| 1 | #include <isl_ctx_private.h> |
| 2 | #include <isl/val.h> |
| 3 | #include <isl_constraint_private.h> |
| 4 | #include <isl/set.h> |
| 5 | #include <isl_polynomial_private.h> |
| 6 | #include <isl_morph.h> |
| 7 | #include <isl_range.h> |
| 8 | |
| 9 | struct range_data { |
| 10 | struct isl_bound *bound; |
| 11 | int *signs; |
| 12 | int sign; |
| 13 | int test_monotonicity; |
| 14 | int monotonicity; |
| 15 | int tight; |
| 16 | isl_qpolynomial *poly; |
| 17 | isl_pw_qpolynomial_fold *pwf; |
| 18 | isl_pw_qpolynomial_fold *pwf_tight; |
| 19 | }; |
| 20 | |
| 21 | static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset, |
| 22 | __isl_take isl_qpolynomial *poly, struct range_data *data); |
| 23 | |
| 24 | /* Check whether the polynomial "poly" has sign "sign" over "bset", |
| 25 | * i.e., if sign == 1, check that the lower bound on the polynomial |
| 26 | * is non-negative and if sign == -1, check that the upper bound on |
| 27 | * the polynomial is non-positive. |
| 28 | */ |
| 29 | static isl_bool has_sign(__isl_keep isl_basic_set *bset, |
| 30 | __isl_keep isl_qpolynomial *poly, int sign, int *signs) |
| 31 | { |
| 32 | struct range_data data_m; |
| 33 | isl_size nparam; |
| 34 | isl_space *space; |
| 35 | isl_val *opt; |
| 36 | isl_bool r; |
| 37 | enum isl_fold type; |
| 38 | |
| 39 | nparam = isl_basic_set_dim(bset, type: isl_dim_param); |
| 40 | if (nparam < 0) |
| 41 | return isl_bool_error; |
| 42 | |
| 43 | bset = isl_basic_set_copy(bset); |
| 44 | poly = isl_qpolynomial_copy(qp: poly); |
| 45 | |
| 46 | bset = isl_basic_set_move_dims(bset, dst_type: isl_dim_set, dst_pos: 0, |
| 47 | src_type: isl_dim_param, src_pos: 0, n: nparam); |
| 48 | poly = isl_qpolynomial_move_dims(qp: poly, dst_type: isl_dim_in, dst_pos: 0, |
| 49 | src_type: isl_dim_param, src_pos: 0, n: nparam); |
| 50 | |
| 51 | space = isl_qpolynomial_get_space(qp: poly); |
| 52 | space = isl_space_params(space); |
| 53 | space = isl_space_from_domain(space); |
| 54 | space = isl_space_add_dims(space, type: isl_dim_out, n: 1); |
| 55 | |
| 56 | data_m.test_monotonicity = 0; |
| 57 | data_m.signs = signs; |
| 58 | data_m.sign = -sign; |
| 59 | type = data_m.sign < 0 ? isl_fold_min : isl_fold_max; |
| 60 | data_m.pwf = isl_pw_qpolynomial_fold_zero(space, type); |
| 61 | data_m.tight = 0; |
| 62 | data_m.pwf_tight = NULL; |
| 63 | |
| 64 | if (propagate_on_domain(bset, poly, data: &data_m) < 0) |
| 65 | goto error; |
| 66 | |
| 67 | if (sign > 0) |
| 68 | opt = isl_pw_qpolynomial_fold_min(pwf: data_m.pwf); |
| 69 | else |
| 70 | opt = isl_pw_qpolynomial_fold_max(pwf: data_m.pwf); |
| 71 | |
| 72 | if (!opt) |
| 73 | r = isl_bool_error; |
| 74 | else if (isl_val_is_nan(v: opt) || |
| 75 | isl_val_is_infty(v: opt) || |
| 76 | isl_val_is_neginfty(v: opt)) |
| 77 | r = isl_bool_false; |
| 78 | else |
| 79 | r = isl_bool_ok(b: sign * isl_val_sgn(v: opt) >= 0); |
| 80 | |
| 81 | isl_val_free(v: opt); |
| 82 | |
| 83 | return r; |
| 84 | error: |
