| 1 | // Copyright 2016 Ismael Jimenez Martinez. All rights reserved. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | // Source project : https://github.com/ismaelJimenez/cpp.leastsq |
| 16 | // Adapted to be used with google benchmark |
| 17 | |
| 18 | #include "complexity.h" |
| 19 | |
| 20 | #include <algorithm> |
| 21 | #include <cmath> |
| 22 | |
| 23 | #include "benchmark/benchmark.h" |
| 24 | #include "check.h" |
| 25 | |
| 26 | namespace benchmark { |
| 27 | |
| 28 | // Internal function to calculate the different scalability forms |
| 29 | BigOFunc* FittingCurve(BigO complexity) { |
| 30 | static const double kLog2E = 1.44269504088896340736; |
| 31 | switch (complexity) { |
| 32 | case oN: |
| 33 | return [](IterationCount n) -> double { return static_cast<double>(n); }; |
| 34 | case oNSquared: |
| 35 | return [](IterationCount n) -> double { return std::pow(x: n, y: 2); }; |
| 36 | case oNCubed: |
| 37 | return [](IterationCount n) -> double { return std::pow(x: n, y: 3); }; |
| 38 | case oLogN: |
| 39 | /* Note: can't use log2 because Android's GNU STL lacks it */ |
| 40 | return [](IterationCount n) { |
| 41 | return kLog2E * std::log(x: static_cast<double>(n)); |
| 42 | }; |
| 43 | case oNLogN: |
| 44 | /* Note: can't use log2 because Android's GNU STL lacks it */ |
| 45 | return [](IterationCount n) { |
| 46 | return kLog2E * static_cast<double>(n) * |
| 47 | std::log(x: static_cast<double>(n)); |
| 48 | }; |
| 49 | case o1: |
| 50 | default: |
| 51 | return [](IterationCount) { return 1.0; }; |
| 52 | } |
| 53 | } |
| 54 | |
| 55 | // Function to return an string for the calculated complexity |
| 56 | std::string GetBigOString(BigO complexity) { |
| 57 | switch (complexity) { |
| 58 | case oN: |
| 59 | return "N" ; |
| 60 | case oNSquared: |
| 61 | return "N^2" ; |
| 62 | case oNCubed: |
| 63 | return "N^3" ; |
| 64 | case oLogN: |
| 65 | return "lgN" ; |
| 66 | case oNLogN: |
| 67 | return "NlgN" ; |
| 68 | case o1: |
| 69 | return "(1)" ; |
| 70 | default: |
| 71 | return "f(N)" ; |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | // Find the coefficient for the high-order term in the running time, by |
| 76 | // minimizing the sum of squares of relative error, for the fitting curve |
| 77 | // given by the lambda expression. |
| 78 | // - n : Vector containing the size of the benchmark tests. |
| 79 | // - time : Vector containing the times for the benchmark tests. |
| 80 | // - fitting_curve : lambda expression (e.g. [](ComplexityN n) {return n; };). |
| 81 | |
| 82 | // For a deeper explanation on the algorithm logic, please refer to |
| 83 | // https://en.wikipedia.org/wiki/Least_squares#Least_squares,_regression_analysis_and_statistics |
| 84 | |
| 85 | LeastSq MinimalLeastSq(const std::vector<ComplexityN>& n, |
| 86 | const std::vector<double>& time, |
| 87 | BigOFunc* fitting_curve) { |
| 88 | double sigma_gn_squared = 0.0; |
| 89 | double sigma_time = 0.0; |
| 90 | double sigma_time_gn = 0.0; |
| 91 | |
| 92 | // Calculate least square fitting parameter |
| 93 | for (size_t i = 0; i < n.size(); ++i) { |
| 94 | double gn_i = fitting_curve(n[i]); |
| 95 | sigma_gn_squared += gn_i * gn_i; |
| 96 | sigma_time += time[i]; |
| 97 | sigma_time_gn += time[i] * gn_i; |
| 98 | } |
| 99 | |
| 100 | LeastSq result; |
| 101 | result.complexity = oLambda; |
| 102 | |
| 103 | // Calculate complexity. |
| 104 | result.coef = sigma_time_gn / sigma_gn_squared; |
| 105 | |
