| 1 | /* |
| 2 | * Copyright 2010 INRIA Saclay |
| 3 | * |
| 4 | * Use of this software is governed by the MIT license |
| 5 | * |
| 6 | * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, |
| 7 | * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, |
| 8 | * 91893 Orsay, France |
| 9 | */ |
| 10 | |
| 11 | #include <isl_ctx_private.h> |
| 12 | #include <isl_map_private.h> |
| 13 | #include <isl/map.h> |
| 14 | #include <isl_seq.h> |
| 15 | #include <isl_space_private.h> |
| 16 | #include <isl_lp_private.h> |
| 17 | #include <isl/union_map.h> |
| 18 | #include <isl_mat_private.h> |
| 19 | #include <isl_vec_private.h> |
| 20 | #include <isl_options_private.h> |
| 21 | #include <isl_tarjan.h> |
| 22 | |
| 23 | isl_bool isl_map_is_transitively_closed(__isl_keep isl_map *map) |
| 24 | { |
| 25 | isl_map *map2; |
| 26 | isl_bool closed; |
| 27 | |
| 28 | map2 = isl_map_apply_range(map1: isl_map_copy(map), map2: isl_map_copy(map)); |
| 29 | closed = isl_map_is_subset(map1: map2, map2: map); |
| 30 | isl_map_free(map: map2); |
| 31 | |
| 32 | return closed; |
| 33 | } |
| 34 | |
| 35 | isl_bool isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap) |
| 36 | { |
| 37 | isl_union_map *umap2; |
| 38 | isl_bool closed; |
| 39 | |
| 40 | umap2 = isl_union_map_apply_range(umap1: isl_union_map_copy(umap), |
| 41 | umap2: isl_union_map_copy(umap)); |
| 42 | closed = isl_union_map_is_subset(umap1: umap2, umap2: umap); |
| 43 | isl_union_map_free(umap: umap2); |
| 44 | |
| 45 | return closed; |
| 46 | } |
| 47 | |
| 48 | /* Given a map that represents a path with the length of the path |
| 49 | * encoded as the difference between the last output coordindate |
| 50 | * and the last input coordinate, set this length to either |
| 51 | * exactly "length" (if "exactly" is set) or at least "length" |
| 52 | * (if "exactly" is not set). |
| 53 | */ |
| 54 | static __isl_give isl_map *set_path_length(__isl_take isl_map *map, |
| 55 | int exactly, int length) |
| 56 | { |
| 57 | isl_space *space; |
| 58 | struct isl_basic_map *bmap; |
| 59 | isl_size d; |
| 60 | isl_size nparam; |
| 61 | isl_size total; |
| 62 | int k; |
| 63 | isl_int *c; |
| 64 | |
| 65 | if (!map) |
| 66 | return NULL; |
| 67 | |
| 68 | space = isl_map_get_space(map); |
| 69 | d = isl_space_dim(space, type: isl_dim_in); |
| 70 | nparam = isl_space_dim(space, type: isl_dim_param); |
| 71 | total = isl_space_dim(space, type: isl_dim_all); |
| 72 | if (d < 0 || nparam < 0 || total < 0) |
| 73 | space = isl_space_free(space); |
| 74 | bmap = isl_basic_map_alloc_space(space, extra: 0, n_eq: 1, n_ineq: 1); |
| 75 | if (exactly) { |
| 76 | k = isl_basic_map_alloc_equality(bmap); |
| 77 | if (k < 0) |
| 78 | goto error; |
| 79 | c = bmap->eq[k]; |
| 80 | } else { |
| 81 | k = isl_basic_map_alloc_inequality(bmap); |
| 82 | if (k < 0) |
| 83 | goto error; |
| 84 | c = bmap->ineq[k]; |
| 85 | } |
| 86 | isl_seq_clr(p: c, len: 1 + total); |
| 87 | isl_int_set_si(c[0], -length); |
| 88 | isl_int_set_si(c[1 + nparam + d - 1], -1); |
| 89 | isl_int_set_si(c[1 + nparam + d + d - 1], 1); |
| 90 | |
| 91 | bmap = isl_basic_map_finalize(bmap); |
| 92 | map = isl_map_intersect(map1: map, map2: isl_map_from_basic_map(bmap)); |
| 93 | |
| 94 | return map; |
| 95 | error: |
| 96 | isl_basic_map_free(bmap); |
| 97 | isl_map_free(map); |
| 98 | return NULL; |
| 99 | } |
| 100 | |
| 101 | /* Check whether the overapproximation of the power of "map" is exactly |
| 102 | * the power of "map". Let R be "map" and A_k the overapproximation. |
| 103 | * The approximation is exact if |
| 104 | * |
| 105 | * A_1 = R |
| 106 | * A_k = A_{k-1} \circ R k >= 2 |
| 107 | * |
| 108 | * Since A_k is known to be an overapproximation, we only need to check |
| 109 | * |
| 110 | * A_1 \subset R |
| 111 | * A_k \subset A_{k-1} \circ R k >= 2 |
| 112 | * |
| 113 | * In practice, "app" has an extra input and output coordinate |
| 114 | * to encode the length of the path. So, we first need to add |
| 115 | * this coordinate to "map" and set the length of the path to |
| 116 | * one. |
| 117 | */ |
| 118 | static isl_bool check_power_exactness(__isl_take isl_map *map, |
| 119 | __isl_take isl_map *app) |
| 120 | { |
| 121 | isl_bool exact; |
| 122 | isl_map *app_1; |
| 123 | isl_map *app_2; |
| 124 | |
| 125 | map = isl_map_add_dims(map, type: isl_dim_in, n: 1); |
| 126 | map = isl_map_add_dims(map, type: isl_dim_out, n: 1); |
| 127 | map = set_path_length(map, exactly: 1, length: 1); |
| 128 | |
| 129 | app_1 = set_path_length(map: isl_map_copy(map: app), exactly: 1, length: 1); |
| 130 | |
| 131 | exact = isl_map_is_subset(map1: app_1, map2: map); |
| 132 | isl_map_free(map: app_1); |
| 133 | |
| 134 | if (!exact || exact < 0) { |
| 135 | isl_map_free(map: app); |
| 136 | isl_map_free(map); |
| 137 | return exact; |
| 138 | } |
| 139 | |
| 140 | app_1 = set_path_length(map: isl_map_copy(map: app), exactly: 0, length: 1); |
| 141 | app_2 = set_path_length(map: app, exactly: 0, length: 2); |
| 142 | app_1 = isl_map_apply_range(map1: map, map2: app_1); |
| 143 | |
| 144 | exact = isl_map_is_subset(map1: app_2, map2: app_1); |
| 145 | |
| 146 | isl_map_free(map: app_1); |
| 147 | isl_map_free(map: app_2); |
| 148 | |
| 149 | return exact; |
| 150 | } |
| 151 | |
| 152 | /* Check whether the overapproximation of the power of "map" is exactly |
| 153 | * the power of "map", possibly after projecting out the power (if "project" |
| 154 | * is set). |
| 155 | * |
| 156 | * If "project" is set and if "steps" can only result in acyclic paths, |
| 157 | * then we check |
| 158 | * |
| 159 | * A = R \cup (A \circ R) |
| 160 | * |
| 161 | * where A is the overapproximation with the power projected out, i.e., |
| 162 | * an overapproximation of the transitive closure. |
| 163 | * More specifically, since A is known to be an overapproximation, we check |
| 164 | * |
| 165 | * A \subset R \cup (A \circ R) |
| 166 | * |
| 167 | * Otherwise, we check if the power is exact. |
| 168 | * |
| 169 | * Note that "app" has an extra input and output coordinate to encode |
| 170 | * the length of the part. If we are only interested in the transitive |
| 171 | * closure, then we can simply project out these coordinates first. |
| 172 | */ |
| 173 | static isl_bool check_exactness(__isl_take isl_map *map, |
| 174 | __isl_take isl_map *app, int project) |
| 175 | { |
| 176 | isl_map *test; |
| 177 | isl_bool exact; |
| 178 | isl_size d; |
| 179 | |
| 180 | if (!project) |
| 181 | return check_power_exactness(map, app); |
| 182 | |
| 183 | d = isl_map_dim(map, type: isl_dim_in); |
| 184 | if (d < 0) |
| 185 | app = isl_map_free(map: app); |
| 186 | app = set_path_length(map: app, exactly: 0, length: 1); |
| 187 | app = isl_map_project_out(map: app, type: isl_dim_in, first: d, n: 1); |
| 188 | app = isl_map_project_out(map: app, type: isl_dim_out, first: d, n: 1); |
| 189 | |
| 190 | app = isl_map_reset_space(map: app, space: isl_map_get_space(map)); |
| 191 | |
| 192 | test = isl_map_apply_range(map1: isl_map_copy(map), map2: isl_map_copy(map: app)); |
| 193 | test = isl_map_union(map1: test, map2: isl_map_copy(map)); |
| 194 | |
| 195 | exact = isl_map_is_subset(map1: app, map2: test); |
| 196 | |
| 197 | isl_map_free(map: app); |
| 198 | isl_map_free(map: test); |
| 199 | |
| 200 | isl_map_free(map); |
| 201 | |
| 202 | return exact; |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | * The transitive closure implementation is based on the paper |
| 207 | * "Computing the Transitive Closure of a Union of Affine Integer |
| 208 | * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and |
| 209 | * Albert Cohen. |
| 210 | */ |
| 211 | |
| 212 | /* Given a set of n offsets v_i (the rows of "steps"), construct a relation |
| 213 | * of the given dimension specification (Z^{n+1} -> Z^{n+1}) |
| 214 | * that maps an element x to any element that can be reached |
| 215 | * by taking a non-negative number of steps along any of |
| 216 | * the extended offsets v'_i = [v_i 1]. |
| 217 | * That is, construct |
| 218 | * |
| 219 | * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i } |
| 220 | * |
| 221 | * For any element in this relation, the number of steps taken |
| 222 | * is equal to the difference in the final coordinates. |
| 223 | */ |
| 224 | static __isl_give isl_map *path_along_steps(__isl_take isl_space *space, |
| 225 | __isl_keep isl_mat *steps) |
| 226 | { |
| 227 | int i, j, k; |
| 228 | struct isl_basic_map *path = NULL; |
| 229 | isl_size d; |
| 230 | unsigned n; |
| 231 | isl_size nparam; |
| 232 | isl_size total; |
| 233 | |
| 234 | d = isl_space_dim(space, type: isl_dim_in); |
| 235 | nparam = isl_space_dim(space, type: isl_dim_param); |
| 236 | if (d < 0 || nparam < 0 || !steps) |
| 237 | goto error; |
| 238 | |
| 239 | n = steps->n_row; |
| 240 | |
| 241 | path = isl_basic_map_alloc_space(space: isl_space_copy(space), extra: n, n_eq: d, n_ineq: n); |
| 242 | |
| 243 | for (i = 0; i < n; ++i) { |
| 244 | k = isl_basic_map_alloc_div(bmap: path); |
| 245 | if (k < 0) |
| 246 | goto error; |
| 247 | isl_assert(steps->ctx, i == k, goto error); |
| 248 | isl_int_set_si(path->div[k][0], 0); |
| 249 | } |
| 250 | |
| 251 | total = isl_basic_map_dim(bmap: path, type: isl_dim_all); |
| 252 | if (total < 0) |
| 253 | goto error; |
| 254 | for (i = 0; i < d; ++i) { |
| 255 | k = isl_basic_map_alloc_equality(bmap: path); |
| 256 | if (k < 0) |
| 257 | goto error; |
| 258 | isl_seq_clr(p: path->eq[k], len: 1 + total); |
| 259 | isl_int_set_si(path->eq[k][1 + nparam + i], 1); |
| 260 | isl_int_set_si(path->eq[k][1 + nparam + d + i], -1); |
| 261 | if (i == d - 1) |
| 262 | for (j = 0; j < n; ++j) |
| 263 | isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1); |
| 264 | else |
| 265 | for (j = 0; j < n; ++j) |
| 266 | isl_int_set(path->eq[k][1 + nparam + 2 * d + j], |
| 267 | steps->row[j][i]); |
| 268 | } |
| 269 | |
| 270 | for (i = 0; i < n; ++i) { |
| 271 | k = isl_basic_map_alloc_inequality(bmap: path); |
| 272 | if (k < 0) |
| 273 | goto error; |
| 274 | isl_seq_clr(p: path->ineq[k], len: 1 + total); |
| 275 | isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1); |
| 276 | } |
| 277 | |
| 278 | isl_space_free(space); |
| 279 | |
| 280 | path = isl_basic_map_simplify(bmap: path); |
| 281 | path = isl_basic_map_finalize(bmap: path); |
| 282 | return isl_map_from_basic_map(bmap: path); |
| 283 | error: |
| 284 | isl_space_free(space); |
| 285 | isl_basic_map_free(bmap: path); |
| 286 | return NULL; |
| 287 | } |
| 288 | |
| 289 | #define IMPURE 0 |
| 290 | #define PURE_PARAM 1 |
| 291 | #define PURE_VAR 2 |
| 292 | #define MIXED 3 |
| 293 | |
| 294 | /* Check whether the parametric constant term of constraint c is never |
| 295 | * positive in "bset". |
| 296 | */ |
| 297 | static isl_bool parametric_constant_never_positive( |
| 298 | __isl_keep isl_basic_set *bset, isl_int *c, int *div_purity) |
| 299 | { |
| 300 | isl_size d; |
| 301 | isl_size n_div; |
| 302 | isl_size nparam; |
| 303 | isl_size total; |
| 304 | int i; |
| 305 | int k; |
| 306 | isl_bool empty; |
| 307 | |
| 308 | n_div = isl_basic_set_dim(bset, type: isl_dim_div); |
| 309 | d = isl_basic_set_dim(bset, type: isl_dim_set); |
| 310 | nparam = isl_basic_set_dim(bset, type: isl_dim_param); |
| 311 | total = isl_basic_set_dim(bset, type: isl_dim_all); |
| 312 | if (n_div < 0 || d < 0 || nparam < 0 || total < 0) |
| 313 | return isl_bool_error; |
| 314 | |
| 315 | bset = isl_basic_set_copy(bset); |
| 316 | bset = isl_basic_set_cow(bset); |
| 317 | bset = isl_basic_set_extend_constraints(base: bset, n_eq: 0, n_ineq: 1); |
| 318 | k = isl_basic_set_alloc_inequality(bset); |
| 319 | if (k < 0) |
| 320 | goto error; |
| 321 | isl_seq_clr(p: bset->ineq[k], len: 1 + total); |
| 322 | isl_seq_cpy(dst: bset->ineq[k], src: c, len: 1 + nparam); |
| 323 | for (i = 0; i < n_div; ++i) { |
| 324 | if (div_purity[i] != PURE_PARAM) |
| 325 | continue; |
| 326 | isl_int_set(bset->ineq[k][1 + nparam + d + i], |
| 327 | c[1 + nparam + d + i]); |
| 328 | } |
| 329 | isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1); |
| 330 | empty = isl_basic_set_is_empty(bset); |
| 331 | isl_basic_set_free(bset); |
| 332 | |
| 333 | return empty; |
| 334 | error: |
| 335 | isl_basic_set_free(bset); |
| 336 | return isl_bool_error; |
| 337 | } |
| 338 | |
| 339 | /* Return PURE_PARAM if only the coefficients of the parameters are non-zero. |
| 340 | * Return PURE_VAR if only the coefficients of the set variables are non-zero. |
| 341 | * Return MIXED if only the coefficients of the parameters and the set |
| 342 | * variables are non-zero and if moreover the parametric constant |
| 343 | * can never attain positive values. |
| 344 | * Return IMPURE otherwise. |
| 345 | */ |
| 346 | static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity, |
| 347 | int eq) |
| 348 | { |
| 349 | isl_size d; |
| 350 | isl_size n_div; |
| 351 | isl_size nparam; |
| 352 | isl_bool empty; |
| 353 | int i; |
| 354 | int p = 0, v = 0; |
| 355 | |
| 356 | n_div = isl_basic_set_dim(bset, type: isl_dim_div); |
| 357 | d = isl_basic_set_dim(bset, type: isl_dim_set); |
| 358 | nparam = isl_basic_set_dim(bset, type: isl_dim_param); |
| 359 | if (n_div < 0 || d < 0 || nparam < 0) |
| 360 | return -1; |
| 361 | |
| 362 | for (i = 0; i < n_div; ++i) { |
| 363 | if (isl_int_is_zero(c[1 + nparam + d + i])) |
| 364 | continue; |
| 365 | switch (div_purity[i]) { |
| 366 | case PURE_PARAM: p = 1; break; |
| 367 | case PURE_VAR: v = 1; break; |
| 368 | default: return IMPURE; |
| 369 | } |
| 370 | } |
| 371 | if (!p && isl_seq_first_non_zero(p: c + 1, len: nparam) == -1) |