| 85 | isl_pw_qpolynomial_fold_free(pwf: data_m.pwf); |
| 86 | return isl_bool_error; |
| 87 | } |
| 88 | |
| 89 | /* Return 1 if poly is monotonically increasing in the last set variable, |
| 90 | * -1 if poly is monotonically decreasing in the last set variable, |
| 91 | * 0 if no conclusion, |
| 92 | * -2 on error. |
| 93 | * |
| 94 | * We simply check the sign of p(x+1)-p(x) |
| 95 | */ |
| 96 | static int monotonicity(__isl_keep isl_basic_set *bset, |
| 97 | __isl_keep isl_qpolynomial *poly, struct range_data *data) |
| 98 | { |
| 99 | isl_ctx *ctx; |
| 100 | isl_space *space; |
| 101 | isl_qpolynomial *sub = NULL; |
| 102 | isl_qpolynomial *diff = NULL; |
| 103 | int result = 0; |
| 104 | isl_bool s; |
| 105 | isl_size nvar; |
| 106 | |
| 107 | nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
| 108 | if (nvar < 0) |
| 109 | return -2; |
| 110 | |
| 111 | ctx = isl_qpolynomial_get_ctx(qp: poly); |
| 112 | space = isl_qpolynomial_get_domain_space(qp: poly); |
| 113 | |
| 114 | sub = isl_qpolynomial_var_on_domain(domain: isl_space_copy(space), |
| 115 | type: isl_dim_set, pos: nvar - 1); |
| 116 | sub = isl_qpolynomial_add(qp1: sub, |
| 117 | qp2: isl_qpolynomial_rat_cst_on_domain(domain: space, n: ctx->one, d: ctx->one)); |
| 118 | |
| 119 | diff = isl_qpolynomial_substitute(qp: isl_qpolynomial_copy(qp: poly), |
| 120 | type: isl_dim_in, first: nvar - 1, n: 1, subs: &sub); |
| 121 | diff = isl_qpolynomial_sub(qp1: diff, qp2: isl_qpolynomial_copy(qp: poly)); |
| 122 | |
| 123 | s = has_sign(bset, poly: diff, sign: 1, signs: data->signs); |
| 124 | if (s < 0) |
| 125 | goto error; |
| 126 | if (s) |
| 127 | result = 1; |
| 128 | else { |
| 129 | s = has_sign(bset, poly: diff, sign: -1, signs: data->signs); |
| 130 | if (s < 0) |
| 131 | goto error; |
| 132 | if (s) |
| 133 | result = -1; |
| 134 | } |
| 135 | |
| 136 | isl_qpolynomial_free(qp: diff); |
| 137 | isl_qpolynomial_free(qp: sub); |
| 138 | |
| 139 | return result; |
| 140 | error: |
| 141 | isl_qpolynomial_free(qp: diff); |
| 142 | isl_qpolynomial_free(qp: sub); |
| 143 | return -2; |
| 144 | } |
| 145 | |
| 146 | /* Return a positive ("sign" > 0) or negative ("sign" < 0) infinite polynomial |
| 147 | * with domain space "space". |
| 148 | */ |
| 149 | static __isl_give isl_qpolynomial *signed_infty(__isl_take isl_space *space, |
| 150 | int sign) |
| 151 | { |
| 152 | if (sign > 0) |
| 153 | return isl_qpolynomial_infty_on_domain(domain: space); |
| 154 | else |
| 155 | return isl_qpolynomial_neginfty_on_domain(domain: space); |
| 156 | } |
| 157 | |
| 158 | static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound, |
| 159 | __isl_take isl_space *space, unsigned pos, int sign) |
| 160 | { |
| 161 | if (!bound) |
| 162 | return signed_infty(space, sign); |
| 163 | isl_space_free(space); |
| 164 | return isl_qpolynomial_from_constraint(c: bound, type: isl_dim_set, pos); |
| 165 | } |
| 166 | |
| 167 | static int bound_is_integer(__isl_keep isl_constraint *bound, unsigned pos) |
