1 | /* |
2 | * Copyright 2021 Sven Verdoolaege |
3 | * |
4 | * Use of this software is governed by the MIT license |
5 | * |
6 | * Written by Sven Verdoolaege |
7 | */ |
8 | |
9 | #include <stdio.h> |
10 | |
11 | #include <isl/ctx.h> |
12 | #include <isl/schedule_node.h> |
13 | #include <isl/union_set.h> |
14 | |
15 | #include "isl_hash_private.h" |
16 | #include "isl_scheduler_scc.h" |
17 | #include "isl_sort.h" |
18 | |
19 | /* Internal data structure for ordering the SCCs of "graph", |
20 | * where each SCC i consists of the single cluster determined |
21 | * by c->scc_cluster[i]. The nodes in this cluster all have |
22 | * their "scc" field set to i. |
23 | * |
24 | * "graph" is the original schedule graph. |
25 | * "c" contains the clustering information. |
26 | * |
27 | * "n" is the number of SCCs in the isl_scc_graph, which may be |
28 | * a subset of those in "graph". |
29 | * "graph_scc" maps the local index of an SCC in this isl_scc_graph |
30 | * to the corresponding index in "graph", i.e, the index of c->scc_cluster. |
31 | * The entries of "graph_scc" are kept in topological order. |
32 | * |
33 | * "component" contains the component to which an SCC belongs, |
34 | * where the component is represented by the index of the first SCC |
35 | * in the component. |
36 | * The index of this first SCC is always smaller than or equal |
37 | * to the index of the SCC itself. |
38 | * This field is initialized by isl_scc_graph_init_component and |
39 | * used by detect_components. |
40 | * During construction, "component" may also contain the index |
41 | * of some other SCC in the component, but then it is necessarily |
42 | * smaller than the index of the current SCC and the first SCC |
43 | * can be reached by recursively looking up "component". |
44 | * "size" contains the number of elements in the components |
45 | * indexed by a component sequence number. |
46 | * |
47 | * "pos" is used locally inside isl_scc_graph_sort_components |
48 | * to store the position of the next SCC within a component. |
49 | * It is also used inside isl_scc_graph_sub to map |
50 | * the position in the original graph to the position in the subgraph. |
51 | * |
52 | * "sorted" contains the (possibly) reordered local indices, |
53 | * sorted per component. Within each component, the original |
54 | * topological order is preserved. |
55 | * |
56 | * "edge_table" contains "n" edge tables, one for each SCC |
57 | * in this isl_scc_graph. Each table contains the local indices |
58 | * of the SCCs that depend on this SCC. These local indices |
59 | * are encoded as pointers to the corresponding entry in "graph_scc". |
60 | * The value stored at that location is the global SCC index. |
61 | * "reverse_edge_table" contains the inverse edges. |
62 | */ |
63 | struct isl_scc_graph { |
64 | isl_ctx *ctx; |
65 | struct isl_sched_graph *graph; |
66 | struct isl_clustering *c; |
67 | |
68 | int n; |
69 | int *graph_scc; |
70 | int *component; |
71 | int *size; |
72 | int *pos; |
73 | int *sorted; |
74 | struct isl_hash_table **edge_table; |
75 | struct isl_hash_table **reverse_edge_table; |
76 | }; |
77 | |
78 | /* The source SCC of a collection of edges. |
79 | * |
80 | * "scc_graph" is the SCC graph containing the edges. |
81 | * "src" is the local index of the source SCC. |
82 | */ |
83 | struct isl_edge_src { |
84 | struct isl_scc_graph *scc_graph; |
85 | int src; |
86 | }; |
87 | |
88 | /* isl_hash_table_foreach callback for printing an edge |
89 | * between "src" and the node identified by "entry". |
90 | * The edge is printed in terms of the global SCC indices. |
91 | */ |
92 | static isl_stat print_edge(void **entry, void *user) |
93 | { |
94 | int *dst = *entry; |
95 | int *src = user; |
96 | |
97 | fprintf(stderr, format: "%d -> %d; " , *src, *dst); |
98 | |
99 | return isl_stat_ok; |
100 | } |
101 | |
102 | /* Print some debugging information about "scc_graph". |
103 | * |
104 | * In particular, print the nodes and the edges (both forward and backward). |
105 | */ |
106 | void isl_scc_graph_dump(struct isl_scc_graph *scc_graph) |
107 | { |
108 | int i; |
109 | isl_ctx *ctx; |
110 | |
111 | if (!scc_graph) |
112 | return; |
113 | |
114 | ctx = scc_graph->ctx; |
115 | for (i = 0; i < scc_graph->n; ++i) { |
116 | if (i) |
117 | fprintf(stderr, format: ", " ); |
118 | fprintf(stderr, format: "%d" , scc_graph->graph_scc[i]); |
119 | } |
120 | fprintf(stderr, format: "\n" ); |
121 | for (i = 0; i < scc_graph->n; ++i) { |
122 | isl_hash_table_foreach(ctx, table: scc_graph->edge_table[i], |
123 | fn: &print_edge, user: &scc_graph->graph_scc[i]); |
124 | } |
125 | fprintf(stderr, format: "\n" ); |
126 | for (i = 0; i < scc_graph->n; ++i) { |
127 | isl_hash_table_foreach(ctx, table: scc_graph->reverse_edge_table[i], |
128 | fn: &print_edge, user: &scc_graph->graph_scc[i]); |
129 | } |
130 | fprintf(stderr, format: "\n" ); |
131 | } |
132 | |
133 | /* Free all memory allocated for "scc_graph" and return NULL. |
134 | */ |
135 | struct isl_scc_graph *isl_scc_graph_free(struct isl_scc_graph *scc_graph) |
136 | { |
137 | int i; |
138 | isl_ctx *ctx; |
139 | |
140 | if (!scc_graph) |
141 | return NULL; |
142 | |
143 | ctx = scc_graph->ctx; |
144 | if (scc_graph->edge_table) { |
145 | for (i = 0; i < scc_graph->n; ++i) |
146 | isl_hash_table_free(ctx, table: scc_graph->edge_table[i]); |
147 | } |
148 | if (scc_graph->reverse_edge_table) { |
149 | for (i = 0; i < scc_graph->n; ++i) |
150 | isl_hash_table_free(ctx, |
151 | table: scc_graph->reverse_edge_table[i]); |
152 | } |
153 | |
154 | free(ptr: scc_graph->graph_scc); |
155 | free(ptr: scc_graph->component); |
156 | free(ptr: scc_graph->size); |
157 | free(ptr: scc_graph->pos); |
