| 1 | /////////////////////////////////////////////////////////////////////////// |
| 2 | // |
| 3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
| 4 | // Digital Ltd. LLC |
| 5 | // |
| 6 | // All rights reserved. |
| 7 | // |
| 8 | // Redistribution and use in source and binary forms, with or without |
| 9 | // modification, are permitted provided that the following conditions are |
| 10 | // met: |
| 11 | // * Redistributions of source code must retain the above copyright |
| 12 | // notice, this list of conditions and the following disclaimer. |
| 13 | // * Redistributions in binary form must reproduce the above |
| 14 | // copyright notice, this list of conditions and the following disclaimer |
| 15 | // in the documentation and/or other materials provided with the |
| 16 | // distribution. |
| 17 | // * Neither the name of Industrial Light & Magic nor the names of |
| 18 | // its contributors may be used to endorse or promote products derived |
| 19 | // from this software without specific prior written permission. |
| 20 | // |
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 | // |
| 33 | /////////////////////////////////////////////////////////////////////////// |
| 34 | |
| 35 | // Primary authors: |
| 36 | // Florian Kainz <kainz@ilm.com> |
| 37 | // Rod Bogart <rgb@ilm.com> |
| 38 | |
| 39 | //--------------------------------------------------------------------------- |
| 40 | // |
| 41 | // half -- a 16-bit floating point number class: |
| 42 | // |
| 43 | // Type half can represent positive and negative numbers whose |
| 44 | // magnitude is between roughly 6.1e-5 and 6.5e+4 with a relative |
| 45 | // error of 9.8e-4; numbers smaller than 6.1e-5 can be represented |
| 46 | // with an absolute error of 6.0e-8. All integers from -2048 to |
| 47 | // +2048 can be represented exactly. |
| 48 | // |
| 49 | // Type half behaves (almost) like the built-in C++ floating point |
| 50 | // types. In arithmetic expressions, half, float and double can be |
| 51 | // mixed freely. Here are a few examples: |
| 52 | // |
| 53 | // half a (3.5); |
| 54 | // float b (a + sqrt (a)); |
| 55 | // a += b; |
| 56 | // b += a; |
| 57 | // b = a + 7; |
| 58 | // |
| 59 | // Conversions from half to float are lossless; all half numbers |
| 60 | // are exactly representable as floats. |
| 61 | // |
| 62 | // Conversions from float to half may not preserve a float's value |
| 63 | // exactly. If a float is not representable as a half, then the |
| 64 | // float value is rounded to the nearest representable half. If a |
| 65 | // float value is exactly in the middle between the two closest |
| 66 | // representable half values, then the float value is rounded to |
| 67 | // the closest half whose least significant bit is zero. |
| 68 | // |
| 69 | // Overflows during float-to-half conversions cause arithmetic |
| 70 | // exceptions. An overflow occurs when the float value to be |
| 71 | // converted is too large to be represented as a half, or if the |
| 72 | // float value is an infinity or a NAN. |
| 73 | // |
| 74 | // The implementation of type half makes the following assumptions |
| 75 | // about the implementation of the built-in C++ types: |
| 76 | // |
| 77 | // float is an IEEE 754 single-precision number |