| 168 | { |
| 169 | isl_int c; |
| 170 | int is_int; |
| 171 | |
| 172 | if (!bound) |
| 173 | return 1; |
| 174 | |
| 175 | isl_int_init(c); |
| 176 | isl_constraint_get_coefficient(constraint: bound, type: isl_dim_set, pos, v: &c); |
| 177 | is_int = isl_int_is_one(c) || isl_int_is_negone(c); |
| 178 | isl_int_clear(c); |
| 179 | |
| 180 | return is_int; |
| 181 | } |
| 182 | |
| 183 | struct isl_fixed_sign_data { |
| 184 | int *signs; |
| 185 | int sign; |
| 186 | isl_qpolynomial *poly; |
| 187 | }; |
| 188 | |
| 189 | /* Add term "term" to data->poly if it has sign data->sign. |
| 190 | * The sign is determined based on the signs of the parameters |
| 191 | * and variables in data->signs. The integer divisions, if |
| 192 | * any, are assumed to be non-negative. |
| 193 | */ |
| 194 | static isl_stat collect_fixed_sign_terms(__isl_take isl_term *term, void *user) |
| 195 | { |
| 196 | struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user; |
| 197 | isl_int n; |
| 198 | int i; |
| 199 | int sign; |
| 200 | isl_size nparam; |
| 201 | isl_size nvar; |
| 202 | isl_size exp; |
| 203 | |
| 204 | nparam = isl_term_dim(term, type: isl_dim_param); |
| 205 | nvar = isl_term_dim(term, type: isl_dim_set); |
| 206 | if (nparam < 0 || nvar < 0) |
| 207 | return isl_stat_error; |
| 208 | |
| 209 | isl_int_init(n); |
| 210 | isl_term_get_num(term, n: &n); |
| 211 | sign = isl_int_sgn(n); |
| 212 | isl_int_clear(n); |
| 213 | |
| 214 | for (i = 0; i < nparam; ++i) { |
| 215 | if (data->signs[i] > 0) |
| 216 | continue; |
| 217 | exp = isl_term_get_exp(term, type: isl_dim_param, pos: i); |
| 218 | if (exp < 0) |
| 219 | return isl_stat_error; |
| 220 | if (exp % 2) |
| 221 | sign = -sign; |
| 222 | } |
| 223 | for (i = 0; i < nvar; ++i) { |
| 224 | if (data->signs[nparam + i] > 0) |
| 225 | continue; |
| 226 | exp = isl_term_get_exp(term, type: isl_dim_set, pos: i); |
| 227 | if (exp < 0) |
| 228 | return isl_stat_error; |
| 229 | if (exp % 2) |
| 230 | sign = -sign; |
| 231 | } |
| 232 | |
| 233 | if (sign == data->sign) { |
| 234 | isl_qpolynomial *t = isl_qpolynomial_from_term(term); |
| 235 | |
| 236 | data->poly = isl_qpolynomial_add(qp1: data->poly, qp2: t); |
| 237 | } else |
| 238 | isl_term_free(term); |
| 239 | |
| 240 | return isl_stat_ok; |
| 241 | } |
| 242 | |
| 243 | /* Construct and return a polynomial that consists of the terms |
| 244 | * in "poly" that have sign "sign". The integer divisions, if |
| 245 | * any, are assumed to be non-negative. |
| 246 | */ |
| 247 | __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign( |
| 248 | __isl_keep isl_qpolynomial *poly, int *signs, int sign) |
| 249 | { |
| 250 | isl_space *space; |
| 251 | struct isl_fixed_sign_data data = { signs, sign }; |
| 252 | |
| 253 | space = isl_qpolynomial_get_domain_space(qp: poly); |
| 254 | data.poly = isl_qpolynomial_zero_on_domain(domain: space); |
| 255 | |
| 256 | if (isl_qpolynomial_foreach_term(qp: poly, fn: collect_fixed_sign_terms, user: &data) < 0) |