| 106 | // Calculate RMS |
| 107 | double rms = 0.0; |
| 108 | for (size_t i = 0; i < n.size(); ++i) { |
| 109 | double fit = result.coef * fitting_curve(n[i]); |
| 110 | rms += std::pow(x: (time[i] - fit), y: 2); |
| 111 | } |
| 112 | |
| 113 | // Normalized RMS by the mean of the observed values |
| 114 | double mean = sigma_time / static_cast<double>(n.size()); |
| 115 | result.rms = std::sqrt(x: rms / static_cast<double>(n.size())) / mean; |
| 116 | |
| 117 | return result; |
| 118 | } |
| 119 | |
| 120 | // Find the coefficient for the high-order term in the running time, by |
| 121 | // minimizing the sum of squares of relative error. |
| 122 | // - n : Vector containing the size of the benchmark tests. |
| 123 | // - time : Vector containing the times for the benchmark tests. |
| 124 | // - complexity : If different than oAuto, the fitting curve will stick to |
| 125 | // this one. If it is oAuto, it will be calculated the best |
| 126 | // fitting curve. |
| 127 | LeastSq MinimalLeastSq(const std::vector<ComplexityN>& n, |
| 128 | const std::vector<double>& time, const BigO complexity) { |
| 129 | BM_CHECK_EQ(n.size(), time.size()); |
| 130 | BM_CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two |
| 131 | // benchmark runs are given |
| 132 | BM_CHECK_NE(complexity, oNone); |
| 133 | |
| 134 | LeastSq best_fit; |
| 135 | |
| 136 | if (complexity == oAuto) { |
| 137 | std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed}; |
| 138 | |
| 139 | // Take o1 as default best fitting curve |
| 140 | best_fit = MinimalLeastSq(n, time, fitting_curve: FittingCurve(complexity: o1)); |
| 141 | best_fit.complexity = o1; |
| 142 | |
| 143 | // Compute all possible fitting curves and stick to the best one |
| 144 | for (const auto& fit : fit_curves) { |
| 145 | LeastSq current_fit = MinimalLeastSq(n, time, fitting_curve: FittingCurve(complexity: fit)); |
| 146 | if (current_fit.rms < best_fit.rms) { |
| 147 | best_fit = current_fit; |
| 148 | best_fit.complexity = fit; |
| 149 | } |
| 150 | } |
| 151 | } else { |
| 152 | best_fit = MinimalLeastSq(n, time, fitting_curve: FittingCurve(complexity)); |
| 153 | best_fit.complexity = complexity; |
| 154 | } |
| 155 | |
| 156 | return best_fit; |
| 157 | } |
| 158 | |
| 159 | std::vector<BenchmarkReporter::Run> ComputeBigO( |
| 160 | const std::vector<BenchmarkReporter::Run>& reports) { |
| 161 | typedef BenchmarkReporter::Run Run; |
| 162 | std::vector<Run> results; |
| 163 | |
| 164 | if (reports.size() < 2) return results; |
| 165 | |
| 166 | // Accumulators. |
| 167 | std::vector<ComplexityN> n; |
| 168 | std::vector<double> real_time; |
| 169 | std::vector<double> cpu_time; |
| 170 | |
| 171 | // Populate the accumulators. |
| 172 | for (const Run& run : reports) { |
| 173 | BM_CHECK_GT(run.complexity_n, 0) |
| 174 | << "Did you forget to call SetComplexityN?" ; |
| 175 | n.push_back(x: run.complexity_n); |
| 176 | real_time.push_back(x: run.real_accumulated_time / |
| 177 | static_cast<double>(run.iterations)); |
| 178 | cpu_time.push_back(x: run.cpu_accumulated_time / |
| 179 | static_cast<double>(run.iterations)); |
| 180 | } |
| 181 | |
| 182 | LeastSq result_cpu; |
| 183 | LeastSq result_real; |
| 184 | |
| 185 | if (reports[0].complexity == oLambda) { |
| 186 | result_cpu = MinimalLeastSq(n, time: cpu_time, fitting_curve: reports[0].complexity_lambda); |
| 187 | result_real = MinimalLeastSq(n, time: real_time, fitting_curve: reports[0].complexity_lambda); |