| 78 | // sizeof (float) == 4 |
| 79 | // sizeof (unsigned int) == sizeof (float) |
| 80 | // alignof (unsigned int) == alignof (float) |
| 81 | // sizeof (unsigned short) == 2 |
| 82 | // |
| 83 | //--------------------------------------------------------------------------- |
| 84 | |
| 85 | #ifndef _HALF_H_ |
| 86 | #define _HALF_H_ |
| 87 | |
| 88 | #include "halfExport.h" // for definition of HALF_EXPORT |
| 89 | #include <iostream> |
| 90 | |
| 91 | class half |
| 92 | { |
| 93 | public: |
| 94 | |
| 95 | //------------- |
| 96 | // Constructors |
| 97 | //------------- |
| 98 | |
| 99 | half () = default; // no initialization |
| 100 | half (float f); |
| 101 | // rule of 5 |
| 102 | ~half () = default; |
| 103 | half (const half &) = default; |
| 104 | half (half &&) noexcept = default; |
| 105 | |
| 106 | //-------------------- |
| 107 | // Conversion to float |
| 108 | //-------------------- |
| 109 | |
| 110 | operator float () const; |
| 111 | |
| 112 | |
| 113 | //------------ |
| 114 | // Unary minus |
| 115 | //------------ |
| 116 | |
| 117 | half operator - () const; |
| 118 | |
| 119 | |
| 120 | //----------- |
| 121 | // Assignment |
| 122 | //----------- |
| 123 | |
| 124 | half & operator = (const half &h) = default; |
| 125 | half & operator = (half &&h) noexcept = default; |
| 126 | half & operator = (float f); |
| 127 | |
| 128 | half & operator += (half h); |
| 129 | half & operator += (float f); |
| 130 | |
| 131 | half & operator -= (half h); |
| 132 | half & operator -= (float f); |
| 133 | |
| 134 | half & operator *= (half h); |
| 135 | half & operator *= (float f); |
| 136 | |
| 137 | half & operator /= (half h); |
| 138 | half & operator /= (float f); |
| 139 | |
| 140 | |
| 141 | //--------------------------------------------------------- |
| 142 | // Round to n-bit precision (n should be between 0 and 10). |
| 143 | // After rounding, the significand's 10-n least significant |
| 144 | // bits will be zero. |
| 145 | //--------------------------------------------------------- |
| 146 | |
| 147 | half round (unsigned int n) const; |
| 148 | |
| 149 | |
| 150 | //-------------------------------------------------------------------- |
| 151 | // Classification: |
| 152 | // |
| 153 | // h.isFinite() returns true if h is a normalized number, |
| 154 | // a denormalized number or zero |
| 155 | // |
| 156 | // h.isNormalized() returns true if h is a normalized number |
| 157 | // |
| 158 | // h.isDenormalized() returns true if h is a denormalized number |
| 159 | // |
| 160 | // h.isZero() returns true if h is zero |
| 161 | // |
| 162 | // h.isNan() returns true if h is a NAN |
| 163 | // |
| 164 | // h.isInfinity() returns true if h is a positive |
| 165 | // or a negative infinity |
| 166 | // |
| 167 | // h.isNegative() returns true if the sign bit of h |
| 168 | // is set (negative) |
| 169 | //-------------------------------------------------------------------- |
| 170 | |
| 171 | bool isFinite () const; |
| 172 | bool isNormalized () const; |
| 173 | bool isDenormalized () const; |
| 174 | bool isZero () const; |
| 175 | bool isNan () const; |
| 176 | bool isInfinity () const; |
| 177 | bool isNegative () const; |
| 178 | |
| 179 | |