| 257 | goto error; |
| 258 | |
| 259 | return data.poly; |
| 260 | error: |
| 261 | isl_qpolynomial_free(qp: data.poly); |
| 262 | return NULL; |
| 263 | } |
| 264 | |
| 265 | /* Helper function to add a guarded polynomial to either pwf_tight or pwf, |
| 266 | * depending on whether the result has been determined to be tight. |
| 267 | */ |
| 268 | static isl_stat add_guarded_poly(__isl_take isl_basic_set *bset, |
| 269 | __isl_take isl_qpolynomial *poly, struct range_data *data) |
| 270 | { |
| 271 | enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max; |
| 272 | isl_set *set; |
| 273 | isl_qpolynomial_fold *fold; |
| 274 | isl_pw_qpolynomial_fold *pwf; |
| 275 | |
| 276 | bset = isl_basic_set_params(bset); |
| 277 | poly = isl_qpolynomial_project_domain_on_params(qp: poly); |
| 278 | |
| 279 | fold = isl_qpolynomial_fold_alloc(type, qp: poly); |
| 280 | set = isl_set_from_basic_set(bset); |
| 281 | pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold); |
| 282 | if (data->tight) |
| 283 | data->pwf_tight = isl_pw_qpolynomial_fold_fold( |
| 284 | pwf1: data->pwf_tight, pwf2: pwf); |
| 285 | else |
| 286 | data->pwf = isl_pw_qpolynomial_fold_fold(pwf1: data->pwf, pwf2: pwf); |
| 287 | |
| 288 | return isl_stat_ok; |
| 289 | } |
| 290 | |
| 291 | /* Plug in "sub" for the variable at position "pos" in "poly". |
| 292 | * |
| 293 | * If "sub" is an infinite polynomial and if the variable actually |
| 294 | * appears in "poly", then calling isl_qpolynomial_substitute |
| 295 | * to perform the substitution may result in a NaN result. |
| 296 | * In such cases, return positive or negative infinity instead, |
| 297 | * depending on whether an upper bound or a lower bound is being computed, |
| 298 | * and mark the result as not being tight. |
| 299 | */ |
| 300 | static __isl_give isl_qpolynomial *plug_in_at_pos( |
| 301 | __isl_take isl_qpolynomial *poly, int pos, |
| 302 | __isl_take isl_qpolynomial *sub, struct range_data *data) |
| 303 | { |
| 304 | isl_bool involves, infty; |
| 305 | |
| 306 | involves = isl_qpolynomial_involves_dims(qp: poly, type: isl_dim_in, first: pos, n: 1); |
| 307 | if (involves < 0) |
| 308 | goto error; |
| 309 | if (!involves) { |
| 310 | isl_qpolynomial_free(qp: sub); |
| 311 | return poly; |
| 312 | } |
| 313 | |
| 314 | infty = isl_qpolynomial_is_infty(qp: sub); |
| 315 | if (infty >= 0 && !infty) |
| 316 | infty = isl_qpolynomial_is_neginfty(qp: sub); |
| 317 | if (infty < 0) |
| 318 | goto error; |
| 319 | if (infty) { |
| 320 | isl_space *space = isl_qpolynomial_get_domain_space(qp: poly); |
| 321 | data->tight = 0; |
| 322 | isl_qpolynomial_free(qp: poly); |
| 323 | isl_qpolynomial_free(qp: sub); |
| 324 | return signed_infty(space, sign: data->sign); |
| 325 | } |
| 326 | |
| 327 | poly = isl_qpolynomial_substitute(qp: poly, type: isl_dim_in, first: pos, n: 1, subs: &sub); |
| 328 | isl_qpolynomial_free(qp: sub); |
| 329 | |
| 330 | return poly; |
| 331 | error: |