| 372 | return PURE_VAR; |
| 373 | if (!v && isl_seq_first_non_zero(p: c + 1 + nparam, len: d) == -1) |
| 374 | return PURE_PARAM; |
| 375 | |
| 376 | empty = parametric_constant_never_positive(bset, c, div_purity); |
| 377 | if (eq && empty >= 0 && !empty) { |
| 378 | isl_seq_neg(dst: c, src: c, len: 1 + nparam + d + n_div); |
| 379 | empty = parametric_constant_never_positive(bset, c, div_purity); |
| 380 | } |
| 381 | |
| 382 | return empty < 0 ? -1 : empty ? MIXED : IMPURE; |
| 383 | } |
| 384 | |
| 385 | /* Return an array of integers indicating the type of each div in bset. |
| 386 | * If the div is (recursively) defined in terms of only the parameters, |
| 387 | * then the type is PURE_PARAM. |
| 388 | * If the div is (recursively) defined in terms of only the set variables, |
| 389 | * then the type is PURE_VAR. |
| 390 | * Otherwise, the type is IMPURE. |
| 391 | */ |
| 392 | static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset) |
| 393 | { |
| 394 | int i, j; |
| 395 | int *div_purity; |
| 396 | isl_size d; |
| 397 | isl_size n_div; |
| 398 | isl_size nparam; |
| 399 | |
| 400 | n_div = isl_basic_set_dim(bset, type: isl_dim_div); |
| 401 | d = isl_basic_set_dim(bset, type: isl_dim_set); |
| 402 | nparam = isl_basic_set_dim(bset, type: isl_dim_param); |
| 403 | if (n_div < 0 || d < 0 || nparam < 0) |
| 404 | return NULL; |
| 405 | |
| 406 | div_purity = isl_alloc_array(bset->ctx, int, n_div); |
| 407 | if (n_div && !div_purity) |
| 408 | return NULL; |
| 409 | |
| 410 | for (i = 0; i < bset->n_div; ++i) { |
| 411 | int p = 0, v = 0; |
| 412 | if (isl_int_is_zero(bset->div[i][0])) { |
| 413 | div_purity[i] = IMPURE; |
| 414 | continue; |
| 415 | } |
| 416 | if (isl_seq_first_non_zero(p: bset->div[i] + 2, len: nparam) != -1) |
| 417 | p = 1; |
| 418 | if (isl_seq_first_non_zero(p: bset->div[i] + 2 + nparam, len: d) != -1) |
| 419 | v = 1; |
| 420 | for (j = 0; j < i; ++j) { |
| 421 | if (isl_int_is_zero(bset->div[i][2 + nparam + d + j])) |
| 422 | continue; |
| 423 | switch (div_purity[j]) { |
| 424 | case PURE_PARAM: p = 1; break; |
| 425 | case PURE_VAR: v = 1; break; |
| 426 | default: p = v = 1; break; |
| 427 | } |
| 428 | } |
| 429 | div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM; |
| 430 | } |
| 431 | |
| 432 | return div_purity; |
| 433 | } |
| 434 | |
| 435 | /* Given a path with the as yet unconstrained length at div position "pos", |
| 436 | * check if setting the length to zero results in only the identity |
| 437 | * mapping. |
| 438 | */ |
| 439 | static isl_bool empty_path_is_identity(__isl_keep isl_basic_map *path, |
| 440 | unsigned pos) |
| 441 | { |
| 442 | isl_basic_map *test = NULL; |
| 443 | isl_basic_map *id = NULL; |
| 444 | isl_bool is_id; |
| 445 | |
| 446 | test = isl_basic_map_copy(bmap: path); |
| 447 | test = isl_basic_map_fix_si(bmap: test, type: isl_dim_div, pos, value: 0); |
| 448 | id = isl_basic_map_identity(space: isl_basic_map_get_space(bmap: path)); |
| 449 | is_id = isl_basic_map_is_equal(bmap1: test, bmap2: id); |
| 450 | isl_basic_map_free(bmap: test); |
| 451 | isl_basic_map_free(bmap: id); |
| 452 | return is_id; |
| 453 | } |
| 454 | |
| 455 | /* If any of the constraints is found to be impure then this function |
| 456 | * sets *impurity to 1. |
| 457 | * |
| 458 | * If impurity is NULL then we are dealing with a non-parametric set |
| 459 | * and so the constraints are obviously PURE_VAR. |
| 460 | */ |
| 461 | static __isl_give isl_basic_map *add_delta_constraints( |
| 462 | __isl_take isl_basic_map *path, |
| 463 | __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam, |
| 464 | unsigned d, int *div_purity, int eq, int *impurity) |
| 465 | { |
| 466 | int i, k; |
| 467 | int n = eq ? delta->n_eq : delta->n_ineq; |
| 468 | isl_int **delta_c = eq ? delta->eq : delta->ineq; |
| 469 | isl_size n_div, total; |
| 470 | |
| 471 | n_div = isl_basic_set_dim(bset: delta, type: isl_dim_div); |
| 472 | total = isl_basic_map_dim(bmap: path, type: isl_dim_all); |
| 473 | if (n_div < 0 || total < 0) |
| 474 | return isl_basic_map_free(bmap: path); |
| 475 | |
| 476 | for (i = 0; i < n; ++i) { |
| 477 | isl_int *path_c; |
| 478 | int p = PURE_VAR; |
| 479 | if (impurity) |
| 480 | p = purity(bset: delta, c: delta_c[i], div_purity, eq); |
| 481 | if (p < 0) |
| 482 | goto error; |
| 483 | if (p != PURE_VAR && p != PURE_PARAM && !*impurity) |
| 484 | *impurity = 1; |
| 485 | if (p == IMPURE) |
| 486 | continue; |
| 487 | if (eq && p != MIXED) { |
| 488 | k = isl_basic_map_alloc_equality(bmap: path); |
| 489 | if (k < 0) |
| 490 | goto error; |
| 491 | path_c = path->eq[k]; |
| 492 | } else { |
| 493 | k = isl_basic_map_alloc_inequality(bmap: path); |
| 494 | if (k < 0) |
| 495 | goto error; |
| 496 | path_c = path->ineq[k]; |
| 497 | } |
| 498 | isl_seq_clr(p: path_c, len: 1 + total); |
| 499 | if (p == PURE_VAR) { |
| 500 | isl_seq_cpy(dst: path_c + off, |
| 501 | src: delta_c[i] + 1 + nparam, len: d); |
| 502 | isl_int_set(path_c[off + d], delta_c[i][0]); |
| 503 | } else if (p == PURE_PARAM) { |
| 504 | isl_seq_cpy(dst: path_c, src: delta_c[i], len: 1 + nparam); |
| 505 | } else { |
| 506 | isl_seq_cpy(dst: path_c + off, |
| 507 | src: delta_c[i] + 1 + nparam, len: d); |
| 508 | isl_seq_cpy(dst: path_c, src: delta_c[i], len: 1 + nparam); |
| 509 | } |
| 510 | isl_seq_cpy(dst: path_c + off - n_div, |
| 511 | src: delta_c[i] + 1 + nparam + d, len: n_div); |
| 512 | } |
| 513 | |
| 514 | return path; |
| 515 | error: |
| 516 | isl_basic_map_free(bmap: path); |
| 517 | return NULL; |
| 518 | } |
| 519 | |
| 520 | /* Given a set of offsets "delta", construct a relation of the |
| 521 | * given dimension specification (Z^{n+1} -> Z^{n+1}) that |
| 522 | * is an overapproximation of the relations that |
| 523 | * maps an element x to any element that can be reached |
| 524 | * by taking a non-negative number of steps along any of |
| 525 | * the elements in "delta". |
| 526 | * That is, construct an approximation of |
| 527 | * |
| 528 | * { [x] -> [y] : exists f \in \delta, k \in Z : |
| 529 | * y = x + k [f, 1] and k >= 0 } |
| 530 | * |
| 531 | * For any element in this relation, the number of steps taken |
| 532 | * is equal to the difference in the final coordinates. |
| 533 | * |
| 534 | * In particular, let delta be defined as |
| 535 | * |
| 536 | * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and |
| 537 | * C x + C'p + c >= 0 and |
| 538 | * D x + D'p + d >= 0 } |
| 539 | * |
| 540 | * where the constraints C x + C'p + c >= 0 are such that the parametric |
| 541 | * constant term of each constraint j, "C_j x + C'_j p + c_j", |
| 542 | * can never attain positive values, then the relation is constructed as |
| 543 | * |
| 544 | * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and |
| 545 | * A f + k a >= 0 and B p + b >= 0 and |
| 546 | * C f + C'p + c >= 0 and k >= 1 } |
| 547 | * union { [x] -> [x] } |
| 548 | * |
| 549 | * If the zero-length paths happen to correspond exactly to the identity |
| 550 | * mapping, then we return |
| 551 | * |
| 552 | * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and |
| 553 | * A f + k a >= 0 and B p + b >= 0 and |
| 554 | * C f + C'p + c >= 0 and k >= 0 } |
| 555 | * |
| 556 | * instead. |
| 557 | * |
| 558 | * Existentially quantified variables in \delta are handled by |
| 559 | * classifying them as independent of the parameters, purely |
| 560 | * parameter dependent and others. Constraints containing |
| 561 | * any of the other existentially quantified variables are removed. |
| 562 | * This is safe, but leads to an additional overapproximation. |
| 563 | * |
| 564 | * If there are any impure constraints, then we also eliminate |
| 565 | * the parameters from \delta, resulting in a set |
| 566 | * |
| 567 | * \delta' = { [x] : E x + e >= 0 } |
| 568 | * |
| 569 | * and add the constraints |
| 570 | * |
| 571 | * E f + k e >= 0 |
| 572 | * |
| 573 | * to the constructed relation. |
| 574 | */ |
| 575 | static __isl_give isl_map *path_along_delta(__isl_take isl_space *space, |
| 576 | __isl_take isl_basic_set *delta) |
| 577 | { |
| 578 | isl_basic_map *path = NULL; |
| 579 | isl_size d; |
| 580 | isl_size n_div; |
| 581 | isl_size nparam; |
| 582 | isl_size total; |
| 583 | unsigned off; |
| 584 | int i, k; |
| 585 | isl_bool is_id; |
| 586 | int *div_purity = NULL; |
| 587 | int impurity = 0; |
| 588 | |
| 589 | n_div = isl_basic_set_dim(bset: delta, type: isl_dim_div); |
| 590 | d = isl_basic_set_dim(bset: delta, type: isl_dim_set); |
| 591 | nparam = isl_basic_set_dim(bset: delta, type: isl_dim_param); |
| 592 | if (n_div < 0 || d < 0 || nparam < 0) |
| 593 | goto error; |
| 594 | path = isl_basic_map_alloc_space(space: isl_space_copy(space), extra: n_div + d + 1, |
| 595 | n_eq: d + 1 + delta->n_eq, n_ineq: delta->n_eq + delta->n_ineq + 1); |
| 596 | off = 1 + nparam + 2 * (d + 1) + n_div; |
| 597 | |
| 598 | for (i = 0; i < n_div + d + 1; ++i) { |
| 599 | k = isl_basic_map_alloc_div(bmap: path); |
| 600 | if (k < 0) |
| 601 | goto error; |
| 602 | isl_int_set_si(path->div[k][0], 0); |
| 603 | } |
| 604 | |
| 605 | total = isl_basic_map_dim(bmap: path, type: isl_dim_all); |
| 606 | if (total < 0) |
| 607 | goto error; |
| 608 | for (i = 0; i < d + 1; ++i) { |
| 609 | k = isl_basic_map_alloc_equality(bmap: path); |
| 610 | if (k < 0) |
| 611 | goto error; |
| 612 | isl_seq_clr(p: path->eq[k], len: 1 + total); |
| 613 | isl_int_set_si(path->eq[k][1 + nparam + i], 1); |
| 614 | isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1); |
| 615 | isl_int_set_si(path->eq[k][off + i], 1); |
| 616 | } |
| 617 | |
| 618 | div_purity = get_div_purity(bset: delta); |
| 619 | if (n_div && !div_purity) |
| 620 | goto error; |
| 621 | |
| 622 | path = add_delta_constraints(path, delta, off, nparam, d, |
| 623 | div_purity, eq: 1, impurity: &impurity); |
| 624 | path = add_delta_constraints(path, delta, off, nparam, d, |
| 625 | div_purity, eq: 0, impurity: &impurity); |
| 626 | if (impurity) { |
| 627 | isl_space *space = isl_basic_set_get_space(bset: delta); |
| 628 | delta = isl_basic_set_project_out(bset: delta, |
| 629 | type: isl_dim_param, first: 0, n: nparam); |
| 630 | delta = isl_basic_set_add_dims(bset: delta, type: isl_dim_param, n: nparam); |
| 631 | delta = isl_basic_set_reset_space(bset: delta, space); |
| 632 | if (!delta) |
| 633 | goto error; |
| 634 | path = isl_basic_map_extend_constraints(base: path, n_eq: delta->n_eq, |
| 635 | n_ineq: delta->n_ineq + 1); |
| 636 | path = add_delta_constraints(path, delta, off, nparam, d, |
| 637 | NULL, eq: 1, NULL); |
| 638 | path = add_delta_constraints(path, delta, off, nparam, d, |
| 639 | NULL, eq: 0, NULL); |
| 640 | path = isl_basic_map_gauss(bmap: path, NULL); |
| 641 | } |
| 642 | |
| 643 | is_id = empty_path_is_identity(path, pos: n_div + d); |
| 644 | if (is_id < 0) |
| 645 | goto error; |
| 646 | |
| 647 | k = isl_basic_map_alloc_inequality(bmap: path); |
| 648 | if (k < 0) |
| 649 | goto error; |
| 650 | isl_seq_clr(p: path->ineq[k], len: 1 + total); |
| 651 | if (!is_id) |
| 652 | isl_int_set_si(path->ineq[k][0], -1); |
| 653 | isl_int_set_si(path->ineq[k][off + d], 1); |
| 654 | |
| 655 | free(ptr: div_purity); |
| 656 | isl_basic_set_free(bset: delta); |
| 657 | path = isl_basic_map_finalize(bmap: path); |
| 658 | if (is_id) { |
| 659 | isl_space_free(space); |
| 660 | return isl_map_from_basic_map(bmap: path); |
| 661 | } |
| 662 | return isl_basic_map_union(bmap1: path, bmap2: isl_basic_map_identity(space)); |
| 663 | error: |
| 664 | free(ptr: div_purity); |
| 665 | isl_space_free(space); |
| 666 | isl_basic_set_free(bset: delta); |
| 667 | isl_basic_map_free(bmap: path); |
| 668 | return NULL; |
| 669 | } |
| 670 | |
| 671 | /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param", |
| 672 | * construct a map that equates the parameter to the difference |
| 673 | * in the final coordinates and imposes that this difference is positive. |
| 674 | * That is, construct |
| 675 | * |
| 676 | * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 } |
| 677 | */ |
| 678 | static __isl_give isl_map *equate_parameter_to_length( |
| 679 | __isl_take isl_space *space, unsigned param) |
| 680 | { |
| 681 | struct isl_basic_map *bmap; |
| 682 | isl_size d; |
| 683 | isl_size nparam; |
| 684 | isl_size total; |
| 685 | int k; |
| 686 | |
| 687 | d = isl_space_dim(space, type: isl_dim_in); |
| 688 | nparam = isl_space_dim(space, type: isl_dim_param); |
| 689 | total = isl_space_dim(space, type: isl_dim_all); |
| 690 | if (d < 0 || nparam < 0 || total < 0) |
| 691 | space = isl_space_free(space); |
| 692 | bmap = isl_basic_map_alloc_space(space, extra: 0, n_eq: 1, n_ineq: 1); |
| 693 | k = isl_basic_map_alloc_equality(bmap); |
| 694 | if (k < 0) |
| 695 | goto error; |
| 696 | isl_seq_clr(p: bmap->eq[k], len: 1 + total); |
| 697 | isl_int_set_si(bmap->eq[k][1 + param], -1); |
| 698 | isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1); |
| 699 | isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1); |
| 700 | |
| 701 | k = isl_basic_map_alloc_inequality(bmap); |
| 702 | if (k < 0) |
| 703 | goto error; |
| 704 | isl_seq_clr(p: bmap->ineq[k], len: 1 + total); |
| 705 | isl_int_set_si(bmap->ineq[k][1 + param], 1); |
| 706 | isl_int_set_si(bmap->ineq[k][0], -1); |
| 707 | |
| 708 | bmap = isl_basic_map_finalize(bmap); |
| 709 | return isl_map_from_basic_map(bmap); |
| 710 | error: |
| 711 | isl_basic_map_free(bmap); |
| 712 | return NULL; |
| 713 | } |
| 714 | |
| 715 | /* Check whether "path" is acyclic, where the last coordinates of domain |
| 716 | * and range of path encode the number of steps taken. |