| 180 | //-------------------------------------------- |
| 181 | // Special values |
| 182 | // |
| 183 | // posInf() returns +infinity |
| 184 | // |
| 185 | // negInf() returns -infinity |
| 186 | // |
| 187 | // qNan() returns a NAN with the bit |
| 188 | // pattern 0111111111111111 |
| 189 | // |
| 190 | // sNan() returns a NAN with the bit |
| 191 | // pattern 0111110111111111 |
| 192 | //-------------------------------------------- |
| 193 | |
| 194 | static half posInf (); |
| 195 | static half negInf (); |
| 196 | static half qNan (); |
| 197 | static half sNan (); |
| 198 | |
| 199 | |
| 200 | //-------------------------------------- |
| 201 | // Access to the internal representation |
| 202 | //-------------------------------------- |
| 203 | |
| 204 | HALF_EXPORT unsigned short bits () const; |
| 205 | HALF_EXPORT void setBits (unsigned short bits); |
| 206 | |
| 207 | |
| 208 | public: |
| 209 | |
| 210 | union uif |
| 211 | { |
| 212 | unsigned int i; |
| 213 | float f; |
| 214 | }; |
| 215 | |
| 216 | private: |
| 217 | |
| 218 | HALF_EXPORT static short convert (int i); |
| 219 | HALF_EXPORT static float overflow (); |
| 220 | |
| 221 | unsigned short _h; |
| 222 | |
| 223 | HALF_EXPORT static const uif _toFloat[1 << 16]; |
| 224 | HALF_EXPORT static const unsigned short _eLut[1 << 9]; |
| 225 | }; |
| 226 | |
| 227 | |
| 228 | |
| 229 | //----------- |
| 230 | // Stream I/O |
| 231 | //----------- |
| 232 | |
| 233 | HALF_EXPORT std::ostream & operator << (std::ostream &os, half h); |
| 234 | HALF_EXPORT std::istream & operator >> (std::istream &is, half &h); |
| 235 | |
| 236 | |
| 237 | //---------- |
| 238 | // Debugging |
| 239 | //---------- |
| 240 | |
| 241 | HALF_EXPORT void printBits (std::ostream &os, half h); |
| 242 | HALF_EXPORT void printBits (std::ostream &os, float f); |
| 243 | HALF_EXPORT void printBits (char c[19], half h); |
| 244 | HALF_EXPORT void printBits (char c[35], float f); |
| 245 | |
| 246 | |
| 247 | //------------------------------------------------------------------------- |
| 248 | // Limits |
| 249 | // |
| 250 | // Visual C++ will complain if HALF_MIN, HALF_NRM_MIN etc. are not float |
| 251 | // constants, but at least one other compiler (gcc 2.96) produces incorrect |
| 252 | // results if they are. |
| 253 | //------------------------------------------------------------------------- |
| 254 | |
| 255 | #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER |
| 256 | |
| 257 | #define HALF_MIN 5.96046448e-08f // Smallest positive half |
| 258 | |
| 259 | #define HALF_NRM_MIN 6.10351562e-05f // Smallest positive normalized half |
| 260 | |
| 261 | #define HALF_MAX 65504.0f // Largest positive half |
| 262 | |
| 263 | #define HALF_EPSILON 0.00097656f // Smallest positive e for which |
| 264 | // half (1.0 + e) != half (1.0) |
| 265 | #else |
| 266 | |
| 267 | #define HALF_MIN 5.96046448e-08 // Smallest positive half |
| 268 | |
| 269 | #define HALF_NRM_MIN 6.10351562e-05 // Smallest positive normalized half |
| 270 | |
| 271 | #define HALF_MAX 65504.0 // Largest positive half |
| 272 | |
| 273 | #define HALF_EPSILON 0.00097656 // Smallest positive e for which |
| 274 | // half (1.0 + e) != half (1.0) |
| 275 | #endif |
| 276 | |
