| 1 | //===- ScheduleOptimizer.cpp - Calculate an optimized schedule ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass generates an entirely new schedule tree from the data dependences |
| 10 | // and iteration domains. The new schedule tree is computed in two steps: |
| 11 | // |
| 12 | // 1) The isl scheduling optimizer is run |
| 13 | // |
| 14 | // The isl scheduling optimizer creates a new schedule tree that maximizes |
| 15 | // parallelism and tileability and minimizes data-dependence distances. The |
| 16 | // algorithm used is a modified version of the ``Pluto'' algorithm: |
| 17 | // |
| 18 | // U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. |
| 19 | // A Practical Automatic Polyhedral Parallelizer and Locality Optimizer. |
| 20 | // In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language |
| 21 | // Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008. |
| 22 | // |
| 23 | // 2) A set of post-scheduling transformations is applied on the schedule tree. |
| 24 | // |
| 25 | // These optimizations include: |
| 26 | // |
| 27 | // - Tiling of the innermost tilable bands |
| 28 | // - Prevectorization - The choice of a possible outer loop that is strip-mined |
| 29 | // to the innermost level to enable inner-loop |
| 30 | // vectorization. |
| 31 | // - Some optimizations for spatial locality are also planned. |
| 32 | // |
| 33 | // For a detailed description of the schedule tree itself please see section 6 |
| 34 | // of: |
| 35 | // |
| 36 | // Polyhedral AST generation is more than scanning polyhedra |
| 37 | // Tobias Grosser, Sven Verdoolaege, Albert Cohen |
| 38 | // ACM Transactions on Programming Languages and Systems (TOPLAS), |
| 39 | // 37(4), July 2015 |
| 40 | // http://www.grosser.es/#pub-polyhedral-AST-generation |
| 41 | // |
| 42 | // This publication also contains a detailed discussion of the different options |
| 43 | // for polyhedral loop unrolling, full/partial tile separation and other uses |
| 44 | // of the schedule tree. |
| 45 | // |
| 46 | //===----------------------------------------------------------------------===// |
| 47 | |
| 48 | #include "polly/ScheduleOptimizer.h" |
| 49 | #include "polly/CodeGen/CodeGeneration.h" |
| 50 | #include "polly/DependenceInfo.h" |
| 51 | #include "polly/ManualOptimizer.h" |
| 52 | #include "polly/MatmulOptimizer.h" |
| 53 | #include "polly/Options.h" |
| 54 | #include "polly/ScheduleTreeTransform.h" |
| 55 | #include "polly/Support/ISLOStream.h" |
| 56 | #include "polly/Support/ISLTools.h" |
| 57 | #include "llvm/ADT/Sequence.h" |
| 58 | #include "llvm/ADT/Statistic.h" |
| 59 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 60 | #include "llvm/InitializePasses.h" |
| 61 | #include "llvm/Support/CommandLine.h" |
| 62 | #include "isl/options.h" |
| 63 | |
| 64 | using namespace llvm; |
| 65 | using namespace polly; |
| 66 | |
| 67 | namespace llvm { |
| 68 | class Loop; |
| 69 | class Module; |
| 70 | } // namespace llvm |
| 71 | |
| 72 | #include "polly/Support/PollyDebug.h" |
| 73 | #define DEBUG_TYPE "polly-opt-isl" |
| 74 | |
| 75 | static cl::opt<std::string> |
| 76 | OptimizeDeps("polly-opt-optimize-only" , |
| 77 | cl::desc("Only a certain kind of dependences (all/raw)" ), |
| 78 | cl::Hidden, cl::init(Val: "all" ), cl::cat(PollyCategory)); |
| 79 | |
| 80 | static cl::opt<std::string> |
| 81 | SimplifyDeps("polly-opt-simplify-deps" , |
| 82 | cl::desc("Dependences should be simplified (yes/no)" ), |
| 83 | cl::Hidden, cl::init(Val: "yes" ), cl::cat(PollyCategory)); |
| 84 | |
| 85 | static cl::opt<int> MaxConstantTerm( |
| 86 | "polly-opt-max-constant-term" , |
| 87 | cl::desc("The maximal constant term allowed (-1 is unlimited)" ), cl::Hidden, |
| 88 | cl::init(Val: 20), cl::cat(PollyCategory)); |
| 89 | |
| 90 | static cl::opt<int> MaxCoefficient( |
| 91 | "polly-opt-max-coefficient" , |
| 92 | cl::desc("The maximal coefficient allowed (-1 is unlimited)" ), cl::Hidden, |
| 93 | cl::init(Val: 20), cl::cat(PollyCategory)); |
| 94 | |
| 95 | static cl::opt<std::string> |
| 96 | MaximizeBandDepth("polly-opt-maximize-bands" , |
| 97 | cl::desc("Maximize the band depth (yes/no)" ), cl::Hidden, |
| 98 | cl::init(Val: "yes" ), cl::cat(PollyCategory)); |
| 99 | |
| 100 | static cl::opt<int> |
| 101 | ScheduleComputeOut("polly-schedule-computeout" , |
| 102 | cl::desc("Bound the scheduler by maximal amount" |
| 103 | "of computational steps. " ), |
| 104 | cl::Hidden, cl::init(Val: 300000), cl::ZeroOrMore, |
| 105 | cl::cat(PollyCategory)); |
| 106 | |
| 107 | static cl::opt<bool> |
| 108 | GreedyFusion("polly-loopfusion-greedy" , |
| 109 | cl::desc("Aggressively try to fuse everything" ), cl::Hidden, |
| 110 | cl::cat(PollyCategory)); |
| 111 | |
| 112 | static cl::opt<std::string> OuterCoincidence( |
| 113 | "polly-opt-outer-coincidence" , |
| 114 | cl::desc("Try to construct schedules where the outer member of each band " |
| 115 | "satisfies the coincidence constraints (yes/no)" ), |
| 116 | cl::Hidden, cl::init(Val: "no" ), cl::cat(PollyCategory)); |
| 117 | |
| 118 | static cl::opt<int> PrevectorWidth( |
| 119 | "polly-prevect-width" , |
| 120 | cl::desc( |
| 121 | "The number of loop iterations to strip-mine for pre-vectorization" ), |
| 122 | cl::Hidden, cl::init(Val: 4), cl::cat(PollyCategory)); |
| 123 | |
| 124 | static cl::opt<bool> FirstLevelTiling("polly-tiling" , |
| 125 | cl::desc("Enable loop tiling" ), |
| 126 | cl::init(Val: true), cl::cat(PollyCategory)); |
| 127 | |
| 128 | static cl::opt<int> FirstLevelDefaultTileSize( |
| 129 | "polly-default-tile-size" , |
| 130 | cl::desc("The default tile size (if not enough were provided by" |
| 131 | " --polly-tile-sizes)" ), |
| 132 | cl::Hidden, cl::init(Val: 32), cl::cat(PollyCategory)); |
| 133 | |
| 134 | static cl::list<int> |
| 135 | FirstLevelTileSizes("polly-tile-sizes" , |
| 136 | cl::desc("A tile size for each loop dimension, filled " |
| 137 | "with --polly-default-tile-size" ), |