| 717 | * That is, check whether |
| 718 | * |
| 719 | * { d | d = y - x and (x,y) in path } |
| 720 | * |
| 721 | * does not contain any element with positive last coordinate (positive length) |
| 722 | * and zero remaining coordinates (cycle). |
| 723 | */ |
| 724 | static isl_bool is_acyclic(__isl_take isl_map *path) |
| 725 | { |
| 726 | int i; |
| 727 | isl_bool acyclic; |
| 728 | isl_size dim; |
| 729 | struct isl_set *delta; |
| 730 | |
| 731 | delta = isl_map_deltas(map: path); |
| 732 | dim = isl_set_dim(set: delta, type: isl_dim_set); |
| 733 | if (dim < 0) |
| 734 | delta = isl_set_free(set: delta); |
| 735 | for (i = 0; i < dim; ++i) { |
| 736 | if (i == dim -1) |
| 737 | delta = isl_set_lower_bound_si(set: delta, type: isl_dim_set, pos: i, value: 1); |
| 738 | else |
| 739 | delta = isl_set_fix_si(set: delta, type: isl_dim_set, pos: i, value: 0); |
| 740 | } |
| 741 | |
| 742 | acyclic = isl_set_is_empty(set: delta); |
| 743 | isl_set_free(set: delta); |
| 744 | |
| 745 | return acyclic; |
| 746 | } |
| 747 | |
| 748 | /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D |
| 749 | * and a dimension specification (Z^{n+1} -> Z^{n+1}), |
| 750 | * construct a map that is an overapproximation of the map |
| 751 | * that takes an element from the space D \times Z to another |
| 752 | * element from the same space, such that the first n coordinates of the |
| 753 | * difference between them is a sum of differences between images |
| 754 | * and pre-images in one of the R_i and such that the last coordinate |
| 755 | * is equal to the number of steps taken. |
| 756 | * That is, let |
| 757 | * |
| 758 | * \Delta_i = { y - x | (x, y) in R_i } |
| 759 | * |
| 760 | * then the constructed map is an overapproximation of |
| 761 | * |
| 762 | * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : |
| 763 | * d = (\sum_i k_i \delta_i, \sum_i k_i) } |
| 764 | * |
| 765 | * The elements of the singleton \Delta_i's are collected as the |
| 766 | * rows of the steps matrix. For all these \Delta_i's together, |
| 767 | * a single path is constructed. |
| 768 | * For each of the other \Delta_i's, we compute an overapproximation |
| 769 | * of the paths along elements of \Delta_i. |
| 770 | * Since each of these paths performs an addition, composition is |
| 771 | * symmetric and we can simply compose all resulting paths in any order. |
| 772 | */ |
| 773 | static __isl_give isl_map *construct_extended_path(__isl_take isl_space *space, |
| 774 | __isl_keep isl_map *map, int *project) |
| 775 | { |
| 776 | struct isl_mat *steps = NULL; |
| 777 | struct isl_map *path = NULL; |
| 778 | isl_size d; |
| 779 | int i, j, n; |
| 780 | |
| 781 | d = isl_map_dim(map, type: isl_dim_in); |
| 782 | if (d < 0) |
| 783 | goto error; |
| 784 | |
| 785 | path = isl_map_identity(space: isl_space_copy(space)); |
| 786 | |
| 787 | steps = isl_mat_alloc(ctx: map->ctx, n_row: map->n, n_col: d); |
| 788 | if (!steps) |
| 789 | goto error; |
| 790 | |
| 791 | n = 0; |
| 792 | for (i = 0; i < map->n; ++i) { |
| 793 | struct isl_basic_set *delta; |
| 794 | |
| 795 | delta = isl_basic_map_deltas(bmap: isl_basic_map_copy(bmap: map->p[i])); |
| 796 | |
| 797 | for (j = 0; j < d; ++j) { |
| 798 | isl_bool fixed; |
| 799 | |
| 800 | fixed = isl_basic_set_plain_dim_is_fixed(bset: delta, dim: j, |
| 801 | val: &steps->row[n][j]); |
| 802 | if (fixed < 0) { |
| 803 | isl_basic_set_free(bset: delta); |
| 804 | goto error; |
| 805 | } |
| 806 | if (!fixed) |
| 807 | break; |
| 808 | } |
| 809 | |
| 810 | |
| 811 | if (j < d) { |
| 812 | path = isl_map_apply_range(map1: path, |
| 813 | map2: path_along_delta(space: isl_space_copy(space), delta)); |
| 814 | path = isl_map_coalesce(map: path); |
| 815 | } else { |
| 816 | isl_basic_set_free(bset: delta); |
| 817 | ++n; |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | if (n > 0) { |
| 822 | steps->n_row = n; |
| 823 | path = isl_map_apply_range(map1: path, |
| 824 | map2: path_along_steps(space: isl_space_copy(space), steps)); |
| 825 | } |
| 826 | |
| 827 | if (project && *project) { |
| 828 | *project = is_acyclic(path: isl_map_copy(map: path)); |
| 829 | if (*project < 0) |
| 830 | goto error; |
| 831 | } |
| 832 | |
| 833 | isl_space_free(space); |
| 834 | isl_mat_free(mat: steps); |
| 835 | return path; |
| 836 | error: |
| 837 | isl_space_free(space); |
| 838 | isl_mat_free(mat: steps); |
| 839 | isl_map_free(map: path); |
| 840 | return NULL; |
| 841 | } |
| 842 | |
| 843 | static isl_bool isl_set_overlaps(__isl_keep isl_set *set1, |
| 844 | __isl_keep isl_set *set2) |
| 845 | { |
| 846 | return isl_bool_not(b: isl_set_is_disjoint(set1, set2)); |
| 847 | } |
| 848 | |
| 849 | /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D |
| 850 | * and a dimension specification (Z^{n+1} -> Z^{n+1}), |
| 851 | * construct a map that is an overapproximation of the map |
| 852 | * that takes an element from the dom R \times Z to an |
| 853 | * element from ran R \times Z, such that the first n coordinates of the |
| 854 | * difference between them is a sum of differences between images |
| 855 | * and pre-images in one of the R_i and such that the last coordinate |
| 856 | * is equal to the number of steps taken. |
| 857 | * That is, let |
| 858 | * |
| 859 | * \Delta_i = { y - x | (x, y) in R_i } |
| 860 | * |
| 861 | * then the constructed map is an overapproximation of |
| 862 | * |
| 863 | * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : |
| 864 | * d = (\sum_i k_i \delta_i, \sum_i k_i) and |
| 865 | * x in dom R and x + d in ran R and |
| 866 | * \sum_i k_i >= 1 } |
| 867 | */ |
| 868 | static __isl_give isl_map *construct_component(__isl_take isl_space *space, |
| 869 | __isl_keep isl_map *map, isl_bool *exact, int project) |
| 870 | { |
| 871 | struct isl_set *domain = NULL; |
| 872 | struct isl_set *range = NULL; |
| 873 | struct isl_map *app = NULL; |
| 874 | struct isl_map *path = NULL; |
| 875 | isl_bool overlaps; |
| 876 | int check; |
| 877 | |
| 878 | domain = isl_map_domain(bmap: isl_map_copy(map)); |
| 879 | domain = isl_set_coalesce(set: domain); |
| 880 | range = isl_map_range(map: isl_map_copy(map)); |
| 881 | range = isl_set_coalesce(set: range); |
| 882 | overlaps = isl_set_overlaps(set1: domain, set2: range); |
| 883 | if (overlaps < 0 || !overlaps) { |
| 884 | isl_set_free(set: domain); |
| 885 | isl_set_free(set: range); |
| 886 | isl_space_free(space); |
| 887 | |
| 888 | if (overlaps < 0) |
| 889 | map = NULL; |
| 890 | map = isl_map_copy(map); |
| 891 | map = isl_map_add_dims(map, type: isl_dim_in, n: 1); |
| 892 | map = isl_map_add_dims(map, type: isl_dim_out, n: 1); |
| 893 | map = set_path_length(map, exactly: 1, length: 1); |
| 894 | return map; |
| 895 | } |
| 896 | app = isl_map_from_domain_and_range(domain, range); |
| 897 | app = isl_map_add_dims(map: app, type: isl_dim_in, n: 1); |
| 898 | app = isl_map_add_dims(map: app, type: isl_dim_out, n: 1); |
| 899 | |
| 900 | check = exact && *exact == isl_bool_true; |
| 901 | path = construct_extended_path(space: isl_space_copy(space), map, |
| 902 | project: check ? &project : NULL); |
| 903 | app = isl_map_intersect(map1: app, map2: path); |
| 904 | |
| 905 | if (check && |
| 906 | (*exact = check_exactness(map: isl_map_copy(map), app: isl_map_copy(map: app), |
| 907 | project)) < 0) |
| 908 | goto error; |
| 909 | |
| 910 | isl_space_free(space); |
| 911 | app = set_path_length(map: app, exactly: 0, length: 1); |
| 912 | return app; |
| 913 | error: |
| 914 | isl_space_free(space); |
| 915 | isl_map_free(map: app); |
| 916 | return NULL; |
| 917 | } |
| 918 | |
| 919 | /* Call construct_component and, if "project" is set, project out |
| 920 | * the final coordinates. |
| 921 | */ |
| 922 | static __isl_give isl_map *construct_projected_component( |
| 923 | __isl_take isl_space *space, |
| 924 | __isl_keep isl_map *map, isl_bool *exact, int project) |
| 925 | { |
| 926 | isl_map *app; |
| 927 | unsigned d; |
| 928 | |
| 929 | if (!space) |
| 930 | return NULL; |
| 931 | d = isl_space_dim(space, type: isl_dim_in); |
| 932 | |
| 933 | app = construct_component(space, map, exact, project); |
| 934 | if (project) { |
| 935 | app = isl_map_project_out(map: app, type: isl_dim_in, first: d - 1, n: 1); |
| 936 | app = isl_map_project_out(map: app, type: isl_dim_out, first: d - 1, n: 1); |
| 937 | } |
| 938 | return app; |
| 939 | } |
| 940 | |
| 941 | /* Compute an extended version, i.e., with path lengths, of |
| 942 | * an overapproximation of the transitive closure of "bmap" |
| 943 | * with path lengths greater than or equal to zero and with |
| 944 | * domain and range equal to "dom". |
| 945 | */ |
| 946 | static __isl_give isl_map *q_closure(__isl_take isl_space *space, |
| 947 | __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, |
| 948 | isl_bool *exact) |
| 949 | { |
| 950 | int project = 1; |
| 951 | isl_map *path; |
| 952 | isl_map *map; |
| 953 | isl_map *app; |
| 954 | |
| 955 | dom = isl_set_add_dims(set: dom, type: isl_dim_set, n: 1); |
| 956 | app = isl_map_from_domain_and_range(domain: dom, range: isl_set_copy(set: dom)); |
| 957 | map = isl_map_from_basic_map(bmap: isl_basic_map_copy(bmap)); |
| 958 | path = construct_extended_path(space, map, project: &project); |
| 959 | app = isl_map_intersect(map1: app, map2: path); |
| 960 | |
| 961 | if ((*exact = check_exactness(map, app: isl_map_copy(map: app), project)) < 0) |
| 962 | goto error; |
| 963 | |
| 964 | return app; |
| 965 | error: |
| 966 | isl_map_free(map: app); |
| 967 | return NULL; |
| 968 | } |
| 969 | |
| 970 | /* Check whether qc has any elements of length at least one |
| 971 | * with domain and/or range outside of dom and ran. |
| 972 | */ |
| 973 | static isl_bool has_spurious_elements(__isl_keep isl_map *qc, |
| 974 | __isl_keep isl_set *dom, __isl_keep isl_set *ran) |
| 975 | { |
| 976 | isl_set *s; |
| 977 | isl_bool subset; |
| 978 | isl_size d; |
| 979 | |
| 980 | d = isl_map_dim(map: qc, type: isl_dim_in); |
| 981 | if (d < 0 || !dom || !ran) |
| 982 | return isl_bool_error; |
| 983 | |
| 984 | qc = isl_map_copy(map: qc); |
| 985 | qc = set_path_length(map: qc, exactly: 0, length: 1); |
| 986 | qc = isl_map_project_out(map: qc, type: isl_dim_in, first: d - 1, n: 1); |
| 987 | qc = isl_map_project_out(map: qc, type: isl_dim_out, first: d - 1, n: 1); |
| 988 | |
| 989 | s = isl_map_domain(bmap: isl_map_copy(map: qc)); |
| 990 | subset = isl_set_is_subset(set1: s, set2: dom); |
| 991 | isl_set_free(set: s); |
| 992 | if (subset < 0) |
| 993 | goto error; |
| 994 | if (!subset) { |
| 995 | isl_map_free(map: qc); |
| 996 | return isl_bool_true; |
| 997 | } |
| 998 | |
| 999 | s = isl_map_range(map: qc); |
| 1000 | subset = isl_set_is_subset(set1: s, set2: ran); |
| 1001 | isl_set_free(set: s); |
| 1002 | |
| 1003 | return isl_bool_not(b: subset); |
| 1004 | error: |
| 1005 | isl_map_free(map: qc); |
| 1006 | return isl_bool_error; |
| 1007 | } |
| 1008 | |
| 1009 | #define LEFT 2 |
| 1010 | #define RIGHT 1 |
| 1011 | |
| 1012 | /* For each basic map in "map", except i, check whether it combines |
| 1013 | * with the transitive closure that is reflexive on C combines |
| 1014 | * to the left and to the right. |
| 1015 | * |
| 1016 | * In particular, if |
| 1017 | * |
| 1018 | * dom map_j \subseteq C |
| 1019 | * |
| 1020 | * then right[j] is set to 1. Otherwise, if |
| 1021 | * |
| 1022 | * ran map_i \cap dom map_j = \emptyset |
| 1023 | * |
| 1024 | * then right[j] is set to 0. Otherwise, composing to the right |
| 1025 | * is impossible. |
| 1026 | * |
| 1027 | * Similar, for composing to the left, we have if |
| 1028 | * |
| 1029 | * ran map_j \subseteq C |
| 1030 | * |
| 1031 | * then left[j] is set to 1. Otherwise, if |
| 1032 | * |
| 1033 | * dom map_i \cap ran map_j = \emptyset |
| 1034 | * |
| 1035 | * then left[j] is set to 0. Otherwise, composing to the left |
| 1036 | * is impossible. |
| 1037 | * |
| 1038 | * The return value is or'd with LEFT if composing to the left |
| 1039 | * is possible and with RIGHT if composing to the right is possible. |
| 1040 | */ |
| 1041 | static int composability(__isl_keep isl_set *C, int i, |
| 1042 | isl_set **dom, isl_set **ran, int *left, int *right, |
| 1043 | __isl_keep isl_map *map) |
| 1044 | { |
| 1045 | int j; |
| 1046 | int ok; |
| 1047 | |
| 1048 | ok = LEFT | RIGHT; |
| 1049 | for (j = 0; j < map->n && ok; ++j) { |
| 1050 | isl_bool overlaps, subset; |
| 1051 | if (j == i) |
| 1052 | continue; |
| 1053 | |
| 1054 | if (ok & RIGHT) { |
| 1055 | if (!dom[j]) |
| 1056 | dom[j] = isl_set_from_basic_set( |
| 1057 | bset: isl_basic_map_domain( |
| 1058 | bmap: isl_basic_map_copy(bmap: map->p[j]))); |
| 1059 | if (!dom[j]) |
| 1060 | return -1; |
| 1061 | overlaps = isl_set_overlaps(set1: ran[i], set2: dom[j]); |
| 1062 | if (overlaps < 0) |
| 1063 | return -1; |
| 1064 | if (!overlaps) |
| 1065 | right[j] = 0; |
| 1066 | else { |
| 1067 | subset = isl_set_is_subset(set1: dom[j], set2: C); |
| 1068 | if (subset < 0) |
| 1069 | return -1; |
| 1070 | if (subset) |
| 1071 | right[j] = 1; |
| 1072 | else |
| 1073 | ok &= ~RIGHT; |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | if (ok & LEFT) { |
| 1078 | if (!ran[j]) |
| 1079 | ran[j] = isl_set_from_basic_set( |
| 1080 | bset: isl_basic_map_range( |
| 1081 | bmap: isl_basic_map_copy(bmap: map->p[j]))); |
| 1082 | if (!ran[j]) |
| 1083 | return -1; |
| 1084 | overlaps = isl_set_overlaps(set1: dom[i], set2: ran[j]); |
| 1085 | if (overlaps < 0) |
| 1086 | return -1; |
| 1087 | if (!overlaps) |
| 1088 | left[j] = 0; |
| 1089 | else { |
| 1090 | subset = isl_set_is_subset(set1: ran[j], set2: C); |
