| 1 | // This file is part of OpenCV project. |
| 2 | // It is subject to the license terms in the LICENSE file found in the top-level directory |
| 3 | // of this distribution and at http://opencv.org/license.html. |
| 4 | // |
| 5 | // Copyright (C) 2013-2016, The Regents of The University of Michigan. |
| 6 | // |
| 7 | // This software was developed in the APRIL Robotics Lab under the |
| 8 | // direction of Edwin Olson, ebolson@umich.edu. This software may be |
| 9 | // available under alternative licensing terms; contact the address above. |
| 10 | // |
| 11 | // The views and conclusions contained in the software and documentation are those |
| 12 | // of the authors and should not be interpreted as representing official policies, |
| 13 | // either expressed or implied, of the Regents of The University of Michigan. |
| 14 | #ifndef _OPENCV_UNIONFIND_HPP_ |
| 15 | #define _OPENCV_UNIONFIND_HPP_ |
| 16 | |
| 17 | namespace cv { |
| 18 | namespace aruco { |
| 19 | |
| 20 | typedef struct unionfind unionfind_t; |
| 21 | struct unionfind{ |
| 22 | uint32_t maxid; |
| 23 | struct ufrec *data; |
| 24 | }; |
| 25 | |
| 26 | struct ufrec{ |
| 27 | // the parent of this node. If a node's parent is its own index, |
| 28 | // then it is a root. |
| 29 | uint32_t parent; |
| 30 | |
| 31 | // for the root of a connected component, the number of components |
| 32 | // connected to it. For intermediate values, it's not meaningful. |
| 33 | uint32_t size; |
| 34 | }; |
| 35 | |
| 36 | static inline unionfind_t *unionfind_create(uint32_t maxid){ |
| 37 | unionfind_t *uf = (unionfind_t*) calloc(nmemb: 1, size: sizeof(unionfind_t)); |
| 38 | uf->maxid = maxid; |
| 39 | uf->data = (struct ufrec*) malloc(size: (maxid+1) * sizeof(struct ufrec)); |
| 40 | for (unsigned int i = 0; i <= maxid; i++) { |
| 41 | uf->data[i].size = 1; |
| 42 | uf->data[i].parent = i; |
| 43 | } |
| 44 | return uf; |
| 45 | } |
| 46 | |
| 47 | static inline void unionfind_destroy(unionfind_t *uf){ |
| 48 | free(ptr: uf->data); |
| 49 | free(ptr: uf); |
| 50 | } |
| 51 | |
| 52 | /* |
| 53 | static inline uint32_t unionfind_get_representative(unionfind_t *uf, uint32_t id) |
| 54 | { |
| 55 | // base case: a node is its own parent |
| 56 | if (uf->data[id].parent == id) |
| 57 | return id; |
| 58 | |
| 59 | // otherwise, recurse |
| 60 | uint32_t root = unionfind_get_representative(uf, uf->data[id].parent); |
| 61 | |
| 62 | // short circuit the path. [XXX This write prevents tail recursion] |
| 63 | uf->data[id].parent = root; |
| 64 | |
| 65 | return root; |
| 66 | } |
| 67 | */ |
| 68 | |
| 69 | // this one seems to be every-so-slightly faster than the recursive |
| 70 | // version above. |
| 71 | static inline uint32_t unionfind_get_representative(unionfind_t *uf, uint32_t id){ |
| 72 | uint32_t root = id; |
| 73 | |
| 74 | // chase down the root |
| 75 | while (uf->data[root].parent != root) { |
| 76 | root = uf->data[root].parent; |
| 77 | } |
| 78 | |
| 79 | // go back and collapse the tree. |
| 80 | // |
| 81 | // XXX: on some of our workloads that have very shallow trees |
| 82 | // (e.g. image segmentation), we are actually faster not doing |
| 83 | // this... |
| 84 | while (uf->data[id].parent != root) { |
| 85 | uint32_t tmp = uf->data[id].parent; |
| 86 | uf->data[id].parent = root; |
| 87 | id = tmp; |
| 88 | } |
| 89 | |
| 90 | return root; |
| 91 | } |
| 92 | |
| 93 | static inline uint32_t unionfind_get_set_size(unionfind_t *uf, uint32_t id){ |
| 94 | uint32_t repid = unionfind_get_representative(uf, id); |
| 95 | return uf->data[repid].size; |
| 96 | } |
| 97 | |
| 98 | static inline uint32_t unionfind_connect(unionfind_t *uf, uint32_t aid, uint32_t bid){ |
| 99 | uint32_t aroot = unionfind_get_representative(uf, id: aid); |
| 100 | uint32_t broot = unionfind_get_representative(uf, id: bid); |
| 101 | |
| 102 | if (aroot == broot) |
| 103 | return aroot; |
| 104 | |
| 105 | // we don't perform "union by rank", but we perform a similar |
| 106 | // operation (but probably without the same asymptotic guarantee): |
| 107 | // We join trees based on the number of *elements* (as opposed to |
| 108 | // rank) contained within each tree. I.e., we use size as a proxy |
| 109 | // for rank. In my testing, it's often *faster* to use size than |
| 110 | // rank, perhaps because the rank of the tree isn't that critical |
| 111 | // if there are very few nodes in it. |
| 112 | uint32_t asize = uf->data[aroot].size; |
| 113 | uint32_t bsize = uf->data[broot].size; |
| 114 | |
| 115 | // optimization idea: We could shortcut some or all of the tree |
| 116 | // that is grafted onto the other tree. Pro: those nodes were just |
| 117 | // read and so are probably in cache. Con: it might end up being |
| 118 | // wasted effort -- the tree might be grafted onto another tree in |
| 119 | // a moment! |
| 120 | if (asize > bsize) { |
| 121 | uf->data[broot].parent = aroot; |
| 122 | uf->data[aroot].size += bsize; |
| 123 | return aroot; |
| 124 | } else { |
| 125 | uf->data[aroot].parent = broot; |
| 126 | uf->data[broot].size += asize; |
| 127 | return broot; |
| 128 | } |
| 129 | } |
| 130 | }} |
| 131 | #endif |
| 132 | |