| 138 | cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory)); |
| 139 | |
| 140 | static cl::opt<bool> |
| 141 | SecondLevelTiling("polly-2nd-level-tiling" , |
| 142 | cl::desc("Enable a 2nd level loop of loop tiling" ), |
| 143 | cl::cat(PollyCategory)); |
| 144 | |
| 145 | static cl::opt<int> SecondLevelDefaultTileSize( |
| 146 | "polly-2nd-level-default-tile-size" , |
| 147 | cl::desc("The default 2nd-level tile size (if not enough were provided by" |
| 148 | " --polly-2nd-level-tile-sizes)" ), |
| 149 | cl::Hidden, cl::init(Val: 16), cl::cat(PollyCategory)); |
| 150 | |
| 151 | static cl::list<int> |
| 152 | SecondLevelTileSizes("polly-2nd-level-tile-sizes" , |
| 153 | cl::desc("A tile size for each loop dimension, filled " |
| 154 | "with --polly-default-tile-size" ), |
| 155 | cl::Hidden, cl::CommaSeparated, |
| 156 | cl::cat(PollyCategory)); |
| 157 | |
| 158 | static cl::opt<bool> RegisterTiling("polly-register-tiling" , |
| 159 | cl::desc("Enable register tiling" ), |
| 160 | cl::cat(PollyCategory)); |
| 161 | |
| 162 | static cl::opt<int> RegisterDefaultTileSize( |
| 163 | "polly-register-tiling-default-tile-size" , |
| 164 | cl::desc("The default register tile size (if not enough were provided by" |
| 165 | " --polly-register-tile-sizes)" ), |
| 166 | cl::Hidden, cl::init(Val: 2), cl::cat(PollyCategory)); |
| 167 | |
| 168 | static cl::list<int> |
| 169 | RegisterTileSizes("polly-register-tile-sizes" , |
| 170 | cl::desc("A tile size for each loop dimension, filled " |
| 171 | "with --polly-register-tile-size" ), |
| 172 | cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory)); |
| 173 | |
| 174 | static cl::opt<bool> PragmaBasedOpts( |
| 175 | "polly-pragma-based-opts" , |
| 176 | cl::desc("Apply user-directed transformation from metadata" ), |
| 177 | cl::init(Val: true), cl::cat(PollyCategory)); |
| 178 | |
| 179 | static cl::opt<bool> EnableReschedule("polly-reschedule" , |
| 180 | cl::desc("Optimize SCoPs using ISL" ), |
| 181 | cl::init(Val: true), cl::cat(PollyCategory)); |
| 182 | |
| 183 | static cl::opt<bool> |
| 184 | PMBasedOpts("polly-pattern-matching-based-opts" , |
| 185 | cl::desc("Perform optimizations based on pattern matching" ), |
| 186 | cl::init(Val: true), cl::cat(PollyCategory)); |
| 187 | |
| 188 | static cl::opt<bool> |
| 189 | EnablePostopts("polly-postopts" , |
| 190 | cl::desc("Apply post-rescheduling optimizations such as " |
| 191 | "tiling (requires -polly-reschedule)" ), |
| 192 | cl::init(Val: true), cl::cat(PollyCategory)); |
| 193 | |
| 194 | static cl::opt<bool> OptimizedScops( |
| 195 | "polly-optimized-scops" , |
| 196 | cl::desc("Polly - Dump polyhedral description of Scops optimized with " |
| 197 | "the isl scheduling optimizer and the set of post-scheduling " |
| 198 | "transformations is applied on the schedule tree" ), |
| 199 | cl::cat(PollyCategory)); |
| 200 | |
| 201 | STATISTIC(ScopsProcessed, "Number of scops processed" ); |
| 202 | STATISTIC(ScopsRescheduled, "Number of scops rescheduled" ); |
| 203 | STATISTIC(ScopsOptimized, "Number of scops optimized" ); |
| 204 | |
| 205 | STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized" ); |
| 206 | STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized" ); |
| 207 | |
| 208 | #define THREE_STATISTICS(VARNAME, DESC) \ |
| 209 | static Statistic VARNAME[3] = { \ |
| 210 | {DEBUG_TYPE, #VARNAME "0", DESC " (original)"}, \ |
| 211 | {DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"}, \ |
| 212 | {DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}} |
| 213 | |
| 214 | THREE_STATISTICS(NumBands, "Number of bands" ); |
| 215 | THREE_STATISTICS(NumBandMembers, "Number of band members" ); |
| 216 | THREE_STATISTICS(NumCoincident, "Number of coincident band members" ); |
| 217 | THREE_STATISTICS(NumPermutable, "Number of permutable bands" ); |
| 218 | THREE_STATISTICS(NumFilters, "Number of filter nodes" ); |
| 219 | THREE_STATISTICS(NumExtension, "Number of extension nodes" ); |
| 220 | |
| 221 | STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied" ); |
| 222 | STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied" ); |
| 223 | STATISTIC(RegisterTileOpts, "Number of register tiling applied" ); |
| 224 | STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied" ); |
| 225 | STATISTIC(MatMulOpts, |
| 226 | "Number of matrix multiplication patterns detected and optimized" ); |
| 227 | |
| 228 | namespace { |
| 229 | /// Additional parameters of the schedule optimizer. |
| 230 | /// |
| 231 | /// Target Transform Info and the SCoP dependencies used by the schedule |
| 232 | /// optimizer. |
| 233 | struct OptimizerAdditionalInfoTy { |
| 234 | const llvm::TargetTransformInfo *TTI; |
| 235 | const Dependences *D; |
| 236 | bool PatternOpts; |
| 237 | bool Postopts; |
| 238 | bool Prevect; |
| 239 | bool &DepsChanged; |
| 240 | }; |
| 241 | |
| 242 | class ScheduleTreeOptimizer final { |
| 243 | public: |
| 244 | /// Apply schedule tree transformations. |
| 245 | /// |
| 246 | /// This function takes an (possibly already optimized) schedule tree and |
| 247 | /// applies a set of additional optimizations on the schedule tree. The |
| 248 | /// transformations applied include: |
| 249 | /// |
| 250 | /// - Pattern-based optimizations |
| 251 | /// - Tiling |
| 252 | /// - Prevectorization |
| 253 | /// |
| 254 | /// @param Schedule The schedule object the transformations will be applied |
| 255 | /// to. |
| 256 | /// @param OAI Target Transform Info and the SCoP dependencies. |
| 257 | /// @returns The transformed schedule. |
| 258 | static isl::schedule |
| 259 | optimizeSchedule(isl::schedule Schedule, |
| 260 | const OptimizerAdditionalInfoTy *OAI = nullptr); |
| 261 | |
| 262 | /// Apply schedule tree transformations. |
| 263 | /// |
| 264 | /// This function takes a node in an (possibly already optimized) schedule |
| 265 | /// tree and applies a set of additional optimizations on this schedule tree |
