULL; |
| 5012 | isl_poly *s; |
| 5013 | |
| 5014 | qp = isl_qpolynomial_cow(qp); |
| 5015 | div_pos = isl_qpolynomial_domain_var_offset(qp, type: isl_dim_div); |
| 5016 | if (div_pos < 0) |
| 5017 | return isl_qpolynomial_free(qp); |
| 5018 | qp->div = isl_mat_cow(mat: qp->div); |
| 5019 | if (!qp->div) |
| 5020 | goto error; |
| 5021 | |
| 5022 | v = isl_vec_alloc(ctx: qp->div->ctx, size: qp->div->n_col - 1); |
| 5023 | |
| 5024 | for (i = 0; i < qp->div->n_row; ++i) { |
| 5025 | isl_int *row = qp->div->row[i]; |
| 5026 | v = isl_vec_clr(vec: v); |
| 5027 | if (!v) |
| 5028 | goto error; |
| 5029 | if (isl_int_lt(row[1], row[0])) { |
| 5030 | isl_int_fdiv_q(v->el[0], row[1], row[0]); |
| 5031 | isl_int_sub_ui(v->el[0], v->el[0], 1); |
| 5032 | isl_int_submul(row[1], row[0], v->el[0]); |
| 5033 | } |
| 5034 | for (j = 0; j < div_pos; ++j) { |
| 5035 | if (isl_int_sgn(row[2 + j]) * signs[j] >= 0) |
| 5036 | continue; |
| 5037 | if (signs[j] < 0) |
| 5038 | isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]); |
| 5039 | else |
| 5040 | isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]); |
| 5041 | isl_int_submul(row[2 + j], row[0], v->el[1 + j]); |
| 5042 | } |
| 5043 | for (j = 0; j < i; ++j) { |
| 5044 | if (isl_int_sgn(row[2 + div_pos + j]) >= 0) |
| 5045 | continue; |
| 5046 | isl_int_fdiv_q(v->el[1 + div_pos + j], |
| 5047 | row[2 + div_pos + j], row[0]); |
| 5048 | isl_int_submul(row[2 + div_pos + j], |
| 5049 | row[0], v->el[1 + div_pos + j]); |
| 5050 | } |
| 5051 | for (j = i + 1; j < qp->div->n_row; ++j) { |
| 5052 | if (isl_int_is_zero(qp->div->row[j][2 + div_pos + i])) |
| 5053 | continue; |
| 5054 | isl_seq_combine(dst: qp->div->row[j] + 1, |
| 5055 | m1: qp->div->ctx->one, src1: qp->div->row[j] + 1, |
| 5056 | m2: qp->div->row[j][2 + div_pos + i], src2: v->el, |
| 5057 | len: v->size); |
| 5058 | } |
| 5059 | isl_int_set_si(v->el[1 + div_pos + i], 1); |
| 5060 | s = isl_poly_from_affine(ctx: qp->dim->ctx, f: v->el, |
| 5061 | denom: qp->div->ctx->one, len: v->size); |
| 5062 | qp->poly = isl_poly_subs(poly: qp->poly, first: div_pos + i, n: 1, subs: &s); |
| 5063 | isl_poly_free(poly: s); |
| 5064 | if (!qp->poly) |
| 5065 | goto error; |
| 5066 | } |
| 5067 | |
| 5068 | isl_vec_free(vec: v); |
| 5069 | return qp; |
| 5070 | error: |
| 5071 | isl_vec_free(vec: v); |
| 5072 | isl_qpolynomial_free(qp); |
| 5073 | return NULL; |
| 5074 | } |
| 5075 | |
| 5076 | struct isl_to_poly_data { |
| 5077 | int sign; |
| 5078 | isl_pw_qpolynomial *res; |
| 5079 | isl_qpolynomial *qp; |
| 5080 | }; |
| 5081 | |
| 5082 | /* Appoximate data->qp by a polynomial on the orthant identified by "signs". |
| 5083 | * We first make all integer divisions positive and then split the |
| 5084 | * quasipolynomials into terms with sign data->sign (the direction |
| 5085 | * of the requested approximation) and terms with the opposite sign. |
