1 | #include <isl_ctx_private.h> |
2 | #include <isl/val.h> |
3 | #include <isl_constraint_private.h> |
4 | #include <isl/set.h> |
5 | #include <isl_polynomial_private.h> |
6 | #include <isl_morph.h> |
7 | #include <isl_range.h> |
8 | |
9 | struct range_data { |
10 | struct isl_bound *bound; |
11 | int *signs; |
12 | int sign; |
13 | int test_monotonicity; |
14 | int monotonicity; |
15 | int tight; |
16 | isl_qpolynomial *poly; |
17 | isl_pw_qpolynomial_fold *pwf; |
18 | isl_pw_qpolynomial_fold *pwf_tight; |
19 | }; |
20 | |
21 | static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset, |
22 | __isl_take isl_qpolynomial *poly, struct range_data *data); |
23 | |
24 | /* Check whether the polynomial "poly" has sign "sign" over "bset", |
25 | * i.e., if sign == 1, check that the lower bound on the polynomial |
26 | * is non-negative and if sign == -1, check that the upper bound on |
27 | * the polynomial is non-positive. |
28 | */ |
29 | static isl_bool has_sign(__isl_keep isl_basic_set *bset, |
30 | __isl_keep isl_qpolynomial *poly, int sign, int *signs) |
31 | { |
32 | struct range_data data_m; |
33 | isl_size nparam; |
34 | isl_space *space; |
35 | isl_val *opt; |
36 | isl_bool r; |
37 | enum isl_fold type; |
38 | |
39 | nparam = isl_basic_set_dim(bset, type: isl_dim_param); |
40 | if (nparam < 0) |
41 | return isl_bool_error; |
42 | |
43 | bset = isl_basic_set_copy(bset); |
44 | poly = isl_qpolynomial_copy(qp: poly); |
45 | |
46 | bset = isl_basic_set_move_dims(bset, dst_type: isl_dim_set, dst_pos: 0, |
47 | src_type: isl_dim_param, src_pos: 0, n: nparam); |
48 | poly = isl_qpolynomial_move_dims(qp: poly, dst_type: isl_dim_in, dst_pos: 0, |
49 | src_type: isl_dim_param, src_pos: 0, n: nparam); |
50 | |
51 | space = isl_qpolynomial_get_space(qp: poly); |
52 | space = isl_space_params(space); |
53 | space = isl_space_from_domain(space); |
54 | space = isl_space_add_dims(space, type: isl_dim_out, n: 1); |
55 | |
56 | data_m.test_monotonicity = 0; |
57 | data_m.signs = signs; |
58 | data_m.sign = -sign; |
59 | type = data_m.sign < 0 ? isl_fold_min : isl_fold_max; |
60 | data_m.pwf = isl_pw_qpolynomial_fold_zero(space, type); |
61 | data_m.tight = 0; |
62 | data_m.pwf_tight = NULL; |
63 | |
64 | if (propagate_on_domain(bset, poly, data: &data_m) < 0) |
65 | goto error; |
66 | |
67 | if (sign > 0) |
68 | opt = isl_pw_qpolynomial_fold_min(pwf: data_m.pwf); |
69 | else |
70 | opt = isl_pw_qpolynomial_fold_max(pwf: data_m.pwf); |
71 | |
72 | if (!opt) |
73 | r = isl_bool_error; |
74 | else if (isl_val_is_nan(v: opt) || |
75 | isl_val_is_infty(v: opt) || |
76 | isl_val_is_neginfty(v: opt)) |
77 | r = isl_bool_false; |
78 | else |
79 | r = isl_bool_ok(b: sign * isl_val_sgn(v: opt) >= 0); |
80 | |
81 | isl_val_free(v: opt); |
82 | |
83 | return r; |
84 | error: |
85 | isl_pw_qpolynomial_fold_free(pwf: data_m.pwf); |
86 | return isl_bool_error; |
87 | } |
88 | |
89 | /* Return 1 if poly is monotonically increasing in the last set variable, |
90 | * -1 if poly is monotonically decreasing in the last set variable, |
91 | * 0 if no conclusion, |
92 | * -2 on error. |
93 | * |
94 | * We simply check the sign of p(x+1)-p(x) |
95 | */ |
96 | static int monotonicity(__isl_keep isl_basic_set *bset, |
97 | __isl_keep isl_qpolynomial *poly, struct range_data *data) |
