| 1 | // -*- C++ -*- |
| 2 | //===-- lexicographical_compare.pass.cpp ----------------------------------===// |
| 3 | // |
| 4 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 5 | // See https://llvm.org/LICENSE.txt for license information. |
| 6 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | // UNSUPPORTED: c++03, c++11, c++14 |
| 11 | |
| 12 | #include "support/pstl_test_config.h" |
| 13 | |
| 14 | #include <iostream> |
| 15 | #include <execution> |
| 16 | #include <algorithm> |
| 17 | |
| 18 | #include "support/utils.h" |
| 19 | |
| 20 | using namespace TestUtils; |
| 21 | |
| 22 | struct test_one_policy |
| 23 | { |
| 24 | |
| 25 | template <typename ExecutionPolicy, typename Iterator1, typename Iterator2, typename Predicate> |
| 26 | void |
| 27 | operator()(ExecutionPolicy&& exec, Iterator1 begin1, Iterator1 end1, Iterator2 begin2, Iterator2 end2, |
| 28 | Predicate pred) |
| 29 | { |
| 30 | const bool expected = std::lexicographical_compare(begin1, end1, begin2, end2, pred); |
| 31 | const bool actual = std::lexicographical_compare(exec, begin1, end1, begin2, end2, pred); |
| 32 | EXPECT_TRUE(actual == expected, "wrong return result from lexicographical compare with predicate" ); |
| 33 | } |
| 34 | |
| 35 | template <typename ExecutionPolicy, typename Iterator1, typename Iterator2> |
| 36 | void |
| 37 | operator()(ExecutionPolicy&& exec, Iterator1 begin1, Iterator1 end1, Iterator2 begin2, Iterator2 end2) |
| 38 | { |
| 39 | const bool expected = std::lexicographical_compare(begin1, end1, begin2, end2); |
| 40 | const bool actual = std::lexicographical_compare(exec, begin1, end1, begin2, end2); |
| 41 | EXPECT_TRUE(actual == expected, "wrong return result from lexicographical compare without predicate" ); |
| 42 | } |
| 43 | }; |
| 44 | |
| 45 | template <typename T1, typename T2, typename Predicate> |
| 46 | void |
| 47 | test(Predicate pred) |
| 48 | { |
| 49 | |
| 50 | const std::size_t max_n = 1000000; |
| 51 | Sequence<T1> in1(max_n, [](std::size_t k) { return T1(k); }); |
| 52 | Sequence<T2> in2(2 * max_n, [](std::size_t k) { return T2(k); }); |
| 53 | |
| 54 | std::size_t n2; |
| 55 | |
| 56 | // Test case: Call algorithm's version without predicate. |
| 57 | invoke_on_all_policies(test_one_policy(), in1.cbegin(), in1.cbegin() + max_n, in2.cbegin() + 3 * max_n / 10, |
| 58 | in2.cbegin() + 5 * max_n / 10); |
| 59 | |
| 60 | // Test case: If one range is a prefix of another, the shorter range is lexicographically less than the other. |
| 61 | std::size_t max_n2 = max_n / 10; |
| 62 | invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + max_n, in2.cbegin(), in2.cbegin() + max_n2, |
| 63 | pred); |
| 64 | invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + max_n, in2.begin() + max_n2, |
| 65 | in2.begin() + 3 * max_n2, pred); |
| 66 | |
| 67 | // Test case: If one range is a prefix of another, the shorter range is lexicographically less than the other. |
| 68 | max_n2 = 2 * max_n; |
| 69 | invoke_on_all_policies(test_one_policy(), in1.cbegin(), in1.cbegin() + max_n, in2.begin(), in2.begin() + max_n2, |
| 70 | pred); |
| 71 | |
| 72 | for (std::size_t n1 = 0; n1 <= max_n; n1 = n1 <= 16 ? n1 + 1 : std::size_t(3.1415 * n1)) |
| 73 | { |
| 74 | // Test case: If two ranges have equivalent elements and are of the same length, then the ranges are lexicographically equal. |
| 75 | n2 = n1; |
| 76 | invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.begin(), in2.begin() + n2, pred); |
| 77 | |
| 78 | n2 = n1; |
| 79 | // Test case: two ranges have different elements and are of the same length (second sequence less than first) |
| 80 | std::size_t ind = n1 / 2; |
| 81 | in2[ind] = T2(-1); |