| 277 | |
| 278 | #define HALF_MANT_DIG 11 // Number of digits in mantissa |
| 279 | // (significand + hidden leading 1) |
| 280 | |
| 281 | // |
| 282 | // floor( (HALF_MANT_DIG - 1) * log10(2) ) => 3.01... -> 3 |
| 283 | #define HALF_DIG 3 // Number of base 10 digits that |
| 284 | // can be represented without change |
| 285 | |
| 286 | // ceil(HALF_MANT_DIG * log10(2) + 1) => 4.31... -> 5 |
| 287 | #define HALF_DECIMAL_DIG 5 // Number of base-10 digits that are |
| 288 | // necessary to uniquely represent all |
| 289 | // distinct values |
| 290 | |
| 291 | #define HALF_RADIX 2 // Base of the exponent |
| 292 | |
| 293 | #define HALF_MIN_EXP -13 // Minimum negative integer such that |
| 294 | // HALF_RADIX raised to the power of |
| 295 | // one less than that integer is a |
| 296 | // normalized half |
| 297 | |
| 298 | #define HALF_MAX_EXP 16 // Maximum positive integer such that |
| 299 | // HALF_RADIX raised to the power of |
| 300 | // one less than that integer is a |
| 301 | // normalized half |
| 302 | |
| 303 | #define HALF_MIN_10_EXP -4 // Minimum positive integer such |
| 304 | // that 10 raised to that power is |
| 305 | // a normalized half |
| 306 | |
| 307 | #define HALF_MAX_10_EXP 4 // Maximum positive integer such |
| 308 | // that 10 raised to that power is |
| 309 | // a normalized half |
| 310 | |
| 311 | |
| 312 | //--------------------------------------------------------------------------- |
| 313 | // |
| 314 | // Implementation -- |
| 315 | // |
| 316 | // Representation of a float: |
| 317 | // |
| 318 | // We assume that a float, f, is an IEEE 754 single-precision |
| 319 | // floating point number, whose bits are arranged as follows: |
| 320 | // |
| 321 | // 31 (msb) |
| 322 | // | |
| 323 | // | 30 23 |
| 324 | // | | | |
| 325 | // | | | 22 0 (lsb) |
| 326 | // | | | | | |
| 327 | // X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX |
| 328 | // |
| 329 | // s e m |
| 330 | // |
| 331 | // S is the sign-bit, e is the exponent and m is the significand. |
| 332 | // |
| 333 | // If e is between 1 and 254, f is a normalized number: |
| 334 | // |
| 335 | // s e-127 |
| 336 | // f = (-1) * 2 * 1.m |
| 337 | // |
| 338 | // If e is 0, and m is not zero, f is a denormalized number: |
| 339 | // |
| 340 | // s -126 |
| 341 | // f = (-1) * 2 * 0.m |
| 342 | // |
| 343 | // If e and m are both zero, f is zero: |
| 344 | // |
| 345 | // f = 0.0 |
| 346 | // |
| 347 | // If e is 255, f is an "infinity" or "not a number" (NAN), |
| 348 | // depending on whether m is zero or not. |
| 349 | // |
| 350 | // Examples: |
| 351 | // |
| 352 | // 0 00000000 00000000000000000000000 = 0.0 |
| 353 | // 0 01111110 00000000000000000000000 = 0.5 |
| 354 | // 0 01111111 00000000000000000000000 = 1.0 |
| 355 | // 0 10000000 00000000000000000000000 = 2.0 |
| 356 | // 0 10000000 10000000000000000000000 = 3.0 |
| 357 | // 1 10000101 11110000010000000000000 = -124.0625 |
| 358 | // 0 11111111 00000000000000000000000 = +infinity |
| 359 | // 1 11111111 00000000000000000000000 = -infinity |
| 360 | // 0 11111111 10000000000000000000000 = NAN |
| 361 | // 1 11111111 11111111111111111111111 = NAN |
| 362 | // |
| 363 | // Representation of a half: |
| 364 | // |