| 266 | /// node and its descendants. The transformations applied include: |
| 267 | /// |
| 268 | /// - Pattern-based optimizations |
| 269 | /// - Tiling |
| 270 | /// - Prevectorization |
| 271 | /// |
| 272 | /// @param Node The schedule object post-transformations will be applied to. |
| 273 | /// @param OAI Target Transform Info and the SCoP dependencies. |
| 274 | /// @returns The transformed schedule. |
| 275 | static isl::schedule_node |
| 276 | optimizeScheduleNode(isl::schedule_node Node, |
| 277 | const OptimizerAdditionalInfoTy *OAI = nullptr); |
| 278 | |
| 279 | /// Decide if the @p NewSchedule is profitable for @p S. |
| 280 | /// |
| 281 | /// @param S The SCoP we optimize. |
| 282 | /// @param NewSchedule The new schedule we computed. |
| 283 | /// |
| 284 | /// @return True, if we believe @p NewSchedule is an improvement for @p S. |
| 285 | static bool isProfitableSchedule(polly::Scop &S, isl::schedule NewSchedule); |
| 286 | |
| 287 | /// Isolate a set of partial tile prefixes. |
| 288 | /// |
| 289 | /// This set should ensure that it contains only partial tile prefixes that |
| 290 | /// have exactly VectorWidth iterations. |
| 291 | /// |
| 292 | /// @param Node A schedule node band, which is a parent of a band node, |
| 293 | /// that contains a vector loop. |
| 294 | /// @return Modified isl_schedule_node. |
| 295 | static isl::schedule_node isolateFullPartialTiles(isl::schedule_node Node, |
| 296 | int VectorWidth); |
| 297 | |
| 298 | private: |
| 299 | /// Check if this node is a band node we want to tile. |
| 300 | /// |
| 301 | /// We look for innermost band nodes where individual dimensions are marked as |
| 302 | /// permutable. |
| 303 | /// |
| 304 | /// @param Node The node to check. |
| 305 | static bool isTileableBandNode(isl::schedule_node Node); |
| 306 | |
| 307 | /// Check if this node is a band node we want to transform using pattern |
| 308 | /// matching. |
| 309 | /// |
| 310 | /// We look for innermost band nodes where individual dimensions are marked as |
| 311 | /// permutable. There is no restriction on the number of individual |
| 312 | /// dimensions. |
| 313 | /// |
| 314 | /// @param Node The node to check. |
| 315 | static bool isPMOptimizableBandNode(isl::schedule_node Node); |
| 316 | |
| 317 | /// Pre-vectorizes one scheduling dimension of a schedule band. |
| 318 | /// |
| 319 | /// prevectSchedBand splits out the dimension DimToVectorize, tiles it and |
| 320 | /// sinks the resulting point loop. |
| 321 | /// |
| 322 | /// Example (DimToVectorize=0, VectorWidth=4): |
| 323 | /// |
| 324 | /// | Before transformation: |
| 325 | /// | |
| 326 | /// | A[i,j] -> [i,j] |
| 327 | /// | |
| 328 | /// | for (i = 0; i < 128; i++) |
| 329 | /// | for (j = 0; j < 128; j++) |
| 330 | /// | A(i,j); |
| 331 | /// |
| 332 | /// | After transformation: |
| 333 | /// | |
| 334 | /// | for (it = 0; it < 32; it+=1) |
| 335 | /// | for (j = 0; j < 128; j++) |
| 336 | /// | for (ip = 0; ip <= 3; ip++) |
| 337 | /// | A(4 * it + ip,j); |
| 338 | /// |
| 339 | /// The goal of this transformation is to create a trivially vectorizable |
| 340 | /// loop. This means a parallel loop at the innermost level that has a |
| 341 | /// constant number of iterations corresponding to the target vector width. |
| 342 | /// |
| 343 | /// This transformation creates a loop at the innermost level. The loop has |
| 344 | /// a constant number of iterations, if the number of loop iterations at |
| 345 | /// DimToVectorize can be divided by VectorWidth. The default VectorWidth is |
| 346 | /// currently constant and not yet target specific. This function does not |
| 347 | /// reason about parallelism. |
| 348 | static isl::schedule_node prevectSchedBand(isl::schedule_node Node, |
| 349 | unsigned DimToVectorize, |
| 350 | int VectorWidth); |
| 351 | |
| 352 | /// Apply additional optimizations on the bands in the schedule tree. |
| 353 | /// |
| 354 | /// We are looking for an innermost band node and apply the following |
| 355 | /// transformations: |
| 356 | /// |
| 357 | /// - Tile the band |
| 358 | /// - if the band is tileable |
| 359 | /// - if the band has more than one loop dimension |
| 360 | /// |
| 361 | /// - Prevectorize the schedule of the band (or the point loop in case of |
| 362 | /// tiling). |
| 363 | /// - if vectorization is enabled |
| 364 | /// |
| 365 | /// @param Node The schedule node to (possibly) optimize. |
| 366 | /// @param User A pointer to forward some use information |
| 367 | /// (currently unused). |
| 368 | static isl_schedule_node *optimizeBand(isl_schedule_node *Node, void *User); |
| 369 | |
| 370 | /// Apply tiling optimizations on the bands in the schedule tree. |
| 371 | /// |
| 372 | /// @param Node The schedule node to (possibly) optimize. |
| 373 | static isl::schedule_node applyTileBandOpt(isl::schedule_node Node); |
| 374 | |
| 375 | /// Apply prevectorization on the bands in the schedule tree. |
| 376 | /// |
| 377 | /// @param Node The schedule node to (possibly) prevectorize. |
| 378 | static isl::schedule_node applyPrevectBandOpt(isl::schedule_node Node); |
| 379 | }; |
| 380 | |
| 381 | isl::schedule_node |
| 382 | ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node, |
| 383 | int VectorWidth) { |
| 384 | assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); |
| 385 | Node = Node.child(pos: 0).child(pos: 0); |
| 386 | isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation(); |
| 387 | isl::union_set ScheduleRangeUSet = SchedRelUMap.range(); |
| 388 | isl::set ScheduleRange{ScheduleRangeUSet}; |
| 389 | isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth); |
| 390 | auto AtomicOption = getDimOptions(Ctx: IsolateDomain.ctx(), Option: "atomic" ); |
| 391 | isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, OutDimsNum: 1); |
| 392 | Node = Node.parent().parent(); |
| 393 | isl::union_set Options = IsolateOption.unite(uset2: AtomicOption); |