| 1091 | if (subset < 0) |
| 1092 | return -1; |
| 1093 | if (subset) |
| 1094 | left[j] = 1; |
| 1095 | else |
| 1096 | ok &= ~LEFT; |
| 1097 | } |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | return ok; |
| 1102 | } |
| 1103 | |
| 1104 | static __isl_give isl_map *anonymize(__isl_take isl_map *map) |
| 1105 | { |
| 1106 | map = isl_map_reset(map, type: isl_dim_in); |
| 1107 | map = isl_map_reset(map, type: isl_dim_out); |
| 1108 | return map; |
| 1109 | } |
| 1110 | |
| 1111 | /* Return a map that is a union of the basic maps in "map", except i, |
| 1112 | * composed to left and right with qc based on the entries of "left" |
| 1113 | * and "right". |
| 1114 | */ |
| 1115 | static __isl_give isl_map *compose(__isl_keep isl_map *map, int i, |
| 1116 | __isl_take isl_map *qc, int *left, int *right) |
| 1117 | { |
| 1118 | int j; |
| 1119 | isl_map *comp; |
| 1120 | |
| 1121 | comp = isl_map_empty(space: isl_map_get_space(map)); |
| 1122 | for (j = 0; j < map->n; ++j) { |
| 1123 | isl_map *map_j; |
| 1124 | |
| 1125 | if (j == i) |
| 1126 | continue; |
| 1127 | |
| 1128 | map_j = isl_map_from_basic_map(bmap: isl_basic_map_copy(bmap: map->p[j])); |
| 1129 | map_j = anonymize(map: map_j); |
| 1130 | if (left && left[j]) |
| 1131 | map_j = isl_map_apply_range(map1: map_j, map2: isl_map_copy(map: qc)); |
| 1132 | if (right && right[j]) |
| 1133 | map_j = isl_map_apply_range(map1: isl_map_copy(map: qc), map2: map_j); |
| 1134 | comp = isl_map_union(map1: comp, map2: map_j); |
| 1135 | } |
| 1136 | |
| 1137 | comp = isl_map_compute_divs(map: comp); |
| 1138 | comp = isl_map_coalesce(map: comp); |
| 1139 | |
| 1140 | isl_map_free(map: qc); |
| 1141 | |
| 1142 | return comp; |
| 1143 | } |
| 1144 | |
| 1145 | /* Compute the transitive closure of "map" incrementally by |
| 1146 | * computing |
| 1147 | * |
| 1148 | * map_i^+ \cup qc^+ |
| 1149 | * |
| 1150 | * or |
| 1151 | * |
| 1152 | * map_i^+ \cup ((id \cup map_i^) \circ qc^+) |
| 1153 | * |
| 1154 | * or |
| 1155 | * |
| 1156 | * map_i^+ \cup (qc^+ \circ (id \cup map_i^)) |
| 1157 | * |
| 1158 | * depending on whether left or right are NULL. |
| 1159 | */ |
| 1160 | static __isl_give isl_map *compute_incremental( |
| 1161 | __isl_take isl_space *space, __isl_keep isl_map *map, |
| 1162 | int i, __isl_take isl_map *qc, int *left, int *right, isl_bool *exact) |
| 1163 | { |
| 1164 | isl_map *map_i; |
| 1165 | isl_map *tc; |
| 1166 | isl_map *rtc = NULL; |
| 1167 | |
| 1168 | if (!map) |
| 1169 | goto error; |
| 1170 | isl_assert(map->ctx, left || right, goto error); |
| 1171 | |
| 1172 | map_i = isl_map_from_basic_map(bmap: isl_basic_map_copy(bmap: map->p[i])); |
| 1173 | tc = construct_projected_component(space: isl_space_copy(space), map: map_i, |
| 1174 | exact, project: 1); |
| 1175 | isl_map_free(map: map_i); |
| 1176 | |
| 1177 | if (*exact) |
| 1178 | qc = isl_map_transitive_closure(map: qc, exact); |
| 1179 | |
| 1180 | if (!*exact) { |
| 1181 | isl_space_free(space); |
| 1182 | isl_map_free(map: tc); |
| 1183 | isl_map_free(map: qc); |
| 1184 | return isl_map_universe(space: isl_map_get_space(map)); |
| 1185 | } |
| 1186 | |
| 1187 | if (!left || !right) |
| 1188 | rtc = isl_map_union(map1: isl_map_copy(map: tc), |
| 1189 | map2: isl_map_identity(space: isl_map_get_space(map: tc))); |
| 1190 | if (!right) |
| 1191 | qc = isl_map_apply_range(map1: rtc, map2: qc); |
| 1192 | if (!left) |
| 1193 | qc = isl_map_apply_range(map1: qc, map2: rtc); |
| 1194 | qc = isl_map_union(map1: tc, map2: qc); |
| 1195 | |
| 1196 | isl_space_free(space); |
| 1197 | |
| 1198 | return qc; |
| 1199 | error: |
| 1200 | isl_space_free(space); |
| 1201 | isl_map_free(map: qc); |
| 1202 | return NULL; |
| 1203 | } |
| 1204 | |
| 1205 | /* Given a map "map", try to find a basic map such that |
| 1206 | * map^+ can be computed as |
| 1207 | * |
| 1208 | * map^+ = map_i^+ \cup |
| 1209 | * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+ |
| 1210 | * |
| 1211 | * with C the simple hull of the domain and range of the input map. |
| 1212 | * map_i^ \cup Id_C is computed by allowing the path lengths to be zero |
| 1213 | * and by intersecting domain and range with C. |
| 1214 | * Of course, we need to check that this is actually equal to map_i^ \cup Id_C. |
| 1215 | * Also, we only use the incremental computation if all the transitive |
| 1216 | * closures are exact and if the number of basic maps in the union, |
| 1217 | * after computing the integer divisions, is smaller than the number |
| 1218 | * of basic maps in the input map. |
| 1219 | */ |
| 1220 | static isl_bool incremental_on_entire_domain(__isl_keep isl_space *space, |
| 1221 | __isl_keep isl_map *map, |
| 1222 | isl_set **dom, isl_set **ran, int *left, int *right, |
| 1223 | __isl_give isl_map **res) |
| 1224 | { |
| 1225 | int i; |
| 1226 | isl_set *C; |
| 1227 | isl_size d; |
| 1228 | |
| 1229 | *res = NULL; |
| 1230 | |
| 1231 | d = isl_map_dim(map, type: isl_dim_in); |
| 1232 | if (d < 0) |
| 1233 | return isl_bool_error; |
| 1234 | |
| 1235 | C = isl_set_union(set1: isl_map_domain(bmap: isl_map_copy(map)), |
| 1236 | set2: isl_map_range(map: isl_map_copy(map))); |
| 1237 | C = isl_set_from_basic_set(bset: isl_set_simple_hull(set: C)); |
| 1238 | if (!C) |
| 1239 | return isl_bool_error; |
| 1240 | if (C->n != 1) { |
| 1241 | isl_set_free(set: C); |
| 1242 | return isl_bool_false; |
| 1243 | } |
| 1244 | |
| 1245 | for (i = 0; i < map->n; ++i) { |
| 1246 | isl_map *qc; |
| 1247 | isl_bool exact_i; |
| 1248 | isl_bool spurious; |
| 1249 | int j; |
| 1250 | dom[i] = isl_set_from_basic_set(bset: isl_basic_map_domain( |
| 1251 | bmap: isl_basic_map_copy(bmap: map->p[i]))); |
| 1252 | ran[i] = isl_set_from_basic_set(bset: isl_basic_map_range( |
| 1253 | bmap: isl_basic_map_copy(bmap: map->p[i]))); |
| 1254 | qc = q_closure(space: isl_space_copy(space), dom: isl_set_copy(set: C), |
| 1255 | bmap: map->p[i], exact: &exact_i); |
| 1256 | if (!qc) |
| 1257 | goto error; |
| 1258 | if (!exact_i) { |
| 1259 | isl_map_free(map: qc); |
| 1260 | continue; |
| 1261 | } |
| 1262 | spurious = has_spurious_elements(qc, dom: dom[i], ran: ran[i]); |
| 1263 | if (spurious) { |
| 1264 | isl_map_free(map: qc); |
| 1265 | if (spurious < 0) |
| 1266 | goto error; |
| 1267 | continue; |
| 1268 | } |
| 1269 | qc = isl_map_project_out(map: qc, type: isl_dim_in, first: d, n: 1); |
| 1270 | qc = isl_map_project_out(map: qc, type: isl_dim_out, first: d, n: 1); |
| 1271 | qc = isl_map_compute_divs(map: qc); |
| 1272 | for (j = 0; j < map->n; ++j) |
| 1273 | left[j] = right[j] = 1; |
| 1274 | qc = compose(map, i, qc, left, right); |
| 1275 | if (!qc) |
| 1276 | goto error; |
| 1277 | if (qc->n >= map->n) { |
| 1278 | isl_map_free(map: qc); |
| 1279 | continue; |
| 1280 | } |
| 1281 | *res = compute_incremental(space: isl_space_copy(space), map, i, qc, |
| 1282 | left, right, exact: &exact_i); |
| 1283 | if (!*res) |
| 1284 | goto error; |
| 1285 | if (exact_i) |
| 1286 | break; |
| 1287 | isl_map_free(map: *res); |
| 1288 | *res = NULL; |
| 1289 | } |
| 1290 | |
| 1291 | isl_set_free(set: C); |
| 1292 | |
| 1293 | return isl_bool_ok(b: *res != NULL); |
| 1294 | error: |
| 1295 | isl_set_free(set: C); |
| 1296 | return isl_bool_error; |
| 1297 | } |
| 1298 | |
| 1299 | /* Try and compute the transitive closure of "map" as |
| 1300 | * |
| 1301 | * map^+ = map_i^+ \cup |
| 1302 | * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+ |
| 1303 | * |
| 1304 | * with C either the simple hull of the domain and range of the entire |
| 1305 | * map or the simple hull of domain and range of map_i. |
| 1306 | */ |
| 1307 | static __isl_give isl_map *incremental_closure(__isl_take isl_space *space, |
| 1308 | __isl_keep isl_map *map, isl_bool *exact, int project) |
| 1309 | { |
| 1310 | int i; |
| 1311 | isl_set **dom = NULL; |
| 1312 | isl_set **ran = NULL; |
| 1313 | int *left = NULL; |
| 1314 | int *right = NULL; |
| 1315 | isl_set *C; |
| 1316 | isl_size d; |
| 1317 | isl_map *res = NULL; |
| 1318 | |
| 1319 | if (!project) |
| 1320 | return construct_projected_component(space, map, exact, |
| 1321 | project); |
| 1322 | |
| 1323 | if (!map) |
| 1324 | goto error; |
| 1325 | if (map->n <= 1) |
| 1326 | return construct_projected_component(space, map, exact, |
| 1327 | project); |
| 1328 | |
| 1329 | d = isl_map_dim(map, type: isl_dim_in); |
| 1330 | if (d < 0) |
| 1331 | goto error; |
| 1332 | |
| 1333 | dom = isl_calloc_array(map->ctx, isl_set *, map->n); |
| 1334 | ran = isl_calloc_array(map->ctx, isl_set *, map->n); |
| 1335 | left = isl_calloc_array(map->ctx, int, map->n); |
| 1336 | right = isl_calloc_array(map->ctx, int, map->n); |
| 1337 | if (!ran || !dom || !left || !right) |
| 1338 | goto error; |
| 1339 | |
| 1340 | if (incremental_on_entire_domain(space, map, dom, ran, left, right, |
| 1341 | res: &res) < 0) |
| 1342 | goto error; |
| 1343 | |
| 1344 | for (i = 0; !res && i < map->n; ++i) { |
| 1345 | isl_map *qc; |
| 1346 | int comp; |
| 1347 | isl_bool exact_i, spurious; |
| 1348 | if (!dom[i]) |
| 1349 | dom[i] = isl_set_from_basic_set( |
| 1350 | bset: isl_basic_map_domain( |
| 1351 | bmap: isl_basic_map_copy(bmap: map->p[i]))); |
| 1352 | if (!dom[i]) |
| 1353 | goto error; |
| 1354 | if (!ran[i]) |
| 1355 | ran[i] = isl_set_from_basic_set( |
| 1356 | bset: isl_basic_map_range( |
| 1357 | bmap: isl_basic_map_copy(bmap: map->p[i]))); |
| 1358 | if (!ran[i]) |
| 1359 | goto error; |
| 1360 | C = isl_set_union(set1: isl_set_copy(set: dom[i]), |
| 1361 | set2: isl_set_copy(set: ran[i])); |
| 1362 | C = isl_set_from_basic_set(bset: isl_set_simple_hull(set: C)); |
| 1363 | if (!C) |
| 1364 | goto error; |
| 1365 | if (C->n != 1) { |
| 1366 | isl_set_free(set: C); |
| 1367 | continue; |
| 1368 | } |
| 1369 | comp = composability(C, i, dom, ran, left, right, map); |
| 1370 | if (!comp || comp < 0) { |
| 1371 | isl_set_free(set: C); |
| 1372 | if (comp < 0) |
| 1373 | goto error; |
| 1374 | continue; |
| 1375 | } |
| 1376 | qc = q_closure(space: isl_space_copy(space), dom: C, bmap: map->p[i], exact: &exact_i); |
| 1377 | if (!qc) |
| 1378 | goto error; |
| 1379 | if (!exact_i) { |
| 1380 | isl_map_free(map: qc); |
| 1381 | continue; |
| 1382 | } |
| 1383 | spurious = has_spurious_elements(qc, dom: dom[i], ran: ran[i]); |
| 1384 | if (spurious) { |
| 1385 | isl_map_free(map: qc); |
| 1386 | if (spurious < 0) |
| 1387 | goto error; |
| 1388 | continue; |
| 1389 | } |
| 1390 | qc = isl_map_project_out(map: qc, type: isl_dim_in, first: d, n: 1); |
| 1391 | qc = isl_map_project_out(map: qc, type: isl_dim_out, first: d, n: 1); |
| 1392 | qc = isl_map_compute_divs(map: qc); |
| 1393 | qc = compose(map, i, qc, left: (comp & LEFT) ? left : NULL, |
| 1394 | right: (comp & RIGHT) ? right : NULL); |
| 1395 | if (!qc) |
| 1396 | goto error; |
| 1397 | if (qc->n >= map->n) { |
| 1398 | isl_map_free(map: qc); |
| 1399 | continue; |
| 1400 | } |
| 1401 | res = compute_incremental(space: isl_space_copy(space), map, i, qc, |
| 1402 | left: (comp & LEFT) ? left : NULL, |
| 1403 | right: (comp & RIGHT) ? right : NULL, exact: &exact_i); |
| 1404 | if (!res) |
| 1405 | goto error; |
| 1406 | if (exact_i) |
| 1407 | break; |
| 1408 | isl_map_free(map: res); |
| 1409 | res = NULL; |
| 1410 | } |
| 1411 | |
| 1412 | for (i = 0; i < map->n; ++i) { |
| 1413 | isl_set_free(set: dom[i]); |
| 1414 | isl_set_free(set: ran[i]); |
| 1415 | } |
| 1416 | free(ptr: dom); |
| 1417 | free(ptr: ran); |
| 1418 | free(ptr: left); |
| 1419 | free(ptr: right); |
| 1420 | |
| 1421 | if (res) { |
| 1422 | isl_space_free(space); |
| 1423 | return res; |
| 1424 | } |
| 1425 | |
| 1426 | return construct_projected_component(space, map, exact, project); |
| 1427 | error: |
| 1428 | if (dom) |
| 1429 | for (i = 0; i < map->n; ++i) |
| 1430 | isl_set_free(set: dom[i]); |
| 1431 | free(ptr: dom); |
| 1432 | if (ran) |
| 1433 | for (i = 0; i < map->n; ++i) |
| 1434 | isl_set_free(set: ran[i]); |
| 1435 | free(ptr: ran); |
| 1436 | free(ptr: left); |
| 1437 | free(ptr: right); |
| 1438 | isl_space_free(space); |
| 1439 | return NULL; |
| 1440 | } |
| 1441 | |
| 1442 | /* Given an array of sets "set", add "dom" at position "pos" |
| 1443 | * and search for elements at earlier positions that overlap with "dom". |
| 1444 | * If any can be found, then merge all of them, together with "dom", into |
| 1445 | * a single set and assign the union to the first in the array, |
| 1446 | * which becomes the new group leader for all groups involved in the merge. |
| 1447 | * During the search, we only consider group leaders, i.e., those with |
| 1448 | * group[i] = i, as the other sets have already been combined |
| 1449 | * with one of the group leaders. |
| 1450 | */ |
| 1451 | static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos) |
| 1452 | { |
| 1453 | int i; |
| 1454 | |
| 1455 | group[pos] = pos; |
| 1456 | set[pos] = isl_set_copy(set: dom); |
| 1457 | |
| 1458 | for (i = pos - 1; i >= 0; --i) { |
| 1459 | isl_bool o; |
| 1460 | |
| 1461 | if (group[i] != i) |
| 1462 | continue; |
| 1463 | |
| 1464 | o = isl_set_overlaps(set1: set[i], set2: dom); |
| 1465 | if (o < 0) |
| 1466 | goto error; |
| 1467 | if (!o) |
| 1468 | continue; |
| 1469 | |
| 1470 | set[i] = isl_set_union(set1: set[i], set2: set[group[pos]]); |
| 1471 | set[group[pos]] = NULL; |
| 1472 | if (!set[i]) |
| 1473 | goto error; |
| 1474 | group[group[pos]] = i; |
| 1475 | group[pos] = i; |
| 1476 | } |
| 1477 | |
| 1478 | isl_set_free(set: dom); |
| 1479 | return 0; |
| 1480 | error: |
| 1481 | isl_set_free(set: dom); |
| 1482 | return -1; |
| 1483 | } |
| 1484 | |