| 365 | // Here is the bit-layout for a half number, h: |
| 366 | // |
| 367 | // 15 (msb) |
| 368 | // | |
| 369 | // | 14 10 |
| 370 | // | | | |
| 371 | // | | | 9 0 (lsb) |
| 372 | // | | | | | |
| 373 | // X XXXXX XXXXXXXXXX |
| 374 | // |
| 375 | // s e m |
| 376 | // |
| 377 | // S is the sign-bit, e is the exponent and m is the significand. |
| 378 | // |
| 379 | // If e is between 1 and 30, h is a normalized number: |
| 380 | // |
| 381 | // s e-15 |
| 382 | // h = (-1) * 2 * 1.m |
| 383 | // |
| 384 | // If e is 0, and m is not zero, h is a denormalized number: |
| 385 | // |
| 386 | // S -14 |
| 387 | // h = (-1) * 2 * 0.m |
| 388 | // |
| 389 | // If e and m are both zero, h is zero: |
| 390 | // |
| 391 | // h = 0.0 |
| 392 | // |
| 393 | // If e is 31, h is an "infinity" or "not a number" (NAN), |
| 394 | // depending on whether m is zero or not. |
| 395 | // |
| 396 | // Examples: |
| 397 | // |
| 398 | // 0 00000 0000000000 = 0.0 |
| 399 | // 0 01110 0000000000 = 0.5 |
| 400 | // 0 01111 0000000000 = 1.0 |
| 401 | // 0 10000 0000000000 = 2.0 |
| 402 | // 0 10000 1000000000 = 3.0 |
| 403 | // 1 10101 1111000001 = -124.0625 |
| 404 | // 0 11111 0000000000 = +infinity |
| 405 | // 1 11111 0000000000 = -infinity |
| 406 | // 0 11111 1000000000 = NAN |
| 407 | // 1 11111 1111111111 = NAN |
| 408 | // |
| 409 | // Conversion: |
| 410 | // |
| 411 | // Converting from a float to a half requires some non-trivial bit |
| 412 | // manipulations. In some cases, this makes conversion relatively |
| 413 | // slow, but the most common case is accelerated via table lookups. |
| 414 | // |
| 415 | // Converting back from a half to a float is easier because we don't |
| 416 | // have to do any rounding. In addition, there are only 65536 |
| 417 | // different half numbers; we can convert each of those numbers once |
| 418 | // and store the results in a table. Later, all conversions can be |
| 419 | // done using only simple table lookups. |
| 420 | // |
| 421 | //--------------------------------------------------------------------------- |
| 422 | |
| 423 | |
| 424 | //---------------------------- |
| 425 | // Half-from-float constructor |
| 426 | //---------------------------- |
| 427 | |
| 428 | inline |
| 429 | half::half (float f) |
| 430 | { |
| 431 | uif x; |
| 432 | |
| 433 | x.f = f; |
| 434 | |
| 435 | if (f == 0) |
| 436 | { |
| 437 | // |
| 438 | // Common special case - zero. |
| 439 | // Preserve the zero's sign bit. |
| 440 | // |
| 441 | |
| 442 | _h = (x.i >> 16); |
| 443 | } |
| 444 | else |
| 445 | { |
| 446 | // |
| 447 | // We extract the combined sign and exponent, e, from our |
| 448 | // floating-point number, f. Then we convert e to the sign |
| 449 | // and exponent of the half number via a table lookup. |
| 450 | // |
| 451 | // For the most common case, where a normalized half is produced, |
| 452 | // the table lookup returns a non-zero value; in this case, all |
| 453 | // we have to do is round f's significand to 10 bits and combine |
| 454 | // the result with e. |
| 455 | // |
| 456 | // For all other cases (overflow, zeroes, denormalized numbers |
| 457 | // resulting from underflow, infinities and NANs), the table |
| 458 | // lookup returns zero, and we call a longer, non-inline function |