| 394 | isl::schedule_node_band Result = |
| 395 | Node.as<isl::schedule_node_band>().set_ast_build_options(Options); |
| 396 | return Result; |
| 397 | } |
| 398 | |
| 399 | struct InsertSimdMarkers final : ScheduleNodeRewriter<InsertSimdMarkers> { |
| 400 | isl::schedule_node visitBand(isl::schedule_node_band Band) { |
| 401 | isl::schedule_node Node = visitChildren(Node: Band); |
| 402 | |
| 403 | // Only add SIMD markers to innermost bands. |
| 404 | if (!Node.first_child().isa<isl::schedule_node_leaf>()) |
| 405 | return Node; |
| 406 | |
| 407 | isl::id LoopMarker = isl::id::alloc(ctx: Band.ctx(), name: "SIMD" , user: nullptr); |
| 408 | return Band.insert_mark(mark: LoopMarker); |
| 409 | } |
| 410 | }; |
| 411 | |
| 412 | isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand( |
| 413 | isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) { |
| 414 | assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); |
| 415 | |
| 416 | auto Space = isl::manage(ptr: isl_schedule_node_band_get_space(node: Node.get())); |
| 417 | unsigned ScheduleDimensions = unsignedFromIslSize(Size: Space.dim(type: isl::dim::set)); |
| 418 | assert(DimToVectorize < ScheduleDimensions); |
| 419 | |
| 420 | if (DimToVectorize > 0) { |
| 421 | Node = isl::manage( |
| 422 | ptr: isl_schedule_node_band_split(node: Node.release(), pos: DimToVectorize)); |
| 423 | Node = Node.child(pos: 0); |
| 424 | } |
| 425 | if (DimToVectorize < ScheduleDimensions - 1) |
| 426 | Node = isl::manage(ptr: isl_schedule_node_band_split(node: Node.release(), pos: 1)); |
| 427 | Space = isl::manage(ptr: isl_schedule_node_band_get_space(node: Node.get())); |
| 428 | auto Sizes = isl::multi_val::zero(space: Space); |
| 429 | Sizes = Sizes.set_val(pos: 0, el: isl::val(Node.ctx(), VectorWidth)); |
| 430 | Node = |
| 431 | isl::manage(ptr: isl_schedule_node_band_tile(node: Node.release(), sizes: Sizes.release())); |
| 432 | Node = isolateFullPartialTiles(Node, VectorWidth); |
| 433 | Node = Node.child(pos: 0); |
| 434 | // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise, |
| 435 | // we will have troubles to match it in the backend. |
| 436 | Node = Node.as<isl::schedule_node_band>().set_ast_build_options( |
| 437 | isl::union_set(Node.ctx(), "{ unroll[x]: 1 = 0 }" )); |
| 438 | |
| 439 | // Sink the inner loop into the smallest possible statements to make them |
| 440 | // represent a single vector instruction if possible. |
| 441 | Node = isl::manage(ptr: isl_schedule_node_band_sink(node: Node.release())); |
| 442 | |
| 443 | // Add SIMD markers to those vector statements. |
| 444 | InsertSimdMarkers SimdMarkerInserter; |
| 445 | Node = SimdMarkerInserter.visit(Node); |
| 446 | |
| 447 | PrevectOpts++; |
| 448 | return Node.parent(); |
| 449 | } |
| 450 | |
| 451 | static bool isSimpleInnermostBand(const isl::schedule_node &Node) { |
| 452 | assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); |
| 453 | assert(isl_schedule_node_n_children(Node.get()) == 1); |
| 454 | |
| 455 | auto ChildType = isl_schedule_node_get_type(node: Node.child(pos: 0).get()); |
| 456 | |
| 457 | if (ChildType == isl_schedule_node_leaf) |
| 458 | return true; |
| 459 | |
| 460 | if (ChildType != isl_schedule_node_sequence) |
| 461 | return false; |
| 462 | |
| 463 | auto Sequence = Node.child(pos: 0); |
| 464 | |
| 465 | for (int c = 0, nc = isl_schedule_node_n_children(node: Sequence.get()); c < nc; |
| 466 | ++c) { |
| 467 | auto Child = Sequence.child(pos: c); |
| 468 | if (isl_schedule_node_get_type(node: Child.get()) != isl_schedule_node_filter) |
| 469 | return false; |
| 470 | if (isl_schedule_node_get_type(node: Child.child(pos: 0).get()) != |
| 471 | isl_schedule_node_leaf) |
| 472 | return false; |
| 473 | } |
| 474 | return true; |
| 475 | } |
| 476 | |
| 477 | /// Check if this node is a band node, which has only one child. |
| 478 | /// |
| 479 | /// @param Node The node to check. |
| 480 | static bool isOneTimeParentBandNode(isl::schedule_node Node) { |
| 481 | if (isl_schedule_node_get_type(node: Node.get()) != isl_schedule_node_band) |
| 482 | return false; |
| 483 | |
| 484 | if (isl_schedule_node_n_children(node: Node.get()) != 1) |
| 485 | return false; |
| 486 | |
| 487 | return true; |
| 488 | } |
| 489 | |
| 490 | bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) { |
| 491 | if (!isOneTimeParentBandNode(Node)) |
| 492 | return false; |
| 493 | |
| 494 | if (!isl_schedule_node_band_get_permutable(node: Node.get())) |
| 495 | return false; |
| 496 | |
| 497 | auto Space = isl::manage(ptr: isl_schedule_node_band_get_space(node: Node.get())); |
| 498 | |
| 499 | if (unsignedFromIslSize(Size: Space.dim(type: isl::dim::set)) <= 1u) |
| 500 | return false; |
| 501 | |
| 502 | return isSimpleInnermostBand(Node); |
| 503 | } |
| 504 | |
| 505 | bool ScheduleTreeOptimizer::isPMOptimizableBandNode(isl::schedule_node Node) { |
| 506 | if (!isOneTimeParentBandNode(Node)) |
| 507 | return false; |
| 508 | |
| 509 | return Node.child(pos: 0).isa<isl::schedule_node_leaf>(); |
| 510 | } |
| 511 | |
| 512 | __isl_give isl::schedule_node |
| 513 | ScheduleTreeOptimizer::applyTileBandOpt(isl::schedule_node Node) { |
| 514 | if (FirstLevelTiling) { |
| 515 | Node = tileNode(Node, Identifier: "1st level tiling" , TileSizes: FirstLevelTileSizes, |
| 516 | DefaultTileSize: FirstLevelDefaultTileSize); |
| 517 | FirstLevelTileOpts++; |
| 518 | } |
| 519 | |
| 520 | if (SecondLevelTiling) { |
| 521 | Node = tileNode(Node, Identifier: "2nd level tiling" , TileSizes: SecondLevelTileSizes, |
| 522 | DefaultTileSize: SecondLevelDefaultTileSize); |
| 523 | SecondLevelTileOpts++; |
| 524 | } |
| 525 | |
| 526 | if (RegisterTiling) { |
| 527 | Node = |
| 528 | applyRegisterTiling(Node, TileSizes: RegisterTileSizes, DefaultTileSize: RegisterDefaultTileSize); |
| 529 | RegisterTileOpts++; |
| 530 | } |
| 531 | |
| 532 | return Node; |
| 533 | } |
| 534 | |