98 | { |
99 | isl_ctx *ctx; |
100 | isl_space *space; |
101 | isl_qpolynomial *sub = NULL; |
102 | isl_qpolynomial *diff = NULL; |
103 | int result = 0; |
104 | isl_bool s; |
105 | isl_size nvar; |
106 | |
107 | nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
108 | if (nvar < 0) |
109 | return -2; |
110 | |
111 | ctx = isl_qpolynomial_get_ctx(qp: poly); |
112 | space = isl_qpolynomial_get_domain_space(qp: poly); |
113 | |
114 | sub = isl_qpolynomial_var_on_domain(domain: isl_space_copy(space), |
115 | type: isl_dim_set, pos: nvar - 1); |
116 | sub = isl_qpolynomial_add(qp1: sub, |
117 | qp2: isl_qpolynomial_rat_cst_on_domain(domain: space, n: ctx->one, d: ctx->one)); |
118 | |
119 | diff = isl_qpolynomial_substitute(qp: isl_qpolynomial_copy(qp: poly), |
120 | type: isl_dim_in, first: nvar - 1, n: 1, subs: &sub); |
121 | diff = isl_qpolynomial_sub(qp1: diff, qp2: isl_qpolynomial_copy(qp: poly)); |
122 | |
123 | s = has_sign(bset, poly: diff, sign: 1, signs: data->signs); |
124 | if (s < 0) |
125 | goto error; |
126 | if (s) |
127 | result = 1; |
128 | else { |
129 | s = has_sign(bset, poly: diff, sign: -1, signs: data->signs); |
130 | if (s < 0) |
131 | goto error; |
132 | if (s) |
133 | result = -1; |
134 | } |
135 | |
136 | isl_qpolynomial_free(qp: diff); |
137 | isl_qpolynomial_free(qp: sub); |
138 | |
139 | return result; |
140 | error: |
141 | isl_qpolynomial_free(qp: diff); |
142 | isl_qpolynomial_free(qp: sub); |
143 | return -2; |
144 | } |
145 | |
146 | /* Return a positive ("sign" > 0) or negative ("sign" < 0) infinite polynomial |
147 | * with domain space "space". |
148 | */ |
149 | static __isl_give isl_qpolynomial *signed_infty(__isl_take isl_space *space, |
150 | int sign) |
151 | { |
152 | if (sign > 0) |
153 | return isl_qpolynomial_infty_on_domain(domain: space); |
154 | else |
155 | return isl_qpolynomial_neginfty_on_domain(domain: space); |
156 | } |
157 | |
158 | static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound, |
159 | __isl_take isl_space *space, unsigned pos, int sign) |
160 | { |
161 | if (!bound) |
162 | return signed_infty(space, sign); |
163 | isl_space_free(space); |
164 | return isl_qpolynomial_from_constraint(c: bound, type: isl_dim_set, pos); |
165 | } |
166 | |
167 | static int bound_is_integer(__isl_keep isl_constraint *bound, unsigned pos) |
168 | { |
169 | isl_int c; |
170 | int is_int; |
171 | |
172 | if (!bound) |
173 | return 1; |
174 | |
175 | isl_int_init(c); |
176 | isl_constraint_get_coefficient(constraint: bound, type: isl_dim_set, pos, v: &c); |
177 | is_int = isl_int_is_one(c) || isl_int_is_negone(c); |
178 | isl_int_clear(c); |
179 | |
180 | return is_int; |
181 | } |
182 | |
183 | struct isl_fixed_sign_data { |
184 | int *signs; |
185 | int sign; |
186 | isl_qpolynomial *poly; |
187 | }; |
188 | |
189 | /* Add term "term" to data->poly if it has sign data->sign. |
190 | * The sign is determined based on the signs of the parameters |
191 | * and variables in data->signs. The integer divisions, if |
192 | * any, are assumed to be non-negative. |
193 | */ |
194 | static isl_stat collect_fixed_sign_terms(__isl_take isl_term *term, void *user) |
195 | { |
196 | struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user; |
197 | isl_int n; |
198 | int i; |