| 1485 | /* Construct a map [x] -> [x+1], with parameters prescribed by "space". |
| 1486 | */ |
| 1487 | static __isl_give isl_map *increment(__isl_take isl_space *space) |
| 1488 | { |
| 1489 | int k; |
| 1490 | isl_basic_map *bmap; |
| 1491 | isl_size total; |
| 1492 | |
| 1493 | space = isl_space_set_from_params(space); |
| 1494 | space = isl_space_add_dims(space, type: isl_dim_set, n: 1); |
| 1495 | space = isl_space_map_from_set(space); |
| 1496 | bmap = isl_basic_map_alloc_space(space, extra: 0, n_eq: 1, n_ineq: 0); |
| 1497 | total = isl_basic_map_dim(bmap, type: isl_dim_all); |
| 1498 | k = isl_basic_map_alloc_equality(bmap); |
| 1499 | if (total < 0 || k < 0) |
| 1500 | goto error; |
| 1501 | isl_seq_clr(p: bmap->eq[k], len: 1 + total); |
| 1502 | isl_int_set_si(bmap->eq[k][0], 1); |
| 1503 | isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_in)], 1); |
| 1504 | isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_out)], -1); |
| 1505 | return isl_map_from_basic_map(bmap); |
| 1506 | error: |
| 1507 | isl_basic_map_free(bmap); |
| 1508 | return NULL; |
| 1509 | } |
| 1510 | |
| 1511 | /* Replace each entry in the n by n grid of maps by the cross product |
| 1512 | * with the relation { [i] -> [i + 1] }. |
| 1513 | */ |
| 1514 | static isl_stat add_length(__isl_keep isl_map *map, isl_map ***grid, int n) |
| 1515 | { |
| 1516 | int i, j; |
| 1517 | isl_space *space; |
| 1518 | isl_map *step; |
| 1519 | |
| 1520 | space = isl_space_params(space: isl_map_get_space(map)); |
| 1521 | step = increment(space); |
| 1522 | |
| 1523 | if (!step) |
| 1524 | return isl_stat_error; |
| 1525 | |
| 1526 | for (i = 0; i < n; ++i) |
| 1527 | for (j = 0; j < n; ++j) |
| 1528 | grid[i][j] = isl_map_product(map1: grid[i][j], |
| 1529 | map2: isl_map_copy(map: step)); |
| 1530 | |
| 1531 | isl_map_free(map: step); |
| 1532 | |
| 1533 | return isl_stat_ok; |
| 1534 | } |
| 1535 | |
| 1536 | /* The core of the Floyd-Warshall algorithm. |
| 1537 | * Updates the given n x x matrix of relations in place. |
| 1538 | * |
| 1539 | * The algorithm iterates over all vertices. In each step, the whole |
| 1540 | * matrix is updated to include all paths that go to the current vertex, |
| 1541 | * possibly stay there a while (including passing through earlier vertices) |
| 1542 | * and then come back. At the start of each iteration, the diagonal |
| 1543 | * element corresponding to the current vertex is replaced by its |
| 1544 | * transitive closure to account for all indirect paths that stay |
| 1545 | * in the current vertex. |
| 1546 | */ |
| 1547 | static void floyd_warshall_iterate(isl_map ***grid, int n, isl_bool *exact) |
| 1548 | { |
| 1549 | int r, p, q; |
| 1550 | |
| 1551 | for (r = 0; r < n; ++r) { |
| 1552 | isl_bool r_exact; |
| 1553 | int check = exact && *exact == isl_bool_true; |
| 1554 | grid[r][r] = isl_map_transitive_closure(map: grid[r][r], |
| 1555 | exact: check ? &r_exact : NULL); |
| 1556 | if (check && !r_exact) |
| 1557 | *exact = isl_bool_false; |
| 1558 | |
| 1559 | for (p = 0; p < n; ++p) |
| 1560 | for (q = 0; q < n; ++q) { |
| 1561 | isl_map *loop; |
| 1562 | if (p == r && q == r) |
| 1563 | continue; |
| 1564 | loop = isl_map_apply_range( |
| 1565 | map1: isl_map_copy(map: grid[p][r]), |
| 1566 | map2: isl_map_copy(map: grid[r][q])); |
| 1567 | grid[p][q] = isl_map_union(map1: grid[p][q], map2: loop); |
| 1568 | loop = isl_map_apply_range( |
| 1569 | map1: isl_map_copy(map: grid[p][r]), |
| 1570 | map2: isl_map_apply_range( |
| 1571 | map1: isl_map_copy(map: grid[r][r]), |
| 1572 | map2: isl_map_copy(map: grid[r][q]))); |
| 1573 | grid[p][q] = isl_map_union(map1: grid[p][q], map2: loop); |
| 1574 | grid[p][q] = isl_map_coalesce(map: grid[p][q]); |
| 1575 | } |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | /* Given a partition of the domains and ranges of the basic maps in "map", |
| 1580 | * apply the Floyd-Warshall algorithm with the elements in the partition |
| 1581 | * as vertices. |
| 1582 | * |
| 1583 | * In particular, there are "n" elements in the partition and "group" is |
| 1584 | * an array of length 2 * map->n with entries in [0,n-1]. |
| 1585 | * |
| 1586 | * We first construct a matrix of relations based on the partition information, |
| 1587 | * apply Floyd-Warshall on this matrix of relations and then take the |
| 1588 | * union of all entries in the matrix as the final result. |
| 1589 | * |
| 1590 | * If we are actually computing the power instead of the transitive closure, |
| 1591 | * i.e., when "project" is not set, then the result should have the |
| 1592 | * path lengths encoded as the difference between an extra pair of |
| 1593 | * coordinates. We therefore apply the nested transitive closures |
| 1594 | * to relations that include these lengths. In particular, we replace |
| 1595 | * the input relation by the cross product with the unit length relation |
| 1596 | * { [i] -> [i + 1] }. |
| 1597 | */ |
| 1598 | static __isl_give isl_map *floyd_warshall_with_groups( |
| 1599 | __isl_take isl_space *space, __isl_keep isl_map *map, |
| 1600 | isl_bool *exact, int project, int *group, int n) |
| 1601 | { |
| 1602 | int i, j, k; |
| 1603 | isl_map ***grid = NULL; |
| 1604 | isl_map *app; |
| 1605 | |
| 1606 | if (!map) |
| 1607 | goto error; |
| 1608 | |
| 1609 | if (n == 1) { |
| 1610 | free(ptr: group); |
| 1611 | return incremental_closure(space, map, exact, project); |
| 1612 | } |
| 1613 | |
| 1614 | grid = isl_calloc_array(map->ctx, isl_map **, n); |
| 1615 | if (!grid) |
| 1616 | goto error; |
| 1617 | for (i = 0; i < n; ++i) { |
| 1618 | grid[i] = isl_calloc_array(map->ctx, isl_map *, n); |
| 1619 | if (!grid[i]) |
| 1620 | goto error; |
| 1621 | for (j = 0; j < n; ++j) |
| 1622 | grid[i][j] = isl_map_empty(space: isl_map_get_space(map)); |
| 1623 | } |
| 1624 | |
| 1625 | for (k = 0; k < map->n; ++k) { |
| 1626 | i = group[2 * k]; |
| 1627 | j = group[2 * k + 1]; |
| 1628 | grid[i][j] = isl_map_union(map1: grid[i][j], |
| 1629 | map2: isl_map_from_basic_map( |
| 1630 | bmap: isl_basic_map_copy(bmap: map->p[k]))); |
| 1631 | } |
| 1632 | |
| 1633 | if (!project && add_length(map, grid, n) < 0) |
| 1634 | goto error; |
| 1635 | |
| 1636 | floyd_warshall_iterate(grid, n, exact); |
| 1637 | |
| 1638 | app = isl_map_empty(space: isl_map_get_space(map: grid[0][0])); |
| 1639 | |
| 1640 | for (i = 0; i < n; ++i) { |
| 1641 | for (j = 0; j < n; ++j) |
| 1642 | app = isl_map_union(map1: app, map2: grid[i][j]); |
| 1643 | free(ptr: grid[i]); |
| 1644 | } |
| 1645 | free(ptr: grid); |
| 1646 | |
| 1647 | free(ptr: group); |
| 1648 | isl_space_free(space); |
| 1649 | |
| 1650 | return app; |
| 1651 | error: |
| 1652 | if (grid) |
| 1653 | for (i = 0; i < n; ++i) { |
| 1654 | if (!grid[i]) |
| 1655 | continue; |
| 1656 | for (j = 0; j < n; ++j) |
| 1657 | isl_map_free(map: grid[i][j]); |
| 1658 | free(ptr: grid[i]); |
| 1659 | } |
| 1660 | free(ptr: grid); |
| 1661 | free(ptr: group); |
| 1662 | isl_space_free(space); |
| 1663 | return NULL; |
| 1664 | } |
| 1665 | |
| 1666 | /* Partition the domains and ranges of the n basic relations in list |
| 1667 | * into disjoint cells. |
| 1668 | * |
| 1669 | * To find the partition, we simply consider all of the domains |
| 1670 | * and ranges in turn and combine those that overlap. |
| 1671 | * "set" contains the partition elements and "group" indicates |
| 1672 | * to which partition element a given domain or range belongs. |
| 1673 | * The domain of basic map i corresponds to element 2 * i in these arrays, |
| 1674 | * while the domain corresponds to element 2 * i + 1. |
| 1675 | * During the construction group[k] is either equal to k, |
| 1676 | * in which case set[k] contains the union of all the domains and |
| 1677 | * ranges in the corresponding group, or is equal to some l < k, |
| 1678 | * with l another domain or range in the same group. |
| 1679 | */ |
| 1680 | static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n, |
| 1681 | isl_set ***set, int *n_group) |
| 1682 | { |
| 1683 | int i; |
| 1684 | int *group = NULL; |
| 1685 | int g; |
| 1686 | |
| 1687 | *set = isl_calloc_array(ctx, isl_set *, 2 * n); |
| 1688 | group = isl_alloc_array(ctx, int, 2 * n); |
| 1689 | |
| 1690 | if (!*set || !group) |
| 1691 | goto error; |
| 1692 | |
| 1693 | for (i = 0; i < n; ++i) { |
| 1694 | isl_set *dom; |
| 1695 | dom = isl_set_from_basic_set(bset: isl_basic_map_domain( |
| 1696 | bmap: isl_basic_map_copy(bmap: list[i]))); |
| 1697 | if (merge(set: *set, group, dom, pos: 2 * i) < 0) |
| 1698 | goto error; |
| 1699 | dom = isl_set_from_basic_set(bset: isl_basic_map_range( |
| 1700 | bmap: isl_basic_map_copy(bmap: list[i]))); |
| 1701 | if (merge(set: *set, group, dom, pos: 2 * i + 1) < 0) |
| 1702 | goto error; |
| 1703 | } |
| 1704 | |
| 1705 | g = 0; |
| 1706 | for (i = 0; i < 2 * n; ++i) |
| 1707 | if (group[i] == i) { |
| 1708 | if (g != i) { |
| 1709 | (*set)[g] = (*set)[i]; |
| 1710 | (*set)[i] = NULL; |
| 1711 | } |
| 1712 | group[i] = g++; |
| 1713 | } else |
| 1714 | group[i] = group[group[i]]; |
| 1715 | |
| 1716 | *n_group = g; |
| 1717 | |
| 1718 | return group; |
| 1719 | error: |
| 1720 | if (*set) { |
| 1721 | for (i = 0; i < 2 * n; ++i) |
| 1722 | isl_set_free(set: (*set)[i]); |
| 1723 | free(ptr: *set); |
| 1724 | *set = NULL; |
| 1725 | } |
| 1726 | free(ptr: group); |
| 1727 | return NULL; |
| 1728 | } |
| 1729 | |
| 1730 | /* Check if the domains and ranges of the basic maps in "map" can |
| 1731 | * be partitioned, and if so, apply Floyd-Warshall on the elements |
| 1732 | * of the partition. Note that we also apply this algorithm |
| 1733 | * if we want to compute the power, i.e., when "project" is not set. |
| 1734 | * However, the results are unlikely to be exact since the recursive |
| 1735 | * calls inside the Floyd-Warshall algorithm typically result in |
| 1736 | * non-linear path lengths quite quickly. |
| 1737 | */ |
| 1738 | static __isl_give isl_map *floyd_warshall(__isl_take isl_space *space, |
| 1739 | __isl_keep isl_map *map, isl_bool *exact, int project) |
| 1740 | { |
| 1741 | int i; |
| 1742 | isl_set **set = NULL; |
| 1743 | int *group = NULL; |
| 1744 | int n; |
| 1745 | |
| 1746 | if (!map) |
| 1747 | goto error; |
| 1748 | if (map->n <= 1) |
| 1749 | return incremental_closure(space, map, exact, project); |
| 1750 | |
| 1751 | group = setup_groups(ctx: map->ctx, list: map->p, n: map->n, set: &set, n_group: &n); |
| 1752 | if (!group) |
| 1753 | goto error; |
| 1754 | |
| 1755 | for (i = 0; i < 2 * map->n; ++i) |
| 1756 | isl_set_free(set: set[i]); |
| 1757 | |
| 1758 | free(ptr: set); |
| 1759 | |
| 1760 | return floyd_warshall_with_groups(space, map, exact, project, group, n); |
| 1761 | error: |
| 1762 | isl_space_free(space); |
| 1763 | return NULL; |
| 1764 | } |
| 1765 | |
| 1766 | /* Structure for representing the nodes of the graph of which |
| 1767 | * strongly connected components are being computed. |
| 1768 | * |
| 1769 | * list contains the actual nodes |
| 1770 | * check_closed is set if we may have used the fact that |
| 1771 | * a pair of basic maps can be interchanged |
| 1772 | */ |
| 1773 | struct isl_tc_follows_data { |
| 1774 | isl_basic_map **list; |
| 1775 | int check_closed; |
| 1776 | }; |
| 1777 | |
| 1778 | /* Check whether in the computation of the transitive closure |
| 1779 | * "list[i]" (R_1) should follow (or be part of the same component as) |
| 1780 | * "list[j]" (R_2). |
| 1781 | * |
| 1782 | * That is check whether |
| 1783 | * |
| 1784 | * R_1 \circ R_2 |
| 1785 | * |
| 1786 | * is a subset of |
| 1787 | * |
| 1788 | * R_2 \circ R_1 |
| 1789 | * |
| 1790 | * If so, then there is no reason for R_1 to immediately follow R_2 |
| 1791 | * in any path. |
| 1792 | * |
| 1793 | * *check_closed is set if the subset relation holds while |
| 1794 | * R_1 \circ R_2 is not empty. |
| 1795 | */ |
| 1796 | static isl_bool basic_map_follows(int i, int j, void *user) |
| 1797 | { |
| 1798 | struct isl_tc_follows_data *data = user; |
| 1799 | struct isl_map *map12 = NULL; |
| 1800 | struct isl_map *map21 = NULL; |
| 1801 | isl_bool applies, subset; |
| 1802 | |
| 1803 | applies = isl_basic_map_applies_range(bmap1: data->list[j], bmap2: data->list[i]); |
| 1804 | if (applies < 0) |
| 1805 | return isl_bool_error; |
| 1806 | if (!applies) |
| 1807 | return isl_bool_false; |
| 1808 | |
| 1809 | map21 = isl_map_from_basic_map( |
| 1810 | bmap: isl_basic_map_apply_range( |
| 1811 | bmap1: isl_basic_map_copy(bmap: data->list[j]), |
| 1812 | bmap2: isl_basic_map_copy(bmap: data->list[i]))); |
| 1813 | subset = isl_map_is_empty(map: map21); |
| 1814 | if (subset < 0) |
| 1815 | goto error; |
| 1816 | if (subset) { |
| 1817 | isl_map_free(map: map21); |
| 1818 | return isl_bool_false; |
| 1819 | } |
| 1820 | |
| 1821 | if (!isl_basic_map_is_transformation(bmap: data->list[i]) || |
| 1822 | !isl_basic_map_is_transformation(bmap: data->list[j])) { |
| 1823 | isl_map_free(map: map21); |
| 1824 | return isl_bool_true; |
| 1825 | } |
| 1826 | |
| 1827 | map12 = isl_map_from_basic_map( |
| 1828 | bmap: isl_basic_map_apply_range( |
| 1829 | bmap1: isl_basic_map_copy(bmap: data->list[i]), |
| 1830 | bmap2: isl_basic_map_copy(bmap: data->list[j]))); |
| 1831 | |
| 1832 | subset = isl_map_is_subset(map1: map21, map2: map12); |
| 1833 | |
| 1834 | isl_map_free(map: map12); |
| 1835 | isl_map_free(map: map21); |
| 1836 | |
| 1837 | if (subset) |
| 1838 | data->check_closed = 1; |
| 1839 | |
| 1840 | return isl_bool_not(b: subset); |
| 1841 | error: |
| 1842 | isl_map_free(map: map21); |
| 1843 | return isl_bool_error; |
| 1844 | } |
| 1845 | |