| 535 | isl::schedule_node |
| 536 | ScheduleTreeOptimizer::applyPrevectBandOpt(isl::schedule_node Node) { |
| 537 | auto Space = isl::manage(ptr: isl_schedule_node_band_get_space(node: Node.get())); |
| 538 | int Dims = unsignedFromIslSize(Size: Space.dim(type: isl::dim::set)); |
| 539 | |
| 540 | for (int i = Dims - 1; i >= 0; i--) |
| 541 | if (Node.as<isl::schedule_node_band>().member_get_coincident(pos: i)) { |
| 542 | Node = prevectSchedBand(Node, DimToVectorize: i, VectorWidth: PrevectorWidth); |
| 543 | break; |
| 544 | } |
| 545 | |
| 546 | return Node; |
| 547 | } |
| 548 | |
| 549 | __isl_give isl_schedule_node * |
| 550 | ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *NodeArg, |
| 551 | void *User) { |
| 552 | const OptimizerAdditionalInfoTy *OAI = |
| 553 | static_cast<const OptimizerAdditionalInfoTy *>(User); |
| 554 | assert(OAI && "Expecting optimization options" ); |
| 555 | |
| 556 | isl::schedule_node Node = isl::manage(ptr: NodeArg); |
| 557 | |
| 558 | if (OAI->PatternOpts && isPMOptimizableBandNode(Node)) { |
| 559 | isl::schedule_node PatternOptimizedSchedule = |
| 560 | tryOptimizeMatMulPattern(Node, TTI: OAI->TTI, D: OAI->D); |
| 561 | if (!PatternOptimizedSchedule.is_null()) { |
| 562 | MatMulOpts++; |
| 563 | OAI->DepsChanged = true; |
| 564 | return PatternOptimizedSchedule.release(); |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | if (!isTileableBandNode(Node)) |
| 569 | return Node.release(); |
| 570 | |
| 571 | if (OAI->Postopts) |
| 572 | Node = applyTileBandOpt(Node); |
| 573 | |
| 574 | if (OAI->Prevect) { |
| 575 | // FIXME: Prevectorization requirements are different from those checked by |
| 576 | // isTileableBandNode. |
| 577 | Node = applyPrevectBandOpt(Node); |
| 578 | } |
| 579 | |
| 580 | return Node.release(); |
| 581 | } |
| 582 | |
| 583 | isl::schedule |
| 584 | ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule, |
| 585 | const OptimizerAdditionalInfoTy *OAI) { |
| 586 | auto Root = Schedule.get_root(); |
| 587 | Root = optimizeScheduleNode(Node: Root, OAI); |
| 588 | return Root.get_schedule(); |
| 589 | } |
| 590 | |
| 591 | isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode( |
| 592 | isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) { |
| 593 | Node = isl::manage(ptr: isl_schedule_node_map_descendant_bottom_up( |
| 594 | node: Node.release(), fn: optimizeBand, |
| 595 | user: const_cast<void *>(static_cast<const void *>(OAI)))); |
| 596 | return Node; |
| 597 | } |
| 598 | |
| 599 | bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S, |
| 600 | isl::schedule NewSchedule) { |
| 601 | // To understand if the schedule has been optimized we check if the schedule |
| 602 | // has changed at all. |
| 603 | // TODO: We can improve this by tracking if any necessarily beneficial |
| 604 | // transformations have been performed. This can e.g. be tiling, loop |
| 605 | // interchange, or ...) We can track this either at the place where the |
| 606 | // transformation has been performed or, in case of automatic ILP based |
| 607 | // optimizations, by comparing (yet to be defined) performance metrics |
| 608 | // before/after the scheduling optimizer |
| 609 | // (e.g., #stride-one accesses) |
| 610 | // FIXME: A schedule tree whose union_map-conversion is identical to the |
| 611 | // original schedule map may still allow for parallelization, i.e. can still |
| 612 | // be profitable. |
| 613 | auto NewScheduleMap = NewSchedule.get_map(); |
| 614 | auto OldSchedule = S.getSchedule(); |
| 615 | assert(!OldSchedule.is_null() && |
| 616 | "Only IslScheduleOptimizer can insert extension nodes " |
| 617 | "that make Scop::getSchedule() return nullptr." ); |
| 618 | bool changed = !OldSchedule.is_equal(umap2: NewScheduleMap); |
| 619 | return changed; |
| 620 | } |
| 621 | |
| 622 | class IslScheduleOptimizerWrapperPass final : public ScopPass { |
| 623 | public: |
| 624 | static char ID; |
| 625 | |
| 626 | explicit IslScheduleOptimizerWrapperPass() : ScopPass(ID) {} |
| 627 | |
| 628 | /// Optimize the schedule of the SCoP @p S. |
| 629 | bool runOnScop(Scop &S) override; |
| 630 | |
| 631 | /// Print the new schedule for the SCoP @p S. |
| 632 | void printScop(raw_ostream &OS, Scop &S) const override; |
| 633 | |
| 634 | /// Register all analyses and transformation required. |
| 635 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 636 | |
| 637 | /// Release the internal memory. |
| 638 | void releaseMemory() override { |
| 639 | LastSchedule = {}; |
| 640 | IslCtx.reset(); |
| 641 | } |
| 642 | |
| 643 | private: |
| 644 | std::shared_ptr<isl_ctx> IslCtx; |
| 645 | isl::schedule LastSchedule; |
| 646 | }; |
| 647 | |
| 648 | char IslScheduleOptimizerWrapperPass::ID = 0; |
| 649 | |
| 650 | #ifndef NDEBUG |
| 651 | static void printSchedule(llvm::raw_ostream &OS, const isl::schedule &Schedule, |
| 652 | StringRef Desc) { |
| 653 | isl::ctx Ctx = Schedule.ctx(); |
| 654 | isl_printer *P = isl_printer_to_str(ctx: Ctx.get()); |
| 655 | P = isl_printer_set_yaml_style(p: P, ISL_YAML_STYLE_BLOCK); |
| 656 | P = isl_printer_print_schedule(p: P, schedule: Schedule.get()); |
| 657 | char *Str = isl_printer_get_str(printer: P); |
| 658 | OS << Desc << ": \n" << Str << "\n" ; |
| 659 | free(ptr: Str); |
| 660 | isl_printer_free(printer: P); |
| 661 | } |
| 662 | #endif |
| 663 | |
| 664 | /// Collect statistics for the schedule tree. |
| 665 | /// |
| 666 | /// @param Schedule The schedule tree to analyze. If not a schedule tree it is |
| 667 | /// ignored. |
| 668 | /// @param Version The version of the schedule tree that is analyzed. |
| 669 | /// 0 for the original schedule tree before any transformation. |
| 670 | /// 1 for the schedule tree after isl's rescheduling. |
| 671 | /// 2 for the schedule tree after optimizations are applied |
| 672 | /// (tiling, pattern matching) |
| 673 | static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) { |