199 | int sign; |
200 | isl_size nparam; |
201 | isl_size nvar; |
202 | isl_size exp; |
203 | |
204 | nparam = isl_term_dim(term, type: isl_dim_param); |
205 | nvar = isl_term_dim(term, type: isl_dim_set); |
206 | if (nparam < 0 || nvar < 0) |
207 | return isl_stat_error; |
208 | |
209 | isl_int_init(n); |
210 | isl_term_get_num(term, n: &n); |
211 | sign = isl_int_sgn(n); |
212 | isl_int_clear(n); |
213 | |
214 | for (i = 0; i < nparam; ++i) { |
215 | if (data->signs[i] > 0) |
216 | continue; |
217 | exp = isl_term_get_exp(term, type: isl_dim_param, pos: i); |
218 | if (exp < 0) |
219 | return isl_stat_error; |
220 | if (exp % 2) |
221 | sign = -sign; |
222 | } |
223 | for (i = 0; i < nvar; ++i) { |
224 | if (data->signs[nparam + i] > 0) |
225 | continue; |
226 | exp = isl_term_get_exp(term, type: isl_dim_set, pos: i); |
227 | if (exp < 0) |
228 | return isl_stat_error; |
229 | if (exp % 2) |
230 | sign = -sign; |
231 | } |
232 | |
233 | if (sign == data->sign) { |
234 | isl_qpolynomial *t = isl_qpolynomial_from_term(term); |
235 | |
236 | data->poly = isl_qpolynomial_add(qp1: data->poly, qp2: t); |
237 | } else |
238 | isl_term_free(term); |
239 | |
240 | return isl_stat_ok; |
241 | } |
242 | |
243 | /* Construct and return a polynomial that consists of the terms |
244 | * in "poly" that have sign "sign". The integer divisions, if |
245 | * any, are assumed to be non-negative. |
246 | */ |
247 | __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign( |
248 | __isl_keep isl_qpolynomial *poly, int *signs, int sign) |
249 | { |
250 | isl_space *space; |
251 | struct isl_fixed_sign_data data = { signs, sign }; |
252 | |
253 | space = isl_qpolynomial_get_domain_space(qp: poly); |
254 | data.poly = isl_qpolynomial_zero_on_domain(domain: space); |
255 | |
256 | if (isl_qpolynomial_foreach_term(qp: poly, fn: collect_fixed_sign_terms, user: &data) < 0) |
257 | goto error; |
258 | |
259 | return data.poly; |
260 | error: |
261 | isl_qpolynomial_free(qp: data.poly); |
262 | return NULL; |
263 | } |
264 | |
265 | /* Helper function to add a guarded polynomial to either pwf_tight or pwf, |
266 | * depending on whether the result has been determined to be tight. |
267 | */ |
268 | static isl_stat add_guarded_poly(__isl_take isl_basic_set *bset, |
269 | __isl_take isl_qpolynomial *poly, struct range_data *data) |
270 | { |
271 | enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max; |
272 | isl_set *set; |
273 | isl_qpolynomial_fold *fold; |
274 | isl_pw_qpolynomial_fold *pwf; |
275 | |
276 | bset = isl_basic_set_params(bset); |
277 | poly = isl_qpolynomial_project_domain_on_params(qp: poly); |
278 | |
279 | fold = isl_qpolynomial_fold_alloc(type, qp: poly); |
280 | set = isl_set_from_basic_set(bset); |
281 | pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold); |
282 | if (data->tight) |
283 | data->pwf_tight = isl_pw_qpolynomial_fold_fold( |
284 | pwf1: data->pwf_tight, pwf2: pwf); |
285 | else |
286 | data->pwf = isl_pw_qpolynomial_fold_fold(pwf1: data->pwf, pwf2: pwf); |
287 | |
288 | return isl_stat_ok; |
289 | } |
290 | |
291 | /* Plug in "sub" for the variable at position "pos" in "poly". |
292 | * |
293 | * If "sub" is an infinite polynomial and if the variable actually |
294 | * appears in "poly", then calling isl_qpolynomial_substitute |