| 459 | // to do the float-to-half conversion. |
| 460 | // |
| 461 | |
| 462 | int e = (x.i >> 23) & 0x000001ff; |
| 463 | |
| 464 | e = _eLut[e]; |
| 465 | |
| 466 | if (e) |
| 467 | { |
| 468 | // |
| 469 | // Simple case - round the significand, m, to 10 |
| 470 | // bits and combine it with the sign and exponent. |
| 471 | // |
| 472 | |
| 473 | int m = x.i & 0x007fffff; |
| 474 | _h = e + ((m + 0x00000fff + ((m >> 13) & 1)) >> 13); |
| 475 | } |
| 476 | else |
| 477 | { |
| 478 | // |
| 479 | // Difficult case - call a function. |
| 480 | // |
| 481 | |
| 482 | _h = convert (i: x.i); |
| 483 | } |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | |
| 488 | //------------------------------------------ |
| 489 | // Half-to-float conversion via table lookup |
| 490 | //------------------------------------------ |
| 491 | |
| 492 | inline |
| 493 | half::operator float () const |
| 494 | { |
| 495 | return _toFloat[_h].f; |
| 496 | } |
| 497 | |
| 498 | |
| 499 | //------------------------- |
| 500 | // Round to n-bit precision |
| 501 | //------------------------- |
| 502 | |
| 503 | inline half |
| 504 | half::round (unsigned int n) const |
| 505 | { |
| 506 | // |
| 507 | // Parameter check. |
| 508 | // |
| 509 | |
| 510 | if (n >= 10) |
| 511 | return *this; |
| 512 | |
| 513 | // |
| 514 | // Disassemble h into the sign, s, |
| 515 | // and the combined exponent and significand, e. |
| 516 | // |
| 517 | |
| 518 | unsigned short s = _h & 0x8000; |
| 519 | unsigned short e = _h & 0x7fff; |
| 520 | |
| 521 | // |
| 522 | // Round the exponent and significand to the nearest value |
| 523 | // where ones occur only in the (10-n) most significant bits. |
| 524 | // Note that the exponent adjusts automatically if rounding |
| 525 | // up causes the significand to overflow. |
| 526 | // |
| 527 | |
| 528 | e >>= 9 - n; |
| 529 | e += e & 1; |
| 530 | e <<= 9 - n; |
| 531 | |
| 532 | // |
| 533 | // Check for exponent overflow. |
| 534 | // |
| 535 | |
| 536 | if (e >= 0x7c00) |
| 537 | { |
| 538 | // |
| 539 | // Overflow occurred -- truncate instead of rounding. |
| 540 | // |
| 541 | |
| 542 | e = _h; |
| 543 | e >>= 10 - n; |
| 544 | e <<= 10 - n; |
| 545 | } |
| 546 | |
| 547 | // |
| 548 | // Put the original sign bit back. |
| 549 | // |
| 550 | |
| 551 | half h; |
| 552 | h._h = s | e; |
| 553 | |
| 554 | return h; |
| 555 | } |
| 556 | |
| 557 | |
| 558 | //----------------------- |
| 559 | // Other inline functions |
| 560 | //----------------------- |
| 561 | |
| 562 | inline half |
| 563 | half::operator - () const |
| 564 | { |
| 565 | half h; |
| 566 | h._h = _h ^ 0x8000; |
| 567 | return h; |
| 568 | } |
| 569 | |
| 570 | |
| 571 | inline half & |
| 572 | half::operator = (float f) |
| 573 | { |
| 574 | *this = half (f); |
| 575 | return *this; |
| 576 | } |
| 577 | |
| 578 | |
| 579 | inline half & |
| 580 | half::operator += (half h) |
| 581 | { |
| 582 | *this = half (float (*this) + float (h)); |
| 583 | return *this; |
| 584 | } |
| 585 | |
| 586 | |
| 587 | inline half & |
| 588 | half::operator += (float f) |
| 589 | { |
| 590 | *this = half (float (*this) + f); |
| 591 | return *this; |
| 592 | } |
| 593 | |
| 594 | |
| 595 | inline half & |