| 674 | auto Root = Schedule.get_root(); |
| 675 | if (Root.is_null()) |
| 676 | return; |
| 677 | |
| 678 | isl_schedule_node_foreach_descendant_top_down( |
| 679 | node: Root.get(), |
| 680 | fn: [](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool { |
| 681 | isl::schedule_node Node = isl::manage_copy(ptr: nodeptr); |
| 682 | int Version = *static_cast<int *>(user); |
| 683 | |
| 684 | switch (isl_schedule_node_get_type(node: Node.get())) { |
| 685 | case isl_schedule_node_band: { |
| 686 | NumBands[Version]++; |
| 687 | if (isl_schedule_node_band_get_permutable(node: Node.get()) == |
| 688 | isl_bool_true) |
| 689 | NumPermutable[Version]++; |
| 690 | |
| 691 | int CountMembers = isl_schedule_node_band_n_member(node: Node.get()); |
| 692 | NumBandMembers[Version] += CountMembers; |
| 693 | for (int i = 0; i < CountMembers; i += 1) { |
| 694 | if (Node.as<isl::schedule_node_band>().member_get_coincident(pos: i)) |
| 695 | NumCoincident[Version]++; |
| 696 | } |
| 697 | break; |
| 698 | } |
| 699 | |
| 700 | case isl_schedule_node_filter: |
| 701 | NumFilters[Version]++; |
| 702 | break; |
| 703 | |
| 704 | case isl_schedule_node_extension: |
| 705 | NumExtension[Version]++; |
| 706 | break; |
| 707 | |
| 708 | default: |
| 709 | break; |
| 710 | } |
| 711 | |
| 712 | return isl_bool_true; |
| 713 | }, |
| 714 | user: &Version); |
| 715 | } |
| 716 | |
| 717 | static void runIslScheduleOptimizer( |
| 718 | Scop &S, |
| 719 | function_ref<const Dependences &(Dependences::AnalysisLevel)> GetDeps, |
| 720 | TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE, |
| 721 | isl::schedule &LastSchedule, bool &DepsChanged) { |
| 722 | // Skip empty SCoPs but still allow code generation as it will delete the |
| 723 | // loops present but not needed. |
| 724 | if (S.getSize() == 0) { |
| 725 | S.markAsOptimized(); |
| 726 | return; |
| 727 | } |
| 728 | |
| 729 | ScopsProcessed++; |
| 730 | |
| 731 | // Schedule without optimizations. |
| 732 | isl::schedule Schedule = S.getScheduleTree(); |
| 733 | walkScheduleTreeForStatistics(Schedule: S.getScheduleTree(), Version: 0); |
| 734 | POLLY_DEBUG(printSchedule(dbgs(), Schedule, "Original schedule tree" )); |
| 735 | |
| 736 | bool HasUserTransformation = false; |
| 737 | if (PragmaBasedOpts) { |
| 738 | isl::schedule ManuallyTransformed = applyManualTransformations( |
| 739 | S: &S, Sched: Schedule, D: GetDeps(Dependences::AL_Statement), ORE); |
| 740 | if (ManuallyTransformed.is_null()) { |
| 741 | POLLY_DEBUG(dbgs() << "Error during manual optimization\n" ); |
| 742 | return; |
| 743 | } |
| 744 | |
| 745 | if (ManuallyTransformed.get() != Schedule.get()) { |
| 746 | // User transformations have precedence over other transformations. |
| 747 | HasUserTransformation = true; |
| 748 | Schedule = std::move(ManuallyTransformed); |
| 749 | POLLY_DEBUG( |
| 750 | printSchedule(dbgs(), Schedule, "After manual transformations" )); |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | // Only continue if either manual transformations have been applied or we are |
| 755 | // allowed to apply heuristics. |
| 756 | // TODO: Detect disabled heuristics and no user-directed transformation |
| 757 | // metadata earlier in ScopDetection. |
| 758 | if (!HasUserTransformation && S.hasDisableHeuristicsHint()) { |
| 759 | POLLY_DEBUG(dbgs() << "Heuristic optimizations disabled by metadata\n" ); |
| 760 | return; |
| 761 | } |
| 762 | |
| 763 | // Get dependency analysis. |
| 764 | const Dependences &D = GetDeps(Dependences::AL_Statement); |
| 765 | if (D.getSharedIslCtx() != S.getSharedIslCtx()) { |
| 766 | POLLY_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n" ); |
| 767 | return; |
| 768 | } |
| 769 | if (!D.hasValidDependences()) { |
| 770 | POLLY_DEBUG(dbgs() << "Dependency information not available\n" ); |
| 771 | return; |
| 772 | } |
| 773 | |
| 774 | // Apply ISL's algorithm only if not overridden by the user. Note that |
| 775 | // post-rescheduling optimizations (tiling, pattern-based, prevectorization) |
| 776 | // rely on the coincidence/permutable annotations on schedule tree bands that |
| 777 | // are added by the rescheduling analyzer. Therefore, disabling the |
| 778 | // rescheduler implicitly also disables these optimizations. |
| 779 | if (!EnableReschedule) { |
| 780 | POLLY_DEBUG(dbgs() << "Skipping rescheduling due to command line option\n" ); |
| 781 | } else if (HasUserTransformation) { |
| 782 | POLLY_DEBUG( |
| 783 | dbgs() << "Skipping rescheduling due to manual transformation\n" ); |
| 784 | } else { |
| 785 | // Build input data. |
| 786 | int ValidityKinds = |
| 787 | Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; |
| 788 | int ProximityKinds; |
| 789 | |
| 790 | if (OptimizeDeps == "all" ) |
| 791 | ProximityKinds = |
| 792 | Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; |
| 793 | else if (OptimizeDeps == "raw" ) |
| 794 | ProximityKinds = Dependences::TYPE_RAW; |
| 795 | else { |
| 796 | errs() << "Do not know how to optimize for '" << OptimizeDeps << "'" |
| 797 | << " Falling back to optimizing all dependences.\n" ; |
| 798 | ProximityKinds = |
| 799 | Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; |
| 800 | } |
| 801 | |
| 802 | isl::union_set Domain = S.getDomains(); |
| 803 | |
| 804 | if (Domain.is_null()) |
| 805 | return; |
| 806 | |
| 807 | isl::union_map Validity = D.getDependences(Kinds: ValidityKinds); |
| 808 | isl::union_map Proximity = D.getDependences(Kinds: ProximityKinds); |
| 809 | |
| 810 | // Simplify the dependences by removing the constraints introduced by the |
| 811 | // domains. This can speed up the scheduling time significantly, as large |
| 812 | // constant coefficients will be removed from the dependences. The |
| 813 | // introduction of some additional dependences reduces the possible |
| 814 | // transformations, but in most cases, such transformation do not seem to be |
| 815 | // interesting anyway. In some cases this option may stop the scheduler to |