295 | * to perform the substitution may result in a NaN result. |
296 | * In such cases, return positive or negative infinity instead, |
297 | * depending on whether an upper bound or a lower bound is being computed, |
298 | * and mark the result as not being tight. |
299 | */ |
300 | static __isl_give isl_qpolynomial *plug_in_at_pos( |
301 | __isl_take isl_qpolynomial *poly, int pos, |
302 | __isl_take isl_qpolynomial *sub, struct range_data *data) |
303 | { |
304 | isl_bool involves, infty; |
305 | |
306 | involves = isl_qpolynomial_involves_dims(qp: poly, type: isl_dim_in, first: pos, n: 1); |
307 | if (involves < 0) |
308 | goto error; |
309 | if (!involves) { |
310 | isl_qpolynomial_free(qp: sub); |
311 | return poly; |
312 | } |
313 | |
314 | infty = isl_qpolynomial_is_infty(qp: sub); |
315 | if (infty >= 0 && !infty) |
316 | infty = isl_qpolynomial_is_neginfty(qp: sub); |
317 | if (infty < 0) |
318 | goto error; |
319 | if (infty) { |
320 | isl_space *space = isl_qpolynomial_get_domain_space(qp: poly); |
321 | data->tight = 0; |
322 | isl_qpolynomial_free(qp: poly); |
323 | isl_qpolynomial_free(qp: sub); |
324 | return signed_infty(space, sign: data->sign); |
325 | } |
326 | |
327 | poly = isl_qpolynomial_substitute(qp: poly, type: isl_dim_in, first: pos, n: 1, subs: &sub); |
328 | isl_qpolynomial_free(qp: sub); |
329 | |
330 | return poly; |
331 | error: |
332 | isl_qpolynomial_free(qp: poly); |
333 | isl_qpolynomial_free(qp: sub); |
334 | return NULL; |
335 | } |
336 | |
337 | /* Given a lower and upper bound on the final variable and constraints |
338 | * on the remaining variables where these bounds are active, |
339 | * eliminate the variable from data->poly based on these bounds. |
340 | * If the polynomial has been determined to be monotonic |
341 | * in the variable, then simply plug in the appropriate bound. |
342 | * If the current polynomial is tight and if this bound is integer, |
343 | * then the result is still tight. In all other cases, the results |
344 | * may not be tight. |
345 | * Otherwise, plug in the largest bound (in absolute value) in |
346 | * the positive terms (if an upper bound is wanted) or the negative terms |
347 | * (if a lower bounded is wanted) and the other bound in the other terms. |
348 | * |
349 | * If all variables have been eliminated, then record the result. |
350 | * Ohterwise, recurse on the next variable. |
351 | */ |
352 | static isl_stat propagate_on_bound_pair(__isl_take isl_constraint *lower, |
353 | __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, |
354 | void *user) |
355 | { |
356 | struct range_data *data = (struct range_data *)user; |
357 | int save_tight = data->tight; |
358 | isl_qpolynomial *poly; |
359 | isl_stat r; |
360 | isl_size nvar, nparam; |
361 | |
362 | nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
363 | nparam = isl_basic_set_dim(bset, type: isl_dim_param); |
364 | if (nvar < 0 || nparam < 0) |
365 | goto error; |
366 | |
367 | if (data->monotonicity) { |
368 | isl_qpolynomial *sub; |
369 | isl_space *space = isl_qpolynomial_get_domain_space(qp: data->poly); |
370 | if (data->monotonicity * data->sign > 0) { |
371 | if (data->tight) |
372 | data->tight = bound_is_integer(bound: upper, pos: nvar); |
373 | sub = bound2poly(bound: upper, space, pos: nvar, sign: 1); |