158 | free(ptr: scc_graph->sorted); |
159 | free(ptr: scc_graph->edge_table); |
160 | free(ptr: scc_graph->reverse_edge_table); |
161 | isl_ctx_deref(ctx: scc_graph->ctx); |
162 | free(ptr: scc_graph); |
163 | return NULL; |
164 | } |
165 | |
166 | /* Return an encoding of the local SCC index "pos" in "scc_graph" |
167 | * as a pointer. |
168 | * In particular, return a pointer to the corresponding entry |
169 | * in scc_graph->graph_scc. |
170 | */ |
171 | static void *isl_scc_graph_encode_local_index(struct isl_scc_graph *scc_graph, |
172 | int pos) |
173 | { |
174 | return &scc_graph->graph_scc[pos]; |
175 | } |
176 | |
177 | /* Return the local SCC index in "scc_graph" corresponding |
178 | * to the "data" encoding in the edge table. |
179 | */ |
180 | static int isl_scc_graph_local_index(struct isl_scc_graph *scc_graph, int *data) |
181 | { |
182 | return data - &scc_graph->graph_scc[0]; |
183 | } |
184 | |
185 | /* isl_hash_table_find callback to check whether the given entry |
186 | * refers to an SCC encoded as "val". |
187 | */ |
188 | static isl_bool is_scc_node(const void *entry, const void *val) |
189 | { |
190 | return entry == val; |
191 | } |
192 | |
193 | /* Return the edge from local SCC index "src" to local SCC index "dst" |
194 | * in "edge_table" of "scc_graph", creating one if "reserve" is set. |
195 | * If "reserve" is not set, then return isl_hash_table_entry_none |
196 | * if there is no such edge. |
197 | * |
198 | * The destination of the edge is encoded as a pointer |
199 | * to the corresponding entry in scc_graph->graph_scc. |
200 | */ |
201 | struct isl_hash_table_entry *isl_scc_graph_find_edge( |
202 | struct isl_scc_graph *scc_graph, struct isl_hash_table **edge_table, |
203 | int src, int dst, int reserve) |
204 | { |
205 | isl_ctx *ctx; |
206 | uint32_t hash; |
207 | void *val; |
208 | |
209 | ctx = scc_graph->ctx; |
210 | hash = isl_hash_builtin(isl_hash_init(), dst); |
211 | val = isl_scc_graph_encode_local_index(scc_graph, pos: dst); |
212 | return isl_hash_table_find(ctx, table: edge_table[src], key_hash: hash, |
213 | eq: &is_scc_node, val, reserve); |
214 | } |
215 | |
216 | /* Remove the edge between the SCCs with local indices "src" and |
217 | * "dst" in "scc_graph", if it exits. |
218 | * Return isl_bool_true if this is the case. |
219 | * |
220 | * The edge is only removed from scc_graph->edge_table. |
221 | * scc_graph->reverse_edge_table is assumed to be empty |
222 | * when this function is called. |
223 | */ |
224 | static isl_bool isl_scc_graph_remove_edge(struct isl_scc_graph *scc_graph, |
225 | int src, int dst) |
226 | { |
227 | isl_ctx *ctx; |
228 | struct isl_hash_table_entry *edge_entry; |
229 | |
230 | edge_entry = isl_scc_graph_find_edge(scc_graph, edge_table: scc_graph->edge_table, |
231 | src, dst, reserve: 0); |
232 | if (edge_entry == isl_hash_table_entry_none) |
233 | return isl_bool_false; |
234 | if (!edge_entry) |
235 | return isl_bool_error; |
236 | |
237 | ctx = scc_graph->ctx; |
238 | isl_hash_table_remove(ctx, table: scc_graph->edge_table[src], entry: edge_entry); |
239 | |
240 | return isl_bool_true; |
241 | } |
242 | |
243 | /* Internal data structure used by next_nodes. |
244 | * |
245 | * "scc_graph" is the SCC graph. |
246 | * "next" collects the next nodes. |
247 | * "n" is the number of next nodes already collected. |
248 | */ |
249 | struct { |
250 | struct isl_scc_graph *; |
251 | int *; |
252 | int ; |
253 | }; |
254 | |
255 | /* Given an entry in the edge table, add the corresponding |
256 | * target local SCC index to data->next. |
257 | */ |
258 | static isl_stat (void **entry, void *user) |
259 | { |
260 | int *dst = *entry; |
261 | struct isl_extract_dst_data *data = user; |
262 | |
263 | data->next[data->n++] = isl_scc_graph_local_index(scc_graph: data->scc_graph, data: dst); |
264 | |
265 | return isl_stat_ok; |
266 | } |
267 | |
268 | /* isl_sort callback for sorting integers in increasing order. |
269 | */ |
270 | static int cmp_int(const void *a, const void *b, void *data) |
271 | { |
272 | const int *i1 = a; |
273 | const int *i2 = b; |
274 | |
275 | return *i1 - *i2; |
276 | } |
277 | |
278 | /* Return the local indices of the SCCs in "scc_graph" |
279 | * for which there is an edge from the SCC with local index "i". |
280 | * The indices are returned in increasing order, |
281 | * i.e., in the original topological order. |
282 | */ |
283 | static int *next_nodes(struct isl_scc_graph *scc_graph, int i) |
284 | { |
285 | struct isl_extract_dst_data data; |
286 | int n_next; |
287 | int *next; |
288 | |
289 | n_next = scc_graph->edge_table[i]->n; |
290 | next = isl_alloc_array(scc_graph->ctx, int, n_next); |
291 | if (!next) |
292 | return NULL; |
293 | data.scc_graph = scc_graph; |
294 | data.next = next; |
295 | data.n = 0; |
296 | if (isl_hash_table_foreach(ctx: scc_graph->ctx, table: scc_graph->edge_table[i], |
297 | fn: &extract_dst, user: &data) < 0) |
298 | goto error; |
299 | if (isl_sort(pbase: next, total_elems: n_next, size: sizeof(int), cmp: &cmp_int, NULL) < 0) |
300 | goto error; |
301 | return next; |
302 | error: |
303 | free(ptr: next); |
304 | return NULL; |
305 | } |
306 | |
307 | /* Internal data structure for foreach_reachable. |
308 | * |
309 | * "scc_graph" is the SCC graph being visited. |
310 | * "fn" is the function that needs to be called on each reachable node. |
311 | * "user" is the user argument to "fn". |
312 | */ |
313 | struct isl_foreach_reachable_data { |
314 | struct isl_scc_graph *scc_graph; |
315 | isl_bool (*fn)(int pos, void *user); |
316 | void *user; |
317 | }; |
318 | |
319 | static isl_stat foreach_reachable(struct isl_foreach_reachable_data *data, |