| 816 | // find any schedule. |
| 817 | if (SimplifyDeps == "yes" ) { |
| 818 | Validity = Validity.gist_domain(uset: Domain); |
| 819 | Validity = Validity.gist_range(uset: Domain); |
| 820 | Proximity = Proximity.gist_domain(uset: Domain); |
| 821 | Proximity = Proximity.gist_range(uset: Domain); |
| 822 | } else if (SimplifyDeps != "no" ) { |
| 823 | errs() |
| 824 | << "warning: Option -polly-opt-simplify-deps should either be 'yes' " |
| 825 | "or 'no'. Falling back to default: 'yes'\n" ; |
| 826 | } |
| 827 | |
| 828 | POLLY_DEBUG(dbgs() << "\n\nCompute schedule from: " ); |
| 829 | POLLY_DEBUG(dbgs() << "Domain := " << Domain << ";\n" ); |
| 830 | POLLY_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n" ); |
| 831 | POLLY_DEBUG(dbgs() << "Validity := " << Validity << ";\n" ); |
| 832 | |
| 833 | int IslMaximizeBands; |
| 834 | if (MaximizeBandDepth == "yes" ) { |
| 835 | IslMaximizeBands = 1; |
| 836 | } else if (MaximizeBandDepth == "no" ) { |
| 837 | IslMaximizeBands = 0; |
| 838 | } else { |
| 839 | errs() |
| 840 | << "warning: Option -polly-opt-maximize-bands should either be 'yes'" |
| 841 | " or 'no'. Falling back to default: 'yes'\n" ; |
| 842 | IslMaximizeBands = 1; |
| 843 | } |
| 844 | |
| 845 | int IslOuterCoincidence; |
| 846 | if (OuterCoincidence == "yes" ) { |
| 847 | IslOuterCoincidence = 1; |
| 848 | } else if (OuterCoincidence == "no" ) { |
| 849 | IslOuterCoincidence = 0; |
| 850 | } else { |
| 851 | errs() << "warning: Option -polly-opt-outer-coincidence should either be " |
| 852 | "'yes' or 'no'. Falling back to default: 'no'\n" ; |
| 853 | IslOuterCoincidence = 0; |
| 854 | } |
| 855 | |
| 856 | isl_ctx *Ctx = S.getIslCtx().get(); |
| 857 | |
| 858 | isl_options_set_schedule_outer_coincidence(ctx: Ctx, val: IslOuterCoincidence); |
| 859 | isl_options_set_schedule_maximize_band_depth(ctx: Ctx, val: IslMaximizeBands); |
| 860 | isl_options_set_schedule_max_constant_term(ctx: Ctx, val: MaxConstantTerm); |
| 861 | isl_options_set_schedule_max_coefficient(ctx: Ctx, val: MaxCoefficient); |
| 862 | isl_options_set_tile_scale_tile_loops(ctx: Ctx, val: 0); |
| 863 | |
| 864 | auto OnErrorStatus = isl_options_get_on_error(ctx: Ctx); |
| 865 | isl_options_set_on_error(ctx: Ctx, ISL_ON_ERROR_CONTINUE); |
| 866 | |
| 867 | auto SC = isl::schedule_constraints::on_domain(domain: Domain); |
| 868 | SC = SC.set_proximity(Proximity); |
| 869 | SC = SC.set_validity(Validity); |
| 870 | SC = SC.set_coincidence(Validity); |
| 871 | |
| 872 | { |
| 873 | IslMaxOperationsGuard MaxOpGuard(Ctx, ScheduleComputeOut); |
| 874 | Schedule = SC.compute_schedule(); |
| 875 | |
| 876 | if (MaxOpGuard.hasQuotaExceeded()) |
| 877 | POLLY_DEBUG( |
| 878 | dbgs() << "Schedule optimizer calculation exceeds ISL quota\n" ); |
| 879 | } |
| 880 | |
| 881 | isl_options_set_on_error(ctx: Ctx, val: OnErrorStatus); |
| 882 | |
| 883 | ScopsRescheduled++; |
| 884 | POLLY_DEBUG(printSchedule(dbgs(), Schedule, "After rescheduling" )); |
| 885 | } |
| 886 | |
| 887 | walkScheduleTreeForStatistics(Schedule, Version: 1); |
| 888 | |
| 889 | // In cases the scheduler is not able to optimize the code, we just do not |
| 890 | // touch the schedule. |
| 891 | if (Schedule.is_null()) |
| 892 | return; |
| 893 | |
| 894 | if (GreedyFusion) { |
| 895 | isl::union_map Validity = D.getDependences( |
| 896 | Kinds: Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW); |
| 897 | Schedule = applyGreedyFusion(Sched: Schedule, Deps: Validity); |
| 898 | assert(!Schedule.is_null()); |
| 899 | } |
| 900 | |
| 901 | // Apply post-rescheduling optimizations (if enabled) and/or prevectorization. |
| 902 | const OptimizerAdditionalInfoTy OAI = { |
| 903 | .TTI: TTI, |
| 904 | .D: const_cast<Dependences *>(&D), |
| 905 | /*PatternOpts=*/!HasUserTransformation && PMBasedOpts, |
| 906 | /*Postopts=*/!HasUserTransformation && EnablePostopts, |
| 907 | /*Prevect=*/PollyVectorizerChoice != VECTORIZER_NONE, |
| 908 | .DepsChanged: DepsChanged}; |
| 909 | if (OAI.PatternOpts || OAI.Postopts || OAI.Prevect) { |
| 910 | Schedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, OAI: &OAI); |
| 911 | Schedule = hoistExtensionNodes(Sched: Schedule); |
| 912 | POLLY_DEBUG(printSchedule(dbgs(), Schedule, "After post-optimizations" )); |
| 913 | walkScheduleTreeForStatistics(Schedule, Version: 2); |
| 914 | } |
| 915 | |
| 916 | // Skip profitability check if user transformation(s) have been applied. |
| 917 | if (!HasUserTransformation && |
| 918 | !ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule: Schedule)) |
| 919 | return; |
| 920 | |
| 921 | auto ScopStats = S.getStatistics(); |
| 922 | ScopsOptimized++; |
| 923 | NumAffineLoopsOptimized += ScopStats.NumAffineLoops; |
| 924 | NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops; |
| 925 | LastSchedule = Schedule; |
| 926 | |
| 927 | S.setScheduleTree(Schedule); |
| 928 | S.markAsOptimized(); |
| 929 | |
| 930 | if (OptimizedScops) |
| 931 | errs() << S; |
| 932 | } |
| 933 | |
| 934 | bool IslScheduleOptimizerWrapperPass::runOnScop(Scop &S) { |
| 935 | releaseMemory(); |
| 936 | |
| 937 | Function &F = S.getFunction(); |
| 938 | IslCtx = S.getSharedIslCtx(); |
| 939 | |
| 940 | auto getDependences = |
| 941 | [this](Dependences::AnalysisLevel) -> const Dependences & { |
| 942 | return getAnalysis<DependenceInfo>().getDependences( |
| 943 | Level: Dependences::AL_Statement); |
| 944 | }; |
| 945 | OptimizationRemarkEmitter &ORE = |
| 946 | getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); |
| 947 | TargetTransformInfo *TTI = |
| 948 | &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| 949 | |
| 950 | bool DepsChanged = false; |
| 951 | runIslScheduleOptimizer(S, GetDeps: getDependences, TTI, ORE: &ORE, LastSchedule, |
| 952 | DepsChanged); |
| 953 | if (DepsChanged) |
| 954 | getAnalysis<DependenceInfo>().abandonDependences(); |
| 955 | return false; |
| 956 | } |
