| 1 | /////////////////////////////////////////////////////////////////////////// |
| 2 | // |
| 3 | // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas |
| 4 | // Digital Ltd. LLC |
| 5 | // |
| 6 | // All rights reserved. |
| 7 | // |
| 8 | // Redistribution and use in source and binary forms, with or without |
| 9 | // modification, are permitted provided that the following conditions are |
| 10 | // met: |
| 11 | // * Redistributions of source code must retain the above copyright |
| 12 | // notice, this list of conditions and the following disclaimer. |
| 13 | // * Redistributions in binary form must reproduce the above |
| 14 | // copyright notice, this list of conditions and the following disclaimer |
| 15 | // in the documentation and/or other materials provided with the |
| 16 | // distribution. |
| 17 | // * Neither the name of Industrial Light & Magic nor the names of |
| 18 | // its contributors may be used to endorse or promote products derived |
| 19 | // from this software without specific prior written permission. |
| 20 | // |
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 | // |
| 33 | /////////////////////////////////////////////////////////////////////////// |
| 34 | |
| 35 | |
| 36 | |
| 37 | #ifndef INCLUDED_IMATHMATH_H |
| 38 | #define INCLUDED_IMATHMATH_H |
| 39 | |
| 40 | //---------------------------------------------------------------------------- |
| 41 | // |
| 42 | // ImathMath.h |
| 43 | // |
| 44 | // This file contains template functions which call the double- |
| 45 | // precision math functions defined in math.h (sin(), sqrt(), |
| 46 | // exp() etc.), with specializations that call the faster |
| 47 | // single-precision versions (sinf(), sqrtf(), expf() etc.) |
| 48 | // when appropriate. |
| 49 | // |
| 50 | // Example: |
| 51 | // |
| 52 | // double x = Math<double>::sqrt (3); // calls ::sqrt(double); |
| 53 | // float y = Math<float>::sqrt (3); // calls ::sqrtf(float); |
| 54 | // |
| 55 | // When would I want to use this? |
| 56 | // |
| 57 | // You may be writing a template which needs to call some function |
| 58 | // defined in math.h, for example to extract a square root, but you |
| 59 | // don't know whether to call the single- or the double-precision |
| 60 | // version of this function (sqrt() or sqrtf()): |
| 61 | // |
| 62 | // template <class T> |
| 63 | // T |
| 64 | // glorp (T x) |
| 65 | // { |
| 66 | // return sqrt (x + 1); // should call ::sqrtf(float) |
| 67 | // } // if x is a float, but we |
| 68 | // // don't know if it is |
| 69 | // |
| 70 | // Using the templates in this file, you can make sure that |
| 71 | // the appropriate version of the math function is called: |
| 72 | // |
| 73 | // template <class T> |
| 74 | // T |
| 75 | // glorp (T x, T y) |
| 76 | // { |
| 77 | // return Math<T>::sqrt (x + 1); // calls ::sqrtf(float) if x |
| 78 | // } // is a float, ::sqrt(double) |
| 79 | // // otherwise |
| 80 | // |
| 81 | //---------------------------------------------------------------------------- |
| 82 | |
| 83 | #include "ImathPlatform.h" |
| 84 | #include "ImathLimits.h" |
| 85 | #include "ImathNamespace.h" |
| 86 | #include <math.h> |
| 87 | |
| 88 | IMATH_INTERNAL_NAMESPACE_HEADER_ENTER |
| 89 | |
| 90 | |
| 91 | template <class T> |
| 92 | struct Math |
| 93 | { |
| 94 | static T acos (T x) {return ::acos (x: double(x));} |
| 95 | static T asin (T x) {return ::asin (x: double(x));} |
| 96 | static T atan (T x) {return ::atan (x: double(x));} |
| 97 | static T atan2 (T x, T y) {return ::atan2 (y: double(x), x: double(y));} |
| 98 | static T cos (T x) {return ::cos (x: double(x));} |
| 99 | static T sin (T x) {return ::sin (x: double(x));} |
| 100 | static T tan (T x) {return ::tan (x: double(x));} |
| 101 | static T cosh (T x) {return ::cosh (x: double(x));} |
| 102 | static T sinh (T x) {return ::sinh (x: double(x));} |
| 103 | static T tanh (T x) {return ::tanh (x: double(x));} |
| 104 | static T exp (T x) {return ::exp (x: double(x));} |
| 105 | static T log (T x) {return ::log (x: double(x));} |
| 106 | static T log10 (T x) {return ::log10 (x: double(x));} |
