1 | // ---------------------------------------------------------------------- |
2 | // CycleClock |
3 | // A CycleClock tells you the current time in Cycles. The "time" |
4 | // is actually time since power-on. This is like time() but doesn't |
5 | // involve a system call and is much more precise. |
6 | // |
7 | // NOTE: Not all cpu/platform/kernel combinations guarantee that this |
8 | // clock increments at a constant rate or is synchronized across all logical |
9 | // cpus in a system. |
10 | // |
11 | // If you need the above guarantees, please consider using a different |
12 | // API. There are efforts to provide an interface which provides a millisecond |
13 | // granularity and implemented as a memory read. A memory read is generally |
14 | // cheaper than the CycleClock for many architectures. |
15 | // |
16 | // Also, in some out of order CPU implementations, the CycleClock is not |
17 | // serializing. So if you're trying to count at cycles granularity, your |
18 | // data might be inaccurate due to out of order instruction execution. |
19 | // ---------------------------------------------------------------------- |
20 | |
21 | #ifndef BENCHMARK_CYCLECLOCK_H_ |
22 | #define BENCHMARK_CYCLECLOCK_H_ |
23 | |
24 | #include <cstdint> |
25 | |
26 | #include "benchmark/benchmark.h" |
27 | #include "internal_macros.h" |
28 | |
29 | #if defined(BENCHMARK_OS_MACOSX) |
30 | #include <mach/mach_time.h> |
31 | #endif |
32 | // For MSVC, we want to use '_asm rdtsc' when possible (since it works |
33 | // with even ancient MSVC compilers), and when not possible the |
34 | // __rdtsc intrinsic, declared in <intrin.h>. Unfortunately, in some |
35 | // environments, <windows.h> and <intrin.h> have conflicting |
36 | // declarations of some other intrinsics, breaking compilation. |
37 | // Therefore, we simply declare __rdtsc ourselves. See also |
38 | // http://connect.microsoft.com/VisualStudio/feedback/details/262047 |
39 | #if defined(COMPILER_MSVC) && !defined(_M_IX86) && !defined(_M_ARM64) && \ |
40 | !defined(_M_ARM64EC) |
41 | extern "C" uint64_t __rdtsc(); |
42 | #pragma intrinsic(__rdtsc) |
43 | #endif |
44 | |
45 | #if !defined(BENCHMARK_OS_WINDOWS) || defined(BENCHMARK_OS_MINGW) |
46 | #include <sys/time.h> |
47 | #include <time.h> |
48 | #endif |
49 | |
50 | #ifdef BENCHMARK_OS_EMSCRIPTEN |
51 | #include <emscripten.h> |
52 | #endif |
53 | |
54 | namespace benchmark { |
55 | // NOTE: only i386 and x86_64 have been well tested. |
56 | // PPC, sparc, alpha, and ia64 are based on |
57 | // http://peter.kuscsik.com/wordpress/?p=14 |
58 | // with modifications by m3b. See also |
59 | // https://setisvn.ssl.berkeley.edu/svn/lib/fftw-3.0.1/kernel/cycle.h |
60 | namespace cycleclock { |
61 | // This should return the number of cycles since power-on. Thread-safe. |
62 | inline BENCHMARK_ALWAYS_INLINE int64_t Now() { |
63 | #if defined(BENCHMARK_OS_MACOSX) |
64 | // this goes at the top because we need ALL Macs, regardless of |
65 | // architecture, to return the number of "mach time units" that |
66 | // have passed since startup. See sysinfo.cc where |
67 | // InitializeSystemInfo() sets the supposed cpu clock frequency of |
68 | // macs to the number of mach time units per second, not actual |
69 | // CPU clock frequency (which can change in the face of CPU |
70 | // frequency scaling). Also note that when the Mac sleeps, this |
71 | // counter pauses; it does not continue counting, nor does it |
72 | // reset to zero. |
73 | return mach_absolute_time(); |
74 | #elif defined(BENCHMARK_OS_EMSCRIPTEN) |
75 | // this goes above x86-specific code because old versions of Emscripten |
76 | // define __x86_64__, although they have nothing to do with it. |
77 | return static_cast<int64_t>(emscripten_get_now() * 1e+6); |