| 5086 | * In the first set of terms, each integer division [a/m] is |
| 5087 | * overapproximated by a/m, while in the second it is underapproximated |
| 5088 | * by (a-(m-1))/m. |
| 5089 | */ |
| 5090 | static isl_stat to_polynomial_on_orthant(__isl_take isl_set *orthant, |
| 5091 | int *signs, void *user) |
| 5092 | { |
| 5093 | struct isl_to_poly_data *data = user; |
| 5094 | isl_pw_qpolynomial *t; |
| 5095 | isl_qpolynomial *qp, *up, *down; |
| 5096 | |
| 5097 | qp = isl_qpolynomial_copy(qp: data->qp); |
| 5098 | qp = make_divs_pos(qp, signs); |
| 5099 | |
| 5100 | up = isl_qpolynomial_terms_of_sign(poly: qp, signs, sign: data->sign); |
| 5101 | up = qp_drop_floors(qp: up, down: 0); |
| 5102 | down = isl_qpolynomial_terms_of_sign(poly: qp, signs, sign: -data->sign); |
| 5103 | down = qp_drop_floors(qp: down, down: 1); |
| 5104 | |
| 5105 | isl_qpolynomial_free(qp); |
| 5106 | qp = isl_qpolynomial_add(qp1: up, qp2: down); |
| 5107 | |
| 5108 | t = isl_pw_qpolynomial_alloc(set: orthant, el: qp); |
| 5109 | data->res = isl_pw_qpolynomial_add_disjoint(pw1: data->res, pw2: t); |
| 5110 | |
| 5111 | return isl_stat_ok; |
| 5112 | } |
| 5113 | |
| 5114 | /* Approximate each quasipolynomial by a polynomial. If "sign" is positive, |
| 5115 | * the polynomial will be an overapproximation. If "sign" is negative, |
| 5116 | * it will be an underapproximation. If "sign" is zero, the approximation |
| 5117 | * will lie somewhere in between. |
| 5118 | * |
| 5119 | * In particular, is sign == 0, we simply drop the floors, turning |
| 5120 | * the integer divisions into rational divisions. |
| 5121 | * Otherwise, we split the domains into orthants, make all integer divisions |
| 5122 | * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m, |
| 5123 | * depending on the requested sign and the sign of the term in which |
| 5124 | * the integer division appears. |
| 5125 | */ |
| 5126 | __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial( |
| 5127 | __isl_take isl_pw_qpolynomial *pwqp, int sign) |
| 5128 | { |
| 5129 | int i; |
| 5130 | struct isl_to_poly_data data; |
| 5131 | |
| 5132 | if (sign == 0) |
| 5133 | return pwqp_drop_floors(pwqp); |
| 5134 | |
| 5135 | if (!pwqp) |
| 5136 | return NULL; |
| 5137 | |
| 5138 | data.sign = sign; |
| 5139 | data.res = isl_pw_qpolynomial_zero(space: isl_pw_qpolynomial_get_space(pw: pwqp)); |
| 5140 | |
| 5141 | for (i = 0; i < pwqp->n; ++i) { |
| 5142 | if (pwqp->p[i].qp->div->n_row == 0) { |
| 5143 | isl_pw_qpolynomial *t; |
| 5144 | t = isl_pw_qpolynomial_alloc( |
| 5145 | set: isl_set_copy(set: pwqp->p[i].set), |
| 5146 | el: isl_qpolynomial_copy(qp: pwqp->p[i].qp)); |
| 5147 | data.res = isl_pw_qpolynomial_add_disjoint(pw1: data.res, pw2: t); |
| 5148 | continue; |
| 5149 | } |
| 5150 | data.qp = pwqp->p[i].qp; |
| 5151 | if (isl_set_foreach_orthant(set: pwqp->p[i].set, |