320 | int pos); |
321 | |
322 | /* isl_hash_table_foreach callback for calling data->fn on each SCC |
323 | * reachable from the SCC encoded in "entry", |
324 | * continuing from an SCC as long as data->fn returns isl_bool_true. |
325 | */ |
326 | static isl_stat recurse_foreach_reachable(void **entry, void *user) |
327 | { |
328 | struct isl_foreach_reachable_data *data = user; |
329 | int pos; |
330 | isl_bool more; |
331 | |
332 | pos = isl_scc_graph_local_index(scc_graph: data->scc_graph, data: *entry); |
333 | more = data->fn(pos, data->user); |
334 | if (more < 0) |
335 | return isl_stat_error; |
336 | if (!more) |
337 | return isl_stat_ok; |
338 | |
339 | return foreach_reachable(data, pos); |
340 | } |
341 | |
342 | /* Call data->fn on each SCC reachable from the SCC with local index "pos", |
343 | * continuing from an SCC as long as data->fn returns isl_bool_true. |
344 | * |
345 | * Handle chains directly and recurse when an SCC has more than one |
346 | * outgoing edge. |
347 | */ |
348 | static isl_stat foreach_reachable(struct isl_foreach_reachable_data *data, |
349 | int pos) |
350 | { |
351 | isl_ctx *ctx; |
352 | struct isl_hash_table **edge_table = data->scc_graph->edge_table; |
353 | |
354 | while (edge_table[pos]->n == 1) { |
355 | struct isl_hash_table_entry *entry; |
356 | isl_bool more; |
357 | |
358 | entry = isl_hash_table_first(table: edge_table[pos]); |
359 | pos = isl_scc_graph_local_index(scc_graph: data->scc_graph, data: entry->data); |
360 | more = data->fn(pos, data->user); |
361 | if (more < 0) |
362 | return isl_stat_error; |
363 | if (!more) |
364 | return isl_stat_ok; |
365 | } |
366 | |
367 | if (edge_table[pos]->n == 0) |
368 | return isl_stat_ok; |
369 | |
370 | ctx = data->scc_graph->ctx; |
371 | return isl_hash_table_foreach(ctx, table: edge_table[pos], |
372 | fn: &recurse_foreach_reachable, user: data); |
373 | } |
374 | |
375 | /* If there is an edge from data->src to "pos", then remove it. |
376 | * Return isl_bool_true if descendants of "pos" still need to be considered. |
377 | * |
378 | * Descendants only need to be considered if no edge is removed. |
379 | */ |
380 | static isl_bool elim_or_next(int pos, void *user) |
381 | { |
382 | struct isl_edge_src *data = user; |
383 | struct isl_scc_graph *scc_graph = data->scc_graph; |
384 | isl_bool removed; |
385 | |
386 | removed = isl_scc_graph_remove_edge(scc_graph, src: data->src, dst: pos); |
387 | return isl_bool_not(b: removed); |
388 | } |
389 | |
390 | /* Remove transitive edges from "scc_graph". |
391 | * |
392 | * Consider the SCC nodes "i" in reverse topological order. |
393 | * If there is more than one edge emanating from a node, |
394 | * then eliminate the edges to those nodes that can also be reached |
395 | * through an edge to a node with a smaller index. |
396 | * In particular, consider all but the last next nodes "next[j]" |
397 | * in reverse topological order. If any node "k" can be reached |
398 | * from such a node for which there is also an edge from "i" |
399 | * then this edge can be removed because this node can also |
400 | * be reached from "i" through the edge to "next[j]". |
401 | * If such an edge is removed, then any further descendant of "k" |
402 | * does not need to be considered since these were already considered |
403 | * for a previous "next[j]" equal to "k", or "k" is the last next node, |
404 | * in which case there is no further node with an edge from "i". |
405 | */ |
406 | static struct isl_scc_graph *isl_scc_graph_reduce( |
407 | struct isl_scc_graph *scc_graph) |
408 | { |
409 | struct isl_edge_src elim_data; |
410 | struct isl_foreach_reachable_data data = { |
411 | .scc_graph = scc_graph, |
412 | .fn = &elim_or_next, |
413 | .user = &elim_data, |
414 | }; |
415 | int i, j; |
416 | |
417 | elim_data.scc_graph = scc_graph; |
418 | for (i = scc_graph->n - 3; i >= 0; --i) { |
419 | int *next; |
420 | int n_next; |
421 | |
422 | n_next = scc_graph->edge_table[i]->n; |
423 | if (n_next <= 1) |
424 | continue; |
425 | next = next_nodes(scc_graph, i); |
426 | if (!next) |
427 | return isl_scc_graph_free(scc_graph); |
428 | |
429 | elim_data.src = i; |
430 | for (j = n_next - 2; j >= 0; --j) |
431 | if (foreach_reachable(data: &data, pos: next[j]) < 0) |
432 | break; |
433 | free(ptr: next); |
434 | if (j >= 0) |
435 | return isl_scc_graph_free(scc_graph); |
436 | } |
437 | |
438 | return scc_graph; |
439 | } |
440 | |
441 | /* Add an edge to "edge_table" between the SCCs with local indices "src" and |
442 | * "dst" in "scc_graph". |
443 | * |
444 | * If the edge already appeared in the table, then it is simply overwritten |
445 | * with the same information. |
446 | */ |
447 | static isl_stat isl_scc_graph_add_edge(struct isl_scc_graph *scc_graph, |
448 | struct isl_hash_table **edge_table, int src, int dst) |
449 | { |
450 | struct isl_hash_table_entry *edge_entry; |
451 | |
452 | edge_entry = |
453 | isl_scc_graph_find_edge(scc_graph, edge_table, src, dst, reserve: 1); |
454 | if (!edge_entry) |
455 | return isl_stat_error; |
456 | edge_entry->data = &scc_graph->graph_scc[dst]; |
457 | |
458 | return isl_stat_ok; |
459 | } |
460 | |
461 | /* Add an edge from "dst" to data->src |
462 | * to data->scc_graph->reverse_edge_table. |
463 | */ |
464 | static isl_stat add_reverse(void **entry, void *user) |
465 | { |
466 | struct isl_edge_src *data = user; |
467 | int dst; |
468 | |
469 | dst = isl_scc_graph_local_index(scc_graph: data->scc_graph, data: *entry); |
470 | return isl_scc_graph_add_edge(scc_graph: data->scc_graph, |
471 | edge_table: data->scc_graph->reverse_edge_table, src: dst, dst: data->src); |
472 | } |
473 | |
474 | /* Add an (inverse) edge to scc_graph->reverse_edge_table |
