| 1 | // Copyright 2016 Ismael Jimenez Martinez. All rights reserved. |
| 2 | // Copyright 2017 Roman Lebedev. All rights reserved. |
| 3 | // |
| 4 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | // you may not use this file except in compliance with the License. |
| 6 | // You may obtain a copy of the License at |
| 7 | // |
| 8 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | // |
| 10 | // Unless required by applicable law or agreed to in writing, software |
| 11 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | // See the License for the specific language governing permissions and |
| 14 | // limitations under the License. |
| 15 | |
| 16 | #include "statistics.h" |
| 17 | |
| 18 | #include <algorithm> |
| 19 | #include <cmath> |
| 20 | #include <numeric> |
| 21 | #include <string> |
| 22 | #include <vector> |
| 23 | |
| 24 | #include "benchmark/benchmark.h" |
| 25 | #include "check.h" |
| 26 | |
| 27 | namespace benchmark { |
| 28 | |
| 29 | auto StatisticsSum = [](const std::vector<double>& v) { |
| 30 | return std::accumulate(first: v.begin(), last: v.end(), init: 0.0); |
| 31 | }; |
| 32 | |
| 33 | double StatisticsMean(const std::vector<double>& v) { |
| 34 | if (v.empty()) return 0.0; |
| 35 | return StatisticsSum(v) * (1.0 / static_cast<double>(v.size())); |
| 36 | } |
| 37 | |
| 38 | double StatisticsMedian(const std::vector<double>& v) { |
| 39 | if (v.size() < 3) return StatisticsMean(v); |
| 40 | std::vector<double> copy(v); |
| 41 | |
| 42 | auto center = copy.begin() + v.size() / 2; |
| 43 | std::nth_element(first: copy.begin(), nth: center, last: copy.end()); |
| 44 | |
| 45 | // Did we have an odd number of samples? If yes, then center is the median. |
| 46 | // If not, then we are looking for the average between center and the value |
| 47 | // before. Instead of resorting, we just look for the max value before it, |
| 48 | // which is not necessarily the element immediately preceding `center` Since |
| 49 | // `copy` is only partially sorted by `nth_element`. |
| 50 | if (v.size() % 2 == 1) return *center; |
| 51 | auto center2 = std::max_element(first: copy.begin(), last: center); |
| 52 | return (*center + *center2) / 2.0; |
| 53 | } |
| 54 | |
| 55 | // Return the sum of the squares of this sample set |
| 56 | auto SumSquares = [](const std::vector<double>& v) { |
| 57 | return std::inner_product(first1: v.begin(), last1: v.end(), first2: v.begin(), init: 0.0); |
| 58 | }; |
| 59 | |
| 60 | auto Sqr = [](const double dat) { return dat * dat; }; |
| 61 | auto Sqrt = [](const double dat) { |
| 62 | // Avoid NaN due to imprecision in the calculations |
| 63 | if (dat < 0.0) return 0.0; |
| 64 | return std::sqrt(x: dat); |
| 65 | }; |
| 66 | |
| 67 | double StatisticsStdDev(const std::vector<double>& v) { |
| 68 | const auto mean = StatisticsMean(v); |
| 69 | if (v.empty()) return mean; |
| 70 | |
| 71 | // Sample standard deviation is undefined for n = 1 |
| 72 | if (v.size() == 1) return 0.0; |
| 73 | |
| 74 | const double avg_squares = |
| 75 | SumSquares(v) * (1.0 / static_cast<double>(v.size())); |
| 76 | return Sqrt(static_cast<double>(v.size()) / |
| 77 | (static_cast<double>(v.size()) - 1.0) * |
| 78 | (avg_squares - Sqr(mean))); |
| 79 | } |
| 80 | |
| 81 | double StatisticsCV(const std::vector<double>& v) { |
| 82 | if (v.size() < 2) return 0.0; |
| 83 | |
| 84 | const auto stddev = StatisticsStdDev(v); |
| 85 | const auto mean = StatisticsMean(v); |
| 86 | |
| 87 | if (std::fpclassify(x: mean) == FP_ZERO) return 0.0; |
| 88 | |
| 89 | return stddev / mean; |
| 90 | } |
| 91 | |
| 92 | std::vector<BenchmarkReporter::Run> ComputeStats( |
| 93 | const std::vector<BenchmarkReporter::Run>& reports) { |
| 94 | typedef BenchmarkReporter::Run Run; |
| 95 | std::vector<Run> results; |
| 96 | |
| 97 | auto error_count = std::count_if(first: reports.begin(), last: reports.end(), |
| 98 | pred: [](Run const& run) { return run.skipped; }); |
| 99 | |
| 100 | if (reports.size() - error_count < 2) { |
| 101 | // We don't report aggregated data if there was a single run. |
| 102 | return results; |
| 103 | } |
| 104 | |
| 105 | // Accumulators. |
| 106 | std::vector<double> real_accumulated_time_stat; |
| 107 | std::vector<double> cpu_accumulated_time_stat; |
| 108 | |
| 109 | real_accumulated_time_stat.reserve(n: reports.size()); |
| 110 | cpu_accumulated_time_stat.reserve(n: reports.size()); |
| 111 | |
| 112 | // All repetitions should be run with the same number of iterations so we |