| 5152 | fn: &to_polynomial_on_orthant, user: &data) < 0) |
| 5153 | goto error; |
| 5154 | } |
| 5155 | |
| 5156 | isl_pw_qpolynomial_free(pw: pwqp); |
| 5157 | |
| 5158 | return data.res; |
| 5159 | error: |
| 5160 | isl_pw_qpolynomial_free(pw: pwqp); |
| 5161 | isl_pw_qpolynomial_free(pw: data.res); |
| 5162 | return NULL; |
| 5163 | } |
| 5164 | |
| 5165 | static __isl_give isl_pw_qpolynomial *poly_entry( |
| 5166 | __isl_take isl_pw_qpolynomial *pwqp, void *user) |
| 5167 | { |
| 5168 | int *sign = user; |
| 5169 | |
| 5170 | return isl_pw_qpolynomial_to_polynomial(pwqp, sign: *sign); |
| 5171 | } |
| 5172 | |
| 5173 | __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial( |
| 5174 | __isl_take isl_union_pw_qpolynomial *upwqp, int sign) |
| 5175 | { |
| 5176 | return isl_union_pw_qpolynomial_transform_inplace(u: upwqp, |
| 5177 | fn: &poly_entry, user: &sign); |
| 5178 | } |
| 5179 | |
| 5180 | __isl_give isl_basic_map *isl_basic_map_from_qpolynomial( |
| 5181 | __isl_take isl_qpolynomial *qp) |
| 5182 | { |
| 5183 | int i, k; |
| 5184 | isl_space *space; |
| 5185 | isl_vec *aff = NULL; |
| 5186 | isl_basic_map *bmap = NULL; |
| 5187 | isl_bool is_affine; |
| 5188 | unsigned pos; |
| 5189 | unsigned n_div; |
| 5190 | |
| 5191 | if (!qp) |
| 5192 | return NULL; |
| 5193 | is_affine = isl_poly_is_affine(poly: qp->poly); |
| 5194 | if (is_affine < 0) |
| 5195 | goto error; |
| 5196 | if (!is_affine) |
| 5197 | isl_die(qp->dim->ctx, isl_error_invalid, |
| 5198 | "input quasi-polynomial not affine" , goto error); |
| 5199 | aff = isl_qpolynomial_extract_affine(qp); |
| 5200 | if (!aff) |
| 5201 | goto error; |
| 5202 | space = isl_qpolynomial_get_space(qp); |
| 5203 | pos = 1 + isl_space_offset(space, type: isl_dim_out); |
| 5204 | n_div = qp->div->n_row; |
| 5205 | bmap = isl_basic_map_alloc_space(space, extra: n_div, n_eq: 1, n_ineq: 2 * n_div); |
| 5206 | |
| 5207 | for (i = 0; i < n_div; ++i) { |
| 5208 | k = isl_basic_map_alloc_div(bmap); |
| 5209 | if (k < 0) |
| 5210 | goto error; |
| 5211 | isl_seq_cpy(dst: bmap->div[k], src: qp->div->row[i], len: qp->div->n_col); |
| 5212 | isl_int_set_si(bmap->div[k][qp->div->n_col], 0); |
| 5213 | bmap = isl_basic_map_add_div_constraints(bmap, div: k); |
| 5214 | } |
| 5215 | k = isl_basic_map_alloc_equality(bmap); |
| 5216 | if (k < 0) |
| 5217 | goto error; |
| 5218 | isl_int_neg(bmap->eq[k][pos], aff->el[0]); |
| 5219 | isl_seq_cpy(dst: bmap->eq[k], src: aff->el + 1, len: pos); |
| 5220 | isl_seq_cpy(dst: bmap->eq[k] + pos + 1, src: aff->el + 1 + pos, len: n_div); |
| 5221 | |
| 5222 | isl_vec_free(vec: aff); |
| 5223 | isl_qpolynomial_free(qp); |
| 5224 | bmap = isl_basic_map_finalize(bmap); |
| 5225 | return bmap; |
| 5226 | error: |
| 5227 | isl_vec_free(vec: aff); |
| 5228 | isl_qpolynomial_free(qp); |
| 5229 | isl_basic_map_free(bmap); |
| 5230 | return NULL; |
| 5231 | } |
| 5232 | |