78 | #elif defined(__i386__) |
79 | int64_t ret; |
80 | __asm__ volatile("rdtsc" : "=A" (ret)); |
81 | return ret; |
82 | #elif defined(__x86_64__) || defined(__amd64__) |
83 | uint64_t low, high; |
84 | __asm__ volatile("rdtsc" : "=a" (low), "=d" (high)); |
85 | return (high << 32) | low; |
86 | #elif defined(__powerpc__) || defined(__ppc__) |
87 | // This returns a time-base, which is not always precisely a cycle-count. |
88 | #if defined(__powerpc64__) || defined(__ppc64__) |
89 | int64_t tb; |
90 | asm volatile("mfspr %0, 268" : "=r" (tb)); |
91 | return tb; |
92 | #else |
93 | uint32_t tbl, tbu0, tbu1; |
94 | asm volatile( |
95 | "mftbu %0\n" |
96 | "mftb %1\n" |
97 | "mftbu %2" |
98 | : "=r" (tbu0), "=r" (tbl), "=r" (tbu1)); |
99 | tbl &= -static_cast<int32_t>(tbu0 == tbu1); |
100 | // high 32 bits in tbu1; low 32 bits in tbl (tbu0 is no longer needed) |
101 | return (static_cast<uint64_t>(tbu1) << 32) | tbl; |
102 | #endif |
103 | #elif defined(__sparc__) |
104 | int64_t tick; |
105 | asm(".byte 0x83, 0x41, 0x00, 0x00" ); |
106 | asm("mov %%g1, %0" : "=r" (tick)); |
107 | return tick; |
108 | #elif defined(__ia64__) |
109 | int64_t itc; |
110 | asm("mov %0 = ar.itc" : "=r" (itc)); |
111 | return itc; |
112 | #elif defined(COMPILER_MSVC) && defined(_M_IX86) |
113 | // Older MSVC compilers (like 7.x) don't seem to support the |
114 | // __rdtsc intrinsic properly, so I prefer to use _asm instead |
115 | // when I know it will work. Otherwise, I'll use __rdtsc and hope |
116 | // the code is being compiled with a non-ancient compiler. |
117 | _asm rdtsc |
118 | #elif defined(COMPILER_MSVC) && (defined(_M_ARM64) || defined(_M_ARM64EC)) |
119 | // See // https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics |
120 | // and https://reviews.llvm.org/D53115 |
121 | int64_t virtual_timer_value; |
122 | virtual_timer_value = _ReadStatusReg(ARM64_CNTVCT); |
123 | return virtual_timer_value; |
124 | #elif defined(COMPILER_MSVC) |
125 | return __rdtsc(); |
126 | #elif defined(BENCHMARK_OS_NACL) |
127 | // Native Client validator on x86/x86-64 allows RDTSC instructions, |
128 | // and this case is handled above. Native Client validator on ARM |
129 | // rejects MRC instructions (used in the ARM-specific sequence below), |
130 | // so we handle it here. Portable Native Client compiles to |
131 | // architecture-agnostic bytecode, which doesn't provide any |
132 | // cycle counter access mnemonics. |
133 | |
134 | // Native Client does not provide any API to access cycle counter. |
135 | // Use clock_gettime(CLOCK_MONOTONIC, ...) instead of gettimeofday |
136 | // because is provides nanosecond resolution (which is noticeable at |
137 | // least for PNaCl modules running on x86 Mac & Linux). |
138 | // Initialize to always return 0 if clock_gettime fails. |
139 | struct timespec ts = {0, 0}; |
140 | clock_gettime(CLOCK_MONOTONIC, &ts); |
141 | return static_cast<int64_t>(ts.tv_sec) * 1000000000 + ts.tv_nsec; |
142 | #elif defined(__aarch64__) |
143 | // System timer of ARMv8 runs at a different frequency than the CPU's. |
144 | // The frequency is fixed, typically in the range 1-50MHz. It can be |
145 | // read at CNTFRQ special register. We assume the OS has set up |
146 | // the virtual timer properly. |
147 | int64_t virtual_timer_value; |
148 | asm volatile("mrs %0, cntvct_el0" : "=r" (virtual_timer_value)); |
149 | return virtual_timer_value; |
150 | #elif defined(__ARM_ARCH) |
151 | // V6 is the earliest arch that has a standard cyclecount |
152 | // Native Client validator doesn't allow MRC instructions. |
153 | #if (__ARM_ARCH >= 6) |
154 | uint32_t pmccntr; |
155 | uint32_t pmuseren; |
156 | uint32_t pmcntenset; |
157 | // Read the user mode perf monitor counter access permissions. |