| 188 | } else { |
| 189 | const BigO* InitialBigO = &reports[0].complexity; |
| 190 | const bool use_real_time_for_initial_big_o = |
| 191 | reports[0].use_real_time_for_initial_big_o; |
| 192 | if (use_real_time_for_initial_big_o) { |
| 193 | result_real = MinimalLeastSq(n, time: real_time, complexity: *InitialBigO); |
| 194 | InitialBigO = &result_real.complexity; |
| 195 | // The Big-O complexity for CPU time must have the same Big-O function! |
| 196 | } |
| 197 | result_cpu = MinimalLeastSq(n, time: cpu_time, complexity: *InitialBigO); |
| 198 | InitialBigO = &result_cpu.complexity; |
| 199 | if (!use_real_time_for_initial_big_o) { |
| 200 | result_real = MinimalLeastSq(n, time: real_time, complexity: *InitialBigO); |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | // Drop the 'args' when reporting complexity. |
| 205 | auto run_name = reports[0].run_name; |
| 206 | run_name.args.clear(); |
| 207 | |
| 208 | // Get the data from the accumulator to BenchmarkReporter::Run's. |
| 209 | Run big_o; |
| 210 | big_o.run_name = run_name; |
| 211 | big_o.family_index = reports[0].family_index; |
| 212 | big_o.per_family_instance_index = reports[0].per_family_instance_index; |
| 213 | big_o.run_type = BenchmarkReporter::Run::RT_Aggregate; |
| 214 | big_o.repetitions = reports[0].repetitions; |
| 215 | big_o.repetition_index = Run::no_repetition_index; |
| 216 | big_o.threads = reports[0].threads; |
| 217 | big_o.aggregate_name = "BigO" ; |
| 218 | big_o.aggregate_unit = StatisticUnit::kTime; |
| 219 | big_o.report_label = reports[0].report_label; |
| 220 | big_o.iterations = 0; |
| 221 | big_o.real_accumulated_time = result_real.coef; |
| 222 | big_o.cpu_accumulated_time = result_cpu.coef; |
| 223 | big_o.report_big_o = true; |
| 224 | big_o.complexity = result_cpu.complexity; |
| 225 | |
| 226 | // All the time results are reported after being multiplied by the |
| 227 | // time unit multiplier. But since RMS is a relative quantity it |
| 228 | // should not be multiplied at all. So, here, we _divide_ it by the |
| 229 | // multiplier so that when it is multiplied later the result is the |
| 230 | // correct one. |
| 231 | double multiplier = GetTimeUnitMultiplier(unit: reports[0].time_unit); |
| 232 | |
| 233 | // Only add label to mean/stddev if it is same for all runs |
| 234 | Run rms; |
| 235 | rms.run_name = run_name; |
| 236 | rms.family_index = reports[0].family_index; |
| 237 | rms.per_family_instance_index = reports[0].per_family_instance_index; |
| 238 | rms.run_type = BenchmarkReporter::Run::RT_Aggregate; |
| 239 | rms.aggregate_name = "RMS" ; |
| 240 | rms.aggregate_unit = StatisticUnit::kPercentage; |
| 241 | rms.report_label = big_o.report_label; |
| 242 | rms.iterations = 0; |
| 243 | rms.repetition_index = Run::no_repetition_index; |
| 244 | rms.repetitions = reports[0].repetitions; |
| 245 | rms.threads = reports[0].threads; |
| 246 | rms.real_accumulated_time = result_real.rms / multiplier; |
| 247 | rms.cpu_accumulated_time = result_cpu.rms / multiplier; |
| 248 | rms.report_rms = true; |
| 249 | rms.complexity = result_cpu.complexity; |
| 250 | // don't forget to keep the time unit, or we won't be able to |
| 251 | // recover the correct value. |
| 252 | rms.time_unit = reports[0].time_unit; |
| 253 | |
| 254 | results.push_back(x: big_o); |
| 255 | results.push_back(x: rms); |
| 256 | return results; |
| 257 | } |
| 258 | |
| 259 | } // end namespace benchmark |
| 260 | |