475 | * for each edge in scc_graph->edge_table. |
476 | */ |
477 | static struct isl_scc_graph *isl_scc_graph_add_reverse_edges( |
478 | struct isl_scc_graph *scc_graph) |
479 | { |
480 | struct isl_edge_src data; |
481 | isl_ctx *ctx; |
482 | |
483 | if (!scc_graph) |
484 | return NULL; |
485 | |
486 | ctx = scc_graph->ctx; |
487 | data.scc_graph = scc_graph; |
488 | for (data.src = 0; data.src < scc_graph->n; ++data.src) { |
489 | if (isl_hash_table_foreach(ctx, table: scc_graph->edge_table[data.src], |
490 | fn: &add_reverse, user: &data) < 0) |
491 | return isl_scc_graph_free(scc_graph); |
492 | } |
493 | return scc_graph; |
494 | } |
495 | |
496 | /* Given an edge in the schedule graph, add an edge between |
497 | * the corresponding SCCs in "scc_graph", if they are distinct. |
498 | * |
499 | * This function is used to create edges in the original isl_scc_graph. |
500 | * where the local SCC indices are equal to the corresponding global |
501 | * indices. |
502 | */ |
503 | static isl_stat add_scc_edge(void **entry, void *user) |
504 | { |
505 | struct isl_sched_edge *edge = *entry; |
506 | struct isl_scc_graph *scc_graph = user; |
507 | int src = edge->src->scc; |
508 | int dst = edge->dst->scc; |
509 | |
510 | if (src == dst) |
511 | return isl_stat_ok; |
512 | |
513 | return isl_scc_graph_add_edge(scc_graph, edge_table: scc_graph->edge_table, |
514 | src, dst); |
515 | } |
516 | |
517 | /* Allocate an isl_scc_graph for ordering "n" SCCs of "graph" |
518 | * with clustering information in "c". |
519 | * |
520 | * The caller still needs to fill in the edges. |
521 | */ |
522 | static struct isl_scc_graph *isl_scc_graph_alloc(isl_ctx *ctx, int n, |
523 | struct isl_sched_graph *graph, struct isl_clustering *c) |
524 | { |
525 | int i; |
526 | struct isl_scc_graph *scc_graph; |
527 | |
528 | scc_graph = isl_alloc_type(ctx, struct isl_scc_graph); |
529 | if (!scc_graph) |
530 | return NULL; |
531 | |
532 | scc_graph->ctx = ctx; |
533 | isl_ctx_ref(ctx); |
534 | scc_graph->graph = graph; |
535 | scc_graph->c = c; |
536 | |
537 | scc_graph->n = n; |
538 | scc_graph->graph_scc = isl_alloc_array(ctx, int, n); |
539 | scc_graph->component = isl_alloc_array(ctx, int, n); |
540 | scc_graph->size = isl_alloc_array(ctx, int, n); |
541 | scc_graph->pos = isl_alloc_array(ctx, int, n); |
542 | scc_graph->sorted = isl_alloc_array(ctx, int, n); |
543 | scc_graph->edge_table = |
544 | isl_calloc_array(ctx, struct isl_hash_table *, n); |
545 | scc_graph->reverse_edge_table = |
546 | isl_calloc_array(ctx, struct isl_hash_table *, n); |
547 | if (!scc_graph->graph_scc || !scc_graph->component || |
548 | !scc_graph->size || !scc_graph->pos || !scc_graph->sorted || |
549 | !scc_graph->edge_table || !scc_graph->reverse_edge_table) |
550 | return isl_scc_graph_free(scc_graph); |
551 | |
552 | for (i = 0; i < n; ++i) { |
553 | scc_graph->edge_table[i] = isl_hash_table_alloc(ctx, min_size: 2); |
554 | scc_graph->reverse_edge_table[i] = isl_hash_table_alloc(ctx, min_size: 2); |
555 | if (!scc_graph->edge_table[i] || |
556 | !scc_graph->reverse_edge_table[i]) |
557 | return isl_scc_graph_free(scc_graph); |
558 | } |
559 | |
560 | return scc_graph; |
561 | } |
562 | |
563 | /* Construct an isl_scc_graph for ordering the SCCs of "graph", |
564 | * where each SCC i consists of the single cluster determined |
565 | * by c->scc_cluster[i]. The nodes in this cluster all have |
566 | * their "scc" field set to i. |
567 | * |
568 | * The initial isl_scc_graph has as many SCCs as "graph" and |
569 | * their local indices are the same as their indices in "graph". |
570 | * |
571 | * Add edges between different SCCs for each (conditional) validity edge |
572 | * between nodes in those SCCs, remove transitive edges and |
573 | * construct the inverse edges from the remaining forward edges. |
574 | */ |
575 | struct isl_scc_graph *isl_scc_graph_from_sched_graph(isl_ctx *ctx, |
576 | struct isl_sched_graph *graph, struct isl_clustering *c) |
577 | { |
578 | int i; |
579 | struct isl_scc_graph *scc_graph; |
580 | |
581 | scc_graph = isl_scc_graph_alloc(ctx, n: graph->scc, graph, c); |
582 | if (!scc_graph) |
583 | return NULL; |
584 | |
585 | for (i = 0; i < graph->scc; ++i) |
586 | scc_graph->graph_scc[i] = i; |
587 | |
588 | if (isl_hash_table_foreach(ctx, table: graph->edge_table[isl_edge_validity], |
589 | fn: &add_scc_edge, user: scc_graph) < 0) |
590 | return isl_scc_graph_free(scc_graph); |
591 | if (isl_hash_table_foreach(ctx, |
592 | table: graph->edge_table[isl_edge_conditional_validity], |
593 | fn: &add_scc_edge, user: scc_graph) < 0) |
594 | return isl_scc_graph_free(scc_graph); |
595 | |
596 | scc_graph = isl_scc_graph_reduce(scc_graph); |
597 | scc_graph = isl_scc_graph_add_reverse_edges(scc_graph); |
598 | |
599 | return scc_graph; |
600 | } |
601 | |
602 | /* Internal data structure for copy_edge. |
603 | * |
604 | * "scc_graph" is the original graph. |
605 | * "sub" is the subgraph to which edges are being copied. |
606 | * "src" is the local index in "scc_graph" of the source of the edges |
607 | * currently being copied. |
608 | */ |
609 | struct isl_copy_edge_data { |
610 | struct isl_scc_graph *scc_graph; |
611 | struct isl_scc_graph *sub; |
612 | int src; |
613 | }; |
614 | |
615 | /* isl_hash_table_foreach callback for copying the edge |
616 | * from data->src to the node identified by "entry" |
617 | * to data->sub, provided the two nodes belong to the same component. |
618 | * Note that by construction, there are no edges between different components |
619 | * in the region handled by detect_components, but there may |
620 | * be edges to nodes outside this region. |