| 332 | isl_qpolynomial_free(qp: poly); |
| 333 | isl_qpolynomial_free(qp: sub); |
| 334 | return NULL; |
| 335 | } |
| 336 | |
| 337 | /* Given a lower and upper bound on the final variable and constraints |
| 338 | * on the remaining variables where these bounds are active, |
| 339 | * eliminate the variable from data->poly based on these bounds. |
| 340 | * If the polynomial has been determined to be monotonic |
| 341 | * in the variable, then simply plug in the appropriate bound. |
| 342 | * If the current polynomial is tight and if this bound is integer, |
| 343 | * then the result is still tight. In all other cases, the results |
| 344 | * may not be tight. |
| 345 | * Otherwise, plug in the largest bound (in absolute value) in |
| 346 | * the positive terms (if an upper bound is wanted) or the negative terms |
| 347 | * (if a lower bounded is wanted) and the other bound in the other terms. |
| 348 | * |
| 349 | * If all variables have been eliminated, then record the result. |
| 350 | * Ohterwise, recurse on the next variable. |
| 351 | */ |
| 352 | static isl_stat propagate_on_bound_pair(__isl_take isl_constraint *lower, |
| 353 | __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, |
| 354 | void *user) |
| 355 | { |
| 356 | struct range_data *data = (struct range_data *)user; |
| 357 | int save_tight = data->tight; |
| 358 | isl_qpolynomial *poly; |
| 359 | isl_stat r; |
| 360 | isl_size nvar, nparam; |
| 361 | |
| 362 | nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
| 363 | nparam = isl_basic_set_dim(bset, type: isl_dim_param); |
| 364 | if (nvar < 0 || nparam < 0) |
| 365 | goto error; |
| 366 | |
| 367 | if (data->monotonicity) { |
| 368 | isl_qpolynomial *sub; |
| 369 | isl_space *space = isl_qpolynomial_get_domain_space(qp: data->poly); |
| 370 | if (data->monotonicity * data->sign > 0) { |
| 371 | if (data->tight) |
| 372 | data->tight = bound_is_integer(bound: upper, pos: nvar); |
| 373 | sub = bound2poly(bound: upper, space, pos: nvar, sign: 1); |
| 374 | isl_constraint_free(c: lower); |
| 375 | } else { |
| 376 | if (data->tight) |
| 377 | data->tight = bound_is_integer(bound: lower, pos: nvar); |
| 378 | sub = bound2poly(bound: lower, space, pos: nvar, sign: -1); |
| 379 | isl_constraint_free(c: upper); |
| 380 | } |
| 381 | poly = isl_qpolynomial_copy(qp: data->poly); |
| 382 | poly = plug_in_at_pos(poly, pos: nvar, sub, data); |
| 383 | poly = isl_qpolynomial_drop_dims(qp: poly, type: isl_dim_in, first: nvar, n: 1); |
| 384 | } else { |
| 385 | isl_qpolynomial *l, *u; |
| 386 | isl_qpolynomial *pos, *neg; |
| 387 | isl_space *space = isl_qpolynomial_get_domain_space(qp: data->poly); |
| 388 | int sign = data->sign * data->signs[nparam + nvar]; |
| 389 | |
| 390 | data->tight = 0; |
| 391 | |
| 392 | u = bound2poly(bound: upper, space: isl_space_copy(space), pos: nvar, sign: 1); |
| 393 | l = bound2poly(bound: lower, space, pos: nvar, sign: -1); |
| 394 | |
| 395 | pos = isl_qpolynomial_terms_of_sign(poly: data->poly, signs: data->signs, sign); |