| 1846 | /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D |
| 1847 | * and a dimension specification (Z^{n+1} -> Z^{n+1}), |
| 1848 | * construct a map that is an overapproximation of the map |
| 1849 | * that takes an element from the dom R \times Z to an |
| 1850 | * element from ran R \times Z, such that the first n coordinates of the |
| 1851 | * difference between them is a sum of differences between images |
| 1852 | * and pre-images in one of the R_i and such that the last coordinate |
| 1853 | * is equal to the number of steps taken. |
| 1854 | * If "project" is set, then these final coordinates are not included, |
| 1855 | * i.e., a relation of type Z^n -> Z^n is returned. |
| 1856 | * That is, let |
| 1857 | * |
| 1858 | * \Delta_i = { y - x | (x, y) in R_i } |
| 1859 | * |
| 1860 | * then the constructed map is an overapproximation of |
| 1861 | * |
| 1862 | * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : |
| 1863 | * d = (\sum_i k_i \delta_i, \sum_i k_i) and |
| 1864 | * x in dom R and x + d in ran R } |
| 1865 | * |
| 1866 | * or |
| 1867 | * |
| 1868 | * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : |
| 1869 | * d = (\sum_i k_i \delta_i) and |
| 1870 | * x in dom R and x + d in ran R } |
| 1871 | * |
| 1872 | * if "project" is set. |
| 1873 | * |
| 1874 | * We first split the map into strongly connected components, perform |
| 1875 | * the above on each component and then join the results in the correct |
| 1876 | * order, at each join also taking in the union of both arguments |
| 1877 | * to allow for paths that do not go through one of the two arguments. |
| 1878 | */ |
| 1879 | static __isl_give isl_map *construct_power_components( |
| 1880 | __isl_take isl_space *space, __isl_keep isl_map *map, isl_bool *exact, |
| 1881 | int project) |
| 1882 | { |
| 1883 | int i, n, c; |
| 1884 | struct isl_map *path = NULL; |
| 1885 | struct isl_tc_follows_data data; |
| 1886 | struct isl_tarjan_graph *g = NULL; |
| 1887 | isl_bool *orig_exact; |
| 1888 | isl_bool local_exact; |
| 1889 | |
| 1890 | if (!map) |
| 1891 | goto error; |
| 1892 | if (map->n <= 1) |
| 1893 | return floyd_warshall(space, map, exact, project); |
| 1894 | |
| 1895 | data.list = map->p; |
| 1896 | data.check_closed = 0; |
| 1897 | g = isl_tarjan_graph_init(ctx: map->ctx, len: map->n, follows: &basic_map_follows, user: &data); |
| 1898 | if (!g) |
| 1899 | goto error; |
| 1900 | |
| 1901 | orig_exact = exact; |
| 1902 | if (data.check_closed && !exact) |
| 1903 | exact = &local_exact; |
| 1904 | |
| 1905 | c = 0; |
| 1906 | i = 0; |
| 1907 | n = map->n; |
| 1908 | if (project) |
| 1909 | path = isl_map_empty(space: isl_map_get_space(map)); |
| 1910 | else |
| 1911 | path = isl_map_empty(space: isl_space_copy(space)); |
| 1912 | path = anonymize(map: path); |
| 1913 | while (n) { |
| 1914 | struct isl_map *comp; |
| 1915 | isl_map *path_comp, *path_comb; |
| 1916 | comp = isl_map_alloc_space(space: isl_map_get_space(map), n, flags: 0); |
| 1917 | while (g->order[i] != -1) { |
| 1918 | comp = isl_map_add_basic_map(map: comp, |
| 1919 | bmap: isl_basic_map_copy(bmap: map->p[g->order[i]])); |
| 1920 | --n; |
| 1921 | ++i; |
| 1922 | } |
| 1923 | path_comp = floyd_warshall(space: isl_space_copy(space), |
| 1924 | map: comp, exact, project); |
| 1925 | path_comp = anonymize(map: path_comp); |
| 1926 | path_comb = isl_map_apply_range(map1: isl_map_copy(map: path), |
| 1927 | map2: isl_map_copy(map: path_comp)); |
| 1928 | path = isl_map_union(map1: path, map2: path_comp); |
| 1929 | path = isl_map_union(map1: path, map2: path_comb); |
| 1930 | isl_map_free(map: comp); |
| 1931 | ++i; |
| 1932 | ++c; |
| 1933 | } |
| 1934 | |
| 1935 | if (c > 1 && data.check_closed && !*exact) { |
| 1936 | isl_bool closed; |
| 1937 | |
| 1938 | closed = isl_map_is_transitively_closed(map: path); |
| 1939 | if (closed < 0) |
| 1940 | goto error; |
| 1941 | if (!closed) { |
| 1942 | isl_tarjan_graph_free(g); |
| 1943 | isl_map_free(map: path); |
| 1944 | return floyd_warshall(space, map, exact: orig_exact, project); |
| 1945 | } |
| 1946 | } |
| 1947 | |
| 1948 | isl_tarjan_graph_free(g); |
| 1949 | isl_space_free(space); |
| 1950 | |
| 1951 | return path; |
| 1952 | error: |
| 1953 | isl_tarjan_graph_free(g); |
| 1954 | isl_space_free(space); |
| 1955 | isl_map_free(map: path); |
| 1956 | return NULL; |
| 1957 | } |
| 1958 | |
| 1959 | /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D, |
| 1960 | * construct a map that is an overapproximation of the map |
| 1961 | * that takes an element from the space D to another |
| 1962 | * element from the same space, such that the difference between |
| 1963 | * them is a strictly positive sum of differences between images |
| 1964 | * and pre-images in one of the R_i. |
| 1965 | * The number of differences in the sum is equated to parameter "param". |
| 1966 | * That is, let |
| 1967 | * |
| 1968 | * \Delta_i = { y - x | (x, y) in R_i } |
| 1969 | * |
| 1970 | * then the constructed map is an overapproximation of |
| 1971 | * |
| 1972 | * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : |
| 1973 | * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 } |
| 1974 | * or |
| 1975 | * |
| 1976 | * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : |
| 1977 | * d = \sum_i k_i \delta_i and \sum_i k_i > 0 } |
| 1978 | * |
| 1979 | * if "project" is set. |
| 1980 | * |
| 1981 | * If "project" is not set, then |
| 1982 | * we construct an extended mapping with an extra coordinate |
| 1983 | * that indicates the number of steps taken. In particular, |
| 1984 | * the difference in the last coordinate is equal to the number |
| 1985 | * of steps taken to move from a domain element to the corresponding |
| 1986 | * image element(s). |
| 1987 | */ |
| 1988 | static __isl_give isl_map *construct_power(__isl_keep isl_map *map, |
| 1989 | isl_bool *exact, int project) |
| 1990 | { |
| 1991 | struct isl_map *app = NULL; |
| 1992 | isl_space *space = NULL; |
| 1993 | |
| 1994 | if (!map) |
| 1995 | return NULL; |
| 1996 | |
| 1997 | space = isl_map_get_space(map); |
| 1998 | |
| 1999 | space = isl_space_add_dims(space, type: isl_dim_in, n: 1); |
| 2000 | space = isl_space_add_dims(space, type: isl_dim_out, n: 1); |
| 2001 | |
| 2002 | app = construct_power_components(space: isl_space_copy(space), map, |
| 2003 | exact, project); |
| 2004 | |
| 2005 | isl_space_free(space); |
| 2006 | |
| 2007 | return app; |
| 2008 | } |
| 2009 | |
| 2010 | /* Compute the positive powers of "map", or an overapproximation. |
| 2011 | * If the result is exact, then *exact is set to 1. |
| 2012 | * |
| 2013 | * If project is set, then we are actually interested in the transitive |
| 2014 | * closure, so we can use a more relaxed exactness check. |
| 2015 | * The lengths of the paths are also projected out instead of being |
| 2016 | * encoded as the difference between an extra pair of final coordinates. |
| 2017 | */ |
| 2018 | static __isl_give isl_map *map_power(__isl_take isl_map *map, |
| 2019 | isl_bool *exact, int project) |
| 2020 | { |
| 2021 | struct isl_map *app = NULL; |
| 2022 | |
| 2023 | if (exact) |
| 2024 | *exact = isl_bool_true; |
| 2025 | |
| 2026 | if (isl_map_check_transformation(map) < 0) |
| 2027 | return isl_map_free(map); |
| 2028 | |
| 2029 | app = construct_power(map, exact, project); |
| 2030 | |
| 2031 | isl_map_free(map); |
| 2032 | return app; |
| 2033 | } |
| 2034 | |
| 2035 | /* Compute the positive powers of "map", or an overapproximation. |
| 2036 | * The result maps the exponent to a nested copy of the corresponding power. |
| 2037 | * If the result is exact, then *exact is set to 1. |
| 2038 | * map_power constructs an extended relation with the path lengths |
| 2039 | * encoded as the difference between the final coordinates. |
| 2040 | * In the final step, this difference is equated to an extra parameter |
| 2041 | * and made positive. The extra coordinates are subsequently projected out |
| 2042 | * and the parameter is turned into the domain of the result. |
| 2043 | */ |
| 2044 | __isl_give isl_map *isl_map_power(__isl_take isl_map *map, isl_bool *exact) |
| 2045 | { |
| 2046 | isl_space *target_space; |
| 2047 | isl_space *space; |
| 2048 | isl_map *diff; |
| 2049 | isl_size d; |
| 2050 | isl_size param; |
| 2051 | |
| 2052 | d = isl_map_dim(map, type: isl_dim_in); |
| 2053 | param = isl_map_dim(map, type: isl_dim_param); |
| 2054 | if (d < 0 || param < 0) |
| 2055 | return isl_map_free(map); |
| 2056 | |
| 2057 | map = isl_map_compute_divs(map); |
| 2058 | map = isl_map_coalesce(map); |
| 2059 | |
| 2060 | if (isl_map_plain_is_empty(map)) { |
| 2061 | map = isl_map_from_range(set: isl_map_wrap(map)); |
| 2062 | map = isl_map_add_dims(map, type: isl_dim_in, n: 1); |
| 2063 | map = isl_map_set_dim_name(map, type: isl_dim_in, pos: 0, s: "k" ); |
| 2064 | return map; |
| 2065 | } |
| 2066 | |
| 2067 | target_space = isl_map_get_space(map); |
| 2068 | target_space = isl_space_from_range(space: isl_space_wrap(space: target_space)); |
| 2069 | target_space = isl_space_add_dims(space: target_space, type: isl_dim_in, n: 1); |
| 2070 | target_space = isl_space_set_dim_name(space: target_space, type: isl_dim_in, pos: 0, name: "k" ); |
| 2071 | |
| 2072 | map = map_power(map, exact, project: 0); |
| 2073 | |
| 2074 | map = isl_map_add_dims(map, type: isl_dim_param, n: 1); |
| 2075 | space = isl_map_get_space(map); |
| 2076 | diff = equate_parameter_to_length(space, param); |
| 2077 | map = isl_map_intersect(map1: map, map2: diff); |
| 2078 | map = isl_map_project_out(map, type: isl_dim_in, first: d, n: 1); |
| 2079 | map = isl_map_project_out(map, type: isl_dim_out, first: d, n: 1); |
| 2080 | map = isl_map_from_range(set: isl_map_wrap(map)); |
| 2081 | map = isl_map_move_dims(map, dst_type: isl_dim_in, dst_pos: 0, src_type: isl_dim_param, src_pos: param, n: 1); |
| 2082 | |
| 2083 | map = isl_map_reset_space(map, space: target_space); |
| 2084 | |
| 2085 | return map; |
| 2086 | } |
| 2087 | |
| 2088 | /* Compute a relation that maps each element in the range of the input |
| 2089 | * relation to the lengths of all paths composed of edges in the input |
| 2090 | * relation that end up in the given range element. |
| 2091 | * The result may be an overapproximation, in which case *exact is set to 0. |
| 2092 | * The resulting relation is very similar to the power relation. |
| 2093 | * The difference are that the domain has been projected out, the |
| 2094 | * range has become the domain and the exponent is the range instead |
| 2095 | * of a parameter. |
| 2096 | */ |
| 2097 | __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map, |
| 2098 | isl_bool *exact) |
| 2099 | { |
| 2100 | isl_space *space; |
| 2101 | isl_map *diff; |
| 2102 | isl_size d; |
| 2103 | isl_size param; |
| 2104 | |
| 2105 | d = isl_map_dim(map, type: isl_dim_in); |
| 2106 | param = isl_map_dim(map, type: isl_dim_param); |
| 2107 | if (d < 0 || param < 0) |
| 2108 | return isl_map_free(map); |
| 2109 | |
| 2110 | map = isl_map_compute_divs(map); |
| 2111 | map = isl_map_coalesce(map); |
| 2112 | |
| 2113 | if (isl_map_plain_is_empty(map)) { |
| 2114 | if (exact) |
| 2115 | *exact = isl_bool_true; |
| 2116 | map = isl_map_project_out(map, type: isl_dim_out, first: 0, n: d); |
| 2117 | map = isl_map_add_dims(map, type: isl_dim_out, n: 1); |
| 2118 | return map; |
| 2119 | } |
| 2120 | |
| 2121 | map = map_power(map, exact, project: 0); |
| 2122 | |
| 2123 | map = isl_map_add_dims(map, type: isl_dim_param, n: 1); |
| 2124 | space = isl_map_get_space(map); |
| 2125 | diff = equate_parameter_to_length(space, param); |
| 2126 | map = isl_map_intersect(map1: map, map2: diff); |
| 2127 | map = isl_map_project_out(map, type: isl_dim_in, first: 0, n: d + 1); |
| 2128 | map = isl_map_project_out(map, type: isl_dim_out, first: d, n: 1); |
| 2129 | map = isl_map_reverse(map); |
| 2130 | map = isl_map_move_dims(map, dst_type: isl_dim_out, dst_pos: 0, src_type: isl_dim_param, src_pos: param, n: 1); |
| 2131 | |
| 2132 | return map; |
| 2133 | } |
| 2134 | |
| 2135 | /* Given a map, compute the smallest superset of this map that is of the form |
| 2136 | * |
| 2137 | * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p } |
| 2138 | * |
| 2139 | * (where p ranges over the (non-parametric) dimensions), |
| 2140 | * compute the transitive closure of this map, i.e., |
| 2141 | * |
| 2142 | * { i -> j : exists k > 0: |
| 2143 | * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } |
| 2144 | * |
| 2145 | * and intersect domain and range of this transitive closure with |
| 2146 | * the given domain and range. |
| 2147 | * |
| 2148 | * If with_id is set, then try to include as much of the identity mapping |
| 2149 | * as possible, by computing |
| 2150 | * |
| 2151 | * { i -> j : exists k >= 0: |
| 2152 | * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } |
| 2153 | * |
| 2154 | * instead (i.e., allow k = 0). |
| 2155 | * |
| 2156 | * In practice, we compute the difference set |
| 2157 | * |
| 2158 | * delta = { j - i | i -> j in map }, |
| 2159 | * |
| 2160 | * look for stride constraint on the individual dimensions and compute |
| 2161 | * (constant) lower and upper bounds for each individual dimension, |
| 2162 | * adding a constraint for each bound not equal to infinity. |
| 2163 | */ |
| 2164 | static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map, |
| 2165 | __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id) |
| 2166 | { |
| 2167 | int i; |
| 2168 | int k; |
| 2169 | unsigned d; |
| 2170 | unsigned nparam; |
| 2171 | unsigned total; |
| 2172 | isl_space *space; |