621 | * The components therefore need to be initialized for all nodes |
622 | * in isl_scc_graph_init_component. |
623 | */ |
624 | static isl_stat copy_edge(void **entry, void *user) |
625 | { |
626 | struct isl_copy_edge_data *data = user; |
627 | struct isl_scc_graph *scc_graph = data->scc_graph; |
628 | struct isl_scc_graph *sub = data->sub; |
629 | int dst, sub_dst, sub_src; |
630 | |
631 | dst = isl_scc_graph_local_index(scc_graph: data->scc_graph, data: *entry); |
632 | if (scc_graph->component[dst] != scc_graph->component[data->src]) |
633 | return isl_stat_ok; |
634 | |
635 | sub_src = scc_graph->pos[data->src]; |
636 | sub_dst = scc_graph->pos[dst]; |
637 | |
638 | return isl_scc_graph_add_edge(scc_graph: sub, edge_table: sub->edge_table, src: sub_src, dst: sub_dst); |
639 | } |
640 | |
641 | /* Construct a subgraph of "scc_graph" for the components |
642 | * consisting of the "n" SCCs with local indices in "pos". |
643 | * These SCCs have the same value in scc_graph->component and |
644 | * this value is different from that of any other SCC. |
645 | * |
646 | * The forward edges with source and destination in the component |
647 | * are copied from "scc_graph". |
648 | * The local index in the subgraph corresponding to a local index |
649 | * in "scc_graph" is stored in scc_graph->pos for use by copy_edge(). |
650 | * The inverse edges are constructed directly from the forward edges. |
651 | */ |
652 | static struct isl_scc_graph *isl_scc_graph_sub(struct isl_scc_graph *scc_graph, |
653 | int *pos, int n) |
654 | { |
655 | int i; |
656 | isl_ctx *ctx; |
657 | struct isl_scc_graph *sub; |
658 | struct isl_copy_edge_data data; |
659 | |
660 | if (!scc_graph) |
661 | return NULL; |
662 | |
663 | ctx = scc_graph->ctx; |
664 | sub = isl_scc_graph_alloc(ctx, n, graph: scc_graph->graph, c: scc_graph->c); |
665 | if (!sub) |
666 | return sub; |
667 | |
668 | for (i = 0; i < n; ++i) |
669 | sub->graph_scc[i] = scc_graph->graph_scc[pos[i]]; |
670 | |
671 | for (i = 0; i < n; ++i) |
672 | scc_graph->pos[pos[i]] = i; |
673 | |
674 | data.scc_graph = scc_graph; |
675 | data.sub = sub; |
676 | for (i = 0; i < n; ++i) { |
677 | data.src = pos[i]; |
678 | if (isl_hash_table_foreach(ctx, table: scc_graph->edge_table[pos[i]], |
679 | fn: ©_edge, user: &data) < 0) |
680 | return isl_scc_graph_free(scc_graph: sub); |
681 | } |
682 | |
683 | sub = isl_scc_graph_add_reverse_edges(scc_graph: sub); |
684 | |
685 | return sub; |
686 | } |
687 | |
688 | /* Return a union of universe domains corresponding to the nodes |
689 | * in the SCC with local index "pos". |
690 | */ |
691 | static __isl_give isl_union_set *( |
692 | struct isl_scc_graph *scc_graph, int pos) |
693 | { |
694 | return isl_sched_graph_extract_scc(ctx: scc_graph->ctx, graph: scc_graph->graph, |
695 | scc: scc_graph->graph_scc[pos]); |
696 | } |
697 | |
698 | /* Construct a filter corresponding to a sequence of "n" local SCC indices |
699 | * determined by successive calls to "el", |
700 | * add this filter to "list" and |
701 | * return the result. |
702 | */ |
703 | static __isl_give isl_union_set_list *add_scc_seq( |
704 | struct isl_scc_graph *scc_graph, |
705 | int (*el)(int i, void *user), void *user, int n, |
706 | __isl_take isl_union_set_list *list) |
707 | { |
708 | int i; |
709 | isl_union_set *dom; |
710 | |
711 | dom = isl_union_set_empty_ctx(ctx: scc_graph->ctx); |
712 | for (i = 0; i < n; ++i) |
713 | dom = isl_union_set_union(uset1: dom, |
714 | uset2: isl_scc_graph_extract_local_scc(scc_graph, pos: el(i, user))); |
715 | |
716 | return isl_union_set_list_add(list, el: dom); |
717 | } |
718 | |
719 | /* add_scc_seq callback that, on successive calls, returns a sequence |
720 | * of local SCC indices starting at "first". |
721 | */ |
722 | static int offset(int i, void *user) |
723 | { |
724 | int *first = user; |
725 | |
726 | return *first + i; |
727 | } |
728 | |
729 | /* Construct a filter corresponding to a sequence of "n" local SCC indices |
730 | * starting at "first", add this filter to "list" and return the result. |
731 | */ |
732 | static __isl_give isl_union_set_list *isl_scc_graph_add_scc_seq( |
733 | struct isl_scc_graph *scc_graph, int first, int n, |
734 | __isl_take isl_union_set_list *list) |
735 | { |
736 | return add_scc_seq(scc_graph, el: &offset, user: &first, n, list); |
737 | } |
738 | |
739 | /* add_scc_seq callback that, on successive calls, returns the sequence |
740 | * of local SCC indices in "seq". |
741 | */ |
742 | static int at(int i, void *user) |
743 | { |
744 | int *seq = user; |
745 | |
746 | return seq[i]; |
747 | } |
748 | |
749 | /* Construct a filter corresponding to the sequence of "n" local SCC indices |
750 | * stored in "seq", add this filter to "list" and return the result. |
751 | */ |
752 | static __isl_give isl_union_set_list *isl_scc_graph_add_scc_indirect_seq( |
753 | struct isl_scc_graph *scc_graph, int *seq, int n, |
754 | __isl_take isl_union_set_list *list) |
755 | { |
756 | return add_scc_seq(scc_graph, el: &at, user: seq, n, list); |
757 | } |
758 | |
759 | /* Extract out a list of filters for a sequence node that splits |
760 | * the graph along the SCC with local index "pos". |
761 | * |
762 | * The list contains (at most) three elements, |
763 | * the SCCs before "pos" (in the topological order), |
764 | * "pos" itself, and |
765 | * the SCCs after "pos". |
766 | */ |
767 | static __isl_give isl_union_set_list *( |
768 | struct isl_scc_graph *scc_graph, int pos) |
769 | { |
770 | isl_union_set *dom; |
771 | isl_union_set_list *filters; |
772 | |
773 | filters = isl_union_set_list_alloc(ctx: scc_graph->ctx, n: 3); |
774 | if (pos > 0) |
775 | filters = isl_scc_graph_add_scc_seq(scc_graph, first: 0, n: pos, list: filters); |