| 396 | neg = isl_qpolynomial_terms_of_sign(poly: data->poly, signs: data->signs, sign: -sign); |
| 397 | |
| 398 | pos = plug_in_at_pos(poly: pos, pos: nvar, sub: u, data); |
| 399 | neg = plug_in_at_pos(poly: neg, pos: nvar, sub: l, data); |
| 400 | |
| 401 | poly = isl_qpolynomial_add(qp1: pos, qp2: neg); |
| 402 | poly = isl_qpolynomial_drop_dims(qp: poly, type: isl_dim_in, first: nvar, n: 1); |
| 403 | } |
| 404 | |
| 405 | if (nvar == 0) |
| 406 | r = add_guarded_poly(bset, poly, data); |
| 407 | else |
| 408 | r = propagate_on_domain(bset, poly, data); |
| 409 | |
| 410 | data->tight = save_tight; |
| 411 | |
| 412 | return r; |
| 413 | error: |
| 414 | isl_constraint_free(c: lower); |
| 415 | isl_constraint_free(c: upper); |
| 416 | isl_basic_set_free(bset); |
| 417 | return isl_stat_error; |
| 418 | } |
| 419 | |
| 420 | /* Recursively perform range propagation on the polynomial "poly" |
| 421 | * defined over the basic set "bset" and collect the results in "data". |
| 422 | */ |
| 423 | static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset, |
| 424 | __isl_take isl_qpolynomial *poly, struct range_data *data) |
| 425 | { |
| 426 | isl_bool is_cst; |
| 427 | isl_ctx *ctx; |
| 428 | isl_qpolynomial *save_poly = data->poly; |
| 429 | int save_monotonicity = data->monotonicity; |
| 430 | isl_size d; |
| 431 | |
| 432 | d = isl_basic_set_dim(bset, type: isl_dim_set); |
| 433 | is_cst = isl_qpolynomial_is_cst(qp: poly, NULL, NULL); |
| 434 | if (d < 0 || is_cst < 0) |
| 435 | goto error; |
| 436 | |
| 437 | ctx = isl_basic_set_get_ctx(bset); |
| 438 | isl_assert(ctx, d >= 1, goto error); |
| 439 | |
| 440 | if (is_cst) { |
| 441 | bset = isl_basic_set_project_out(bset, type: isl_dim_set, first: 0, n: d); |
| 442 | poly = isl_qpolynomial_drop_dims(qp: poly, type: isl_dim_in, first: 0, n: d); |
| 443 | return add_guarded_poly(bset, poly, data); |
| 444 | } |
| 445 | |
| 446 | if (data->test_monotonicity) |
| 447 | data->monotonicity = monotonicity(bset, poly, data); |
| 448 | else |
| 449 | data->monotonicity = 0; |
| 450 | if (data->monotonicity < -1) |
| 451 | goto error; |
| 452 | |
| 453 | data->poly = poly; |
| 454 | if (isl_basic_set_foreach_bound_pair(bset, type: isl_dim_set, pos: d - 1, |
| 455 | fn: &propagate_on_bound_pair, user: data) < 0) |
| 456 | goto error; |
| 457 | |
| 458 | isl_basic_set_free(bset); |
| 459 | isl_qpolynomial_free(qp: poly); |
| 460 | data->monotonicity = save_monotonicity; |
| 461 | data->poly = save_poly; |
| 462 | |
| 463 | return isl_stat_ok; |
| 464 | error: |
| 465 | isl_basic_set_free(bset); |
| 466 | isl_qpolynomial_free(qp: poly); |
| 467 | data->monotonicity = save_monotonicity; |
| 468 | data->poly = save_poly; |
| 469 | return isl_stat_error; |
| 470 | } |
| 471 | |
| 472 | static isl_stat basic_guarded_poly_bound(__isl_take isl_basic_set *bset, |
| 473 | void *user) |
| 474 | { |
| 475 | struct range_data *data = (struct range_data *)user; |