| 107 | static T modf (T x, T *iptr) |
| 108 | { |
| 109 | double ival; |
| 110 | T rval( ::modf (x: double(x),iptr: &ival)); |
| 111 | *iptr = ival; |
| 112 | return rval; |
| 113 | } |
| 114 | static T pow (T x, T y) {return ::pow (x: double(x), y: double(y));} |
| 115 | static T sqrt (T x) {return ::sqrt (x: double(x));} |
| 116 | static T ceil (T x) {return ::ceil (x: double(x));} |
| 117 | static T fabs (T x) {return ::fabs (x: double(x));} |
| 118 | static T floor (T x) {return ::floor (x: double(x));} |
| 119 | static T fmod (T x, T y) {return ::fmod (x: double(x), y: double(y));} |
| 120 | static T hypot (T x, T y) {return ::hypot (x: double(x), y: double(y));} |
| 121 | }; |
| 122 | |
| 123 | |
| 124 | template <> |
| 125 | struct Math<float> |
| 126 | { |
| 127 | static float acos (float x) {return ::acosf (x: x);} |
| 128 | static float asin (float x) {return ::asinf (x: x);} |
| 129 | static float atan (float x) {return ::atanf (x: x);} |
| 130 | static float atan2 (float x, float y) {return ::atan2f (y: x, x: y);} |
| 131 | static float cos (float x) {return ::cosf (x: x);} |
| 132 | static float sin (float x) {return ::sinf (x: x);} |
| 133 | static float tan (float x) {return ::tanf (x: x);} |
| 134 | static float cosh (float x) {return ::coshf (x: x);} |
| 135 | static float sinh (float x) {return ::sinhf (x: x);} |
| 136 | static float tanh (float x) {return ::tanhf (x: x);} |
| 137 | static float exp (float x) {return ::expf (x: x);} |
| 138 | static float log (float x) {return ::logf (x: x);} |
| 139 | static float log10 (float x) {return ::log10f (x: x);} |
| 140 | static float modf (float x, float *y) {return ::modff (x: x, iptr: y);} |
| 141 | static float pow (float x, float y) {return ::powf (x: x, y: y);} |
| 142 | static float sqrt (float x) {return ::sqrtf (x: x);} |
| 143 | static float ceil (float x) {return ::ceilf (x: x);} |
| 144 | static float fabs (float x) {return ::fabsf (x: x);} |
| 145 | static float floor (float x) {return ::floorf (x: x);} |
| 146 | static float fmod (float x, float y) {return ::fmodf (x: x, y: y);} |
| 147 | #if !defined(_MSC_VER) |
| 148 | static float hypot (float x, float y) {return ::hypotf (x: x, y: y);} |
| 149 | #else |
| 150 | static float hypot (float x, float y) {return ::sqrtf(x*x + y*y);} |
| 151 | #endif |
| 152 | }; |
| 153 | |
| 154 | |
| 155 | //-------------------------------------------------------------------------- |
| 156 | // Don Hatch's version of sin(x)/x, which is accurate for very small x. |
| 157 | // Returns 1 for x == 0. |
| 158 | //-------------------------------------------------------------------------- |
| 159 | |
| 160 | template <class T> |
| 161 | inline T |
| 162 | sinx_over_x (T x) |
| 163 | { |
| 164 | if (x * x < limits<T>::epsilon()) |
| 165 | return T (1); |
| 166 | else |
| 167 | return Math<T>::sin (x) / x; |
| 168 | } |
| 169 | |
| 170 | |
| 171 | //-------------------------------------------------------------------------- |
| 172 | // Compare two numbers and test if they are "approximately equal": |
| 173 | // |
| 174 | // equalWithAbsError (x1, x2, e) |
| 175 | // |
| 176 | // Returns true if x1 is the same as x2 with an absolute error of |
| 177 | // no more than e, |
| 178 | // |
| 179 | // abs (x1 - x2) <= e |
| 180 | // |
| 181 | // equalWithRelError (x1, x2, e) |
| 182 | // |
| 183 | // Returns true if x1 is the same as x2 with an relative error of |
| 184 | // no more than e, |
| 185 | // |
| 186 | // abs (x1 - x2) <= e * x1 |
| 187 | // |
| 188 | //-------------------------------------------------------------------------- |
| 189 | |
| 190 | template <class T> |
| 191 | inline bool |
| 192 | equalWithAbsError (T x1, T x2, T e) |
| 193 | { |
| 194 | return ((x1 > x2)? x1 - x2: x2 - x1) <= e; |
| 195 | } |
| 196 | |
| 197 | |
| 198 | template <class T> |
| 199 | inline bool |
| 200 | equalWithRelError (T x1, T x2, T e) |
| 201 | { |
| 202 | return ((x1 > x2)? x1 - x2: x2 - x1) <= e * ((x1 > 0)? x1: -x1); |
| 203 | } |
| 204 | |
| 205 | |
| 206 | IMATH_INTERNAL_NAMESPACE_HEADER_EXIT |
| 207 | |
| 208 | #endif // INCLUDED_IMATHMATH_H |
| 209 | |