776 | dom = isl_scc_graph_extract_local_scc(scc_graph, pos); |
777 | filters = isl_union_set_list_add(list: filters, el: dom); |
778 | if (pos + 1 < scc_graph->n) |
779 | filters = isl_scc_graph_add_scc_seq(scc_graph, |
780 | first: pos + 1, n: scc_graph->n - (pos + 1), list: filters); |
781 | return filters; |
782 | } |
783 | |
784 | /* Call isl_schedule_node_compute_finish_band on the cluster |
785 | * corresponding to the SCC with local index "pos". |
786 | * |
787 | * First obtain the corresponding SCC index in scc_graph->graph and |
788 | * then obtain the corresponding cluster. |
789 | */ |
790 | static __isl_give isl_schedule_node *isl_scc_graph_finish_band( |
791 | struct isl_scc_graph *scc_graph, __isl_take isl_schedule_node *node, |
792 | int pos) |
793 | { |
794 | struct isl_clustering *c = scc_graph->c; |
795 | int cluster; |
796 | |
797 | cluster = c->scc_cluster[scc_graph->graph_scc[pos]]; |
798 | return isl_schedule_node_compute_finish_band(node, |
799 | graph: &c->cluster[cluster], initialized: 0); |
800 | } |
801 | |
802 | /* Given that the SCCs in "scc_graph" form a chain, |
803 | * call isl_schedule_node_compute_finish_band on each of the clusters |
804 | * in scc_graph->c and update "node" to arrange for them to be executed |
805 | * in topological order. |
806 | */ |
807 | static __isl_give isl_schedule_node *isl_scc_graph_chain( |
808 | struct isl_scc_graph *scc_graph, __isl_take isl_schedule_node *node) |
809 | { |
810 | int i; |
811 | isl_union_set *dom; |
812 | isl_union_set_list *filters; |
813 | |
814 | filters = isl_union_set_list_alloc(ctx: scc_graph->ctx, n: scc_graph->n); |
815 | for (i = 0; i < scc_graph->n; ++i) { |
816 | dom = isl_scc_graph_extract_local_scc(scc_graph, pos: i); |
817 | filters = isl_union_set_list_add(list: filters, el: dom); |
818 | } |
819 | |
820 | node = isl_schedule_node_insert_sequence(node, filters); |
821 | |
822 | for (i = 0; i < scc_graph->n; ++i) { |
823 | node = isl_schedule_node_grandchild(node, pos1: i, pos2: 0); |
824 | node = isl_scc_graph_finish_band(scc_graph, node, pos: i); |
825 | node = isl_schedule_node_grandparent(node); |
826 | } |
827 | |
828 | return node; |
829 | } |
830 | |
831 | /* Recursively call isl_scc_graph_decompose on a subgraph |
832 | * consisting of the "n" SCCs with local indices in "pos". |
833 | * |
834 | * If this component contains only a single SCC, |
835 | * then there is no need for a further recursion and |
836 | * isl_schedule_node_compute_finish_band can be called directly. |
837 | */ |
838 | static __isl_give isl_schedule_node *recurse(struct isl_scc_graph *scc_graph, |
839 | int *pos, int n, __isl_take isl_schedule_node *node) |
840 | { |
841 | struct isl_scc_graph *sub; |
842 | |
843 | if (n == 1) |
844 | return isl_scc_graph_finish_band(scc_graph, node, pos: pos[0]); |
845 | |
846 | sub = isl_scc_graph_sub(scc_graph, pos, n); |
847 | if (!sub) |
848 | return isl_schedule_node_free(node); |
849 | node = isl_scc_graph_decompose(scc_graph: sub, node); |
850 | isl_scc_graph_free(scc_graph: sub); |
851 | |
852 | return node; |
853 | } |
854 | |
855 | /* Initialize the component field of "scc_graph". |
856 | * Initially, each SCC belongs to its own single-element component. |
857 | * |
858 | * Note that the SCC on which isl_scc_graph_decompose performs a split |
859 | * also needs to be assigned a component because the components |
860 | * are also used in copy_edge to extract a subgraph. |
861 | */ |
862 | static void isl_scc_graph_init_component(struct isl_scc_graph *scc_graph) |
863 | { |
864 | int i; |
865 | |
866 | for (i = 0; i < scc_graph->n; ++i) |
867 | scc_graph->component[i] = i; |
868 | } |
869 | |
870 | /* Set the component of "a" to be the same as that of "b" and |
871 | * return the original component of "a". |
872 | */ |
873 | static int assign(int *component, int a, int b) |
874 | { |
875 | int t; |
876 | |
877 | t = component[a]; |
878 | component[a] = component[b]; |
879 | return t; |
880 | } |
881 | |
882 | /* Merge the components containing the SCCs with indices "a" and "b". |
883 | * |
884 | * If "a" and "b" already belong to the same component, then nothing |
885 | * needs to be done. |
886 | * Otherwise, make sure both point to the same component. |
887 | * In particular, use the SCC in the component entries with the smallest index. |
888 | * If the other SCC was the first of its component then the entire |
889 | * component now (eventually) points to the other component. |
890 | * Otherwise, the earlier parts of the component still need |
891 | * to be merged with the other component. |
892 | * |
893 | * At each stage, either a or b is replaced by either a or b itself, |
894 | * in which case the merging terminates because a and b already |
895 | * point to the same component, or an SCC index with a smaller value. |
896 | * This ensures the merging terminates at some point. |
897 | */ |
898 | static void isl_scc_graph_merge_src_dst(struct isl_scc_graph *scc_graph, |
899 | int a, int b) |
900 | { |
901 | int *component = scc_graph->component; |
902 | |
903 | while (component[a] != component[b]) { |
904 | if (component[a] < component[b]) |
905 | b = assign(component, a: b, b: a); |
906 | else |
907 | a = assign(component, a, b); |
908 | } |
909 | } |
910 | |
911 | /* Internal data structure for isl_scc_graph_merge_components. |
912 | * |
913 | * "scc_graph" is the SCC graph containing the edges. |
914 | * "src" is the local index of the source SCC. |
915 | * "end" is the local index beyond the sequence being considered. |
916 | */ |
917 | struct isl_merge_src_dst_data { |
918 | struct isl_scc_graph *scc_graph; |
919 | int src; |