| 957 | |
| 958 | static void runScheduleOptimizerPrinter(raw_ostream &OS, |
| 959 | isl::schedule LastSchedule) { |
| 960 | isl_printer *p; |
| 961 | char *ScheduleStr; |
| 962 | |
| 963 | OS << "Calculated schedule:\n" ; |
| 964 | |
| 965 | if (LastSchedule.is_null()) { |
| 966 | OS << "n/a\n" ; |
| 967 | return; |
| 968 | } |
| 969 | |
| 970 | p = isl_printer_to_str(ctx: LastSchedule.ctx().get()); |
| 971 | p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_BLOCK); |
| 972 | p = isl_printer_print_schedule(p, schedule: LastSchedule.get()); |
| 973 | ScheduleStr = isl_printer_get_str(printer: p); |
| 974 | isl_printer_free(printer: p); |
| 975 | |
| 976 | OS << ScheduleStr << "\n" ; |
| 977 | |
| 978 | free(ptr: ScheduleStr); |
| 979 | } |
| 980 | |
| 981 | void IslScheduleOptimizerWrapperPass::printScop(raw_ostream &OS, Scop &) const { |
| 982 | runScheduleOptimizerPrinter(OS, LastSchedule); |
| 983 | } |
| 984 | |
| 985 | void IslScheduleOptimizerWrapperPass::getAnalysisUsage( |
| 986 | AnalysisUsage &AU) const { |
| 987 | ScopPass::getAnalysisUsage(AU); |
| 988 | AU.addRequired<DependenceInfo>(); |
| 989 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 990 | AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); |
| 991 | |
| 992 | AU.addPreserved<DependenceInfo>(); |
| 993 | AU.addPreserved<OptimizationRemarkEmitterWrapperPass>(); |
| 994 | } |
| 995 | |
| 996 | } // namespace |
| 997 | |
| 998 | Pass *polly::createIslScheduleOptimizerWrapperPass() { |
| 999 | return new IslScheduleOptimizerWrapperPass(); |
| 1000 | } |
| 1001 | |
| 1002 | INITIALIZE_PASS_BEGIN(IslScheduleOptimizerWrapperPass, "polly-opt-isl" , |
| 1003 | "Polly - Optimize schedule of SCoP" , false, false); |
| 1004 | INITIALIZE_PASS_DEPENDENCY(DependenceInfo); |
| 1005 | INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass); |
| 1006 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass); |
| 1007 | INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass); |
| 1008 | INITIALIZE_PASS_END(IslScheduleOptimizerWrapperPass, "polly-opt-isl" , |
| 1009 | "Polly - Optimize schedule of SCoP" , false, false) |
| 1010 | |
| 1011 | static llvm::PreservedAnalyses |
| 1012 | runIslScheduleOptimizerUsingNPM(Scop &S, ScopAnalysisManager &SAM, |
| 1013 | ScopStandardAnalysisResults &SAR, SPMUpdater &U, |
| 1014 | raw_ostream *OS) { |
| 1015 | DependenceAnalysis::Result &Deps = SAM.getResult<DependenceAnalysis>(IR&: S, ExtraArgs&: SAR); |
| 1016 | auto GetDeps = [&Deps](Dependences::AnalysisLevel) -> const Dependences & { |
| 1017 | return Deps.getDependences(Level: Dependences::AL_Statement); |
| 1018 | }; |
| 1019 | OptimizationRemarkEmitter ORE(&S.getFunction()); |
| 1020 | TargetTransformInfo *TTI = &SAR.TTI; |
| 1021 | isl::schedule LastSchedule; |
| 1022 | bool DepsChanged = false; |
| 1023 | runIslScheduleOptimizer(S, GetDeps, TTI, ORE: &ORE, LastSchedule, DepsChanged); |
| 1024 | if (DepsChanged) |
| 1025 | Deps.abandonDependences(); |
| 1026 | |
| 1027 | if (OS) { |
| 1028 | *OS << "Printing analysis 'Polly - Optimize schedule of SCoP' for region: '" |
| 1029 | << S.getName() << "' in function '" << S.getFunction().getName() |
| 1030 | << "':\n" ; |
| 1031 | runScheduleOptimizerPrinter(OS&: *OS, LastSchedule); |
| 1032 | } |
| 1033 | return PreservedAnalyses::all(); |
| 1034 | } |
| 1035 | |
| 1036 | llvm::PreservedAnalyses |
| 1037 | IslScheduleOptimizerPass::run(Scop &S, ScopAnalysisManager &SAM, |
| 1038 | ScopStandardAnalysisResults &SAR, SPMUpdater &U) { |
| 1039 | return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, OS: nullptr); |
| 1040 | } |
| 1041 | |
| 1042 | llvm::PreservedAnalyses |
| 1043 | IslScheduleOptimizerPrinterPass::run(Scop &S, ScopAnalysisManager &SAM, |
| 1044 | ScopStandardAnalysisResults &SAR, |
| 1045 | SPMUpdater &U) { |
| 1046 | return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, OS: &OS); |
| 1047 | } |
| 1048 | |
| 1049 | //===----------------------------------------------------------------------===// |
| 1050 | |
| 1051 | namespace { |
| 1052 | /// Print result from IslScheduleOptimizerWrapperPass. |
| 1053 | class IslScheduleOptimizerPrinterLegacyPass final : public ScopPass { |
| 1054 | public: |
| 1055 | static char ID; |
| 1056 | |
| 1057 | IslScheduleOptimizerPrinterLegacyPass() |
| 1058 | : IslScheduleOptimizerPrinterLegacyPass(outs()) {} |
| 1059 | explicit IslScheduleOptimizerPrinterLegacyPass(llvm::raw_ostream &OS) |
| 1060 | : ScopPass(ID), OS(OS) {} |
| 1061 | |
| 1062 | bool runOnScop(Scop &S) override { |
| 1063 | IslScheduleOptimizerWrapperPass &P = |
| 1064 | getAnalysis<IslScheduleOptimizerWrapperPass>(); |
| 1065 | |
| 1066 | OS << "Printing analysis '" << P.getPassName() << "' for region: '" |
| 1067 | << S.getRegion().getNameStr() << "' in function '" |
| 1068 | << S.getFunction().getName() << "':\n" ; |
| 1069 | P.printScop(OS, S); |
| 1070 | |
| 1071 | return false; |
| 1072 | } |
| 1073 | |
| 1074 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 1075 | ScopPass::getAnalysisUsage(AU); |
| 1076 | AU.addRequired<IslScheduleOptimizerWrapperPass>(); |
| 1077 | AU.setPreservesAll(); |
| 1078 | } |
| 1079 | |
| 1080 | private: |
| 1081 | llvm::raw_ostream &OS; |
| 1082 | }; |
| 1083 | |
| 1084 | char IslScheduleOptimizerPrinterLegacyPass::ID = 0; |
| 1085 | } // namespace |
| 1086 | |
| 1087 | Pass *polly::createIslScheduleOptimizerPrinterLegacyPass(raw_ostream &OS) { |
| 1088 | return new IslScheduleOptimizerPrinterLegacyPass(OS); |
| 1089 | } |
| 1090 | |
| 1091 | INITIALIZE_PASS_BEGIN(IslScheduleOptimizerPrinterLegacyPass, |
| 1092 | "polly-print-opt-isl" , |
| 1093 | "Polly - Print optimizer schedule of SCoP" , false, false); |
| 1094 | INITIALIZE_PASS_DEPENDENCY(IslScheduleOptimizerWrapperPass) |
| 1095 | INITIALIZE_PASS_END(IslScheduleOptimizerPrinterLegacyPass, |
| 1096 | "polly-print-opt-isl" , |
| 1097 | "Polly - Print optimizer schedule of SCoP" , false, false) |
| 1098 | |