| 113 | // can take this information from the first benchmark. |
| 114 | const IterationCount run_iterations = reports.front().iterations; |
| 115 | // create stats for user counters |
| 116 | struct CounterStat { |
| 117 | Counter c; |
| 118 | std::vector<double> s; |
| 119 | }; |
| 120 | std::map<std::string, CounterStat> counter_stats; |
| 121 | for (Run const& r : reports) { |
| 122 | for (auto const& cnt : r.counters) { |
| 123 | auto it = counter_stats.find(x: cnt.first); |
| 124 | if (it == counter_stats.end()) { |
| 125 | it = counter_stats |
| 126 | .emplace(args: cnt.first, |
| 127 | args: CounterStat{.c: cnt.second, .s: std::vector<double>{}}) |
| 128 | .first; |
| 129 | it->second.s.reserve(n: reports.size()); |
| 130 | } else { |
| 131 | BM_CHECK_EQ(it->second.c.flags, cnt.second.flags); |
| 132 | } |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | // Populate the accumulators. |
| 137 | for (Run const& run : reports) { |
| 138 | BM_CHECK_EQ(reports[0].benchmark_name(), run.benchmark_name()); |
| 139 | BM_CHECK_EQ(run_iterations, run.iterations); |
| 140 | if (run.skipped) continue; |
| 141 | real_accumulated_time_stat.emplace_back(args: run.real_accumulated_time); |
| 142 | cpu_accumulated_time_stat.emplace_back(args: run.cpu_accumulated_time); |
| 143 | // user counters |
| 144 | for (auto const& cnt : run.counters) { |
| 145 | auto it = counter_stats.find(x: cnt.first); |
| 146 | BM_CHECK_NE(it, counter_stats.end()); |
| 147 | it->second.s.emplace_back(args: cnt.second); |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | // Only add label if it is same for all runs |
| 152 | std::string report_label = reports[0].report_label; |
| 153 | for (std::size_t i = 1; i < reports.size(); i++) { |
| 154 | if (reports[i].report_label != report_label) { |
| 155 | report_label = "" ; |
| 156 | break; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | const double iteration_rescale_factor = |
| 161 | double(reports.size()) / double(run_iterations); |
| 162 | |
| 163 | for (const auto& Stat : *reports[0].statistics) { |
| 164 | // Get the data from the accumulator to BenchmarkReporter::Run's. |
| 165 | Run data; |
| 166 | data.run_name = reports[0].run_name; |
| 167 | data.family_index = reports[0].family_index; |
| 168 | data.per_family_instance_index = reports[0].per_family_instance_index; |
| 169 | data.run_type = BenchmarkReporter::Run::RT_Aggregate; |
| 170 | data.threads = reports[0].threads; |
| 171 | data.repetitions = reports[0].repetitions; |
| 172 | data.repetition_index = Run::no_repetition_index; |
| 173 | data.aggregate_name = Stat.name_; |
| 174 | data.aggregate_unit = Stat.unit_; |
| 175 | data.report_label = report_label; |
| 176 | |
| 177 | // It is incorrect to say that an aggregate is computed over |
| 178 | // run's iterations, because those iterations already got averaged. |
| 179 | // Similarly, if there are N repetitions with 1 iterations each, |
| 180 | // an aggregate will be computed over N measurements, not 1. |
| 181 | // Thus it is best to simply use the count of separate reports. |
| 182 | data.iterations = reports.size(); |
| 183 | |
| 184 | data.real_accumulated_time = Stat.compute_(real_accumulated_time_stat); |
| 185 | data.cpu_accumulated_time = Stat.compute_(cpu_accumulated_time_stat); |
| 186 | |
| 187 | if (data.aggregate_unit == StatisticUnit::kTime) { |
| 188 | // We will divide these times by data.iterations when reporting, but the |
| 189 | // data.iterations is not necessarily the scale of these measurements, |
| 190 | // because in each repetition, these timers are sum over all the iters. |
| 191 | // And if we want to say that the stats are over N repetitions and not |
| 192 | // M iterations, we need to multiply these by (N/M). |
| 193 | data.real_accumulated_time *= iteration_rescale_factor; |
| 194 | data.cpu_accumulated_time *= iteration_rescale_factor; |
| 195 | } |
| 196 | |
| 197 | data.time_unit = reports[0].time_unit; |
| 198 | |
| 199 | // user counters |
| 200 | for (auto const& kv : counter_stats) { |
| 201 | // Do *NOT* rescale the custom counters. They are already properly scaled. |
| 202 | const auto uc_stat = Stat.compute_(kv.second.s); |
| 203 | auto c = Counter(uc_stat, counter_stats[kv.first].c.flags, |
| 204 | counter_stats[kv.first].c.oneK); |
| 205 | data.counters[kv.first] = c; |
| 206 | } |
| 207 | |
| 208 | results.push_back(x: data); |
| 209 | } |
| 210 | |
| 211 | return results; |
| 212 | } |
| 213 | |
| 214 | } // end namespace benchmark |
| 215 | |