| 2173 | isl_set *delta; |
| 2174 | isl_map *app = NULL; |
| 2175 | isl_basic_set *aff = NULL; |
| 2176 | isl_basic_map *bmap = NULL; |
| 2177 | isl_vec *obj = NULL; |
| 2178 | isl_int opt; |
| 2179 | |
| 2180 | isl_int_init(opt); |
| 2181 | |
| 2182 | delta = isl_map_deltas(map: isl_map_copy(map)); |
| 2183 | |
| 2184 | aff = isl_set_affine_hull(set: isl_set_copy(set: delta)); |
| 2185 | if (!aff) |
| 2186 | goto error; |
| 2187 | space = isl_map_get_space(map); |
| 2188 | d = isl_space_dim(space, type: isl_dim_in); |
| 2189 | nparam = isl_space_dim(space, type: isl_dim_param); |
| 2190 | total = isl_space_dim(space, type: isl_dim_all); |
| 2191 | bmap = isl_basic_map_alloc_space(space, |
| 2192 | extra: aff->n_div + 1, n_eq: aff->n_div, n_ineq: 2 * d + 1); |
| 2193 | for (i = 0; i < aff->n_div + 1; ++i) { |
| 2194 | k = isl_basic_map_alloc_div(bmap); |
| 2195 | if (k < 0) |
| 2196 | goto error; |
| 2197 | isl_int_set_si(bmap->div[k][0], 0); |
| 2198 | } |
| 2199 | for (i = 0; i < aff->n_eq; ++i) { |
| 2200 | if (!isl_basic_set_eq_is_stride(bset: aff, i)) |
| 2201 | continue; |
| 2202 | k = isl_basic_map_alloc_equality(bmap); |
| 2203 | if (k < 0) |
| 2204 | goto error; |
| 2205 | isl_seq_clr(p: bmap->eq[k], len: 1 + nparam); |
| 2206 | isl_seq_cpy(dst: bmap->eq[k] + 1 + nparam + d, |
| 2207 | src: aff->eq[i] + 1 + nparam, len: d); |
| 2208 | isl_seq_neg(dst: bmap->eq[k] + 1 + nparam, |
| 2209 | src: aff->eq[i] + 1 + nparam, len: d); |
| 2210 | isl_seq_cpy(dst: bmap->eq[k] + 1 + nparam + 2 * d, |
| 2211 | src: aff->eq[i] + 1 + nparam + d, len: aff->n_div); |
| 2212 | isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0); |
| 2213 | } |
| 2214 | obj = isl_vec_alloc(ctx: map->ctx, size: 1 + nparam + d); |
| 2215 | if (!obj) |
| 2216 | goto error; |
| 2217 | isl_seq_clr(p: obj->el, len: 1 + nparam + d); |
| 2218 | for (i = 0; i < d; ++ i) { |
| 2219 | enum isl_lp_result res; |
| 2220 | |
| 2221 | isl_int_set_si(obj->el[1 + nparam + i], 1); |
| 2222 | |
| 2223 | res = isl_set_solve_lp(set: delta, max: 0, f: obj->el, denom: map->ctx->one, opt: &opt, |
| 2224 | NULL, NULL); |
| 2225 | if (res == isl_lp_error) |
| 2226 | goto error; |
| 2227 | if (res == isl_lp_ok) { |
| 2228 | k = isl_basic_map_alloc_inequality(bmap); |
| 2229 | if (k < 0) |
| 2230 | goto error; |
| 2231 | isl_seq_clr(p: bmap->ineq[k], |
| 2232 | len: 1 + nparam + 2 * d + bmap->n_div); |
| 2233 | isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1); |
| 2234 | isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1); |
| 2235 | isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt); |
| 2236 | } |
| 2237 | |
| 2238 | res = isl_set_solve_lp(set: delta, max: 1, f: obj->el, denom: map->ctx->one, opt: &opt, |
| 2239 | NULL, NULL); |
| 2240 | if (res == isl_lp_error) |
| 2241 | goto error; |
| 2242 | if (res == isl_lp_ok) { |
| 2243 | k = isl_basic_map_alloc_inequality(bmap); |
| 2244 | if (k < 0) |
| 2245 | goto error; |
| 2246 | isl_seq_clr(p: bmap->ineq[k], |
| 2247 | len: 1 + nparam + 2 * d + bmap->n_div); |
| 2248 | isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1); |
| 2249 | isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1); |
| 2250 | isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt); |
| 2251 | } |
| 2252 | |
| 2253 | isl_int_set_si(obj->el[1 + nparam + i], 0); |
| 2254 | } |
| 2255 | k = isl_basic_map_alloc_inequality(bmap); |
| 2256 | if (k < 0) |
| 2257 | goto error; |
| 2258 | isl_seq_clr(p: bmap->ineq[k], |
| 2259 | len: 1 + nparam + 2 * d + bmap->n_div); |
| 2260 | if (!with_id) |
| 2261 | isl_int_set_si(bmap->ineq[k][0], -1); |
| 2262 | isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1); |
| 2263 | |
| 2264 | app = isl_map_from_domain_and_range(domain: dom, range: ran); |
| 2265 | |
| 2266 | isl_vec_free(vec: obj); |
| 2267 | isl_basic_set_free(bset: aff); |
| 2268 | isl_map_free(map); |
| 2269 | bmap = isl_basic_map_finalize(bmap); |
| 2270 | isl_set_free(set: delta); |
| 2271 | isl_int_clear(opt); |
| 2272 | |
| 2273 | map = isl_map_from_basic_map(bmap); |
| 2274 | map = isl_map_intersect(map1: map, map2: app); |
| 2275 | |
| 2276 | return map; |
| 2277 | error: |
| 2278 | isl_vec_free(vec: obj); |
| 2279 | isl_basic_map_free(bmap); |
| 2280 | isl_basic_set_free(bset: aff); |
| 2281 | isl_set_free(set: dom); |
| 2282 | isl_set_free(set: ran); |
| 2283 | isl_map_free(map); |
| 2284 | isl_set_free(set: delta); |
| 2285 | isl_int_clear(opt); |
| 2286 | return NULL; |
| 2287 | } |
| 2288 | |
| 2289 | /* Given a map, compute the smallest superset of this map that is of the form |
| 2290 | * |
| 2291 | * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p } |
| 2292 | * |
| 2293 | * (where p ranges over the (non-parametric) dimensions), |
| 2294 | * compute the transitive closure of this map, i.e., |
| 2295 | * |
| 2296 | * { i -> j : exists k > 0: |
| 2297 | * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } |
| 2298 | * |
| 2299 | * and intersect domain and range of this transitive closure with |
| 2300 | * domain and range of the original map. |
| 2301 | */ |
| 2302 | static __isl_give isl_map *box_closure(__isl_take isl_map *map) |
| 2303 | { |
| 2304 | isl_set *domain; |
| 2305 | isl_set *range; |
| 2306 | |
| 2307 | domain = isl_map_domain(bmap: isl_map_copy(map)); |
| 2308 | domain = isl_set_coalesce(set: domain); |
| 2309 | range = isl_map_range(map: isl_map_copy(map)); |
| 2310 | range = isl_set_coalesce(set: range); |
| 2311 | |
| 2312 | return box_closure_on_domain(map, dom: domain, ran: range, with_id: 0); |
| 2313 | } |
| 2314 | |
| 2315 | /* Given a map, compute the smallest superset of this map that is of the form |
| 2316 | * |
| 2317 | * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p } |
| 2318 | * |
| 2319 | * (where p ranges over the (non-parametric) dimensions), |
| 2320 | * compute the transitive and partially reflexive closure of this map, i.e., |
| 2321 | * |
| 2322 | * { i -> j : exists k >= 0: |
| 2323 | * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } |
| 2324 | * |
| 2325 | * and intersect domain and range of this transitive closure with |
| 2326 | * the given domain. |
| 2327 | */ |
| 2328 | static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map, |
| 2329 | __isl_take isl_set *dom) |
| 2330 | { |
| 2331 | return box_closure_on_domain(map, dom, ran: isl_set_copy(set: dom), with_id: 1); |
| 2332 | } |
| 2333 | |
| 2334 | /* Check whether app is the transitive closure of map. |
| 2335 | * In particular, check that app is acyclic and, if so, |
| 2336 | * check that |
| 2337 | * |
| 2338 | * app \subset (map \cup (map \circ app)) |
| 2339 | */ |
| 2340 | static isl_bool check_exactness_omega(__isl_keep isl_map *map, |
| 2341 | __isl_keep isl_map *app) |
| 2342 | { |
| 2343 | isl_set *delta; |
| 2344 | int i; |
| 2345 | isl_bool is_empty, is_exact; |
| 2346 | isl_size d; |
| 2347 | isl_map *test; |
| 2348 | |
| 2349 | delta = isl_map_deltas(map: isl_map_copy(map: app)); |
| 2350 | d = isl_set_dim(set: delta, type: isl_dim_set); |
| 2351 | if (d < 0) |
| 2352 | delta = isl_set_free(set: delta); |
| 2353 | for (i = 0; i < d; ++i) |
| 2354 | delta = isl_set_fix_si(set: delta, type: isl_dim_set, pos: i, value: 0); |
| 2355 | is_empty = isl_set_is_empty(set: delta); |
| 2356 | isl_set_free(set: delta); |
| 2357 | if (is_empty < 0 || !is_empty) |
| 2358 | return is_empty; |
| 2359 | |
| 2360 | test = isl_map_apply_range(map1: isl_map_copy(map: app), map2: isl_map_copy(map)); |
| 2361 | test = isl_map_union(map1: test, map2: isl_map_copy(map)); |
| 2362 | is_exact = isl_map_is_subset(map1: app, map2: test); |
| 2363 | isl_map_free(map: test); |
| 2364 | |
| 2365 | return is_exact; |
| 2366 | } |
| 2367 | |
| 2368 | /* Check if basic map M_i can be combined with all the other |
| 2369 | * basic maps such that |
| 2370 | * |
| 2371 | * (\cup_j M_j)^+ |
| 2372 | * |
| 2373 | * can be computed as |
| 2374 | * |
| 2375 | * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+ |
| 2376 | * |
| 2377 | * In particular, check if we can compute a compact representation |
| 2378 | * of |
| 2379 | * |
| 2380 | * M_i^* \circ M_j \circ M_i^* |
| 2381 | * |
| 2382 | * for each j != i. |
| 2383 | * Let M_i^? be an extension of M_i^+ that allows paths |
| 2384 | * of length zero, i.e., the result of box_closure(., 1). |
| 2385 | * The criterion, as proposed by Kelly et al., is that |
| 2386 | * id = M_i^? - M_i^+ can be represented as a basic map |
| 2387 | * and that |
| 2388 | * |
| 2389 | * id \circ M_j \circ id = M_j |
| 2390 | * |
| 2391 | * for each j != i. |
| 2392 | * |
| 2393 | * If this function returns 1, then tc and qc are set to |
| 2394 | * M_i^+ and M_i^?, respectively. |
| 2395 | */ |
| 2396 | static int can_be_split_off(__isl_keep isl_map *map, int i, |
| 2397 | __isl_give isl_map **tc, __isl_give isl_map **qc) |
| 2398 | { |
| 2399 | isl_map *map_i, *id = NULL; |
| 2400 | int j = -1; |
| 2401 | isl_set *C; |
| 2402 | |
| 2403 | *tc = NULL; |
| 2404 | *qc = NULL; |
| 2405 | |
| 2406 | C = isl_set_union(set1: isl_map_domain(bmap: isl_map_copy(map)), |
| 2407 | set2: isl_map_range(map: isl_map_copy(map))); |
| 2408 | C = isl_set_from_basic_set(bset: isl_set_simple_hull(set: C)); |
| 2409 | if (!C) |
| 2410 | goto error; |
| 2411 | |
| 2412 | map_i = isl_map_from_basic_map(bmap: isl_basic_map_copy(bmap: map->p[i])); |
| 2413 | *tc = box_closure(map: isl_map_copy(map: map_i)); |
| 2414 | *qc = box_closure_with_identity(map: map_i, dom: C); |
| 2415 | id = isl_map_subtract(map1: isl_map_copy(map: *qc), map2: isl_map_copy(map: *tc)); |
| 2416 | |
| 2417 | if (!id || !*qc) |
| 2418 | goto error; |
| 2419 | if (id->n != 1 || (*qc)->n != 1) |
| 2420 | goto done; |
| 2421 | |
| 2422 | for (j = 0; j < map->n; ++j) { |
| 2423 | isl_map *map_j, *test; |
| 2424 | int is_ok; |
| 2425 | |
| 2426 | if (i == j) |
| 2427 | continue; |
| 2428 | map_j = isl_map_from_basic_map( |
| 2429 | bmap: isl_basic_map_copy(bmap: map->p[j])); |
| 2430 | test = isl_map_apply_range(map1: isl_map_copy(map: id), |
| 2431 | map2: isl_map_copy(map: map_j)); |
| 2432 | test = isl_map_apply_range(map1: test, map2: isl_map_copy(map: id)); |
| 2433 | is_ok = isl_map_is_equal(map1: test, map2: map_j); |
| 2434 | isl_map_free(map: map_j); |
| 2435 | isl_map_free(map: test); |
| 2436 | if (is_ok < 0) |
| 2437 | goto error; |
| 2438 | if (!is_ok) |
| 2439 | break; |
| 2440 | } |
| 2441 | |
| 2442 | done: |
| 2443 | isl_map_free(map: id); |
| 2444 | if (j == map->n) |
| 2445 | return 1; |
| 2446 | |
| 2447 | isl_map_free(map: *qc); |
| 2448 | isl_map_free(map: *tc); |
| 2449 | *qc = NULL; |
| 2450 | *tc = NULL; |
| 2451 | |
| 2452 | return 0; |
| 2453 | error: |
| 2454 | isl_map_free(map: id); |
| 2455 | isl_map_free(map: *qc); |
| 2456 | isl_map_free(map: *tc); |
| 2457 | *qc = NULL; |
| 2458 | *tc = NULL; |
| 2459 | return -1; |
| 2460 | } |
| 2461 | |
| 2462 | static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map, |
| 2463 | isl_bool *exact) |
| 2464 | { |
| 2465 | isl_map *app; |
| 2466 | |
| 2467 | app = box_closure(map: isl_map_copy(map)); |
| 2468 | if (exact) { |
| 2469 | isl_bool is_exact = check_exactness_omega(map, app); |
| 2470 | |
| 2471 | if (is_exact < 0) |
| 2472 | app = isl_map_free(map: app); |
| 2473 | else |
| 2474 | *exact = is_exact; |
| 2475 | } |
| 2476 | |
| 2477 | isl_map_free(map); |
| 2478 | return app; |
| 2479 | } |
| 2480 | |
| 2481 | /* Compute an overapproximation of the transitive closure of "map" |
| 2482 | * using a variation of the algorithm from |
| 2483 | * "Transitive Closure of Infinite Graphs and its Applications" |
| 2484 | * by Kelly et al. |
| 2485 | * |
| 2486 | * We first check whether we can can split of any basic map M_i and |
| 2487 | * compute |
| 2488 | * |
| 2489 | * (\cup_j M_j)^+ |
| 2490 | * |
| 2491 | * as |
| 2492 | * |
| 2493 | * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+ |
| 2494 | * |
| 2495 | * using a recursive call on the remaining map. |
| 2496 | * |
| 2497 | * If not, we simply call box_closure on the whole map. |
| 2498 | */ |
| 2499 | static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map, |
| 2500 | isl_bool *exact) |
| 2501 | { |
| 2502 | int i, j; |
| 2503 | isl_bool exact_i; |
| 2504 | isl_map *app; |
| 2505 | |
| 2506 | if (!map) |
| 2507 | return NULL; |
| 2508 | if (map->n == 1) |
| 2509 | return box_closure_with_check(map, exact); |
| 2510 | |
| 2511 | for (i = 0; i < map->n; ++i) { |
| 2512 | int ok; |
| 2513 | isl_map *qc, *tc; |
| 2514 | ok = can_be_split_off(map, i, tc: &tc, qc: &qc); |
| 2515 | if (ok < 0) |
| 2516 | goto error; |
| 2517 | if (!ok) |
| 2518 | continue; |
| 2519 | |
| 2520 | app = isl_map_alloc_space(space: isl_map_get_space(map), n: map->n - 1, flags: 0); |
| 2521 | |
| 2522 | for (j = 0; j < map->n; ++j) { |
| 2523 | if (j == i) |
| 2524 | continue; |
| 2525 | app = isl_map_add_basic_map(map: app, |
| 2526 | bmap: isl_basic_map_copy(bmap: map->p[j])); |
| 2527 | } |
| 2528 | |
| 2529 | app = isl_map_apply_range(map1: isl_map_copy(map: qc), map2: app); |
| 2530 | app = isl_map_apply_range(map1: app, map2: qc); |
| 2531 | |
| 2532 | app = isl_map_union(map1: tc, map2: transitive_closure_omega(map: app, NULL)); |
| 2533 | exact_i = check_exactness_omega(map, app); |
| 2534 | if (exact_i == isl_bool_true) { |
| 2535 | if (exact) |
| 2536 | *exact = exact_i; |
| 2537 | isl_map_free(map); |
| 2538 | return app; |
| 2539 | } |
| 2540 | isl_map_free(map: app); |
| 2541 | if (exact_i < 0) |
| 2542 | goto error; |
| 2543 | } |
| 2544 | |
| 2545 | return box_closure_with_check(map, exact); |
| 2546 | error: |
| 2547 | isl_map_free(map); |
| 2548 | return NULL; |