374 | isl_constraint_free(c: lower); |
375 | } else { |
376 | if (data->tight) |
377 | data->tight = bound_is_integer(bound: lower, pos: nvar); |
378 | sub = bound2poly(bound: lower, space, pos: nvar, sign: -1); |
379 | isl_constraint_free(c: upper); |
380 | } |
381 | poly = isl_qpolynomial_copy(qp: data->poly); |
382 | poly = plug_in_at_pos(poly, pos: nvar, sub, data); |
383 | poly = isl_qpolynomial_drop_dims(qp: poly, type: isl_dim_in, first: nvar, n: 1); |
384 | } else { |
385 | isl_qpolynomial *l, *u; |
386 | isl_qpolynomial *pos, *neg; |
387 | isl_space *space = isl_qpolynomial_get_domain_space(qp: data->poly); |
388 | int sign = data->sign * data->signs[nparam + nvar]; |
389 | |
390 | data->tight = 0; |
391 | |
392 | u = bound2poly(bound: upper, space: isl_space_copy(space), pos: nvar, sign: 1); |
393 | l = bound2poly(bound: lower, space, pos: nvar, sign: -1); |
394 | |
395 | pos = isl_qpolynomial_terms_of_sign(poly: data->poly, signs: data->signs, sign); |
396 | neg = isl_qpolynomial_terms_of_sign(poly: data->poly, signs: data->signs, sign: -sign); |
397 | |
398 | pos = plug_in_at_pos(poly: pos, pos: nvar, sub: u, data); |
399 | neg = plug_in_at_pos(poly: neg, pos: nvar, sub: l, data); |
400 | |
401 | poly = isl_qpolynomial_add(qp1: pos, qp2: neg); |
402 | poly = isl_qpolynomial_drop_dims(qp: poly, type: isl_dim_in, first: nvar, n: 1); |
403 | } |
404 | |
405 | if (nvar == 0) |
406 | r = add_guarded_poly(bset, poly, data); |
407 | else |
408 | r = propagate_on_domain(bset, poly, data); |
409 | |
410 | data->tight = save_tight; |
411 | |
412 | return r; |
413 | error: |
414 | isl_constraint_free(c: lower); |
415 | isl_constraint_free(c: upper); |
416 | isl_basic_set_free(bset); |
417 | return isl_stat_error; |
418 | } |
419 | |
420 | /* Recursively perform range propagation on the polynomial "poly" |
421 | * defined over the basic set "bset" and collect the results in "data". |
422 | */ |
423 | static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset, |
424 | __isl_take isl_qpolynomial *poly, struct range_data *data) |
425 | { |
426 | isl_bool is_cst; |
427 | isl_ctx *ctx; |
428 | isl_qpolynomial *save_poly = data->poly; |
429 | int save_monotonicity = data->monotonicity; |
430 | isl_size d; |
431 | |
432 | d = isl_basic_set_dim(bset, type: isl_dim_set); |
433 | is_cst = isl_qpolynomial_is_cst(qp: poly, NULL, NULL); |
434 | if (d < 0 || is_cst < 0) |
435 | goto error; |
436 | |
437 | ctx = isl_basic_set_get_ctx(bset); |
438 | isl_assert(ctx, d >= 1, goto error); |
439 | |
440 | if (is_cst) { |
441 | bset = isl_basic_set_project_out(bset, type: isl_dim_set, first: 0, n: d); |
442 | poly = isl_qpolynomial_drop_dims(qp: poly, type: isl_dim_in, first: 0, n: d); |
443 | return add_guarded_poly(bset, poly, data); |
444 | } |
445 | |
446 | if (data->test_monotonicity) |
447 | data->monotonicity = monotonicity(bset, poly, data); |
448 | else |
449 | data->monotonicity = 0; |
450 | if (data->monotonicity < -1) |
451 | goto error; |
452 | |
453 | data->poly = poly; |
454 | if (isl_basic_set_foreach_bound_pair(bset, type: isl_dim_set, pos: d - 1, |
455 | fn: &propagate_on_bound_pair, user: data) < 0) |
456 | goto error; |
457 | |
458 | isl_basic_set_free(bset); |
459 | isl_qpolynomial_free(qp: poly); |