| 476 | isl_ctx *ctx; |
| 477 | isl_size nparam = isl_basic_set_dim(bset, type: isl_dim_param); |
| 478 | isl_size dim = isl_basic_set_dim(bset, type: isl_dim_set); |
| 479 | isl_size total = isl_basic_set_dim(bset, type: isl_dim_all); |
| 480 | isl_stat r; |
| 481 | |
| 482 | data->signs = NULL; |
| 483 | |
| 484 | if (nparam < 0 || dim < 0 || total < 0) |
| 485 | goto error; |
| 486 | |
| 487 | ctx = isl_basic_set_get_ctx(bset); |
| 488 | data->signs = isl_alloc_array(ctx, int, total); |
| 489 | |
| 490 | if (isl_basic_set_dims_get_sign(bset, type: isl_dim_set, pos: 0, n: dim, |
| 491 | signs: data->signs + nparam) < 0) |
| 492 | goto error; |
| 493 | if (isl_basic_set_dims_get_sign(bset, type: isl_dim_param, pos: 0, n: nparam, |
| 494 | signs: data->signs) < 0) |
| 495 | goto error; |
| 496 | |
| 497 | r = propagate_on_domain(bset, poly: isl_qpolynomial_copy(qp: data->poly), data); |
| 498 | |
| 499 | free(ptr: data->signs); |
| 500 | |
| 501 | return r; |
| 502 | error: |
| 503 | free(ptr: data->signs); |
| 504 | isl_basic_set_free(bset); |
| 505 | return isl_stat_error; |
| 506 | } |
| 507 | |
| 508 | static isl_stat qpolynomial_bound_on_domain_range( |
| 509 | __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, |
| 510 | struct range_data *data) |
| 511 | { |
| 512 | isl_size nparam = isl_basic_set_dim(bset, type: isl_dim_param); |
| 513 | isl_size nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
| 514 | isl_set *set = NULL; |
| 515 | |
| 516 | if (nparam < 0 || nvar < 0) |
| 517 | goto error; |
| 518 | |
| 519 | if (nvar == 0) |
| 520 | return add_guarded_poly(bset, poly, data); |
| 521 | |
| 522 | set = isl_set_from_basic_set(bset); |
| 523 | set = isl_set_split_dims(set, type: isl_dim_param, first: 0, n: nparam); |
| 524 | set = isl_set_split_dims(set, type: isl_dim_set, first: 0, n: nvar); |
| 525 | |
| 526 | data->poly = poly; |
| 527 | |
| 528 | data->test_monotonicity = 1; |
| 529 | if (isl_set_foreach_basic_set(set, fn: &basic_guarded_poly_bound, user: data) < 0) |
| 530 | goto error; |
| 531 | |
| 532 | isl_set_free(set); |
| 533 | isl_qpolynomial_free(qp: poly); |
| 534 | |
| 535 | return isl_stat_ok; |
| 536 | error: |
| 537 | isl_set_free(set); |
| 538 | isl_qpolynomial_free(qp: poly); |
| 539 | return isl_stat_error; |
| 540 | } |
| 541 | |
| 542 | isl_stat isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, |
| 543 | __isl_take isl_qpolynomial *poly, struct isl_bound *bound) |
| 544 | { |
| 545 | struct range_data data; |
| 546 | isl_stat r; |
| 547 | |
| 548 | data.pwf = bound->pwf; |
| 549 | data.pwf_tight = bound->pwf_tight; |
| 550 | data.tight = bound->check_tight; |
| 551 | if (bound->type == isl_fold_min) |
| 552 | data.sign = -1; |
| 553 | else |
| 554 | data.sign = 1; |
| 555 | |
| 556 | r = qpolynomial_bound_on_domain_range(bset, poly, data: &data); |
| 557 | |
| 558 | bound->pwf = data.pwf; |
| 559 | bound->pwf_tight = data.pwf_tight; |
| 560 | |
| 561 | return r; |
| 562 | } |
| 563 | |