920 | int end; |
921 | }; |
922 | |
923 | /* isl_hash_table_foreach callback for merging the components |
924 | * of data->src and the node represented by "entry", provided |
925 | * it is within the sequence being considered. |
926 | */ |
927 | static isl_stat merge_src_dst(void **entry, void *user) |
928 | { |
929 | struct isl_merge_src_dst_data *data = user; |
930 | int dst; |
931 | |
932 | dst = isl_scc_graph_local_index(scc_graph: data->scc_graph, data: *entry); |
933 | if (dst >= data->end) |
934 | return isl_stat_ok; |
935 | |
936 | isl_scc_graph_merge_src_dst(scc_graph: data->scc_graph, a: data->src, b: dst); |
937 | |
938 | return isl_stat_ok; |
939 | } |
940 | |
941 | /* Merge components of the "n" SCCs starting at "first" that are connected |
942 | * by an edge. |
943 | */ |
944 | static isl_stat isl_scc_graph_merge_components(struct isl_scc_graph *scc_graph, |
945 | int first, int n) |
946 | { |
947 | int i; |
948 | struct isl_merge_src_dst_data data; |
949 | isl_ctx *ctx = scc_graph->ctx; |
950 | |
951 | data.scc_graph = scc_graph; |
952 | data.end = first + n; |
953 | for (i = 0; i < n; ++i) { |
954 | data.src = first + i; |
955 | if (isl_hash_table_foreach(ctx, table: scc_graph->edge_table[data.src], |
956 | fn: &merge_src_dst, user: &data) < 0) |
957 | return isl_stat_error; |
958 | } |
959 | |
960 | return isl_stat_ok; |
961 | } |
962 | |
963 | /* Sort the "n" local SCC indices starting at "first" according |
964 | * to component, store them in scc_graph->sorted and |
965 | * return the number of components. |
966 | * The sizes of the components are stored in scc_graph->size. |
967 | * Only positions starting at "first" are used within |
968 | * scc_graph->sorted and scc_graph->size. |
969 | * |
970 | * The representation of the components is first normalized. |
971 | * The normalization ensures that each SCC in a component |
972 | * points to the first SCC in the component, whereas |
973 | * before this function is called, some SCCs may only point |
974 | * to some other SCC in the component with a smaller index. |
975 | * |
976 | * Internally, the sizes of the components are first stored |
977 | * at indices corresponding to the first SCC in the component. |
978 | * They are subsequently moved into consecutive positions |
979 | * while reordering the local indices. |
980 | * This reordering is performed by first determining the position |
981 | * of the first SCC in each component and |
982 | * then putting the "n" local indices in the right position |
983 | * according to the component, preserving the topological order |
984 | * within each component. |
985 | */ |
986 | static int isl_scc_graph_sort_components(struct isl_scc_graph *scc_graph, |
987 | int first, int n) |
988 | { |
989 | int i, j; |
990 | int sum; |
991 | int *component = scc_graph->component; |
992 | int *size = scc_graph->size; |
993 | int *pos = scc_graph->pos; |
994 | int *sorted = scc_graph->sorted; |
995 | int n_component; |
996 | |
997 | n_component = 0; |
998 | for (i = 0; i < n; ++i) { |
999 | size[first + i] = 0; |
1000 | if (component[first + i] == first + i) |
1001 | n_component++; |
1002 | else |
1003 | component[first + i] = component[component[first + i]]; |
1004 | size[component[first + i]]++; |
1005 | } |
1006 | |
1007 | sum = first; |
1008 | i = 0; |
1009 | for (j = 0; j < n_component; ++j) { |
1010 | while (size[first + i] == 0) |
1011 | ++i; |
1012 | pos[first + i] = sum; |
1013 | sum += size[first + i]; |
1014 | size[first + j] = size[first + i++]; |
1015 | } |
1016 | for (i = 0; i < n; ++i) |
1017 | sorted[pos[component[first + i]]++] = first + i; |
1018 | |
1019 | return n_component; |
1020 | } |
1021 | |
1022 | /* Extract out a list of filters for a set node that splits up |
1023 | * the graph into "n_component" components. |
1024 | * "first" is the initial position in "scc_graph" where information |
1025 | * about the components is stored. |
1026 | * In particular, the first "n_component" entries of scc_graph->size |
1027 | * at this position contain the number of SCCs in each component. |
1028 | * The entries of scc_graph->sorted starting at "first" |
1029 | * contain the local indices of the SCC in those components. |
1030 | */ |
1031 | static __isl_give isl_union_set_list *( |
1032 | struct isl_scc_graph *scc_graph, int first, int n_component) |
1033 | { |
1034 | int i; |
1035 | int sum; |
1036 | int *size = scc_graph->size; |
1037 | int *sorted = scc_graph->sorted; |
1038 | isl_ctx *ctx = scc_graph->ctx; |
1039 | isl_union_set_list *filters; |
1040 | |
1041 | filters = isl_union_set_list_alloc(ctx, n: n_component); |
1042 | sum = first; |
1043 | for (i = 0; i < n_component; ++i) { |
1044 | int n; |
1045 | |
1046 | n = size[first + i]; |
1047 | filters = isl_scc_graph_add_scc_indirect_seq(scc_graph, |
1048 | seq: &sorted[sum], n, list: filters); |
1049 | sum += n; |
1050 | } |
1051 | |
1052 | return filters; |
1053 | } |
1054 | |
1055 | /* Detect components in the subgraph consisting of the "n" SCCs |
1056 | * with local index starting at "first" and further decompose them, |
1057 | * calling isl_schedule_node_compute_finish_band on each |
1058 | * of the corresponding clusters. |
1059 | * |
1060 | * If there is only one SCC, then isl_schedule_node_compute_finish_band |
1061 | * can be called directly. |
1062 | * Otherwise, determine the components and rearrange the local indices |
1063 | * according to component, but preserving the topological order within |
1064 | * each component, in scc_graph->sorted. The sizes of the components |
1065 | * are stored in scc_graph->size. |
1066 | * If there is only one component, it can be further decomposed |
1067 | * directly by a call to recurse(). |