| 2549 | } |
| 2550 | |
| 2551 | /* Compute the transitive closure of "map", or an overapproximation. |
| 2552 | * If the result is exact, then *exact is set to 1. |
| 2553 | * Simply use map_power to compute the powers of map, but tell |
| 2554 | * it to project out the lengths of the paths instead of equating |
| 2555 | * the length to a parameter. |
| 2556 | */ |
| 2557 | __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map, |
| 2558 | isl_bool *exact) |
| 2559 | { |
| 2560 | isl_space *target_dim; |
| 2561 | isl_bool closed; |
| 2562 | |
| 2563 | if (!map) |
| 2564 | goto error; |
| 2565 | |
| 2566 | if (map->ctx->opt->closure == ISL_CLOSURE_BOX) |
| 2567 | return transitive_closure_omega(map, exact); |
| 2568 | |
| 2569 | map = isl_map_compute_divs(map); |
| 2570 | map = isl_map_coalesce(map); |
| 2571 | closed = isl_map_is_transitively_closed(map); |
| 2572 | if (closed < 0) |
| 2573 | goto error; |
| 2574 | if (closed) { |
| 2575 | if (exact) |
| 2576 | *exact = isl_bool_true; |
| 2577 | return map; |
| 2578 | } |
| 2579 | |
| 2580 | target_dim = isl_map_get_space(map); |
| 2581 | map = map_power(map, exact, project: 1); |
| 2582 | map = isl_map_reset_space(map, space: target_dim); |
| 2583 | |
| 2584 | return map; |
| 2585 | error: |
| 2586 | isl_map_free(map); |
| 2587 | return NULL; |
| 2588 | } |
| 2589 | |
| 2590 | static isl_stat inc_count(__isl_take isl_map *map, void *user) |
| 2591 | { |
| 2592 | int *n = user; |
| 2593 | |
| 2594 | *n += map->n; |
| 2595 | |
| 2596 | isl_map_free(map); |
| 2597 | |
| 2598 | return isl_stat_ok; |
| 2599 | } |
| 2600 | |
| 2601 | static isl_stat collect_basic_map(__isl_take isl_map *map, void *user) |
| 2602 | { |
| 2603 | int i; |
| 2604 | isl_basic_map ***next = user; |
| 2605 | |
| 2606 | for (i = 0; i < map->n; ++i) { |
| 2607 | **next = isl_basic_map_copy(bmap: map->p[i]); |
| 2608 | if (!**next) |
| 2609 | goto error; |
| 2610 | (*next)++; |
| 2611 | } |
| 2612 | |
| 2613 | isl_map_free(map); |
| 2614 | return isl_stat_ok; |
| 2615 | error: |
| 2616 | isl_map_free(map); |
| 2617 | return isl_stat_error; |
| 2618 | } |
| 2619 | |
| 2620 | /* Perform Floyd-Warshall on the given list of basic relations. |
| 2621 | * The basic relations may live in different dimensions, |
| 2622 | * but basic relations that get assigned to the diagonal of the |
| 2623 | * grid have domains and ranges of the same dimension and so |
| 2624 | * the standard algorithm can be used because the nested transitive |
| 2625 | * closures are only applied to diagonal elements and because all |
| 2626 | * compositions are performed on relations with compatible domains and ranges. |
| 2627 | */ |
| 2628 | static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx, |
| 2629 | __isl_keep isl_basic_map **list, int n, isl_bool *exact) |
| 2630 | { |
| 2631 | int i, j, k; |
| 2632 | int n_group; |
| 2633 | int *group = NULL; |
| 2634 | isl_set **set = NULL; |
| 2635 | isl_map ***grid = NULL; |
| 2636 | isl_union_map *app; |
| 2637 | |
| 2638 | group = setup_groups(ctx, list, n, set: &set, n_group: &n_group); |
| 2639 | if (!group) |
| 2640 | goto error; |
| 2641 | |
| 2642 | grid = isl_calloc_array(ctx, isl_map **, n_group); |
| 2643 | if (!grid) |
| 2644 | goto error; |
| 2645 | for (i = 0; i < n_group; ++i) { |
| 2646 | grid[i] = isl_calloc_array(ctx, isl_map *, n_group); |
| 2647 | if (!grid[i]) |
| 2648 | goto error; |
| 2649 | for (j = 0; j < n_group; ++j) { |
| 2650 | isl_space *space1, *space2, *space; |
| 2651 | space1 = isl_space_reverse(space: isl_set_get_space(set: set[i])); |
| 2652 | space2 = isl_set_get_space(set: set[j]); |
| 2653 | space = isl_space_join(left: space1, right: space2); |
| 2654 | grid[i][j] = isl_map_empty(space); |
| 2655 | } |
| 2656 | } |
| 2657 | |
| 2658 | for (k = 0; k < n; ++k) { |
| 2659 | i = group[2 * k]; |
| 2660 | j = group[2 * k + 1]; |
| 2661 | grid[i][j] = isl_map_union(map1: grid[i][j], |
| 2662 | map2: isl_map_from_basic_map( |
| 2663 | bmap: isl_basic_map_copy(bmap: list[k]))); |
| 2664 | } |
| 2665 | |
| 2666 | floyd_warshall_iterate(grid, n: n_group, exact); |
| 2667 | |
| 2668 | app = isl_union_map_empty(space: isl_map_get_space(map: grid[0][0])); |
| 2669 | |
| 2670 | for (i = 0; i < n_group; ++i) { |
| 2671 | for (j = 0; j < n_group; ++j) |
| 2672 | app = isl_union_map_add_map(umap: app, map: grid[i][j]); |
| 2673 | free(ptr: grid[i]); |
| 2674 | } |
| 2675 | free(ptr: grid); |
| 2676 | |
| 2677 | for (i = 0; i < 2 * n; ++i) |
| 2678 | isl_set_free(set: set[i]); |
| 2679 | free(ptr: set); |
| 2680 | |
| 2681 | free(ptr: group); |
| 2682 | return app; |
| 2683 | error: |
| 2684 | if (grid) |
| 2685 | for (i = 0; i < n_group; ++i) { |
| 2686 | if (!grid[i]) |
| 2687 | continue; |
| 2688 | for (j = 0; j < n_group; ++j) |
| 2689 | isl_map_free(map: grid[i][j]); |
| 2690 | free(ptr: grid[i]); |
| 2691 | } |
| 2692 | free(ptr: grid); |
| 2693 | if (set) { |
| 2694 | for (i = 0; i < 2 * n; ++i) |
| 2695 | isl_set_free(set: set[i]); |
| 2696 | free(ptr: set); |
| 2697 | } |
| 2698 | free(ptr: group); |
| 2699 | return NULL; |
| 2700 | } |
| 2701 | |
| 2702 | /* Perform Floyd-Warshall on the given union relation. |
| 2703 | * The implementation is very similar to that for non-unions. |
| 2704 | * The main difference is that it is applied unconditionally. |
| 2705 | * We first extract a list of basic maps from the union map |
| 2706 | * and then perform the algorithm on this list. |
| 2707 | */ |
| 2708 | static __isl_give isl_union_map *union_floyd_warshall( |
| 2709 | __isl_take isl_union_map *umap, isl_bool *exact) |
| 2710 | { |
| 2711 | int i, n; |
| 2712 | isl_ctx *ctx; |
| 2713 | isl_basic_map **list = NULL; |
| 2714 | isl_basic_map **next; |
| 2715 | isl_union_map *res; |
| 2716 | |
| 2717 | n = 0; |
| 2718 | if (isl_union_map_foreach_map(umap, fn: inc_count, user: &n) < 0) |
| 2719 | goto error; |
| 2720 | |
| 2721 | ctx = isl_union_map_get_ctx(umap); |
| 2722 | list = isl_calloc_array(ctx, isl_basic_map *, n); |
| 2723 | if (!list) |
| 2724 | goto error; |
| 2725 | |
| 2726 | next = list; |
| 2727 | if (isl_union_map_foreach_map(umap, fn: collect_basic_map, user: &next) < 0) |
| 2728 | goto error; |
| 2729 | |
| 2730 | res = union_floyd_warshall_on_list(ctx, list, n, exact); |
| 2731 | |
| 2732 | if (list) { |
| 2733 | for (i = 0; i < n; ++i) |
| 2734 | isl_basic_map_free(bmap: list[i]); |
| 2735 | free(ptr: list); |
| 2736 | } |
| 2737 | |
| 2738 | isl_union_map_free(umap); |
| 2739 | return res; |
| 2740 | error: |
| 2741 | if (list) { |
| 2742 | for (i = 0; i < n; ++i) |
| 2743 | isl_basic_map_free(bmap: list[i]); |
| 2744 | free(ptr: list); |
| 2745 | } |
| 2746 | isl_union_map_free(umap); |
| 2747 | return NULL; |
| 2748 | } |
| 2749 | |
| 2750 | /* Decompose the give union relation into strongly connected components. |
| 2751 | * The implementation is essentially the same as that of |
| 2752 | * construct_power_components with the major difference that all |
| 2753 | * operations are performed on union maps. |
| 2754 | */ |
| 2755 | static __isl_give isl_union_map *union_components( |
| 2756 | __isl_take isl_union_map *umap, isl_bool *exact) |
| 2757 | { |
| 2758 | int i; |
| 2759 | int n; |
| 2760 | isl_ctx *ctx; |
| 2761 | isl_basic_map **list = NULL; |
| 2762 | isl_basic_map **next; |
| 2763 | isl_union_map *path = NULL; |
| 2764 | struct isl_tc_follows_data data; |
| 2765 | struct isl_tarjan_graph *g = NULL; |
| 2766 | int c, l; |
| 2767 | int recheck = 0; |
| 2768 | |
| 2769 | n = 0; |
| 2770 | if (isl_union_map_foreach_map(umap, fn: inc_count, user: &n) < 0) |
| 2771 | goto error; |
| 2772 | |
| 2773 | if (n == 0) |
| 2774 | return umap; |
| 2775 | if (n <= 1) |
| 2776 | return union_floyd_warshall(umap, exact); |
| 2777 | |
| 2778 | ctx = isl_union_map_get_ctx(umap); |
| 2779 | list = isl_calloc_array(ctx, isl_basic_map *, n); |
| 2780 | if (!list) |
| 2781 | goto error; |
| 2782 | |
| 2783 | next = list; |
| 2784 | if (isl_union_map_foreach_map(umap, fn: collect_basic_map, user: &next) < 0) |
| 2785 | goto error; |
| 2786 | |
| 2787 | data.list = list; |
| 2788 | data.check_closed = 0; |
| 2789 | g = isl_tarjan_graph_init(ctx, len: n, follows: &basic_map_follows, user: &data); |
| 2790 | if (!g) |
| 2791 | goto error; |
| 2792 | |
| 2793 | c = 0; |
| 2794 | i = 0; |
| 2795 | l = n; |
| 2796 | path = isl_union_map_empty(space: isl_union_map_get_space(umap)); |
| 2797 | while (l) { |
| 2798 | isl_union_map *comp; |
| 2799 | isl_union_map *path_comp, *path_comb; |
| 2800 | comp = isl_union_map_empty(space: isl_union_map_get_space(umap)); |
| 2801 | while (g->order[i] != -1) { |
| 2802 | comp = isl_union_map_add_map(umap: comp, |
| 2803 | map: isl_map_from_basic_map( |
| 2804 | bmap: isl_basic_map_copy(bmap: list[g->order[i]]))); |
| 2805 | --l; |
| 2806 | ++i; |
| 2807 | } |
| 2808 | path_comp = union_floyd_warshall(umap: comp, exact); |
| 2809 | path_comb = isl_union_map_apply_range(umap1: isl_union_map_copy(umap: path), |
| 2810 | umap2: isl_union_map_copy(umap: path_comp)); |
| 2811 | path = isl_union_map_union(umap1: path, umap2: path_comp); |
| 2812 | path = isl_union_map_union(umap1: path, umap2: path_comb); |
| 2813 | ++i; |
| 2814 | ++c; |
| 2815 | } |
| 2816 | |
| 2817 | if (c > 1 && data.check_closed && !*exact) { |
| 2818 | isl_bool closed; |
| 2819 | |
| 2820 | closed = isl_union_map_is_transitively_closed(umap: path); |
| 2821 | if (closed < 0) |
| 2822 | goto error; |
| 2823 | recheck = !closed; |
| 2824 | } |
| 2825 | |
| 2826 | isl_tarjan_graph_free(g); |
| 2827 | |
| 2828 | for (i = 0; i < n; ++i) |
| 2829 | isl_basic_map_free(bmap: list[i]); |
| 2830 | free(ptr: list); |
| 2831 | |
| 2832 | if (recheck) { |
| 2833 | isl_union_map_free(umap: path); |
| 2834 | return union_floyd_warshall(umap, exact); |
| 2835 | } |
| 2836 | |
| 2837 | isl_union_map_free(umap); |
| 2838 | |
| 2839 | return path; |
| 2840 | error: |
| 2841 | isl_tarjan_graph_free(g); |
| 2842 | if (list) { |
| 2843 | for (i = 0; i < n; ++i) |
| 2844 | isl_basic_map_free(bmap: list[i]); |
| 2845 | free(ptr: list); |
| 2846 | } |
| 2847 | isl_union_map_free(umap); |
| 2848 | isl_union_map_free(umap: path); |
| 2849 | return NULL; |
| 2850 | } |
| 2851 | |
| 2852 | /* Compute the transitive closure of "umap", or an overapproximation. |
| 2853 | * If the result is exact, then *exact is set to 1. |
| 2854 | */ |
| 2855 | __isl_give isl_union_map *isl_union_map_transitive_closure( |
| 2856 | __isl_take isl_union_map *umap, isl_bool *exact) |
| 2857 | { |
| 2858 | isl_bool closed; |
| 2859 | |
| 2860 | if (!umap) |
| 2861 | return NULL; |
| 2862 | |
| 2863 | if (exact) |
| 2864 | *exact = isl_bool_true; |
| 2865 | |
| 2866 | umap = isl_union_map_compute_divs(umap); |
| 2867 | umap = isl_union_map_coalesce(umap); |
| 2868 | closed = isl_union_map_is_transitively_closed(umap); |
| 2869 | if (closed < 0) |
| 2870 | goto error; |
| 2871 | if (closed) |
| 2872 | return umap; |
| 2873 | umap = union_components(umap, exact); |
| 2874 | return umap; |
| 2875 | error: |
| 2876 | isl_union_map_free(umap); |
| 2877 | return NULL; |
| 2878 | } |
| 2879 | |
| 2880 | struct isl_union_power { |
| 2881 | isl_union_map *pow; |
| 2882 | isl_bool *exact; |
| 2883 | }; |
| 2884 | |
| 2885 | static isl_stat power(__isl_take isl_map *map, void *user) |
| 2886 | { |
| 2887 | struct isl_union_power *up = user; |
| 2888 | |
| 2889 | map = isl_map_power(map, exact: up->exact); |
| 2890 | up->pow = isl_union_map_from_map(map); |
| 2891 | |
| 2892 | return isl_stat_error; |
| 2893 | } |
| 2894 | |
| 2895 | /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "space". |
| 2896 | */ |
| 2897 | static __isl_give isl_union_map *deltas_map(__isl_take isl_space *space) |
| 2898 | { |
| 2899 | isl_basic_map *bmap; |
| 2900 | |
| 2901 | space = isl_space_add_dims(space, type: isl_dim_in, n: 1); |
| 2902 | space = isl_space_add_dims(space, type: isl_dim_out, n: 1); |
| 2903 | bmap = isl_basic_map_universe(space); |
| 2904 | bmap = isl_basic_map_deltas_map(bmap); |
| 2905 | |
| 2906 | return isl_union_map_from_map(map: isl_map_from_basic_map(bmap)); |
| 2907 | } |
| 2908 | |
| 2909 | /* Compute the positive powers of "map", or an overapproximation. |
| 2910 | * The result maps the exponent to a nested copy of the corresponding power. |
| 2911 | * If the result is exact, then *exact is set to 1. |
| 2912 | */ |
| 2913 | __isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap, |
| 2914 | isl_bool *exact) |
| 2915 | { |
| 2916 | isl_size n; |
| 2917 | isl_union_map *inc; |
| 2918 | isl_union_map *dm; |
| 2919 | |
| 2920 | n = isl_union_map_n_map(umap); |
| 2921 | if (n < 0) |
| 2922 | return isl_union_map_free(umap); |
| 2923 | if (n == 0) |
| 2924 | return umap; |
| 2925 | if (n == 1) { |
| 2926 | struct isl_union_power up = { NULL, exact }; |
| 2927 | isl_union_map_foreach_map(umap, fn: &power, user: &up); |
| 2928 | isl_union_map_free(umap); |
| 2929 | return up.pow; |
| 2930 | } |
| 2931 | inc = isl_union_map_from_map(map: increment(space: isl_union_map_get_space(umap))); |
| 2932 | umap = isl_union_map_product(umap1: inc, umap2: umap); |
| 2933 | umap = isl_union_map_transitive_closure(umap, exact); |
| 2934 | umap = isl_union_map_zip(umap); |
| 2935 | dm = deltas_map(space: isl_union_map_get_space(umap)); |
| 2936 | umap = isl_union_map_apply_domain(umap1: umap, umap2: dm); |
| 2937 | |
| 2938 | return umap; |
| 2939 | } |
| 2940 | |
| 2941 | #undef TYPE |
| 2942 | #define TYPE isl_map |
| 2943 | #include "isl_power_templ.c" |
| 2944 | |
| 2945 | #undef TYPE |
| 2946 | #define TYPE isl_union_map |
| 2947 | #include "isl_power_templ.c" |
| 2948 | |