158 | asm volatile("mrc p15, 0, %0, c9, c14, 0" : "=r" (pmuseren)); |
159 | if (pmuseren & 1) { // Allows reading perfmon counters for user mode code. |
160 | asm volatile("mrc p15, 0, %0, c9, c12, 1" : "=r" (pmcntenset)); |
161 | if (pmcntenset & 0x80000000ul) { // Is it counting? |
162 | asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (pmccntr)); |
163 | // The counter is set up to count every 64th cycle |
164 | return static_cast<int64_t>(pmccntr) * 64; // Should optimize to << 6 |
165 | } |
166 | } |
167 | #endif |
168 | struct timeval tv; |
169 | gettimeofday(&tv, nullptr); |
170 | return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec; |
171 | #elif defined(__mips__) || defined(__m68k__) |
172 | // mips apparently only allows rdtsc for superusers, so we fall |
173 | // back to gettimeofday. It's possible clock_gettime would be better. |
174 | struct timeval tv; |
175 | gettimeofday(&tv, nullptr); |
176 | return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec; |
177 | #elif defined(__loongarch__) || defined(__csky__) |
178 | struct timeval tv; |
179 | gettimeofday(&tv, nullptr); |
180 | return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec; |
181 | #elif defined(__s390__) // Covers both s390 and s390x. |
182 | // Return the CPU clock. |
183 | uint64_t tsc; |
184 | #if defined(BENCHMARK_OS_ZOS) |
185 | // z/OS HLASM syntax. |
186 | asm(" stck %0" : "=m" (tsc) : : "cc" ); |
187 | #else |
188 | // Linux on Z syntax. |
189 | asm("stck %0" : "=Q" (tsc) : : "cc" ); |
190 | #endif |
191 | return tsc; |
192 | #elif defined(__riscv) // RISC-V |
193 | // Use RDTIME (and RDTIMEH on riscv32). |
194 | // RDCYCLE is a privileged instruction since Linux 6.6. |
195 | #if __riscv_xlen == 32 |
196 | uint32_t cycles_lo, cycles_hi0, cycles_hi1; |
197 | // This asm also includes the PowerPC overflow handling strategy, as above. |
198 | // Implemented in assembly because Clang insisted on branching. |
199 | asm volatile( |
200 | "rdtimeh %0\n" |
201 | "rdtime %1\n" |
202 | "rdtimeh %2\n" |
203 | "sub %0, %0, %2\n" |
204 | "seqz %0, %0\n" |
205 | "sub %0, zero, %0\n" |
206 | "and %1, %1, %0\n" |
207 | : "=r" (cycles_hi0), "=r" (cycles_lo), "=r" (cycles_hi1)); |
208 | return (static_cast<uint64_t>(cycles_hi1) << 32) | cycles_lo; |
209 | #else |
210 | uint64_t cycles; |
211 | asm volatile("rdtime %0" : "=r" (cycles)); |
212 | return cycles; |
213 | #endif |
214 | #elif defined(__e2k__) || defined(__elbrus__) |
215 | struct timeval tv; |
216 | gettimeofday(&tv, nullptr); |
217 | return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec; |
218 | #elif defined(__hexagon__) |
219 | uint64_t pcycle; |
220 | asm volatile("%0 = C15:14" : "=r" (pcycle)); |
221 | return static_cast<double>(pcycle); |
222 | #elif defined(__alpha__) |
223 | // Alpha has a cycle counter, the PCC register, but it is an unsigned 32-bit |
224 | // integer and thus wraps every ~4s, making using it for tick counts |
225 | // unreliable beyond this time range. The real-time clock is low-precision, |
226 | // roughtly ~1ms, but it is the only option that can reasonable count |
227 | // indefinitely. |
228 | struct timeval tv; |
229 | gettimeofday(&tv, nullptr); |
230 | return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec; |
231 | #else |
232 | // The soft failover to a generic implementation is automatic only for ARM. |
233 | // For other platforms the developer is expected to make an attempt to create |
234 | // a fast implementation and use generic version if nothing better is |
235 | // available. |
236 | #error You need to define CycleTimer for your OS and CPU |
237 | #endif |
238 | } |
239 | } // end namespace cycleclock |
240 | } // end namespace benchmark |
241 | |
242 | #endif // BENCHMARK_CYCLECLOCK_H_ |
243 | |