1068 | * Otherwise, introduce a set node separating the components and |
1069 | * call recurse() on each component separately. |
1070 | */ |
1071 | static __isl_give isl_schedule_node *detect_components( |
1072 | struct isl_scc_graph *scc_graph, int first, int n, |
1073 | __isl_take isl_schedule_node *node) |
1074 | { |
1075 | int i; |
1076 | int *size = scc_graph->size; |
1077 | int *sorted = scc_graph->sorted; |
1078 | int n_component; |
1079 | int sum; |
1080 | isl_union_set_list *filters; |
1081 | |
1082 | if (n == 1) |
1083 | return isl_scc_graph_finish_band(scc_graph, node, pos: first); |
1084 | |
1085 | if (isl_scc_graph_merge_components(scc_graph, first, n) < 0) |
1086 | return isl_schedule_node_free(node); |
1087 | |
1088 | n_component = isl_scc_graph_sort_components(scc_graph, first, n); |
1089 | if (n_component == 1) |
1090 | return recurse(scc_graph, pos: &sorted[first], n, node); |
1091 | |
1092 | filters = extract_components(scc_graph, first, n_component); |
1093 | node = isl_schedule_node_insert_set(node, filters); |
1094 | |
1095 | sum = first; |
1096 | for (i = 0; i < n_component; ++i) { |
1097 | int n; |
1098 | |
1099 | n = size[first + i]; |
1100 | node = isl_schedule_node_grandchild(node, pos1: i, pos2: 0); |
1101 | node = recurse(scc_graph, pos: &sorted[sum], n, node); |
1102 | node = isl_schedule_node_grandparent(node); |
1103 | sum += n; |
1104 | } |
1105 | |
1106 | return node; |
1107 | } |
1108 | |
1109 | /* Given a sequence node "node", where the filter at position "child" |
1110 | * represents the "n" SCCs with local index starting at "first", |
1111 | * detect components in this subgraph and further decompose them, |
1112 | * calling isl_schedule_node_compute_finish_band on each |
1113 | * of the corresponding clusters. |
1114 | */ |
1115 | static __isl_give isl_schedule_node *detect_components_at( |
1116 | struct isl_scc_graph *scc_graph, int first, int n, |
1117 | __isl_take isl_schedule_node *node, int child) |
1118 | { |
1119 | node = isl_schedule_node_grandchild(node, pos1: child, pos2: 0); |
1120 | node = detect_components(scc_graph, first, n, node); |
1121 | node = isl_schedule_node_grandparent(node); |
1122 | |
1123 | return node; |
1124 | } |
1125 | |
1126 | /* Return the local index of an SCC on which to split "scc_graph". |
1127 | * Return scc_graph->n if no suitable split SCC can be found. |
1128 | * |
1129 | * In particular, look for an SCC that is involved in the largest number |
1130 | * of edges. Splitting the graph on such an SCC has the highest chance |
1131 | * of exposing independent SCCs in the remaining part(s). |
1132 | * There is no point in splitting a chain of nodes, |
1133 | * so return scc_graph->n if the entire graph forms a chain. |
1134 | */ |
1135 | static int best_split(struct isl_scc_graph *scc_graph) |
1136 | { |
1137 | int i; |
1138 | int split = scc_graph->n; |
1139 | int split_score = -1; |
1140 | |
1141 | for (i = 0; i < scc_graph->n; ++i) { |
1142 | int n_fwd, n_bwd; |
1143 | |
1144 | n_fwd = scc_graph->edge_table[i]->n; |
1145 | n_bwd = scc_graph->reverse_edge_table[i]->n; |
1146 | if (n_fwd <= 1 && n_bwd <= 1) |
1147 | continue; |
1148 | if (split_score >= n_fwd + n_bwd) |
1149 | continue; |
1150 | split = i; |
1151 | split_score = n_fwd + n_bwd; |
1152 | } |
1153 | |
1154 | return split; |
1155 | } |
1156 | |
1157 | /* Call isl_schedule_node_compute_finish_band on each of the clusters |
1158 | * in scc_graph->c and update "node" to arrange for them to be executed |
1159 | * in an order possibly involving set nodes that generalizes |
1160 | * the topological order determined by the scc fields of the nodes |
1161 | * in scc_graph->graph. |
1162 | * |
1163 | * First try and find a suitable SCC on which to split the graph. |
1164 | * If no such SCC can be found then the graph forms a chain and |
1165 | * it is handled as such. |
1166 | * Otherwise, break up the graph into (at most) three parts, |
1167 | * the SCCs before the selected SCC (in the topological order), |
1168 | * the selected SCC itself, and |
1169 | * the SCCs after the selected SCC. |
1170 | * The first and last part (if they exist) are decomposed recursively and |
1171 | * the three parts are combined in a sequence. |
1172 | * |
1173 | * Since the outermost node of the recursive pieces may also be a sequence, |
1174 | * these potential sequence nodes are spliced into the top-level sequence node. |
1175 | */ |
1176 | __isl_give isl_schedule_node *isl_scc_graph_decompose( |
1177 | struct isl_scc_graph *scc_graph, __isl_take isl_schedule_node *node) |
1178 | { |
1179 | int i; |
1180 | int split; |
1181 | isl_union_set_list *filters; |
1182 | |
1183 | if (!scc_graph) |
1184 | return isl_schedule_node_free(node); |
1185 | |
1186 | split = best_split(scc_graph); |
1187 | |
1188 | if (split == scc_graph->n) |
1189 | return isl_scc_graph_chain(scc_graph, node); |
1190 | |
1191 | filters = extract_split_scc(scc_graph, pos: split); |
1192 | node = isl_schedule_node_insert_sequence(node, filters); |
1193 | |
1194 | isl_scc_graph_init_component(scc_graph); |
1195 | |
1196 | i = 0; |
1197 | if (split > 0) |
1198 | node = detect_components_at(scc_graph, first: 0, n: split, node, child: i++); |
1199 | node = isl_schedule_node_grandchild(node, pos1: i++, pos2: 0); |
1200 | node = isl_scc_graph_finish_band(scc_graph, node, pos: split); |
1201 | node = isl_schedule_node_grandparent(node); |
1202 | if (split + 1 < scc_graph->n) |
1203 | node = detect_components_at(scc_graph, |
1204 | first: split + 1, n: scc_graph->n - (split + 1), node, child: i++); |
1205 | |
1206 | node = isl_schedule_node_sequence_splice_children(node); |
1207 | |
1208 | return node; |
1209 | } |
1210 | |