460 | data->monotonicity = save_monotonicity; |
461 | data->poly = save_poly; |
462 | |
463 | return isl_stat_ok; |
464 | error: |
465 | isl_basic_set_free(bset); |
466 | isl_qpolynomial_free(qp: poly); |
467 | data->monotonicity = save_monotonicity; |
468 | data->poly = save_poly; |
469 | return isl_stat_error; |
470 | } |
471 | |
472 | static isl_stat basic_guarded_poly_bound(__isl_take isl_basic_set *bset, |
473 | void *user) |
474 | { |
475 | struct range_data *data = (struct range_data *)user; |
476 | isl_ctx *ctx; |
477 | isl_size nparam = isl_basic_set_dim(bset, type: isl_dim_param); |
478 | isl_size dim = isl_basic_set_dim(bset, type: isl_dim_set); |
479 | isl_size total = isl_basic_set_dim(bset, type: isl_dim_all); |
480 | isl_stat r; |
481 | |
482 | data->signs = NULL; |
483 | |
484 | if (nparam < 0 || dim < 0 || total < 0) |
485 | goto error; |
486 | |
487 | ctx = isl_basic_set_get_ctx(bset); |
488 | data->signs = isl_alloc_array(ctx, int, total); |
489 | |
490 | if (isl_basic_set_dims_get_sign(bset, type: isl_dim_set, pos: 0, n: dim, |
491 | signs: data->signs + nparam) < 0) |
492 | goto error; |
493 | if (isl_basic_set_dims_get_sign(bset, type: isl_dim_param, pos: 0, n: nparam, |
494 | signs: data->signs) < 0) |
495 | goto error; |
496 | |
497 | r = propagate_on_domain(bset, poly: isl_qpolynomial_copy(qp: data->poly), data); |
498 | |
499 | free(ptr: data->signs); |
500 | |
501 | return r; |
502 | error: |
503 | free(ptr: data->signs); |
504 | isl_basic_set_free(bset); |
505 | return isl_stat_error; |
506 | } |
507 | |
508 | static isl_stat qpolynomial_bound_on_domain_range( |
509 | __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, |
510 | struct range_data *data) |
511 | { |
512 | isl_size nparam = isl_basic_set_dim(bset, type: isl_dim_param); |
513 | isl_size nvar = isl_basic_set_dim(bset, type: isl_dim_set); |
514 | isl_set *set = NULL; |
515 | |
516 | if (nparam < 0 || nvar < 0) |
517 | goto error; |
518 | |
519 | if (nvar == 0) |
520 | return add_guarded_poly(bset, poly, data); |
521 | |
522 | set = isl_set_from_basic_set(bset); |
523 | set = isl_set_split_dims(set, type: isl_dim_param, first: 0, n: nparam); |
524 | set = isl_set_split_dims(set, type: isl_dim_set, first: 0, n: nvar); |
525 | |
526 | data->poly = poly; |
527 | |
528 | data->test_monotonicity = 1; |
529 | if (isl_set_foreach_basic_set(set, fn: &basic_guarded_poly_bound, user: data) < 0) |
530 | goto error; |
531 | |
532 | isl_set_free(set); |
533 | isl_qpolynomial_free(qp: poly); |
534 | |
535 | return isl_stat_ok; |
536 | error: |
537 | isl_set_free(set); |
538 | isl_qpolynomial_free(qp: poly); |
539 | return isl_stat_error; |
540 | } |
541 | |
542 | isl_stat isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, |
543 | __isl_take isl_qpolynomial *poly, struct isl_bound *bound) |
544 | { |
545 | struct range_data data; |
546 | isl_stat r; |
547 | |
548 | data.pwf = bound->pwf; |
549 | data.pwf_tight = bound->pwf_tight; |
550 | data.tight = bound->check_tight; |
551 | if (bound->type == isl_fold_min) |
552 | data.sign = -1; |
553 | else |
554 | data.sign = 1; |
555 | |
556 | r = qpolynomial_bound_on_domain_range(bset, poly, data: &data); |
557 | |
558 | bound->pwf = data.pwf; |
559 | bound->pwf_tight = data.pwf_tight; |
560 | |
561 | return r; |
562 | } |
563 | |