| 596 | half::operator -= (half h) |
| 597 | { |
| 598 | *this = half (float (*this) - float (h)); |
| 599 | return *this; |
| 600 | } |
| 601 | |
| 602 | |
| 603 | inline half & |
| 604 | half::operator -= (float f) |
| 605 | { |
| 606 | *this = half (float (*this) - f); |
| 607 | return *this; |
| 608 | } |
| 609 | |
| 610 | |
| 611 | inline half & |
| 612 | half::operator *= (half h) |
| 613 | { |
| 614 | *this = half (float (*this) * float (h)); |
| 615 | return *this; |
| 616 | } |
| 617 | |
| 618 | |
| 619 | inline half & |
| 620 | half::operator *= (float f) |
| 621 | { |
| 622 | *this = half (float (*this) * f); |
| 623 | return *this; |
| 624 | } |
| 625 | |
| 626 | |
| 627 | inline half & |
| 628 | half::operator /= (half h) |
| 629 | { |
| 630 | *this = half (float (*this) / float (h)); |
| 631 | return *this; |
| 632 | } |
| 633 | |
| 634 | |
| 635 | inline half & |
| 636 | half::operator /= (float f) |
| 637 | { |
| 638 | *this = half (float (*this) / f); |
| 639 | return *this; |
| 640 | } |
| 641 | |
| 642 | |
| 643 | inline bool |
| 644 | half::isFinite () const |
| 645 | { |
| 646 | unsigned short e = (_h >> 10) & 0x001f; |
| 647 | return e < 31; |
| 648 | } |
| 649 | |
| 650 | |
| 651 | inline bool |
| 652 | half::isNormalized () const |
| 653 | { |
| 654 | unsigned short e = (_h >> 10) & 0x001f; |
| 655 | return e > 0 && e < 31; |
| 656 | } |
| 657 | |
| 658 | |
| 659 | inline bool |
| 660 | half::isDenormalized () const |
| 661 | { |
| 662 | unsigned short e = (_h >> 10) & 0x001f; |
| 663 | unsigned short m = _h & 0x3ff; |
| 664 | return e == 0 && m != 0; |
| 665 | } |
| 666 | |
| 667 | |
| 668 | inline bool |
| 669 | half::isZero () const |
| 670 | { |
| 671 | return (_h & 0x7fff) == 0; |
| 672 | } |
| 673 | |
| 674 | |
| 675 | inline bool |
| 676 | half::isNan () const |
| 677 | { |
| 678 | unsigned short e = (_h >> 10) & 0x001f; |
| 679 | unsigned short m = _h & 0x3ff; |
| 680 | return e == 31 && m != 0; |
| 681 | } |
| 682 | |
| 683 | |
| 684 | inline bool |
| 685 | half::isInfinity () const |
| 686 | { |
| 687 | unsigned short e = (_h >> 10) & 0x001f; |
| 688 | unsigned short m = _h & 0x3ff; |
| 689 | return e == 31 && m == 0; |
| 690 | } |
| 691 | |
| 692 | |
| 693 | inline bool |
| 694 | half::isNegative () const |
| 695 | { |
| 696 | return (_h & 0x8000) != 0; |
| 697 | } |
| 698 | |
| 699 | |
| 700 | inline half |
| 701 | half::posInf () |
| 702 | { |
| 703 | half h; |
| 704 | h._h = 0x7c00; |
| 705 | return h; |
| 706 | } |
| 707 | |
| 708 | |
| 709 | inline half |
| 710 | half::negInf () |
| 711 | { |
| 712 | half h; |
| 713 | h._h = 0xfc00; |
| 714 | return h; |
| 715 | } |
| 716 | |
| 717 | |
| 718 | inline half |
| 719 | half::qNan () |
| 720 | { |
| 721 | half h; |
| 722 | h._h = 0x7fff; |
| 723 | return h; |
| 724 | } |
| 725 | |
| 726 | |
| 727 | inline half |
| 728 | half::sNan () |
| 729 | { |
| 730 | half h; |
| 731 | h._h = 0x7dff; |
| 732 | return h; |
| 733 | } |
| 734 | |
| 735 | |
| 736 | inline unsigned short |
| 737 | half::bits () const |
| 738 | { |
| 739 | return _h; |
| 740 | } |
| 741 | |
| 742 | |
| 743 | inline void |
| 744 | half::setBits (unsigned short bits) |
| 745 | { |
| 746 | _h = bits; |
| 747 | } |
| 748 | |
| 749 | #endif |
| 750 | |