| 82 | invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.begin(), in2.begin() + n2, pred); |
| 83 | in2[ind] = T2(ind); |
| 84 | |
| 85 | // Test case: two ranges have different elements and are of the same length (first sequence less than second) |
| 86 | ind = n1 / 5; |
| 87 | in1[ind] = T1(-1); |
| 88 | invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.cbegin(), in2.cbegin() + n2, pred); |
| 89 | in1[ind] = T1(ind); |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | template <typename Predicate> |
| 94 | void |
| 95 | test_string(Predicate pred) |
| 96 | { |
| 97 | |
| 98 | const std::size_t max_n = 1000000; |
| 99 | std::string in1 = "" ; |
| 100 | std::string in2 = "" ; |
| 101 | for (std::size_t n1 = 0; n1 <= max_n; ++n1) |
| 102 | { |
| 103 | in1 += n1; |
| 104 | } |
| 105 | |
| 106 | for (std::size_t n1 = 0; n1 <= 2 * max_n; ++n1) |
| 107 | { |
| 108 | in2 += n1; |
| 109 | } |
| 110 | |
| 111 | std::size_t n2; |
| 112 | |
| 113 | for (std::size_t n1 = 0; n1 < in1.size(); n1 = n1 <= 16 ? n1 + 1 : std::size_t(3.1415 * n1)) |
| 114 | { |
| 115 | // Test case: If two ranges have equivalent elements and are of the same length, then the ranges are lexicographically equal. |
| 116 | n2 = n1; |
| 117 | invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.begin(), in2.begin() + n2, pred); |
| 118 | |
| 119 | n2 = n1; |
| 120 | // Test case: two ranges have different elements and are of the same length (second sequence less than first) |
| 121 | in2[n1 / 2] = 'a'; |
| 122 | invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.begin(), in2.begin() + n2, pred); |
| 123 | |
| 124 | // Test case: two ranges have different elements and are of the same length (first sequence less than second) |
| 125 | in1[n1 / 5] = 'a'; |
| 126 | invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.cbegin(), in2.cbegin() + n2, pred); |
| 127 | } |
| 128 | invoke_on_all_policies(op: test_one_policy(), rest: in1.cbegin(), rest: in1.cbegin() + max_n, rest: in2.cbegin() + 3 * max_n / 10, |
| 129 | rest: in2.cbegin() + 5 * max_n / 10); |
| 130 | } |
| 131 | |
| 132 | template <typename T> |
| 133 | struct LocalWrapper |
| 134 | { |
| 135 | explicit LocalWrapper(std::size_t k) : my_val(k) {} |
| 136 | bool |
| 137 | operator<(const LocalWrapper<T>& w) const |
| 138 | { |
| 139 | return my_val < w.my_val; |
| 140 | } |
| 141 | |
| 142 | private: |
| 143 | T my_val; |
| 144 | }; |
| 145 | |
| 146 | template <typename T> |
| 147 | struct test_non_const |
| 148 | { |
| 149 | template <typename Policy, typename FirstIterator, typename SecondInterator> |
| 150 | void |
| 151 | operator()(Policy&& exec, FirstIterator first_iter, SecondInterator second_iter) |
| 152 | { |
| 153 | invoke_if(exec, [&]() { |
| 154 | lexicographical_compare(exec, first_iter, first_iter, second_iter, second_iter, non_const(std::less<T>())); |
| 155 | }); |
| 156 | } |
| 157 | }; |
| 158 | |
| 159 | int |
| 160 | main() |
| 161 | { |
| 162 | test<uint16_t, float64_t>(pred: std::less<float64_t>()); |
| 163 | test<float32_t, int32_t>(pred: std::greater<float32_t>()); |
| 164 | #if !defined(_PSTL_ICC_18_TEST_EARLY_EXIT_AVX_RELEASE_BROKEN) |
| 165 | test<float64_t, int32_t>(pred: [](const float64_t x, const int32_t y) { return x * x < y * y; }); |
| 166 | #endif |
| 167 | test<LocalWrapper<int32_t>, LocalWrapper<int32_t>>( |
| 168 | pred: [](const LocalWrapper<int32_t>& x, const LocalWrapper<int32_t>& y) { return x < y; }); |
| 169 | test_string(pred: [](const char x, const char y) { return x < y; }); |
| 170 | |
| 171 | test_algo_basic_double<int32_t>(f: run_for_rnd_fw<test_non_const<int32_t>>()); |
| 172 | |
| 173 | std::cout << done() << std::endl; |
| 174 | return 0; |
| 175 | } |
| 176 | |